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Abstract

We consider to what extent the fundamental question of space-time singularities is

relevant for the philosophical debate about the nature of space-time. After reviewing

some basic aspects of the space-time singularities within GR, we argue that the well-

known difficulty to localize them in a meaningful way may challenge the received

metaphysical view of space-time as a set of points possessing some intrinsic properties

together with some spatio-temporal relations. Considering the algebraic formulation of

GR, we argue that the space-time singularities highlight the philosophically misleading

dependence on the standard geometric representation of space-time.

word count: 4990

1 Introduction

Despite the invitation of Earman to consider more carefully the question of

space-time singularities [Earman 1995], only few literature in space-time phi-

losophy has been devoted to this foundational issue.1 This paper aims to take up

Earman’s invitation and to carry out philosophical investigations about space-

time singularities in the framework of the modern debate about the status of

space-time. Indeed, there are two main positions with respect to space-time

singularities and their generic character due to the famous singularity theo-

rems: first, they can be thought of as physically meaningless, only revealing

that in these cases the theory of general relativity (GR) breaks down and must

be superseded by another theory (like a future theory of quantum gravity (QG)

for instance).2 Therefore, as such space-time singularities do not tell us any-

thing physically relevant. Second, space-time singularities can be taken more

‘seriously’: they can well be considered as problematic but nevertheless as in-

volving some fundamental features of space-time. In this sense, their careful

study at the physical, mathematical and conceptual level may be helpful in or-

der to understand the nature of space-time as described by (classical) GR. This

paper aims to investigate this line of thought. In this framework, the question

1With the notable exceptions of [Earman 1996], [Curiel 1999] and [Mattingly 2001].
2They may also not occur in our universe if one of the (necessary) hypotheses of the singularity

theorems were violated, see [Mattingly 2001].

1



of space-time singularities is actually a fascinating one, which may be related

at the same time to the question of the ‘initial’ state of our universe and to the

question of the fundamental structure of space-time.

Roughly, the main question of this paper is the following one: assuming that

the space-time singularities tell us something about the nature of space-time

(again, this assumption is not evident), what do they tell us? The (tricky)

problem of the very definition of space-time singularities is an essential part of

the question.

In section 2, we will review the main concepts necessary to give an account

of space-time singularities within GR. Although these concepts reflect various

aspects of the space-time singularities, there is actually no single definition that

encompasses them all. In particular we will see that the various attempts to

define the space-time singularities in terms of local entities (like some kind of

‘holes’ or ‘missing points’ for instance) fail.3 We will then see in subsection 3.1

that this may constitute a strong argument for considering space-time singular-

ities rather as a non-local property of space-time. The central part of the paper

consists in evaluating the possible consequences of space-time singularities for

the ontological status of space-time. We will then argue that, independently of

any position in the substantivalism-relationalism debate, some aspects of the

space-time singularities may urge caution when discussing ontological issues

about space-time only with respect to local and pointlike considerations.

Even if taken ‘seriously’, space-time singularities are however not a satisfac-

tory part of GR. In this perspective, we will briefly consider in subsection 3.2

some recent theoretical developments within the algebraic formulation of GR

regarding the space-time singularities. These developments draw some possible

physical (and indeed mathematical) consequences of the above mentioned as-

pects. This algebraic approach to space-time takes the non-local aspects of the

space-time singularities as revealing that space-time is non-local and pointless

at the fundamental level. The considerations about the algebraic formulation

of GR underline the fact that the metaphysical conception of space-time should

not be dependent on a particular formulation (like the inherently pointlike stan-

dard geometric one for instance), as it seems to be often the case.

3‘Local’ is understood in this paper in the sense of being associated to a space-time point (and
its neighbourhood), see the subsection 3.1.
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2 Some aspects of the singular feature of space-

time

2.1 Extension and incompleteness

At the present state of our knowledge, it seems to be quite commonly accepted

in the relevant physics literature that there is no satisfying general definition of

a space-time singularity (for instance, see [Wald 1984, 212]). In other terms, the

notion of a space-time singularity covers various distinct aspects that cannot be

all captured in one single definition. We certainly do not pretend to review all

these aspects here. We rather want to focus on the first two fundamental notions

that are at the heart of most of the attempts to define space-time singularities.

