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ABSTRACT: An axiomatic characterization of a ‘two-level Hamiltonian structure’ is proposed, which 
expresses the optico-mechanical analogy by representing optics and mechanics as (disjoint) classes of 
models satisfying the axioms. There is the ‘Hamilton-Jacobi level,’ which involves a differential 
manifold on which the characteristic function satisfying the Hamilton-Jacobi equation is defined; and 
the ‘symplectic level,’ involving the Hamiltonian, defined on the cotangent bundle of the manifold. The 
two levels, with the (analogous) structures on them, concern both optics and mechanics. 
 

1 Introduction 
The optico-mechanical analogy, which arguably had a central role in the development 
of wave mechanics,1 is usually expressed2 by describing analytical mechanics and 
geometrical optics separately, then pointing out a handful of similarities, sometimes 
by means of a ‘dictionary’ indicating correspondences between analogous objects: 
between the mechanical potential and the optical index of refraction, between 
mechanical trajectories and optical rays and so forth. In such approaches the ‘analogy’ 
has a tenuous, insubstantial status, entirely subordinate to the theories, which are 
primary. To give the analogy itself more substance and an appropriate primacy, to 
turn it into an object in its own right (and “give to airy nothing a local habitation and a 
name”), one can, rather than just noting a few resemblances, abstract a common 
structure3 possessing optical and mechanical models. The difference is perhaps one of 
emphasis and degree, for even a statement of similarities might be viewed as a rough 
description of structure; but the degree seems considerable. 
 Of the various resources available for the characterization of structure, those of set-
theoretical axiomatization, associated chiefly with Patrick Suppes, seem appropriate 
here and will be adopted. The axioms will not be intended—unlike those of, say, a 
group or a vector space—as a ‘necessary and sufficient’ basis for deduction, only as a 
summary of structure, a delineation of Gestalt. An appropriate ‘completeness’ 
(perhaps allowing the derivation of all important theorems) and ‘independence’ are 
sometimes expected of axioms, but will not be sought here; genuine completeness is 
unattainable, practically at any rate, and independence is both hard to characterize 
exactly and unnecessarily stringent. The axioms are only meant to emphasize certain 
features of the structure that best represent it and are judged significant. 

                                                 
1 See de Broglie (1925) and Schrödinger (1926, 1934); but also Wessel (1979). 
2 See Arnol’d (1997) for instance. 
3 “Structure,” in the language of model theory, is often a synonym of “model.” Here it is more like a 
synonym of “theory.” 
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2 Set-theoretical axiomatization 
Set-theoretical methods have been explicitly used for the axiomatization of scientific 
theories since McKinsey et al. (1953) did so, giving rise to a considerable 
‘structuralist’4 literature. Patrick Suppes, who sought to extend the methods of 
Bourbaki to the natural sciences, has had a fundamental role in the programme, 
especially in its early days; subsequent developments, stressing semantics, have also 
been due to Sneed (1971), Stegmüller (1973, 1980), Balzer et al. (1987) and others. 
Mechanical theories have served as paradigmatic examples since the beginning: 
‘classical particle mechanics’ was axiomatized in McKinsey et al. (1953), McKinsey 
and Suppes (1953) and Suppes (1999, 2002); Lagrangian and Hamiltonian mechanics 
in Sneed (1971). Optical theories have received less attention. Set-theoretical 
characterization of Hamilton-Jacobi theory or the optico-mechanical analogy has not 
yet been attempted. 
 Economy is central to the approach; set-theoretical methods lend themselves to the 
omission of what is taken for granted or ‘understood,’ such as rules of inference, set 
theory itself, or staple mathematics. No attempt is made at exhaustive characterization 
of logical structure; only what is considered relevant and worth mentioning is 
included. Even the simplest scientific theories can involve many sets, functions and 
axioms, many more than deserve attention; most are left out. 

