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Abstract 


Many of those actively involved in the physical sciences adopt a reductionist point of view, in which all aspects of the world are ultimately controlled by physical laws that are expressed in terms of mathematical equations. In this article we adopt a pluralistic approach to human understanding in which mathematically expressed laws of nature are merely one way among several of describing a world that is too vast and complex for our minds to be able to grasp in its entirety. 


Introduction

In spite of the enormous advances in the sciences since 1600, some of the basic questions about the philosophy of science have not been resolved. The relationship between the concept-driven activity of human beings and teleological issues on the one hand and the physical sciences on the other needs to be radically reassessed if it is to have any chance of being clarified. In this article we argue that abandoning reductionism and Platonism provide an essential first step in this process.

It is generally agreed that the goal of science is to find naturally based and testable descriptions of the world, the more detailed the better. This does not in itself commit one to the belief that the physicist’s Theory of Everything is the final goal. Consilience, the search for coherent and interconnected explanations of the world, is not the same as reductionism: connections between theories do not necessarily have to have directions attached to them. There is only one world, but we argue that we will probably always have to content ourselves with a wide variety of overlapping ways of understanding it. In this article we direct attention towards understanding rather than truth. The distinction is that truth is an objective matter, unrelated to human society, while understanding has to involve some person or group of people who actually understand. We discuss the meaning of understanding further in the final section. 

This point of view is influenced by the Kantian distinction between the nature of ‘things in themselves’, and our representations of them, which are heavily influenced by the manner in which our brains process the raw information reaching our sense organs.
 The importance of the distinction is strongly supported by recent research in experimental psychology and neurophysiology, particularly with respect to neural processing in the retina and brain, resulting in what we call three-dimensional vision.
 One might update Kant’s views about the synthetic a priori nature of space and time into the statement that we have no choice but to interpret the world via internally generated concepts, some of which are innate. Confusing our concepts with the entities to which we apply those concepts prevents any serious progress in metaphysics.

I use the words Platonic and Kantian in the weakest possible sense. Plato’s writings were clear, but they relate very poorly to modern experimental science, and it is surprising that his notion of ideal forms has survived. On the other hand Kant is rather obscure, and interpreting his work has become a major industry.
 The Kant of this article is a reconstruction informed by recent advances in science, and particularly experimental psychology. Kant’s detailed discussion of mathematics is flawed,
 but in spite of this his metaphysics contains ideas of considerable value.

The word ‘pluralism’ is used in cultural, ethnical as well as philosophical contexts. In the last case it is usually interpreted ontologically: in other words it claims that the world in itself has more than ultimate substance. Descartes characterized these as matter and mind. The relationship between phenomena and noumena in Kant’s work has been a matter of much debate, which we do not attempt to resolve. Popper’s three worlds relate to physical entities, mental states and the contents of human thought, such as social institutions and scientific theories.
 Penrose also has three worlds, the physical, mental and Platonic, but his Platonic world
 is quite different from Popper’s World 3. The former is supposed to be eternal, while the latter develops with time. Many other fundamental categories have been proposed, including the flow of information. 
Ontological pluralism has fallen out of favour as a result of the triumphant progress of physics since the start of the seventeenth century, and we are not proposing that it should be revived. We use the word in a purely epistemological and Kantian sense.
 

The pluralism that we discuss pertains not to the world itself, but to our attempts to understand it in terms accessible to our limited mental powers. We argue that science as it is practised by scientists depends on multiple overlapping descriptions of the world, each of which has a domain of applicability. These descriptions change over time, and are valued on the basis of the understanding that they provide. Scientific progress is achieved by creating new descriptions, abandoning obsolete descriptions and modifying the domains of applicability of existing descriptions. We will see that descriptions are not ordered in a hierarchy, and argue that there is no reason to believe that all descriptions of the world can be deduced from a single fundamental theory. Descriptions that are in one sense incorrect, i.e. that have been refuted in Popper’s sense, may legitimately be retained provided one remembers their limitations. 

Although we will discuss the influence of social constructions and shared concepts (Popper’s World 3) on physical events, we deliberately avoid any discussion of the status of subjective consciousness. The nature of consciousness is a subject that generates more heat that light, and we do not need to resolve it in order to press our main thesis. Whether our proposals have any relevance to that important issue remains to be seen. 

