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Abstract: Ecologists have proposed several incompatible definitions of ecological stability. 
Emulating physicists, mathematical ecologists commonly define it as Lyapunov stability. This 
formalizes the problematic concept by integrating it into a well-developed mathematical theory. 
The formalization also seems to capture the intuition that ecological stability depends on how 
ecological systems respond to perturbation. Despite these advantages, this definition is flawed. 
Although Lyapunov stability adequately characterizes perturbation responses of systems typically 
studied in physics, it does not for ecological systems. This failure reveals a limitation of its 
underlying mathematical theory, and an important difference between dynamic systems modeling 
in physics and biology. 
 
 
1. Introduction. Like many scientific concepts, fully adequate definitions of some 

ecological concepts have not yet been formulated. Ecological stability is one such 

concept. Proposed definitions of it are not fully satisfactory and, worse, seem 

incompatible (Shrader-Frechette and McCoy 1993). Although it is incorrect to conclude 

from this that the concept itself is problematic (Odenbaugh 2001), the multitude of 

incompatible definitions initiates and exacerbates conceptual confusion. 

 Among mathematical ecologists, ecological stability is commonly defined as 

Lyapunov stability, named after the Russian mathematician who first precisely defined 

the concept to describe the apparently stable equilibrium behavior of the solar system 

(Lyapunov 1892). His definition has found widespread application outside this context 

and is frequently used to analyze mathematical models of biological communities 

(Logofet 1993). May (1974) used this definition, for instance, in his influential analysis 

of relationships between the stability and complexity of such models. 
                                                 
1 Presented at the 2006 Biennial Meeting of the Philosophy of Science Association, Vancouver, Canada. A 
Josephine De Kármán fellowship supported this research. Thanks to Mark Colyvan, Alexander Moffett, 
Eric Pianka, Mark Sainsbury, Carl Salk, and Sahotra Sarkar for helpful comments. 
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 The definition has some clear advantages. Unlike other definitions, it integrates 

ecological stability into a thoroughly studied mathematical theory that has proved fruitful 

in many sciences, especially physics. It also seems to formalize the intuition that 

ecological stability depends on community response to perturbation. Despite these 

apparent advantages, ecological stability should not be defined as Lyapunov stability.  

Sections 2 and 3 describe the concept of Lyapunov stability, its underlying 

mathematical theory, and show why this theory is so successful within physics. Section 4 

considers the apparent advantages of the definition and illustrates how Lyapunov stability 

applies to mathematical models of biological communities. Section 5 argues this 

definition is problematic, focusing specifically on biological interpretation of Lyapunov 

stability. Based on this analysis, Section 6 draws some general conclusions about 

scientific definition and highlights an important difference between dynamic systems 

modeling in physics and in ecology. 

 

2. Lyapunov Stability. To ensure sufficient generality, represent a system by a position 

vector x(t) (t represents time) in an abstract n-dimensional state space E. Assume E is 

governed by a vector function F representing the magnitude and change of direction it 

induces on x(t). F represents, therefore, the dynamics of the system represented by x(t). 

Points in E for which F= 0  are called equilibrium points, and unperturbed position 

vectors at such points remain stationary. 

 Lyapunov stability is a property of system behavior in neighborhoods of 

equilibria. Specifically, an equilibrium x* is Lyapunov stable in Ex (x*∈Ex⊆E) iff: 

(1) (∀ε>0)(∃δ>0)(|x(t0)−x*|<δ⇒ (∀t≥ t0)(|x(t)−x*|<ε ));  
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where ε and δ are real values, x(t0)∈Ex represents the system at some initial time t0, and 

‘|·|’ designates a Euclidean distance metric on E. Informally, (1) says x* is Lyapunov 

stable if systems beginning in a x* neighborhood remain near it after perturbations that do 

not displace them from Ex. x* is asymptotically Lyapunov stable in Ex iff (1) 

and The subspace E.)(lim *xx =
∞→t
t x of E within which systems are (asymptotically) 

Lyapunov stable is called the (attraction) stability domain of x*. 

[Figure 1] 

If the (attraction) stability domain is all of E, x* is (asymptotically and) globally 

Lyapunov stable. 