Suppose we want to give a standard formalization of elementary probability theory. On 
the one hand, if we follow the standard approach, we need axioms about sets to make 
sense even of talk about the joint occurrence of two events, for their events are 
represented as sets and their joint occurrence as their set-theoretical intersection. On the 
other hand, we need axioms about the real numbers as well, for we shall want to talk 
about the numerical probabilities of events. Finally, after stating a group of axioms on 
sets, and another group on the real numbers, we are in a position to state the axioms 
that belong just to probability theory as it is usually conceived. In this welter of axioms, 
those proper to probability theory can easily be lost sight of. More important, it is 
senseless and uninteresting continually to repeat these general axioms on sets and on 
numbers whenever we consider formalizing a scientific theory. No one does it, and for 
good reason.5 

 A theory is characterized in the structuralist approach by a set-theoretical 
predicate—like ‘is a classical particle mechanics’ or ‘is a group’—involving the basic 
objects and axioms of the theory; or equivalently by the extension of the predicate, in 
other words by the class of models satisfying the axioms. 

                                                 
4 “Sneed, auf den die hier vorgetragene ... Auffassung zurückgeht, hatte sein methodisches Vorgehen 
ursprünglich als ‘non-statement view’ bezeichnet. ... Bar-Hillel ... hatte ... den Vorschlag gemacht, 
diese unschöne negative Kennzeichnung durch eine positive zu ersetzen und dafür die Bezeichnung 
“strukturalistische Auffassung von Theorien”, kurz: “Strukturalismus”, zu verwenden ... .” (Stegmüller 
1980 p.2) 
5 Suppes (2002) p.27. 
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 Here a theory with very different models is axiomatized. Set-theoretical methods 
free the mathematical theory from association with particular kinds of models, and 
can be applied, unlike other formal methods, without regard for specific application.6 
Furthermore a given set-theoretical structure can not only admit diverse physical 
models, but even abstract mathematical models: 

It is one of the theses of this book that there is no theoretical way of drawing a sharp 
distinction between a piece of pure mathematics and a piece of theoretical science. The 
set-theoretical definitions of the theory of mechanics, the theory of thermodynamics, 
and a theory of learning, to give three rather disparate examples, are on all fours with 
the definitions of the purely mathematical theories of groups, rings, fields, etc. From a 
philosophical standpoint there is no sharp distinction between pure and applied 
mathematics, in spite of much talk to the contrary.7 

Indeed it will be unclear, and unimportant, whether mathematics or physics is really at 
issue here. 
 What is meant here by ‘optico-mechanical analogy’ is that two disjoint classes of 
models—optical and mechanical—satisfy the axioms proposed. The optical models 
only add semantics to the abstract scheme, whereas further logical structure (basic 
objects and axioms) is provided for mechanical models. 
 The general outlines of the structure common to analytical mechanics and 
geometrical optics will be described with broad brushstrokes, without aiming at 
generality or rigour. Coordinates will be avoided to keep the presentation simple and 
clean, not for rigour. Global issues—conjugate points etc.—will also be avoided, 
however relevant they may be to optics. 

3 Two-level Hamiltonian structure 
The theory expressing the optico-mechanical analogy will itself involve a further 
analogy, between two ‘substructures’ it contains, one on an underlying manifold, the 
other on its cotangent bundle. At either level, briefly, the differential of a real-valued 
function (the characteristic function on the underlying manifold, the Hamiltonian on 
the cotangent bundle) gets turned into a vector field tangent to a congruence by means 
of a twice-covariant tensor (the metric tensor in one case, the symplectic two-form in 
the other); one can say the function generates the congruence. Of course there are 
differences: the symplectic two-form is skew-symmetric whereas the metric tensor is 
symmetric; the Hamiltonian is largely arbitrary, whereas the characteristic function 
has to satisfy a differential equation (but with much freedom in the choice of initial 
conditions). One can speak, perhaps loosely, of a ‘Hamilton-Jacobi’ substructure on 

                                                 
6 “... the Suppes approach ... frees us from the prejudice (implicit in the formal language approach) that 
the formalized theory must have just one big intended interpretation ... .” (Moulines and Sneed 1979 
p.74) 
7 Suppes (2002) p.33. 
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the underlying manifold and of a ‘symplectic’ substructure on the cotangent bundle. 
Together they make a ‘two-level Hamiltonian structure.’ 
 Both substructures involve the six objects #, , , , , :M M M M MM f df Xω Φ  a manifold ,M  
a real-valued function Mf  defined on it, the differential ,Mdf  and a twice-covariant 
tensor #