The first is the notion of extension of a space-time Lorentz manifold (to-

gether with the interrelated notion of continuity and differentiability condi-

tions).4 The idea is to insure that what we count as singularities are not merely

(regular) ‘holes’ or ‘missing points’ in our space-time Lorentz manifold that

could be covered (‘filled’) by a ‘bigger’ but regular space-time Lorentz mani-

fold with respect to certain continuity and differentiability conditions (or Ck-

conditions). These latter conditions (together with the notion of extension) are

therefore essential to the most consensual definitions of space-time singularities.

But, at this level, there are two major ambiguities that are part of the difficul-

ties to define space-time singularities. First, extensions are not unique and all

possible extensions must be carefully considered in order to discard (regular)

singularities that can be removed by a mere regular extension. Given certain

Ck-conditions, we will therefore always consider maximal space-time Lorentz

manifolds.5 A space-time singularity will therefore be defined with respect to

certain Ck-conditions (and indeed should be called a Ck-singularity; these con-

ditions are often implicit and not always mentioned). This fact leads to the

second difficulty: it is not clear what are exactly the necessary and sufficient

continuity and differentiability conditions for a space-time Lorentz manifold to

4An extension of a space-time Lorentz manifold (M, g) is any space-time Lorentz manifold
(M ′, g′) (of same dimension) where (M ′, ϕ) is an envelopment of M and such that ϕ∗(g) = g′|ϕ(M)

holds.
5A space-time Lorentz manifold is maximal with respect to the differentiability condition Ck if

there is no Ck-regular extension, which is an extension where the metric g′ is Ck at the boundary
∂′M of ϕ(M) in M ′.
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be physically meaningful.6

Strongly related with the idea of extension, the second essential notion in

order to give an account of space-time singularities is the notion of curve in-

completeness, which is the feature that is widely recognized as the most general

characterization so far of space-time singlarities (see for instance [Wald 1984,

§9.1]). Moreover, it is actually curve incompleteness that is predicted by the

singularity theorems as the generic singular behaviour for a wide class of so-

lutions.7 The broad idea is that we should look at the behavior of physically

relevant curves (namely geodesics and curves with a bounded acceleration) in

the space-time Lorentz manifold for ‘detecting’ space-time singularities (which

actually do not belong to the space-time Lorentz manifold): in particular, the

idea is that an (inextendible) half-curve of finite length (with respect to a cer-

tain generalized affine parameter) may indicate the existence of a space-time

singularity. The obvious intuition behind this idea is that, roughly, the (in-

extendible) curve has finite length because it ‘meets’ the singularity (it must

be clear that this way of speaking is actually misleading in the sense that the

‘meeting’ does not happen in the space-time Lorentz manifold). Pictorially,

anything moving along such an incomplete (non-space-like) curve (like an in-

complete geodesic or an incomplete curve with a bounded acceleration) would

literally ‘disappear’ after a finite amount of proper time or after a finite amount

of a generalized affine parameter (again, we must be very careful when using

such pictures; for instance, the event of the ‘disappearance’ itself is not part of

the space-time Lorentz manifold). In more formal terms, a (maximal) space-

time Lorentz manifold is said to be b-complete if all inextendible C1-half curves

have infinite length as measured by the generalized affine parameter (it is b-

incomplete otherwise).8 The link with the initial intuition comes from the fact

that it can be shown that b-completeness entails the completeness of geodesics

and of curves with a bounded acceleration (but not vice versa).

6A possible guideline would be to require that these conditions secure that the fundamental
laws of GR, that is, the Einstein field equations and the Bianchi identity, are well defined, see
[Earman 1995, §2.7].

7However, the notion of curve incompleteness does not encompass all aspects of space-time
singularities (like for instance certain aspects linked with the violation of the cosmic censorship).