One of the main requirements of a general theory of scientific understanding is that it does not confine itself to those examples that support it. The following is a short list of traps into which one can fall. In an ontology formulated in terms of mathematical equations, understanding teleological explanations or even the notion of cause and effect may well be impossible.
 If one’s philosophy of mathematics is based on developments in logic and set theory in the period between 1900 and 1940, one needs to explain how the Greeks could invent the powerhouse of modern mathematics, the axiomatic method, in total ignorance of it.  One also needs to realize that mathematics as used by most physicists is very different from the mathematics of pure mathematicians. Physicists often claim that a subject is completely understood when mathematicians regard even the problems as not yet well-defined. Both groups are right from their own point of view. Finally we agree with Norton that one needs to beware of impoverished and contrived worlds in which problems such as that involving ‘grue’ make sense.
 Philosophers do better to draw attention to the extreme richness of the real world and the problems associated with over-simplification than to copy the style of argument appropriate in some branches of physics.
The next two sections are devoted to detailing our dissatisfactions with reductionism in physics and Platonism in mathematics. They spell out why we consider that the reductive scientific consensus is philosophically unsatisfactory, in spite of its enormous predictive successes and the innumerable deep insights obtained using it. We finally proceed to set out our own theory of descriptions, which resolves some of the problems with the current paradigm. 

Reductionism in Physics

Many scientists and philosophers have described themselves as realists, reductionists or physicalists. These words have so many interpretations that we have to select one position to criticize, and leave the reader to work out for himself whether and how our comments apply to related positions.

We will use the term reductionism to refer to the following statements and minor variants of them. There is a hierarchy of scientific theories, some more fundamental than others. In particular physics is more fundamental than chemistry, which is in turn more fundamental than biology. Within physics, quantum theory is more fundamental than Newtonian mechanics, and statistical mechanics is more fundamental than thermodynamics. The less fundamental theories can in principle be derived from the more fundamental ones, even when they involve introducing new modes of description. At the bottom level is a single Theory of Everything (TofE) which incorporates the four known fundamental fields (electromagnetic, weak, strong and gravitational) in a single set of mathematical equations, and which in principle explains every phenomenon. 

The construction of a TofE has been an aspiration of theoretical physicists for many decades, but its potential contribution to physics has been questioned sharply by Anderson and others. As a mathematical enterprise it is a very worthy goal – having two well-confirmed but mutually inconsistent theories, quantum mechanics and general relativity, both of which generalize Newtonian mechanics, is a highly unsatisfactory state of affairs. We expect that the effort to construct a TofE will eventually be successful, and this will be its own reward, even if it leads to no new physics. Little remains of early optimism that there would prove to be only one such theory and that it would permit the computation of the fundamental constants of nature.  Leading theoreticians such as Sussman and t’Hooft accept that the best current candidate, string theory, will need deep modifications before it can provide a final theory. What the TofE will not do is herald the end of physics. Indeed it is not likely to make any difference to the vast majority of physicists, because the energies at which it is important are so extreme. The same actually holds even for ordinary quantum mechanics: in the words of Laughlin and Pines “We have succeeded in reducing all ordinary physical behaviour to a single correct Theory of Everything, only to discover that it has revealed exactly nothing about many things of great importance”.
  

Reductionism has a long history, described by Midgley, who characterizes it as originating as an extreme reaction against the seventeenth and eighteenth century churches.
 Modern reductionists take a variety of positions concerning its scope. Weinberg, often regarded as an arch-reductionist, agrees that science has nothing to say about values, morals or aesthetics,
 but others such as Atkins have no such scruples.

Within the context of the physical sciences, reductionism has been an extremely successful methodology. Complicated phenomena are investigated by considering them as the result of the interaction of simpler components that are investigated individually in the simplest possible situations. The fact that these components are described by mathematical equations is not in itself remarkable, since physics could be defined as that part of science whose laws are wholly mathematical in character. It is more surprising that the most fundamental physical theories depend upon the most abstract and difficult mathematics, but perhaps this also is inevitable. If Newtonian mechanics had depended on abstract operator theory while quantum mechanics had only needed Euclidean geometry, then the earlier subject would probably never have been invented. 

It is debatable whether an explanation of a physical effect in terms of mathematical equations provides full understanding. Newton’s inverse square law of gravitational attraction was severely criticized by Huygens and Leibniz for not providing a physical explanation of gravitation, and he accepted this criticism in later editions of Principia. Under the influence of scientists such as Laplace, the need for something more than a mathematical formulation was forgotten. Gradually finding the appropriate mathematical equations came to be regarded as providing the only explanation one could ask for in physics. In quantum mechanics the hope of understanding the ‘true nature’ of quantum particles has been abandoned by many physicists, even though its predictive success is so wide-ranging that it must be tapping into something very fundamental about the world.