Mω  used to turn Mdf  into the vector field # #( ) ( )M M M MX df dfω= =  tangent to 
the congruence .MΦ  The generic manifold or ‘index’ M  can have two values, Q  and 

,Γ  where 
* *

q
q Q

T Q T QΓ
∈

= =∪  

is the cotangent bundle of the manifold ,Q  and *
qT Q  the cotangent space dual to the 

space qTQ  tangent at q  to .Q  For M Γ=  we have the symplectic level, where fΓ  is 
the Hamiltonian :H Γ → \  and #

Γω  the sympectic two-form #Ω  (naturally induced 
by the cotangent bundle structure), which at a point z  of Γ  is the transformation 

# *( ) : z zz T TΓ ΓΩ →  from the cotangent space *
zT Γ  to the tangent space .zT Γ  Setting 

M Q=  gives the Hamilton-Jacobi level, where Qf  is the characteristic function 
: ,W Q→\  #

Qω  the metric tensor # *: q qg T Q TQ→  (all ),q Q∈  Qdf  the covector 
* ,qp dW T Q= ∈  and QX  the vector # # ( ) .qq p g dW TQ= = ∈�  

 The two substructures ‘communicate.’ The projection ( )Γπ Φ  of the congruence ΓΦ  
onto the underlying manifold Q  is a crisscrossing tangle, not another congruence. 
Hamilton-Jacobi theory will be viewed here as a method of extracting a congruence 
QΦ  on Q  out of the tangle by means of an arbitrary ‘initial’ surface 0Q Q⊂  (of 

codimension one in ),Q  together with the Hamilton-Jacobi equation 
( , )H q dW = constant—which provides a further connection between the two levels, 

by relating a function H fΓ=  on Γ  with the differential of a function QW f=  on .Q  
Physically ΓΦ  will represent the ‘fictitious’ set of all possibilities—obtained varying 
over all initial conditions—compatible with the Hamiltonian; and QΦ  the smaller set 
of all possibilities compatible with the Hamiltonian and with a particular class 
(selected by 0 )Q  of initial conditions. 
 The two substructures form the core of the two-level Hamiltonian structure. Of the 
aforementioned six objects we will choose three as basic: the function Mf  (as the 
‘generator’ or ‘input’), the twice-covariant tensor #

Mω  (as the fundamental 
transformation), and the congruence MΦ  (as the ‘output’)—the differential Mdf  and 
vector field MX  being too closely related to Mf  and MΦ  to be worth including. Rather 
than the index M  we will take its two values, Q  and ,Γ  and also the initial surface 

0 .Q Q⊂  Though basic, the objects #
0( , , , , , )M M MQ f QΓ ω ΦH=  are not independent; the 

three freely-chosen ones are the manifold Q, which determines ;Γ  the function ,fΓ  
which then generates the congruence ;ΓΦ  and finally the surface 0,Q  which gives Qf  
and .QΦ  
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 As axioms we adopt: 

Axiom 1: *T QΓ =  is the cotangent bundle of the n-dimensional differential 
manifold Q. 

Axiom 2: : ,Mf M → \  where , .M Q Γ=  

Axiom 3: The vector field # ( )M Mdfω  is tangent to the congruence MΦ  on ,M  where 
#
Mω  is a twice-covariant tensor field, # *( ) : ,M T M T Mμ μμ ω μ →6  

.Mμ∀ ∈  

Axiom 4: The function : : ( )Q Qf Q q f q→ \ 6  with ( 1)-dimensionaln−  level 
surface 0Q Q⊂  satisfies equation ( , ) constant.Qf q dfΓ =  

The extension of the predicate ‘is a two-level Hamiltonian structure’ is the class of all 
systems H satisfying Axioms 1-4. 
 A few words on how the initial surface 0Q  and condition ( , )H q dW = constant 
determine ,W  under the (typically mechanical) simplifying assumption that the 
Hamiltonian is of the form #, 2 ( ),H p p V q=〈 〉 +  where ,x y〈 〉  is the value of the 
covector x  at the vector .y  A distance and a direction will tell us how to advance 
from a point 0q  of 0 :Q  the distance is provided by the condition 

#
0, 2 ( )p p V q〈 〉 + = constant, the direction by 0 ,Q  in fact by the ( 1)-dimensionaln−  

space 
0 00q qT Q T Q⊂  tangent to 0Q  at 0.q  Calling the constant ,η  condition 