8The generalized affine parameter u for a C1-half-curve γ(t) is defined by u :=R t

0
(
P3

i=0(V
α(t))2)

1
2 dt, where V (t) = V α(t)eα(p) is the tangent vector expressed in the parallel

propagated orthonormal basis eα.
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2.2 Boundary

The most widely accepted standard definition of a singular space-time is the

following one: a (maximal) space-time (Lorentz manifold) is said to be singular

if and only if it is b-incomplete. However, b-incompleteness only indirectly refers

(if at all) to space-time singularities in the sense of localized singular parts of

space-time (like space-time points where something ‘goes wrong’). Space-time

singularities are actually not part of the space-time Lorentz manifold (M, g)

representing space-time (within GR) in the sense that they cannot be merely

represented by points p ∈ M (or regions of M) where some physical quantity

related to the space-time structure (like the curvature for instance) goes to

infinity.9

Boundary constructions can be understood as attempts to describe space-

time singularities directly in terms of certain local properties that can be as-

cribed to certain boundary (ideal) points ‘attached’ to the space-time Lorentz

manifold. It will suffice for our purpose here to only briefly consider some

aspects of the so-called b- and a-boundary constructions.

The main idea of the b-boundary construction is to consider the b-incomplete

curves to define (singular) boundary points (as their endpoints) that can be ‘at-

tached’ to the space-time Lorentz manifold. Schmidt’s procedure [Schmidt 1971]

provides a way to construct such a (singular) boundary ∂M (called b-boundary)

using the equivalence between the b-completeness of the space-time Lorentz

manifold (M, g) and the Cauchy completeness of the total space OM of the

orthonormal frame bundle π : OM → M . In order to establish the possible in-

tuition of localization of space-time singularities with the help of these boundary

points, it is necessary to endow the singular boundary with some differential or

at least some topological structure. But it has been shown that the b-boundary

of the closed Friedman-Robertson-Walker (FRW) solution, which constitute

part of the so-called ‘standard model’ of contemporary cosmology, consists of

a single point that is not Hausdorff separated from points of the space-time

Lorentz manifold ([Bosshard 1976] and [Johnson 1977]). Being not Hausdorff

separated from points of M , this unique boundary point, which should repre-

9Space-time is represented within GR by a pair (M, g), where M is in general assumed to be
a ‘nice’ (paracompact, connected, oriented, Hausdorff) 4-dimensional differentiable manifold and
g is a Ck (k ≥ 2 in general) Lorentz metric, solution of the Einstein field equations and defined
everywhere on M .
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sent the two singularities of the closed FRW model, is actually ‘arbitrarily close’

to the points of M . It is then very difficult to give physical meaning to such a

behavior in terms of local entities or properties since any (regular) points p ∈ M

has the singular boundary point in his (arbitrarily small) neighborhood:10 at

least any (usual) sense of localization of the singularities seems then to be lost -

indeed one of the main motivations for attaching boundary points to the space-

time Lorentz manifold is lost (see [Earman 1995, 36-37]). Moreover, such bad

topological behavior has been shown to be a feature of all boundary construc-

tions that share with the b-boundary construction certain natural (and rather

weak) conditions [Geroch, Liang & Wald 1982].

With the help of the central notion of extension or envelopment, the a-

boundary construction aims to truly capture the idea of ‘missing points’, ac-

cording to which space-time singularities have to be considered as points in a

‘bigger’ manifold. More precisely, the motivation of the a-boundary construc-

tion is that singularities in a space-time Lorentz manifold have to be considered

as points (or subsets) of the topological boundary of the (image of the) man-

ifold with respect to an envelopment (such subsets are called boundary sets).

In order to overcome the already mentioned difficulty of the non-uniqueness of

the possible envelopments of a given manifold (section 2.1), the a-boundary is

defined as a set of equivalence classes of boundary sets (with respect to different

envelopments) under a relevant equivalence relation (called the mutual covering

relation, see [Scott & Szekeres 1994]). The a-boundary points representing (es-

sential) space-time singularities are further defined with respect to incomplete

curves. Avoiding the technical details, it is sufficient for our purpose here to

emphasize that a space-time singularity is then represented by an equivalence

class of boundary sets, most of which are in general not singletons (and not even

necessarily connected). In this framework, any interpretation of a space-time

singualrity as a local or pointlike space-time entity to which local properties

could be ascribed seems problematic too (see [Curiel 1999, 133-36]).