 In general, Lyapunov stability cannot be assessed with (1) because explicit 

solutions for x(t) can seldom be found. For this reason, scientific models often 

characterize x(t) in terms of differential equations: 

(2) );),(()(
Ω= t

dt
td xFx  

where Ω is a set of parameters designating factors that influence system dynamics but are 

uninfluenced by them, and F  is a n× n  matrix [aij].2 For the complicated systems 

modeled by (2) that scientists study, explicit solutions for x(t) are rarely available. 

Without such solutions, however, system behavior as required by (1) cannot be directly 

evaluated. 

 

3. The Direct and Indirect Methods. Lyapunov (1892) recognized this difficulty and 

developed two methods for assessing (1) indirectly. The first ‘indirect method’ involves 

                                                 
2 Since F is not a function of t, (2) represents autonomous dynamic systems that do not explicitly depend on 
time. These models are common in science and the focus of the following analysis. 
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linearizing F at x*. Specifically, let
*

)),((
xxx

xFA
=∂

Ω∂
=

t be the Jacobian matrix of F 

evaluated at x*. The eigenvalues of A determine whether x* is stable. These are scalar 

values λi such that det(A−λiI) = 0, i.e. the roots of the characteristic polynomial of A. 

Lyapunov proved x* is asymptotically Lyapunov stable iff: 

(3) Reλi(A) < 0  for i = 1,…, n ; 

where Reλi(A) designates the real part of the ith eigenvalue of A, λi. Since A is only 

defined at x*, stability determined by the indirect method is restricted to infinitesimal 

neighborhoods of x*. For this reason, it is called local stability. The indirect method is 

prevalent in mathematical modeling because it is almost universally applicable: it applies 

to any system representable by differential equations like (2) and some difference 

equations (Hinrichsen and Pritchard 2005). 

Stability criteria based on the indirect method such as (3) have a serious 

limitation: they provide no information about the extent of (attraction) stability domains. 

This prompted Lyapunov (1892) to develop a ‘direct method’ for evaluating (1). It 

involves constructing a differentiable scalar Lyapunov function V(x) with an origin at x* 

(i.e. x* = 0) such that: 

(i) V(x) is positive definite: (a) V(0) = 0; (b) V(x)>0 for all x≠0; and, 

(ii) ∇V(x)·F(x,Ω)≤0  for all x; 

where ‘·’ designates the dot product, and ‘∇’ designates the gradient vector function. 

Lyapunov (1892) proved the existence of a Lyapunov function on Ex⊆E (x*∈Ex) is 

sufficient for Lyapunov stability of x* in this region, and that with strict inequality in (ii), 

x* is asymptotically Lyapunov stable. This condition was also later proved necessary 
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(Hahn 1963). The ability to construct a Lyapunov function is thus a stability criterion. As 

a methodology, it is called ‘direct’ because its success depends directly upon the 

mathematical form of equations like (2), unlike the indirect method, which relies on their 

linearization, and unlike direct evaluation of (1), which requires explicit solutions to (2). 

Although no general method for constructing Lyapunov functions is known, the 

direct method has proven to be an extremely useful tool for analyzing physical systems, 

especially in the classical framework governed by only Newtonian mechanics and 

friction. Across scientific fields, this is exceptional rather than typical. Constructing 

Lyapunov functions is usually extremely difficult for the predominantly nonlinear 

systems scientists study (Goh 1977). The reason for its utility in the classical framework 

is twofold. First, there are highly confirmed mathematical models describing numerous 

types of systems in this framework. The likelihood is therefore high that application of 

the direct method to these models will reveal the true stability properties of the systems 

they accurately represent. Second, there are certain quantities, such as total energy, that 

are conserved or monotonically dissipated in such systems, depending on how they are 

characterized (open or closed). These quantities ensure Lyapunov functions exist for 

models of these systems. Lyapunov, in fact, developed the Lyapunov function to 

generalize the classical energy concept, and his proof about its connection to stability 

depends essentially on energy conservation (Lyapunov 1892). 

 To illustrate, consider a closed particle mass system governed by a conservative 

force field G in a frictionless Newtonian framework. The system energy, V(x,v), is 

designated by the Hamiltonian: 

(4) V(x,v) = ½m|v|2 + U(x); 
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where x is a position vector, v is a velocity vector, m represents particle mass, ‘|·|’ 

designates the magnitude of ·, and U is a scalar potential energy function such that 

G(x) = –∇U(x). Energy conservation ensures: 

(5) V(x,v) = c; 

where c is a constant real value. At an equilibrium x*, v= 0, G = 0  and hence ∇U(x) = 0. 