#
0, 2[ ( )]p p V qη〈 〉= −  determines a sphere 

{ }
0 0

* #
0 0: , 2[ ( )]q qp T Q p p V qη ηΣ = ∈ 〈 〉= −  

of radius 02[ ( )],V qη−  which is the required distance. The hyperplane 
0 0qT Q  

determines a direction 
00 0( )qT Qα ⊥=  ‘normal’ to it, where 

0 0 0

*
0 0( ) : , 0,q q qT Q p T Q p q q T Q⊥ = { ∈ 〈 〉= ∈ }� �  

is the annihilator of 
0 0;qT Q  

0 00 0dim dim dim 1.q qT Q T Qα = − =  Of the two points in 

00 ,q
ηα ∩Σ  we choose the one, say 0 ,p  that lies in the direction we want. And a 

momentum 0 0p dW=  for every 0 0q Q∈  is enough, together with the congruence ,ΓΦ  
to determine the differential ,dW  the vector field #( )q g dW=�  tangent to ,QΦ  and W  
up to an additive constant. For the unique curve : [ , ] : ( ( ), ( ))a b t q t p tΓγ Γ→ 6  of 

ΓΦ  passing through 0 0 0( , )z q dW Γ= ∈  assigns a differential ( ) ( )dW t p t=  to every 
point ( ) ( )Qq t tγ=  in the image Q Qγ ⊂  of the projection ( ) : [ , ]Q a b QΓπ γ γ= →  of 

Γγ  onto .Q  Doing the same for the rest of 0Q  we cover Q  and obtain .QΦ  

4 Optics 
In an optical model, Q will typically be a three-dimensional Euclidean luminiferous 
medium ,E  whose properties are characterized by the Hamiltonian .H fΓ=  If the 
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restriction *
*:

q
q qT
H H T= → \E E  is the same (for instance, the same constant) for 

every point q  of E  the medium is homogeneous, otherwise inhomogeneous; if qH  
has spherical symmetry (with respect to the background Euclidean metric) on every 
cotangent space *

qT E  the medium is isotropic, otherwise anisotropic. Optical 
anisotropies tend to be of the ‘ellipsoidal’ kind represented by a tensor (field); the 
Hamiltonian will then be of the form #, ( )( ) ,H p g q p=〈 〉  where the tensor #( )g q  varies 
over the medium. But inhomogeneity and anisotropy are in principle independent, and 
can in some cases be neatly separated; when the same ellipsoidal anisotropy is 
common to the whole medium one can write #, ( ) ( ),H p g p V q=〈 〉+  where the 
inhomogeneity is expressed by ( )V q  and the common anisotropy by the constant 
tensor #.g  ‘Isotropies’ are represented by degeneracies (equal eigenvalues) of the 
tensor #g  (or # );g  if #g  is a multiple # #g ge=  of the background Euclidean metric 

#e  there will be complete isotropy and one can write #, ( ) ( ),H g p e p V q= 〈 〉+  where 
g  is a constant scalar. 
 The characteristic function QW f=  represents time elapsed, from when the 
luminous disturbance leaves the fundamental level surface 0,Q  here a light source. 
The level surfaces of W  are surfaces of equal time. A point ( , )q p  on the cotangent 
bundle Γ indicates, in addition to a position ,q Q∈  a normal slowness (to use 
Hamilton’s term) ,p dW=  whose modulus is large where the surfaces of equal time 
are close together, small where they are far apart. So Γ is the set of all positions 
together with all normal slownesses. The modulus of the ‘contravariant slowness’ or 
‘inverse velocity’ (neither term being Hamilton’s) # ( )qq p dH p= =�  is also large 
where the surfaces are close together. The congruence ΓΦ  represents the virtual set of 
all rays compatible with the properties of the medium, QΦ  the more real set of all rays 
emanating orthogonally from the source 0.Q  