10The same problem arises in the case of the Schwarzschild solution.
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3 Singular feature and the ontological status of

space-time

3.1 A non-local feature of space-time

Neither curve (b-)incompleteness nor boundary constructions enable us to con-

ceive space-time singularities as local entities or local properties. We have seen

that they cannot be naively described by space-time Lorentz manifold points

(or regions) where something ‘goes wrong’ (where the curvature ‘blows up’ for

instance). This is actually intimately related to the dynamical nature of the

space-time structure as described by GR: space-time singularities are indeed

singularities of the space-time structure itself and there is no a priori fixed

(space-time) structure or entity with respect to which the space-time singular-

ities could be defined. Therefore, it seems indeed more accurate to speak of

‘singular feature of space-time’ in a sense that is not committed to any notion

of localized entity or property as the (actually misleading) talk of ‘space-time

singularities’ is (see [Earman 1995, 28]). Of course, this is not a mere semantic

move, and, in a scientific realist perspective, we want now to consider some

possible ontological implications of this singular feature for the nature of space-

time.

This singular feature seems to be an irreducible non-local feature of space-

time in the sense that it is based neither on the existence of any particular local

entities like space-time points nor on local properties instantiated at particular

space-time points (this is underlined in [Curiel 1999]). These notions of local

properties and local entities are understood here as being closely linked to the

concept of a point (and its neighbourhood) and to the notion of intrinsicality

(which is understood in the sense of being independent of accompaniment or

loneliness, see [Langton & Lewis 1998]). In this sense, it implies in particular

that the non-local character of the singular feature of space-time cannot be tied

to some intrinsic properties instantiated at some particular space-time points

(or in some particular (‘local’) space-time region). In this perspective, it bears

some analogy with some non-local aspects of the gravitational energy (and,

in a certain sense, with some global topological features of space-time). But

this does not merely amount to the widely recognized non-supervenience of
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space-time relations on intrinsic properties of the space-time points (or of their

relata, see [Cleland 1984]). Whereas a particular space-time relation needs to be

instantiated between particular space-time points, what we want to stress here

is that space-time may possess some fundamental features that are actually

independent of the existence of any particular space-time points (or of any

particular (‘local’) space-time region indeed). Such non-local (non-pointlike)

features of space-time may challenge therefore the received view of space-time

as a set of points possessing some intrinsic properties together with some space-

time relations (like in Lewis’ thesis of Humean supervenience).11 In particular,

this should at least prevent us from putting too much ontological weight on

local (and intrinsic) properties and local entities (like space-time points for

instance). Moreover, this sceptical attitude towards space-time points and their

possible intrinsic properties may well receive support from the GR-principle of

active general covariance (or of invariance under active diffeomorphisms) and

the related hole argument. Indeed, due to this fundamental physical principle,

a wide range of philosophers of physics and physicists agree on the fact that,

within GR, space-time points cannot be physically individuated (and therefore

‘localized’), possessing intrinsic properties for instance, independently of the

space-time relations as represented by the metric (see for instance [Dorato 2000]

and [Rovelli 2004, ch.2]). As mentioned already above, from the physical point

of view, all this is linked with the fundamental dynamical nature of space-

time as described by GR: there are no a priori fixed space-time points with

respect to which other spatio-temporal entities or features (like the space-time

singularities) can be (‘pointlikely’) described and localized.

Therefore, as regards the ontological status of space-time, taking into con-

sideration (‘seriously’) the singular feature of space-time (and similarly the

gravitational energy) would rather favour some ‘non-pointlike and non-intrinsic

conception’ of space-time, be it substantivalist or relationalist (relationalism is

here understood in the strong reductive sense, that is, the position according

to which space-time is reduced to non-spatio-temporal relations among matter

or to non-spatio-temporal properties of matter). Indeed, it seems difficult for

the relationalist to reduce these non-local (non-pointlike) space-time features to

11To include merely the non-local features of space-time in the supervenience basis would be
a rather ad hoc solution. So, we see that not only quantum physics, but also classical general
relativistic physics may threaten Humean supervenience.
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pointlike bits of matter. In an analoguous way, it is quite difficult to maintain

a pointlike substantivalist position (with respect to space-time points bearing

intrinsic properties) that does not fall victim to the hole argument and that

can account for these non-local features. Indeed, according to a rather radical

approach to the question of the singular behaviour of space-time, it may be

the case that the moral of the ‘space-time singularities problem’ is that the

very concept of a space-time point12 is challenged at the fundamental level.