If, furthermore, x* is a local minimum of U(x), an “energy difference” function V*(x,v) 

can be defined such that V*(x,v)= V(x,v) – V(x*,0). V*(x,v) is a Lyapunov function and x* 

is therefore stable. In this case, energy conservation entails (ii) from above is satisfied by 

equality. If, however, system energy were continually decreasing instead of conserved, 

depleted by friction for instance, (ii) would be satisfied by strict inequality and x* would 

be asymptotically stable. 

 Within the classical framework, stability properties of more complicated system 

models that include and disregard friction can be evaluated with the direct method. The 

method is also useful in non-classical frameworks with similar properties, such as mass-

energy conservation in special relativity theory. The equations characterizing systems in 

these and the classical framework are often too complex to solve analytically, and the 

direct method provides the only means by which attraction or stability domains of 

equilibria can be determined. In a wide variety of frameworks within physics, therefore, 

the direct method and concept of Lyapunov stability are indispensable. 

 

4. Lyapunov Theory and Community Modeling. The brief outline of Lyapunov theory 

above suggests some advantages of defining ecological stability as Lyapunov stability. 

First, the definition formalizes the concept and integrates it into a well-known 
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mathematical theory. Stability properties of community models can then be assessed with 

analytical techniques like the indirect and direct methods. 

 Besides the obvious virtues of formalization, Lyapunov stability also seems to 

capture precisely the intuition that ecological stability depends upon community response 

to perturbation. Consulting (1), think of a community perturbed at time t0 from x* to x(t0) 

such that |x(t0)−x*|<δ. If x* is Lyapunov stable, (1) states that the perturbed community 

will remain in an ε-neighborhood of x* for ∀t≥ t0, i.e. the effects of the perturbation are 

circumscribed. Some other popular definitions of ecological stability are mathematically 

precise in that they are statistical functions of model variables (e.g. Lehman and Tilman’s 

[2000] ‘temporal stability’), but they do not, as Lyapunov stability does, provide a 

mathematical characterization of equilibrium system dynamics. If x* is Lyapunov stable 

in some region of E, for instance, the conditional in (1) ensures predictions can be made 

about system behavior after perturbation from x*. Mathematical definitions in the 

statistical sense cannot ground such predictions unless future values of variables depend 

upon past values in some systematic way, and the precise form of the dependency is 

known. The concept of Lyapunov stability is an important analytic tool within physics 

because (1) provides a mathematically precise description of the equilibrium dynamics of 

systems. 

In addition, properties of community response to perturbation that are 

fundamental components of ecological stability seem to be formalizable with the direct 

method. The size of attraction domains of asymptotically Lyapunov stable equilibria and 

the rate systems return to them, for instance, are definable in terms of Lyapunov 

functions (Hahn 1963, §§12, 22-25). The larger the attraction domain, for instance, the 

 7



stronger the perturbations of variables a system can sustain and return to x*, which is 

often called system ‘tolerance’. Similarly, the “steeper” the Lyapunov function V(x) (as 

gauged by ∇V(x)), the faster it returns to x*, often called system ‘resilience’. If Lyapunov 

stability adequately defined ecological stability, it would therefore be possible to 

formalize the properties of tolerance and resilience and their relation to the stability of 

biological communities. Specifically, the intuitive idea that ecological stability increases 

with the strength of perturbation from which a system can return to equilibrium and with 

the speed of return to equilibrium after perturbation would be formalizable. 

 Finally, the direct method adequately characterizes the equilibrium dynamics of 

many systems in physics (and other sciences), and it is reasonable to expect the method 

will function similarly for ecological systems since their models share a similar 

mathematical structure. Like systems studied in physics, biological communities are 

usually modeled by differential equations. The only difference is that components of the 

vector x(t)=<x1(t),…, xi(t),…, xn(t)> represent biological variables, usually population 

sizes of species in a community, instead of typical physical variables. 

 This expectation seems to be supported, for instance, by the classical Lotka-

Volterra model of one-predator, one-prey communities: 

(6a) );()()(
)(

txtxtax
dt

tdx
dyy

y α−=  

(6b) );()()()( txtxtbx
dt

tdx
ydd

d β+−=  

 
where xd and xy represent predator and prey population sizes; a represents prey birth rate; 

b represents predator death rate; and α,β> 0  represent the effect of prey individuals on 

predator individuals and vice versa. Setting the left sides to 0 and solving yields one 
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nontrivial equilibrium x* where
β
bxd =

* and .*

α
axy = A Lyapunov function exists for all 

xd,xy > 0: 

(7)  );ln()ln()( *
2

*
1 dddyyy xxxcxxxcV −+−=x

where c1,c2 > 0 are constants, so x* is globally stable by the direct method (Logofet 1993). 