Almost every practising scientist has accepted that chemistry can be reduced to physics in the sense that all chemical forces that can in principle be deduced from quantum mechanics (QM). These facts support reductionism less than it might appear. Historically QM was only accepted as a fundamental theory of matter because of its success in this respect. Indeed it was supplemented, as it was being created, by the introduction of Fermi-Dirac statistics, without which it was not able to explain the structure of most atoms and molecules. Most of chemistry can only be deduced from QM after the event because of the extreme difficulty of solving the QM equations. Thus the existence of buckminsterfullerene, C60, was not predicted from QM; after it was discovered experimentally, Kroto elucidated its structure by using the primitive ball and stick model. The compatibility of mature theories of chemical interactions and of fundamental physics is ensured by the fact that the subject matters of the two fields overlap, so both are constrained by the same properties of the world. 

The case against vitalism is more interesting. Nineteenth century arguments for a vital principle are now rejected by almost all biologists, because of the huge increase in the understanding of genetics and of the inner workings of cells. However, the view of various religious authorities that something of fundamental significance happens to a human egg at the point of conception seems to show that this belief is not dead. The theological debate about this issue is very difficult to follow, and it is not clear that it has any connection with science or dualism in the philosophical sense. 

Following the elucidation of the structure of DNA and its connection with the genetic code in 1953, reductionism became the established orthodoxy in molecular biology: the form of an organism was controlled by its DNA, and once one understood that, one understood everything important. This simple picture had to be modified following the discovery of regulatory mechanisms by Jacob, Lwoff and Monod. It has been realized that whether of not a gene is expressed, i.e. whether it performs its functions within the cell, is under the control of components of the cell outside it. In particular the cell turns off one of a woman’s two X chromosomes by the process of methylation. How such a system evolved is quite another question, but in existing organisms the genes and the cell depend intimately on each other. There is also evidence that genes can be inactivated by phenomena in the external environment of the entire organism. There is nothing vitalistic or non-physical about this, but it makes the reductionist hierarchy physics → chemistry → genes → cells → organisms much less useful, except as a crude first approximation.

The idea that a single event may have several quite distinct explanations is more relevant in biology than it is in physics. Indeed 
Rose starts ‘Lifelines’ with five different explanations of why a frog might jump into a pond, taking the viewpoint of a physiologist, an ethologist, a developmental biologist, an evolutionist and a molecular biologist.
 In our terms these are regarded as overlapping descriptions. The second explanation above is teleological, or, as biologists prefer to call it, teleonomic. 

Some biologists object strongly to the use of teleological language, or even references to function, at the cellular level.
 However, it is much harder to avoid the use of such terms when discussing organs such as hearts and kidneys. Skinner’s conditioned reflexes were driven by the physicalist philosophy of efficient causes; they may be applicable to some animal behaviour but are no longer considered acceptable explanations for the social interactions of the great apes. In this paper we only require the reader to accept that we need to use teleological language in order to understand human activity, because of the way our brains work. Eliminative materialists might question even this, but they are then  rejecting a simple and useful mode of explanation in favour of one that currently does not exist, and may never do so. 

In spite of its stunning successes, Popper has argued that the reductionist programme has failed to give an account of the influence of high level phenomena on processes that seem to lie within the domain of applicability of more ‘fundamental’ theories.
  The following examples support his thesis. During the twentieth century the quantity of CFCs in the Earth’s atmosphere increased steadily until about 1990, after which it stabilized and started gradually to decrease again. The presence of CFCs in the atmosphere was the result of their being manufactured at an increasing rate up to 1987, but decreasingly after that. CFCs have an effect on the ozone layer, and hence on the amount of ultra-violet radiation reaching the surface of the Earth, but explaining the reduction in their production after 1987 involves introducing concepts that have nothing to do with physics and chemistry. 

The key fact in any explanation must be that there was an international meeting in 1987 in which the participants expressed their concern that CFCs might lead to mass starvation because of crop failures. The Montreal Protocol, signed by more than a hundred countries, agreed to eliminate the production of CFCs over a period of time. The explanation for the reduction in CFC emission is not the existence of a certain physical document, but the political process initiated by the concerns of various scientists, starting with Rowland and Molina in 1973.

