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Abstract

On his way to General Relativity (GR) Einstein gave several arguments as to why
a special relativistic theory of gravity based on a massless scalar field could be
ruled out merely on grounds of theoretical considerations. We re-investigate his
two main arguments, which relate to energy conservation and some form of the
principle of the universality of free fall. We find that such a theory-based a priori
abandonment not to be justified. Rather, the theory seems formally perfectly
viable, though in clear contradiction with (later) experiments. This may be of
interest to those who teach GR and/or have an active interest in its history.
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1 Introduction

General Relativity (henceforth ‘GR’) differs markedly in many structural aspects from
all other theories of fundamental interactions, which are all formulated as Poincaré
invariant theories in the framework of Special Relativity. A common strategy to mo-
tivate the particular structure of GR to those already familiar with Special Relativity
and Poincaré invariant field theories is to first carefully consider the obstructions that
prevent gravity from also fitting into this framework. A natural way to proceed is then
to consider fields according to mass and spin (the Casimir operators of the Poincaré
group that label its irreducible representations), discuss their possible equations, the
inner consistency of the mathematical schemes so obtained, and finally their experi-
mental consequences. Since gravity is a classical and long-ranged field one usually
assumes right at the beginning the spin to be integral and the mass parameter to be
zero. The first thing to consider would therefore be a massless scalar field. What goes
wrong with such a theory?

There can be no doubt that scalar gravity is ruled out. However, especially if one
has to teach the subject, one should be careful to give the right reasons for its aban-
donment. In particular, two logically different types of arguments should be strictly
kept apart:

1. The theory is internally inconsistent. In a trivial sense this may mean that it
is mathematically contradictory, in which case this is the end of the story. On
a more sophisticated level it might also mean that the theory violates accepted
fundamental physical principles, like e.g. that of energy conservation, without
being plainly mathematically contradictory

2. The theory is formally consistent and in accord with basic physical principles,
but simply refuted by experiments.

Note that, generically, it does not make much sense to claim both shortcomings si-
multaneously, since ‘predictions’ of inconsistent theories should not be trusted. The
question to be addressed here is whether scalar gravity falls under the first category,
i.e. whether it can be refuted on the basis of formal arguments alone.

Many people think that it can, following A. Einstein who accused scalar theories
to

3. violate some form of the principle of universality of free fall,

4. violate energy conservation.

We will see that the actual situation is not that easy. We will proceed by the standard
(Lagrangian) methods of modern field theory and take what we perceive as the obvious
route when working from first principles.

2 Historical background

The abandonment of scalar theories of gravity by Einstein is intimately linked with the
birth of General Relativity, in particular with his conviction that general covariance
must replace the principle of relativity as used in Special Relativity.
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I will focus on two historical sources in which Einstein complains about scalar
gravity not being adequate. One is his joint paper with Marcel Grossman on the
‘Entwurf Theory’ ([7], Vol. 4, Doc. 13), of which Grossmann wrote the ‘mathemat-
ical part’ and Einstein the ‘physical part’. Einstein finished with § 7, whose ti-
tle asks: “Can the gravitational field be reduced to a scalar ?”(“Kann das Gravita-
tionsfeld auf einen Skalar zurückgeführt werden ?”). In this paragraph he presented
a Gedankenexperiment-based argument which allegedly shows that any Poincaré-
invariant scalar theory of gravity, in which the scalar gravitational field couples exclu-
sively to the matter via the trace of its energy-momentum tensor, necessarily violates
energy conservation and is hence physically inconsistent. This he presented as plausi-
bility argument why gravity has to be described by a more complex quantity, like the
gµν of the ‘Entwurf Paper’, where he and Grossmann considers ‘generally covariant’
equations for the first time. After having presented his argument, he ends § 7 (and his
contribution) with the following sentences, expressing his conviction in the validity of
the principle of general covariance:

Einstein Quote 1. Ich muß freilich zugeben, daß für mich das wirksamste Argu-
ment dafür, daß eine derartige Theorie [eine skalare Gravitationstheorie] zu verw-
erfen sei, auf der Überzeugung beruht, daß die Relativität nicht nur orthogonalen
linearen Substitutionen gegenüber besteht, sondern einer viel weitere Substitutions-
gruppe gegenüber. Aber wir sind schon desshalb nicht berechtigt, dieses Argument gel-
tend zu machen, weil wir nicht imstande waren, die (allgemeinste) Substitutionsgruppe
ausfindig zu machen, welche zu unseren Gravitationsgleichungen gehört.1 ([7], Vol. 4,
Doc. 13, p. 323)

The other source where Einstein reports in more detail on his earlier experiences
with scalar gravity is his manuscript entitled “Einiges über die Entstehung der All-
gemeinen Relativitätstheorie”, dated June 20th 1933 (reprinted in [1]). There he de-
scribes in words (no formulae are given) how the ‘obvious’ special-relativistic gener-
alization of the Poisson equation,

∆Φ = 4πGρ , (1a)

together with a (slightly less obvious) special-relativistic generalization of the equation
of motion,

d2~x(t)

dt2
= −~∇Φ(~x(t)) , (1b)

lead to a theory in which the vertical acceleration of a test particle in a static homoge-
neous vertical gravitational field depends on its initial horizontal velocity and also on
its internal energy content. In his own words:

Einstein Quote 2. Solche Untersuchungen führten aber zu einem Ergebnis, das mich
in hohem Maß mißtrauisch machte. Gemäß der klassischen Mechanik ist nämlich

1 To be sure, I have to admit that in my opinion the most effective argument for why such a theory
[a scalar theory of gravity] has to be abandoned rests on the conviction that relativity holds with
respect to a much wider group of substitutions than just the linear-orthogonal ones. However, we are
not justified to push this argument since we were not able to determine the (most general) group of
substitutions which belongs to our gravitational equations.
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die Vertikalbeschleunigung eines Körpers im vertikalen Schwerefeld von der Hori-
zontalkomponente der Geschwindigkeit unabhängig. Hiermit hängt es zusammmen,
daß die Vertikalbeschleunigung eines mechanischen Systems bzw. dessen Schwerpunk-
tes in einem solchen Schwerefeld unabhängig herauskommt von dessen innerer kinetis-
cher Energie. Nach der von mir versuchten Theorie war aber die Unabhängigkeit der
Fallbeschleunigung von der Horizontalgeschwindigkeit bzw. der inneren Energie eines
Systems nicht vorhanden. Dies paßte nicht zu der alten Erfahrung, daß die Körper alle
dieselbe Beschleunigung in einem Gravitationsfeld erfahren. Dieser Satz, der auch
als Satz über die Gleichheit der trägen und schweren Masse formuliert werden kann,
leuchtete mir nun in seiner tiefen Bedeutung ein. Ich wunderte mich im höchsten Grade
über sein Bestehen und vermutete, daß in ihm der Schlüssel für ein tieferes Verständnis
der Trägheit und Gravitation liegen müsse. An seiner strengen Gültigkeit habe ich
auch ohne Kenntnis des Resultates der schönen Versuche von Eötvös, die mir – wenn
ich mich richtig erinnere – erst später bekannt wurden, nicht ernsthaft gezweifelt. Nun
verwarf ich den Versuch der oben angedeuteten Behandlung des Gravitationsprob-
lems im Rahmer der speziellen Relativitätstheorie als inadäquat. Er wurde offenbar
gerade der fundamentalsten Eigenschaft der Gravitation nicht gerecht. [...] Wichtig
war zunächst nur die Erkenntnis, daß eine vernünftige Theorie der Gravitation nur
von einer Erweiterung des Relativitätsprinzips zu erwarten war.2 ([1], pp. 135–136)