From a substantivalist point of view, the singular feature would then reveal the

fundamental non-local (non-pointlike) nature of space-time, which would need

to be described in other mathematical (non-pointlike) terms. These could be

algebraic.

3.2 Algebraic approaches

If the philosophical analysis of the singular feature of space-time is able to shed

some new light on the possible nature of space-time (as we have tried to show),

one should not lose sight of the fact that, although connected to fundamental

issues in cosmology, like the ‘initial’ state of our universe, space-time singular-

ities involve unphysical behaviour (like, for instance, the very geodesic incom-

pleteness implied by the singularity theorems or some possible infinite value

for physical quantities like the curvature) and constitute therefore a physical

problem that should be overcome.13 We now want to consider some recent

theoretical developments that directly address this problem by drawing some

possible physical (and mathematical) consequences of the above considerations.

Indeed, according to the algebraic approaches to space-time, the singular

feature of space-time is an indicator for the fundamental global character of

space-time: it is conceived actually as a very important part of GR that reveals

the fundamental pointless structure of space-time, which therefore cannot be

described by the usual mathematical tools like standard differential geometry

- which is inherently pointlike. The mathematical roots of such considerations

are to be found in the full equivalence of, on the one hand, the usual (geomet-

ric) definition of a differentiable manifold M in terms of a set of points with

12Or the concept of (non-spatio-temporal) pointlike and intrinsic property in a relationalist per-
spective.

13However this does not entail that GR is either false or incomplete, see [Earman 1996].

9



a topology and a differential structure (compatible atlases) with, on the other

hand, the definition using only the algebraic structure of the (commutative) ring

C∞(M) of the smooth real functions on M (under pointwise addition and mul-

tiplication; indeed C∞(M) is a (concrete) algebra). For instance, the existence

of points of M is equivalent to the existence of maximal ideals of C∞(M).14 In-

deed, all the differential geometric properties of the space-time Lorentz manifold

(M, g) are encoded in the (concrete) algebra C∞(M). Moreover, the Einstein

field equations and theirs solutions (which represent the various space-times)

can be constructed only in terms of the algebra C∞(M).15 Now, the algebraic

structure of C∞(M) can be considered as primary (in exactly the same way in

which space-time points or regions, represented by manifold points or sets of

manifold points, may be considered as primary) and the manifold M as derived

from this algebraic structure. Indeed, one can define the Einstein field equations

from the very beginning in abstract algebraic terms without any reference to

the manifold M as well as the abstract algebras, called the ‘Einstein algebras’,

satisfying these equations. The standard geometric description of space-time

in terms of a Lorentz manifold (M, g) can then be considered as inducing a

mathematical (Gelfand) representation of an Einstein algebra. Without en-

tering into too many technical details, the important point for our discussion

is that Einstein algebras and sheaf-theoretic generalizations thereof reveal the

above discussed non-local feature of (essential) space-time singularities from

a different point of view.16 In the framework of the b-boundary construction

M = M ∪ ∂M (see subsection 2.2), the (generalized) algebraic structure C

corresponding to M can be prolonged to the (generalized) algebraic structure

C corresponding to the b-completed M such that CM = C, where CM is the

restriction of C to M ; then in the singular cases (like the closed FRW solu-

tion), only constant functions (and therefore only zero vector fields)17 can be

14A maximal ideal of a commutative algebra A is the largest proper subset of - indeed a subgroup
of the additive group of - A closed under multiplication by any element of A. The corresponding
maximal ideal of C∞(M) to a point p ∈ M is the set of all vanishing functions at p.