It might be claimed that the concerns of scientists correspond to certain types of brain state, and that these are in principle explicable in terms of biochemical and physiological processes that ultimately depend on the laws of physics. The political process leading to the Montreal Protocol would, in such terms, be the result of the interaction of the brain states of a large number of individuals coming from a variety of countries around the world. However, this ‘explanation’ is no more than an aspiration, and has no prospect of being implemented in the foreseeable future.
 It cannot be compared to the detailed description in ordinary language of the historical and political facts behind the Protocol. While we can probably establish a connection between anxiety per se and certain types of brain state, we have no idea how to establish a connection between worrying about the effect of CFCs on world climate and brain states. There is no reason to believe that a science of political treaties based, through a series of reductions, on the laws of quantum mechanics will ever emerge. 

Physical events whose only plausible explanations involve abstract concepts include much of what we are interested in. During the twentieth century millions of young men (and some women) died and killed other young men whom they had never met out of a sense of loyalty and duty to their countries, or out of a fear of the consequences to themselves if they were to refuse to conform to the laws of their countries. In Europe the nations involved had very similar cultures, and most had not existed in anything resembling their present form five hundred years ago. The context in which such behaviour can occur might eventually be understood on the basis of epigenetic rules grounded in reductive analyses of brain physiology. However, the behaviour itself can only be understood by invoking a wide range of social, historical, political and cultural abstractions. 

A huge number of similar examples could be provided, but we consider only one more: the performance of a chess-playing computer. At a physical level one observes that every few minutes a small amount of data is fed into a very complex program, resulting in lengthy computations followed by a very small output. One could inspect the program and explain in a purely mechanical way how it acts on the data to produce the output. Aristotle called this the efficient cause of its behaviour. Technically the computer program identifies the move that maximizes a very complicated function, whose value is intended (by the programmer not by the computer) to represent how likely each move is to ensure that the computer wins against an opponent using the same assessment procedure. Although this reductionist, or syntactical, account of the computer’s operation is absolutely accurate and complete in its own terms, we, as human beings, can only understand its program fully in teleological terms, i.e. by invoking the goal of the programmer. Such final causes have, however, been deliberately eliminated from reductive physics, which depends only on laws of motion and initial conditions. 
Searle has repeatedly claimed that computers cannot have minds because programs are entirely syntactical in nature.
 This is certainly true of present-day computers, but it is still possible that some future computers may be able to associate facts to a wide range of other facts, refine that association on the basis of experience, and hence develop what one would call semantic ability, or understanding. 

Physicists sometimes claim that they are only interested in universal laws, not particular events that depend on historical accidents. Such a lofty point of view elevates the Theory of Everything to the centre of the stage, and suggests that biology, geology and other sciences have an inferior status. Perhaps some other scientists acquiesce in this simply because they are intimidated by the mathematical knowledge of physicists, but our goal should be to understand as wide a range of phenomena as possible, using the appropriate concepts in each case, not to engage in power politics. It is ironic that physicists themselves are no longer sure that fundamental physics meets their own criteria. It is presently believed that the basic string equations have a vast number of topologically distinct solutions, and that the values of the fundamental constants may have been fixed in an ‘accidental’ way during the early development of the universe. Whether or not this is a true feature of this rapidly changing field, it shows that some physicists are capable of accepting contingency at the core of their own field, while disparaging it in other areas of science.  

If one moves away from fundamental physics, one finds that growing numbers of scientific topics are anti-reductive in the sense that they seek general laws that do not depend upon the details of the underlying physics. The theory of sand-piles (or more generally of critical phenomena) is of interest because of its supposed universality. Chaotic dynamical systems have applications ranging from weather forecasting to the orbits of astronomical bodies, where the underlying physics is totally different. Similarly with the theory of complex adaptive systems. 

Laughlin and Pines are among a relatively small number of physicists who have addressed the above issues, and proposed that they should be addressed by using the concept of emergence.
 The authors describe many phenomena that fit naturally into this framework. The conventional description of phase transitions in bulk matter starting from quantum mechanics requires one not only to take the infinite volume limit subject to constant density and temperature, but also to set the gravitational constant equal to zero in order to prevent the system of particles collapsing into a black hole. In this case, as in many others involving emergence, one has to understand the regime of parameters in which the emergent effects occur before one can start proving that they exist. There is nothing in the quantum mechanical equations themselves that gives any hint that such phenomena are possible.

It is now accepted by physicists that the best description of space and time might not represent it by the simple-minded four real variables of Newton and Einstein. The author has constructed a toy model in which space is discrete and its symmetry group is severely limited.
 Although quantum mechanics is possible in this context, classical mechanics is not. The usual structure of non-relativistic quantum mechanics emerges in the low energy limit. The model shows that the continuity of space with its very large Euclidean symmetry group may be emergent phenomena, not present in the model itself. In spite of their ubiquitous role in fundamental physics, Roger Newton has suggested that group symmetries may be human inventions, not present in nature itself.
 