5 Mechanics 
In mechanical models Q is a configuration space (determined by ideal holonomic 
scleronomic constraints), the cotangent bundle Γ  phase space. A point ( , )q p Γ∈  
gives a position q  together with a momentum .p  The characteristic function W 
represents action, its level surfaces (such as 0 )Q  surfaces of equal action. The 
congruence ΓΦ  is the virtual set of all dynamical trajectories, for all possible initial 
conditions, generated by the Hamiltonian ,H  which represents energy. The smaller 
congruence QΦ  is the set of trajectories crossing the level surface 0Q  orthogonally. 
 This remains rather abstract and general. We can restrict the models to a typical 
class involving point masses (‘PM’) by adding the basic objects P, m, V and axioms: 

Axiom 5: 1, , NP ={ }p p…  

Axiom 6: : : ( )r r rm P m m+→ =p p\ 6  
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Axiom 7: :V Q→ \  

Axiom 8: #
1

1( , ) , ( , , )( ) .
2 NH q p p g m m p V= 〈 〉+…  

A system #
0( , , , , , , , , )M M MQ f Q P mVΓ ω Φ′ =H  satisfying Axioms 1-8 will be a ‘PM 

model’ of the two-level Hamiltonian structure. 
 The mapping m assigns a positive and finite real number ( )r rm m= p  to each 
element rp  of the finite nonempty set P. How the values 1, , Nm m…  figure in the 
Hamiltonian requires comment. We begin with the empty three-dimensional 
Euclidean space E, whose geometry is characterized by the Euclidean metric 

# *: q qe T T→E E  (all ).q ∈E  The metric # *: N N
N q qe T T→E E  of the N-th Cartesian 

power N = × ×"E E E  remains Euclidean. The non-Euclidean manifold NQ ⊂E  is 
an n-dimensional ( 3 )n N≤  subset of ,NE  and q qTQ T⊂ E  for all .q Q∈  The non-
Euclidean metric # *:Q q qe T Q TQ→  agrees with #

Ne  on all of the smaller domain * ;qT Q  it 
is the restriction *

# #

q
Q N T Q
e e=  of #

Ne  to * .qT Q  
 To introduce 1, , Nm m…  we first break up each cotangent space *

qT Q  into N 
mutually orthogonal subspaces * *

1, , ,q q NT Q T Q…  where *1 dim 3,q rT Q≤ ≤  and 

* *

1
.

N

q q r
r

T Q T Q
=

=⊕  

The projection with range *
q rT Q  is denoted * *: .r q q rT Q T QΠ →  We will need the 

composition # # *: ,r Q r q q re T Q TQΠ = Π →D  which ‘projects’ onto the subspace .q rTQ  
So each r P∈p  now has its own ,rm  as well as a one-, two- or three-dimensional 
subspace * * ,q r qT Q T Q⊂  and a #.rΠ  Writing 

# 1 #

1

,
N

r r
r

g m Π−

=

=∑  

we have a metric which associates an 1
rm
−  with every subspace ;q rTQ  and the scalar 

product #, ( ) ,p g p〈 〉  central to the Hamiltonian, is based on #.g  This explains how the 
values ( )r rm m= p  assigned to the elements r P∈p  enter into the Hamiltonian. 
 The elements of P are of course particles. The function m represents mass, and V 
potential energy—which, in the spirit of analytical mechanics, is included instead of 
force, dV. 

6 Final Remarks 
I have associated terms like ‘energy’ or ‘light source’ with the basic objects and left it 
at that, deliberately avoiding the separate and delicate issues of what such things 
really are and how they ought to be measured. McKinsey et al. (1953) expressed a 
similar attitude: 

Thus we leave aside all problems connected with the measurement of time (as well as 
of mass, distance, and force); this is not because we believe all such problems have 
been solved—or that they are unimportant—but merely because we consider it is 
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possible to separate mechanics proper from such epistemological and experimental 
questions. 

They continued in a footnote: 

We may add that the attempt to deal with both sorts of problems simultaneously is in 
our opinion responsible for much of the confusion and murkiness characteristic of the 
usual discussions of the foundations of physics. 

Truesdell replied with the following footnote in the same article: 

The communicator is in complete disagreement with the view of classical mechanics 
expressed in this article. ... While he does not believe the present work achieves any 
progress whatever toward the precision of the concept of force, which always has been 
and remains still the central conceptual problem, and indeed the only one not 
essentially trivial, in the foundations of classical mechanics ... 

The focus here has been, rather, on structural analogy and models. 
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