15The original idea is due to [Geroch 1972].
16There are indeed several algebraic approaches to GR. For instance, according to the Abstract

Differential Geometry program of A.Mallios and I.Raptis, space-time singularities are artifacts of
our mathematical (C∞-)representation of space-time: indeed, they simply disappear once GR is
written in purely algebraic (sheaf-theoretic) terms, see [Mallios & Raptis 2003]. In the following,
we rather brielfy consider the (less radical) approach of M.Heller et al., which emphasizes some
interesting points for our discussion.

17In the algebraic formalism, vector fields are abstract ‘derivations’.
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prolonged [Heller & Sasin 1994]. This underlines the non-local feature of the

singular behaviour of space-time, since constant functions are non-local (non-

pointlike) in the sense that they do not distinguish points. This fundamental

non-local feature suggests non-commutative generalizations of the Einstein al-

gebras formulation of GR (see [Heller, Pysiak & Sasin 2004] for instance), since

non-commutative spaces are highly non-local. We will not discuss this matter

here. It is sufficient for us to stress that, in general, non-commutative algebras

have no maximal ideals, so that the very concept of a point has no counterpart

within this non-commutative framework. Therefore, according to this line of

thought, space-time, at the fundamental level, is completely non-local (point-

less indeed). Then, at this fundamental level, it seems that the very distinc-

tion between singular and non-singular is not meaningful anymore; within this

framework, space-time singularities are then ‘produced’ together with the stan-

dard (commutative) space-time geometry through a kind of ‘transition’ (in the

history of the universe).18

Although these theoretical developments are rather speculative, it must be

emphasized that the algebraic representation of space-time itself is “by no means

esoteric” [Butterfield & Isham 2001, §2.2.2]. Starting from an algebraic formu-

lation of the theory, which is completely equivalent to the standard geometric

one, it provides another point of view on space-time and its singular behaviour

that should not be dismissed too quickly. At least it underlines the fact that

our interpretative framework for space-time should not be dependent on the

standard local (pointlike) conception of space-time (which is induced by the

standard geometric formulation). Indeed, this misleading dependence on the

formalism seems to be at work in some reference arguments in modern phi-

losophy of space-time, like in the hole argument19 or in the field argument by

Hartry Field. According to the latter argument, field properties occur at space-

time points or regions, which must therefore be presupposed [Field 1980, 35].

Such an argument seems to fall prey to the local (pointlike) representation of

space-time and fields, since within the algebraic formalism of GR, (scalar) fields

- elements of the algebra C∞ - can be interpreted as primary and the manifold

18See [Heller 2001] and references therein.
19The hole argument has been recently discussed in [Bain 2003] within the framework of the

algebraic formulation of GR.
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(points) as a secondary derived notion.20 However, it must be stressed that, as

such, this position does not speak for reductive relationalism, since a particular

field, namely the metric or gravitational field, encodes all space-time features

and can therefore still be considered as the representative of space-time.

4 Conclusion

Taking up Earman’s invitation to consider space-time singularities ‘seriously’

has led us to deal with fundamental issues about the nature of space-time. In-

deed, we have seen that space-time may possess some fundamental non-local

(and non-pointlike) features, like the singular feature, that challenge the tra-

ditional metaphysical view about space-time. According to this received view,

space-time is conceived as a set of points, at which (intrinsic) properties can

be instantiated, together with the space-time relations. Indeed, the very con-

cept of a space-time point seems to lie at the heart of the challenge. It cannot

be merely postulated anymore (as in Field’s argument), since it is indeed a

secondary derived notion within the algebraic formulation of GR, which may

with reason be considered as deserving to play a role in the interpretative is-

sues about space-time - at least to the same extent as the standard geometric

formulation does. Actually, it seems that the alleged interpretational problems

with respect to space-time singularities may find part of theirs roots in the mis-

leading dependence on the local and pointlike conception of space-time, which

is actually induced by this standard geometric representation of space-time.

20And this does not even take into account the fact that, within sheaf-theoretic or non-
commutative generalizations, the very concept of a point may be challenged at the fundamental
level.

12



References

[Bain 2003] Bain, J. (2003), ‘Einstein Algebras and the Hole Argument’, Phi-

losophy of Science, 70, 1073-1085.