The history of emergence goes back to J S Mill in the nineteenth century. It contains remnants of the reductionist philosophy, by using the notion of levels of knowledge, even if the properties of one level cannot be deduced from that of the level beneath it in the hierarchy. Emergence is called ontological if it is supposed that concepts relevant at a higher level truly cannot be deduced from those at a lower level, or epistemological if this is asserted simply to be impossible in practice because of the huge increase in complexity involved in passing to a higher level. Different writers take different positions on this, and sometimes do not distinguish clearly between the two. Our own position is different in that we do not assume that different descriptions of the world can be organized in a hierarchy.

Platonism in Mathematics

Many philosophers have considered that mathematics has a unique status, being the only type of absolutely certain knowledge. Plato declared that there existed an ideal realm of mathematical forms, and that philosophers could gain some access to this realm by intense thought, or could remember something about it from the period before they were born. The realm of forms is supposed to be eternal, outside the limits of space and time. Theorems are supposed to be true statements about entities that exist in the Platonic realm, irrespective of whether anyone ever knows their truth. We call this mathematical Platonism (MP). 

Some mathematicians actively believe this, the most famous being Godel, Penrose
 and Connes,
 but most philosophers have been much more cautious about accepting it. One of the main problems, explained at length by Mark Balaguer,
 is that a being embodied in space and time can have no means of accessing an ideal realm. If the realm did not exist, we could still pursue mathematics in the sense of writing down proofs and examining them for logical errors, so the existence of the realm seems to be unnecessary for the pursuit of mathematics. Some supporters of Platonism say that their intuitions depend upon direct perception of the ideal realm, but critics would respond that we do not know nearly enough about the functioning the brain to make such a statement. Experimental psychology has demonstrated that introspection and intuition are very unreliable guides to understanding the way the brain works. 

For Platonists the internal consistency of arithmetic follows directly from the fact that Peano’s axioms are (some of the) properties of an independently existing entity. If one takes arithmetic to be a human social construction then its consistency is not given. One has to hope that if an inconsistency is found it will be possible to make alterations that avoid it while preserving most of the results obtained using our present version of arithmetic. Schwartz has argued that evidence to date by no means compels one to believe that arithmetic is indeed consistent.
 We live with insecurity in all other areas of life, so the gift of certainty cannot in itself be an argument for Platonism. Paul Cohen, who finally proved the independence of the continuum hypothesis, does not accept Godel’s views about the Platonic existence of set theory. Indeed he has said that there may be no ‘truth of the matter’ about the existence of higher cardinals, and that the wide acceptance of the Axiom of Choice is the result of ‘an impersonal and quite constructive opportunism’.
 

Although the Platonic view of arithmetic is widely accepted, modern scientific evidence does not support it. Many animals have a primitive appreciation of number, being able to distinguish between numbers up to about four. Our ability to distinguish between numbers larger than four uses a different mechanism in our brains, and is learned – some ‘primitive’ societies do not acquire it. Kant’s view of arithmetic as synthetic rather than analytic is supported by experimental evidence that has led to identifying the disability called dyscalculia: there are people of normal intelligence in all other respects who cannot distinguish between numbers from five to ten without enormous effort.
 This is not the result of inadequate education or ‘psychological blocks’; if one does not have the appropriate, specialized structures in one’s brain, one simply cannot learn what most of us think of as obvious. Even for normal people, the ability to understand complicated procedures in arithmetic does not come naturally, as language does; it has to be learned via a protracted educational process.

Platonists would claim that the set of all natural numbers is infinite, and some would conclude that this establishes our ability to perceive the infinite, at least to some extent. An alternative view is that the set of natural numbers and infinity are both human concepts, whose meanings are sanctioned by society, and that it is appropriate to use the latter when discussing the former. There need be no independent infinite object.  Conventions about the use of both concepts are very tightly drawn, so there can be more or less universal agreement about the validity of results obtained using them. The referent of the term natural number is our concept, not some entity that exists outside space, time and human society.. 

A second argument against the absolute and self-evident status of arithmetic is the fact that the law of induction was only formulated in the sixteenth century, by Maurolico. It enables one to imagine natural numbers with 10100 digits, but there is nothing in the external world corresponding to such numbers, whose status is purely a priori. Indeed there are no physical applications of numbers with 50 digits that relate to counting rather than estimation. The above ideas all support the idea that Peano arithmetic was constructed by generalizing from our experience of counting quite small numbers. The fact that this historically located generalization has been enormously productive does not imply that we were not responsible for it.