 An interesting property of (6) discovered by Vito Volterra reveals a structural 

similarity between models of ecological and physical systems, which in turn seems to 

justify the utility of Lyapunov theory in ecology. (6) can be rewritten as: 

(8a) );()()(11 txtxtaxx dyyy −= γγ &  

(8b) );()()(22 txtxtbxx yddd +−= γγ &  
 

where ,
)(

dt
tdx

x y
y =& ,)(

dt
tdxx d

d =& ,1
1 α
γ = and .1

2 β
γ = Adding these equations and 

integrating yields: 

(9)  ,)()(
0

2
0

121 ctxbtxaxx
t

d

t

ydy =−++ ∫∫ γγγγ &&

where c is a constant real value. Volterra believed (9) corresponded to a form of energy 

conservation [compare with (4) and (5) above].3 He called the first two terms “actual 

demographic energy,” and the second two “potential demographic energy” (Scudo 

1971).4 If this structural similarity generalizes broadly across mathematical models of 

ecological systems, a view shared by another prominent founder of mathematical ecology 

Alfred Lotka (1956), it would seem to indicate that the stability definition used in physics 

is appropriate for ecology. 
                                                 
3 (9), in fact, is the underlying basis of (7). See Logofet (1993, 111-114). 
4 At least for the first two terms, the resemblance with energy conservation is somewhat weak. The “actual 
demographic energy” corresponds closely with the mathematical form for the momentum of two particles, 
not their kinetic energy. 
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5. Lyapunov Stability in an Ecological Context. The adequacy of a definition depends 

upon what it requires of the defined concept. If ecological stability is defined as 

Lyapunov stability, for instance, this stipulates conditions biological communities must 

satisfy to be ecologically stable. If these conditions are unreasonable –if they are 

biologically unrealistic, too weak, or too strong for instance– the definition is inadequate. 

Despite its apparent advantages, interpreting Lyapunov stability in ecological terms 

furnishes strong reasons for rejecting the definition. 

 There are four types of Lyapunov stability to consider as definitional candidates 

for ecological stability. In order of increasing strength, they are local Lyapunov stability, 

nonasymptotic stability within a nonlocal domain, asymptotic stability within a nonlocal 

domain, and global asymptotic stability. Consider the weakest first. Although the 

frequent focus of community modeling, perhaps because it is relatively easy to evaluate 

with the indirect method (Hastings 1988), local stability defines ecological stability 

poorly. Differentiable models of systems can be linearized with the Jacobian matrix at 

any point of state space, such as at an equilibrium (see §3). By itself, however, 

linearization only provides information about local system behavior, i.e. only in an 

infinitesimal neighborhood of the linearization point. Local stability therefore says 

nothing about system behavior outside this extremely restricted domain. Besides it being 

fundamentally unclear how perturbation within an infinitesimal domain can be 

biologically interpreted (or empirically measured), real-world perturbations are clearly 

not of infinitesimal magnitude. Any real perturbation will expel a system at a strictly 

locally stable equilibrium from its stability domain. Local stability of nonlinear systems 
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like biological communities consequently provides no information about their response to 

common perturbations like drought, fire, population reduction by disease, etc. 

Application of the indirect method to community models, which can only evaluate local 

stability, therefore yields negligible insight into the community dynamics relevant to 

ecological stability.5

 For different reasons, Mikkelson (1997) reaches a similar conclusion about local 

stability. His argument is based on the principle: “Do not employ a definition that turns 

what was originally thought to be an important empirical matter into a generic a priori 

exercise” (1997, 483). Applying this principle to the task of defining ecological stability, 

Mikkelson continues (1997, 485): 

Requiring that every single species in a fifty-species community have a given 
property –any property– is a much stricter criterion than requiring that every 
species in a ten-species community have the same property. This means that as 
the number of species increases, the probability that the criteria are met almost 
certainly decreases. This leads to a default expectation that stability will decline 
with increasing diversity. 