[Bosshard 1976] Bosshard, B. (1976), ‘On the b-boundary of the closed Fried-

mann model’, Communications in Mathematical Physics, 46, 263-268.

[Butterfield & Isham 2001] Butterfield, J. and Isham, C. (2001), ‘Spacetime

and the philosophical challenge of quantum gravity’, in Callender, C and

Huggett, N. (eds.), Physics meets philosophy at the Planck scale, Cam-

bridge University Press, Cambridge, 33-89.

[Cleland 1984] Cleland, C. (1984), ‘Space: An Abstract System of Non-

Supervenient Relations’. Philosophical Studies, 46,19-40.

[Curiel 1999] Curiel, E. (1999), ‘The Analysis of Singular Spacetimes’, Philos-

ophy of Science, 66 (supplement), 119-145.

[Dorato 2000] Dorato, M. (2000), ‘Substantivalism, relationism, and structural

spacetime realism’, Foundations of Physics, 30, 1605-1628.

[Earman 1995] Earman, J. (1995), Bangs, Crunches, Whimpers, and Shrieks:

Singularities and Acausalities in Relativistic Spacetimes, Oxford University

Press, New York.

[Earman 1996] Earman, J. (1996), ‘Tolerance for Spacetime Singularities’,

Foundations of Physics, 26(5), 623-640.

[Field 1980] Field, H. (1980), Science without numbers. A defence of nominal-

ism., Blackwell, Oxford.

[Geroch 1972] Geroch, R. (1972), ‘Einstein Algebras’, Communications of

Mathematical Physics, 26, 271-275.

[Geroch, Liang & Wald 1982] Geroch, R., Liang, C. and Wald, R. (1982), ‘Sin-

gular boundaries of space-times’, Journal of Mathematical Physics, 23(3),

432-435.

[Heller 1992] Heller, M. (1992), ‘Einstein Algebras and General Relativity’, In-

ternational Journal of Theoretical Physics, 31(2), 277-288.

[Heller 2001] Heller, M. (2001), ‘The Classical Singularity Problem - History

and Current Research’, in Martinez, V., Trimble, V. and Pons-Borderia,

13



M., ‘Historical Development of Modern Cosmology’, ASP Conferences Se-

ries, 252, 121-145.

[Heller & Sasin 1994] Heller, M. and Sasin, W. (1994), ‘The Structure of the

b-Completion of Space-Time’, General Relativity and Gravitation, 26, 797-

811.

[Heller, Pysiak & Sasin 2004] Heller, M., Pysiak, L. and Sasin, W. (2004),

‘Noncommutative Unification of General Relativity and Quantum Mechan-

ics’, General Relativity and Gravitation, 36, 111-126.

[Johnson 1977] Johnson, R. (1977), ‘The Bundle Boundary in Some Special

Cases’, Journal of Mathematical Physics, 18, 898-902.

[Langton & Lewis 1998] Langton, R., and Lewis, D. (1998), ‘Defining ‘intrinsic’

’, Philosophy and Phenomenological Research, 58, 333-345.

[Mallios & Raptis 2003] Mallios, A. and Raptis, I. (2003), ‘Finitary, Causal and

Quantal Vacuum Einstein Gravity’, International Journal of Theoretical

Physics, 42(7), 1479-1619.

[Mattingly 2001] Mattingly, J. (2001), ‘Singularities and Scalar Fields: Matter

Theory and General Relativity’, Philosophy of Science, 68 (supplement),

395-406.

[Rovelli 2004] Rovelli, C. (2004), Quantum gravity, Cambridge University

Press, Cambridge.

[Schmidt 1971] Schmidt, B. (1971), ‘A New Definition of Singular Points in

General Relativity’, General Relativity and Gravitation, 1, 269-280.

[Scott & Szekeres 1994] Scott, S. and Szekeres, P. (1994), ‘The abstract bound-

ary - a new approach to singularities of manifolds’, Journal of Geometry

and Physics, 13, 223-253.

[Wald 1984] Wald, R. (1984), General Relativity, The University of Chicago

Press, Chicago and London.

14