It has been argued that the status of mathematics as a whole is guaranteed by the fact that our best scientific theory of the world is formulated in mathematical terms. This is called the Quine-Putnam indispensability argument for mathematical realism, and has received much attention.
 Unfortunately we have seen that these ‘best’ theories omit so much of what we are interested in that one should not base any general philosophical conclusions on their structure. The exact relationship between the mathematical models that we use to describe physical entities and the entities themselves is unclear, since nobody would claim that the planets solve Newton’s equations of motion or Einstein’s equations before deciding how to move. It is usually assumed that the equations control the world in a deliberately unspecified way, but one may equally plausibly think of the former as simply being our best way of representing the regularities of the latter. 

In quantum mechanics the problem is particularly acute, since many mathematicians and physicists regularly identify wave functions, which are part of the mathematical model, with the systems of particles that they represent. However, atoms and molecules are no more the same as wave functions than planets are the same as points in a classical phase space. It is likely that when a Theory of Everything is eventually found, the mathematical representation of elementary particles will differ radically from the one used in quantum mechanics.

This article takes a position related to that of Kant, who retains the reality of the external world while identifying our theories about it as constructions heavily conditioned by our own mental natures.
 The a priori character of mathematics is based upon its dependence on logical argument, as opposed to observation of the world. Its synthetic aspect is our inevitable use of concepts that depend on the way our minds work. Kant identifies space and time, or geometry and arithmetic, as being particularly important. He breaks decisively with Plato in not regarding these as based upon a dim appreciation of some ideal world, placing them firmly in the nature of the human mind. As a result, our appreciation of the external world has to use these concepts, whatever the world in itself might be like. Kant’s classification is supported by current experimental evidence that primitive aspects of geometry and number are hard-wired into the human brain. However, he underestimated the extent to which they have been augmented by social processes. In particular he erroneously identified geometry with Euclidean geometry. Riemann and others later showed that other geometries were possible, and Einstein showed that a non-Euclidean description of our world, in which space and time are combined, provides a better model of the physical world.

Since the time of Hume the fact that the world exhibits regularities has been a mystery. The fact that many of these regularities are expressed in mathematical terms is a lesser one, since regularities, if they exist, must be expressible in some terms. The regularities of nature are also a prerequisite for scientific theories in biology and geomorphology, but these are not fundamentally mathematical in nature, even if (fairly basic) mathematics is used when analyzing the evidence. 

Among these regularities is the relationship between cause and effect. Hume established that the validity of induction was not deducible by purely logical methods, but he did not resolve the question of its actual status. Popper’s detour around it concentrates on the notion of refutation. The Kantian explanation invokes our innate propensity to seek patterns and to interpret the world in such terms. This idea is to some degree supported by taking an evolutionary perspective. One observes that the brains of all higher animals function by seeking patterns in past events and projecting them into the future. If there were little correlation between past and future events, animals with developed brains would not have evolved. Indeed if the laws governing the universe were to change even slightly, bacteria would surely have a much better chance of survival than higher animals do. As humans we can recognize far more complicated patterns than other animals, and this ability is subject to social evolution as well as being genetically inbuilt. If the complex patterns that humans can identify did not often correspond to regularities in the world we would not have survived as a species, since this is the key respect in which we differ from other animals. 

Mathematical Platonism is only tenable if there is a single thing called mathematics which does not vary in nature with time. A number of developments since 1920 have made it a lot less clear that this is the case. None of the following points is decisive on its own, but they can be interpreted as changes in the nature of a humanly constructed subject as easily as being considered to be gradually more complete revelations of a Platonic reality. 

1) There are statements that cannot be proved within ZFC (the continuum hypothesis and the consistency of ZFC) without adding extra axioms to ZFC that in effect simply declare them to be true.

2) Some theorems are classically true but incapable of numerical implementation (the existence of a unique dynamics for chaotic systems).

3) Some theorems are classically true but contructively false (The intermediate value theorem). Classical and constructive mathematics study different entities, both are mathematically valuable, although in different contexts, and neither is ‘right’.

4) Some combinatorial minimization problems are trivially soluble, but there may be no method of finding the solutions using feasible resources (the travelling salesman problem).

5) Some classification problems are insoluble by any systematic procedure (the isomorphism problem for finitely presented groups).

6) Some theorems have proofs that are far beyond the ability of a single mathematician to understand in their entirety (the classification of finite simple groups).