 
Since local stability requires every species return to its preperturbation value, Mikkelson 

claims that defining ecological stability as local stability decreases the likelihood species 

rich communities will be stable. It thereby biases a priori the debate about the 

relationship between community stability and diversity (construed as species richness) 

towards an inverse relationship, and violates his principle. On this basis, Mikkelson 

concludes the definition is indefensible. 

 The first problem with this argument is Mikkelson’s assumption that the 

likelihood of local stability of communities generally decreases with increasing species 

richness (1997, 494). This assumption is the underlying basis of the long quote above, but 
                                                 
5 Food web modeling of community stability is based on the indirect method, and has been criticized for 
this reason (Hastings 1988). 
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its truth is, however, an empirical rather than a priori issue. Interspecific interactions that 

emerge with greater species richness often increase the likelihood of stability, as the 

stabilizing effect of adding species to some community models shows (May 1974).  

 The second problem is that Mikkelson’s principle is an unjustifiable adequacy 

condition for definitions in science because it confers too much import to unresolved 

scientific questions, regardless of how poorly formulated they may be. According to the 

principle, scientific concepts should not be defined in ways that resolve, even partially, 

outstanding questions that involve them. Yet scientific questions may themselves be ill-

formed or confused due to ambiguity or vagueness of the concepts they concern. In fact, 

Shrader-Frechette and McCoy (1993) argue that the stability-diversity-complexity debate 

of community ecology is itself an example. Apparently intractable scientific debates and 

recalcitrant questions are sometimes justifiably resolved or, more accurately, dissolved 

when precise definitions of concepts reveal their misguided nature.6

 The stronger concept of nonasymptotic Lyapunov stability within a nonlocal 

domain also inadequately defines ecological stability. Without asymptotic dynamics 

driving systems perturbed from equilibrium to return to it, successive weak perturbations 

can displace communities from their stability domains and, in the extreme case, cause 

species eradication. Ecological stability undeniably requires, however, persistence of the 

species of a community subject to successive weak perturbations. 

 Even with asymptotic dynamics, however, Lyapunov stability does not define 

ecological stability adequately. To see why, consider defining ecological stability as the 

strongest Lyapunov stability property: global asymptotic stability. Unlike the Lyapunov 

                                                 
6 Einstein’s definition of simultaneity, for instance, arguably settled a number of scientific questions about 
temporal relations between events.  
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stability properties considered thus far, global asymptotic stability appears to be much 

stronger than ecological stability because it seems to entail that a community will return 

to equilibrium following any perturbation that does not eradicate its species. Model 

variables of systems at asymptotically and globally stable equilibria that are perturbed to 

1% of their equilibrium values, for instance, will deterministically return to their initial 

values. This response to such severe perturbations is not required for a biological 

community to be ecologically stable, but it certainly seems sufficient.  

 Despite its apparent plausibility, the idea that global asymptotic Lyapunov 

stability is sufficient (but not necessary) for ecological stability is unjustified. It is based 

on a flawed conception of ecological perturbation. Real-world perturbations to biological 

communities do not merely affect population sizes, represented by variables in models 

like (2). They also change environmental factors that influence community dynamics, 

represented by model parameters. As May (1974, 216) creatively put it: 

in nature, population perturbations are driven not by the stroke of a 
mathematician’s pen resetting initial conditions [i.e. resetting variable values to 
represent perturbations], but by fluctuations and changes in environmental 
parameters such as birth rates, carrying capacities, and so on. 
 

Perturbations may induce, for instance, changes in the strength and qualitative nature of 

interspecific and intraspecific community interactions. Initially noninteracting species 

may begin competing or exhibiting other non-neutral interactions, and vice versa. Since 

real-world perturbations may affect environmental factors that influence community 

dynamics as well as population sizes of species, they should be represented by 

corresponding changes in variable and parameter values. Ecological stability should then 

be evaluated with respect to system behavior following both types of changes. 
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 Lyapunov stability, however, only assesses system response to temporary changes 

in variable values (see [1] above). It does not consider system responses to changes in 

parameters and thus provides only a partial account of the type of system response to 

perturbation ecological stability requires. Lyapunov’s direct method is therefore not a 

suitable methodology for analyzing ecologically relevant nonlocal stability properties of 

standard community models, although it accurately estimates stability to perturbations 

affecting only model variables (see below). 

 This difference between Lyapunov and ecological stability consequently leads to 

different evaluations of the stability of mathematical models of biological communities. 