7) Some theorems have proofs that depend upon the fact that some extremely long computer calculations happen to turn out one way rather than another (the four colour theorem and the Hales-Kepler sphere packing theorem). 

It is also significant that pure mathematicians and physicists have quite different attitudes towards mathematics. Thus physicists can quite happily say that QED is extremely well understood because they are able to calculate various effects with extraordinary accuracy, even though the theory is not well-defined in mathematical terms. The distinction between classical mathematics and constructive mathematics in the sense of Bishop, an issue that has generated much heat in mathematical circles, is of no relevance to physics, because both deliver the same tools. Rigorous proof is the central issue for pure mathematics, but finding recipes that give the right answers is the goal of physics.
  

One result of these developments, wholly unanticipated at the start of the twentieth century, has been to shift the emphasis away from truth as an absolute concept and towards provability, or sometimes implementable provability. In fact proofs are what mathematicians are really interested in, and being finite entities, what they are equipped to assess. Understanding comes from knowing why a statement is true, not that it is true, and in mathematics this comes by thinking about the details of the proof at several levels simultaneously. Assurances about the truth of a theorem are worth nothing without a proof, and could in any case only be provided by God, an oracle or a mathematician claiming mystical powers. In the real world mathematicians produce proofs, always have done, and are judged on the depth and novelty of their proofs. The four colour theorem was famous not because the concepts involved in stating it were deep -- far from it -- but because producing a proof turned out to be so difficult. The formal, computerized proof of correctness of this theorem was an outstanding achievement, but it does not provide us with full understanding, because of its one-dimensional character.

We summarize a few of the conclusions of earlier articles in which we argue that mathematics should be considered in its historical context as a human creation.
 Its utility in describing aspects of the world is not surprising because we have spent over two thousand years developing it for just this purpose. Mathematics is not a static, timeless entity: it has changed over time, particularly rapidly during the twentieth century. The influence of computers is causing further changes in the way mathematics is developing, and, we would argue, in its nature. 

Descriptions

Our theory of descriptions is driven by the examples above and many others like them. It owes much to Karl Popper, in the sense that it supposes that the truth of scientific theories is not logically provable. 
 We also follow Popper in rejecting the reductionist philosophy of science.
 However, our descriptions do not correspond exactly to his scientific theories, because we argue that descriptions that have been refuted in his sense may still retain scientific value. We allow teleological explanations for physical events, provided a human agency is involved in causing the event.
Descriptions are regarded as human creations, whose relationship with the true nature of the world varies from case to case. Two descriptions may overlap, and should ideally agree with each other when they do. Inadequacies of a description are handled by reducing either its domain of applicability or claims about its accuracy. The goal of scientific investigation is not to progress towards a single description of the world, because the world may be too complex for this to be possible. One can however, realistically hope to understand better the domains of applicability of different descriptions, and to find a description appropriate for every type of physical phenomenon.  Mathematically expressed laws of nature are among our most successful types of description, but there are situations, such as those relating to CFCs, in which they are not appropriate. Some descriptions are not very accurate and have circumscribed domains of applicability, but are nevertheless retained because of their simplicity. If an event has two descriptions using very different concepts, one is obliged to assess their relative merits and to ask whether there is a way of relating them. There are no detailed rules that tell one how to do this, and there is no guarantee that it will prove possible. A description may be abandoned if it is considered that it is inferior to other descriptions in every respect. This happened with phlogiston and with the Ptolemaic system, but it is a relatively rare occurrence.
Descriptions are supposed to provide (partial) understanding of the world, but the nature of understanding is a subject of considerable controversy.
 Whether or not understanding is a species of knowledge, one of the preconditions for understanding is that the matter understood should be put in a wider context: the person understanding must relate the matter understood to a body of other information or beliefs. For this reason we do not say that children or computers understand multiplication fully if they know the rules for long multiplication and can implement them perfectly, but do not know why they are as they are. The issue in the debate is whether the truth of the matter understood and of the other information is crucial. If so then all understanding must be provisional, just as all knowledge is.
The distinction between knowledge and understanding is important even in mathematics. It is a remarkable fact that mathematicians are continually seeking new proofs of important theorems, even though nobody has any doubts about the correctness of the proofs that already exist. They would say that they do this because they feel that they understand the theorems better by constructing proofs that involve other areas of mathematics and increase the interconnectedness of the whole subject. 
Our theory of descriptions is epistemological in nature. The fact that we need a multiplicity of descriptions to make sense of the world carries no implication that the world itself has a plural character. The same applies to the fact that some descriptions involve teleological concepts. The response to a claim that the ‘correct’ ontology of the world is based entirely on efficient causes is to say that even if this is so, we can only understand how we interact with the world in terms of goals, beliefs and understanding. Midgley and others have pointed out that a philosophy based on eliminative materialism is self-defeating, because it claims that philosophical statements are nothing but the consequences of certain brain states; those who really believe this have no reason to pursue philosophy, or any other cultural activity.
 