Consider the generalization of (6) to n-species: 

(10) ∑
=

−=
n

j
jijii

i xrx
dt
dx

1

);( γ  

where ri designates the intrinsic growth rate of species i; γij designates the effect of 

species j on species i; and 1≤ i, j≤n. (10) can represent several realistic features of 

biological communities. The γii designate intraspecific interactions and the γij (i≠ j) can 

represent any type of interspecific interaction: predator-prey γijγji <0, competition 

γij, γji <0, mutualism γij, γji >0, etc. 

 Two types of systems, called “conservative” and “dissipative,” have been studied 

with (10) and highlight the difference between ecological and Lyapunov stability 

particularly clearly. If: 

(11)  ,0
1,

≥∑
=

n

ji
jiij xxγ

the system is dissipative with strict inequality, and conservative with equality. Informally, 

(11) says interspecific interactions do not influence total system dynamics in conservative 
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communities and retard them in dissipative communities. Dissipative and conservative 

communities, Logofet (1993) suggests, are analogous to mechanical systems with and 

without friction.  

 In conservative (dissipative) communities: (i) γii =0 (γii >0) for all i; and, (ii) γij =–

γ ji for all i≠ j. (i) entails there is intraspecific self-damping in dissipative communities, 

and none in conservative communities. (ii) entails the communities only exhibit 

antisymmetric interspecific predator-prey interactions. Note that (10) is not necessarily a 

two trophic level model of
2
n predators and

2
n prey. Species i may be the predator and prey 

of different species, and part of k-length (k≤n) food chains. 

 The direct method shows x* is a nontrivial equilibrium, i.e. ( )( )0* >∀ ixi , of 

conservative n-species community models iff x* is globally Lyapunov stable; it is 

asymptotically and globally Lyapunov stable iff the community model is dissipative. 

These results only hold, however, if n is even. As an indication of what defining 

ecological stability as global Lyapunov stability would require of communities modeled 

by (10) and (11), this restriction seems arbitrary and counterintuitive. Without any 

empirical evidence or a biological reason to suppose there is a relationship between 

evenness or oddness of species richness and ecological stability, of which there seems to 

be none, this requirement is unreasonable.7

 A second, more revealing feature of these results is their dependence on the exact 

anti-symmetry of [γij]. If jeopardized even slightly, they no longer hold and the system 

may become unstable (Levin 1981). Small changes in the values of these parameters 
                                                 
7 Of course, it is possible such a relationship exists, but has not yet been found. Most ecologists highly 
doubt this claim. May (1974, 53), for instance, suggested it, “border[s] on the ridiculous,” and Volterra, 
who first recognized the fact, was similarly skeptical (Scudo 1971). 
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caused by realistic but weak perturbations may therefore undermine asymptotic global 

stability and initiate instability. This occurs because Lyapunov stability defines stability 

strictly in terms of system behavior after changes to variables, not after changes to 

parameters as well. For this reason, asymptotic global stability and weaker Lyapunov 

stability concepts poorly define ecological stability. 

 The disparity between what the direct method says about the stability properties 

of biological communities and what ecological stability seems to require is not limited to 

conservative and dissipative models of communities. A wide range of community models 

the direct method shows are asymptotically stable in nonlocal domains are similarly 

sensitive to slight changes in parameters (see Hallam 1986 and references therein). 

 In general, therefore, Lyapunov stability inadequately captures the intuition that 

ecological stability depends on community response to perturbation because it 

inadequately represents real-world perturbations. As such, Lyapunov stability fails to 

capture principal features of ecological stability like resilience and tolerance. With 

respect to abiotic perturbations such as temporary temperature or precipitation anomalies, 

for instance, resilience and tolerance cannot be measured using the direct (or indirect) 

method (see §4). Temporary changes in model parameters representing these 

environmental factors, not changes to model variables, best represent these types of 

perturbation. Resilience and tolerance should be gauged by the subsequent changes in 

variables following these changes. Specifically, in more resilient systems, variables 

return more rapidly to their preperturbation values following temporary changes in 

parameters. Similarly, the greater the parameter change the system can sustain and have 

its variables return to equilibrium, the more tolerant it is. 

 16



Lyapunov stability, however, cannot represent these features of ecological 

stability properly because it cannot accurately represent community response to 

perturbations that affect factors represented by model parameters rather than just 

variables. Since, tolerance and resilience of biological communities depend upon how 

communities respond to perturbations that affect model variables and parameters, they 

therefore cannot be defined in terms of properties of Lyapunov functions (see §3). 