We do not attempt to delineate the precise domain of applicability of reductionism, but it excludes the concept-driven activity of human beings and explanations involving teleology. Reductionism has been an amazingly successful methodology for organizing research in the physical sciences, and those who make over-enthusiastic claims about its universality must be forgiven. The putative TofE may also be accepted within the descriptions framework, provided it is regarded as the result of unifying mathematically formulated field theories, and divested of the claim that it truly does answer every question about the world that we may legitimately ask.
In a recent article Norton has argued that there is no systematic way of assigning the notions of cause and effect in our best theories of the world.
 His examples are interesting but the fact that they are entirely drawn from physics can be interpreted in two ways. Either physics is the most fundamental account of the natural world, in which cause and effect emerge as useful but secondary concepts in higher level but less fundamental sciences, or the fact that cause and effect do not play a fundamental role in physics is an indication that its domain of applicability is limited, and does not include many physical events associated with human activity. We have argued that the varying level of CFCs in the atmosphere is impossible to explain fully without taking account a wide range of goal-directed human activity, including politics, and the same type of argument applies to almost everything that we encounter in our everyday lives. If causation is an emergent phenomenon, it is one without which nothing in ecology, evolution or geology can possibly be understood.  
The nervous systems of ants are far simpler than ours, and their social behaviour is best understood in purely reductionist terms.
 In this context one should only refer to goals as short-hand for longer but more correct scientific language. Scientists need to take great pains to ensure both that those to whom they talk do not take such abbreviations literally. E O Wilson has correctly but controversially argued that some human behaviour may be described in the same way.
 In spite of this, as human beings, we are right to take our thoughts, intentions and goals seriously. Not to do so involves making statements that are considered by the person making them to lack meaning.
Newtonian mechanics (NM) is the exemplar of mathematical descriptions. However, after dominating the physical sciences for two centuries, it proved incapable of explaining certain types of experimental observation, and quantum mechanics was eventually found to give a much better description of the world at the atomic scale. It is also incapable of accounting for a wide variety of astrophysical observations in strong gravitational fields, and for the motion of high energy particles in accelerators, where general or special relativity are much more suitable. In spite of being refuted in Popper’s sense, NM continues to be used as much as it ever was in the nineteenth century. The reason is pragmatic: computations in NM are much simpler than those in its successors, and its basic outlook is much easier to understand. Calculations of the behaviour of machines, the motion of space probes and of the stars in galaxies are all carried out using NM. As it happens the two successor theories have also both been refuted. They are incompatible with each other, and each is only used in the appropriate domain of applicability. It is highly likely that if a TofE is eventually constructed, QM, SR and GR will still be used in almost every situation where they are currently relevant.

As an example of co-existing descriptions we consider the evolution of a collection of quantum particles. Assuming that the configuration is reasonably complicated, the Schrodinger equation must be solved numerically, a procedure that gives little insight into what is ‘really happening’. It is actually wholly infeasible ab initio, and can only be done by means of simplifications (the use of orbitals) that experience tells us are acceptable in many cases. If the parameters of the system are changed slightly one has no option but to repeat the calculation in its entirety. There is an alternative description that combines classically mutually incompatible concepts such as particle-wave duality with tunnelling to give some idea of what is happening. Although much less accurate this may provide better understanding in the sense that one can predict how a range of related systems evolve in time without repeating the calculations. Peter Atkins emphasizes that the ‘richness of chemistry stems from the interplay of different explanations that emphasize a particular aspect of the problem in a manner that makes good sense’.
 Each of the wide variety of models provides insights that are very simple to apply, subject to the need to learn the situations in which the model is appropriate.

I conclude with a short discussion of the religious description of the world. Creationist dogma fails to fit into the scheme described here because it is based on appeals to authority or revealed truth rather than evidence. In our theory descriptions compete with each other and are modified or abandoned depending on their comparative merits, which may vary as time passes. However, more moderate claims that a religious perspective helps one to understand certain aspects of the world better than other modes of description cannot be dismissed so quickly. The extent of the disagreements between different religious leaders suggests that it is prudent to restrict our theory of descriptions to testable statements about the natural world at the present time. 
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