Whereas Lyapunov stability focuses strictly on system behavior in state space, ecological 

stability essentially concerns system behavior in parameter space as well. Consequently, 

Lyapunov stability is not a sufficient condition for ecological stability, as some ecologists 

have explicitly suggested (e.g. Logofet 1993, 109) and many ecologists assume. 

 

6. Conclusion. That ecological stability should not be defined as Lyapunov stability does 

not entail the latter should play no role in mathematical modeling of biological 

communities. For a community at equilibrium, asymptotic Lyapunov stability within 

nonlocal attraction domains adequately represents ecologically stable responses to 

perturbations that alter population sizes of community species but leave community 

structure and parameter values unchanged. Lyapunov stability is therefore a plausible 

necessary condition for ecological stability. Moderate culling of some community species 

or temporary cessation of plant or animal harvesting in ecosystems where it has a long 

history are plausible examples of such perturbations. In fact, the effects fishing cessation 

during WWI would have on fish populations motivated Volterra to begin developing 

mathematical models of communities (Scudo 1971). 
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 This analysis also does not detract from the obvious gains in precision, rigor, and 

other scientific virtues afforded by mathematical dynamic systems modeling within 

ecology. It does expose, however, a limitation of the stability definition that usually 

accompanies this type of modeling. If ecological systems like communities were 

completely analogous to systems studied within physics for which Lyapunov’s methods 

are so successfully applied, defining ecological stability as Lyapunov stability would be 

entirely justifiable. Section 5 makes clear there is, however, a crucial difference in how 

perturbations should be represented in the two contexts. Scientific definitions that make 

an initially problematic concept precise by integrating it into a systematically developed 

mathematical theory, even one fruitfully utilized in other sciences, are therefore not 

always satisfactory. 

 Within classical mechanics, force fields governing interactions between bodies, 

such as gravitation, are usually invariant. Masses of bodies in the system, overall system 

structure (e.g. mass-spring system, damped pendulum, mass-pulley system, etc.), and 

other system features are also usually held or assumed fixed in this framework. Model 

features representing these system properties, such as parameter values and model 

structure, are correspondingly fixed. With the background held constant in this way, 

perturbations are represented by temporary finite changes in variable values, for instance, 

by displacements of position vectors and alterations to velocity vectors (see §3). Energy 

is conserved or monotonically dissipated in these systems depending upon whether they 

are closed or open, so Lyapunov functions can always be constructed for them and their 

stability properties evaluated. Since perturbations of such systems are not taken to change 
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the system properties represented by parameters and model structure, Lyapunov stability 

captures their important stability properties. 

 Within ecology, however, parameters representing external factors affecting 

species and their interactions are much more likely to change than in systems studied 

within classical mechanics because they are regularly altered by real-world 

perturbations.8 An appropriate definition of ecological stability therefore requires 

integrating Lyapunov stability with a concept representing how communities respond to 

these types of structural change: a structural stability concept. This would adequately 

account for how communities respond to real-world perturbations represented by 

temporary changes in variable and parameter values. Resilience and tolerance to real-

world perturbations would be representable with such a concept. 

 This suggestion poses a formidable challenge to mathematical ecologists because 

structural stability is a much more technically complex mathematical concept than 

Lyapunov stability (see Peixoto 1959). The dearth of work, especially biologically-

oriented work, devoted to it (Lewontin 1969; May 1974), however, may explain its lack 

of application within mathematical ecology, not any essential mathematical intractability 

of the concept. 

The first prominent mathematical ecologists, Lotka and Volterra, were physicists 

by training and this significantly influenced their approach to modeling biological 

systems (Kingsland 1995). Their work, moreover, subsequently set much of the agenda 

of twentieth century mathematical ecology. Not surprisingly, most mathematical 

                                                 
8 The difference between ecological systems and those studied in physics generally should not be 
overstated, however. In fluid mechanics, for instance, the background structure of the systems studied is 
highly variable. For the reasons discussed in section 5, therefore, Lyapunov stability would not be an 
appropriate representation of the stability of these systems. 

 19



ecologists have used the concept of Lyapunov stability and the direct and indirect 

methods to analyze community models. A stability concept that incorporates structural 

stability, however, constitutes a more defensible definition of ecological stability, and 

would better characterize the dynamics of ecologically stable biological communities. 
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Figure 1. Graphical representation of nonasymptotic and asymptotic Lyapunov stability. 
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