Einstein belief, that scalar theories of gravity are ruled out, placed him—in
this respect—in opposition to most of his contemporary physicist who took part in
the search for a (special-) relativistic theory of gravity (Nordström, Abraham, Mie,
von Laue ..). (Concerning Nordströms theory and the Einstein-Nordström interaction,
see e.g. the beautiful discussions in [5] and [6].) Some of them were not convinced, it
seems, by Einstein’s inconsistency argument. For example, even after General Relativ-
ity was completed, Max von Laue wrote a comprehensive review paper on Nordströms
theory, thereby at least implicitly claiming inner consistency [4]. Remarkably, this pa-
per of Laue’s is not contained in his collected writings.

On the other hand, modern commentators seem to fully accept Einstein’s claims
and view them as important step in the development of General Relativity and possibly
also as an important step towards the requirement of general covariance, whose impor-
tant heuristic power is unquestioned. Historically speaking this may certainly be true.
But are these arguments also physically correct, so as to be appropriately repeated
2 These investigations, however, led to a result which raised my strong suspicion. According to classical

mechanics, the vertical acceleration of a body in a vertical gravitational field is independent of the
horizontal component of its velocity. Hence in such a gravitational field the vertical acceleration of a
mechanical system, or of its center of gravity, comes out independently of its internal kinetic energy.
But in the theory I advanced, the acceleration of a falling body was not independent of its horizontal
velocity or the internal energy of the system. This did not fit with the old experience that all bodies
experience the same acceleration in a gravitational field. This statement, which can be formulated
as theorem on the equality of inertial and gravitational mass, became clear to me in all its deeper
meaning. I wondered to the highest degree as to why it should hold and conjectured that it be the
key for a deeper understanding of inertia and gravitation. I did not question its rigorous validity,
even without knowing about the beautiful experiments by Eötvös, of which—if I remember correctly—
I became aware only later. I now abandoned my attempt as inadequate to address the problem of
gravitation along the lines outlined above. It obviously could not account for the most fundamental
property of gravitation. [...] The important insight at this stage was that a reasonable theory of
gravitation could only be expected from an extension of the principle of relativity.
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in, say, a modern course on GR? Unfortunately Einstein’s recollections do not give
us sufficient insight into the precise mathematical formulations he had in mind when
making the statements just quoted. But what one can do is writing down a plausible
scalar theory and check whether its shortcomings are of the type Einstein mentions.

3 Scalar gravity

We wish to construct a Poincaré-invariant theory of a scalar gravitational field, Φ,
coupled to matter. Before we will do so in a systematic manner, using Lagrangian
methods, we will mention the obvious first and naive guesses for a Poincaré invariant
generalization of formulae (1). Our conventions for the Minkowski metric are ‘mostly
minus’, that is, ηµν = diag(1,−1,−1,−1).

3.1 First guesses and a naive theory

There is an obvious way to generalize the left hand side of (1a), namely to replace
the Laplace operator by minus (due to our ‘mostly minus’ convention) the d’Alembert
operator:

∆ :=
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

7→ − � :=
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
−

1

c2

∂2

∂t2
= −ηµν ∂2

∂xµ∂xν
.

(2)

This is precisely what Einstein reported:

Einstein Quote 3. Das einfachste war natürlich, das Laplacesche skalare Potential
der Gravitation beizubehalten und die Poisson Gleichung durch ein nach der Zeit dif-
ferenziertes Glied in naheliegender Weise so zu ergänzen, daß der speziellen Rela-
tivitätstheorie Genüge geleistet wurde.3 ([1], p. 135)

At this stage Einstein gives no information (in his 1933 notes) how to replace
the right hand side of (1a). Since the mass density ρ is not a scalar, it is clear that
something must be done about it. Note that the rest-mass density is not a scalar either,
since albeit the rest-mass is a scalar, the volume—as measured by the different inertial
observers—is not. In Special Relativity the energy density is the 00 component of the
energy-momentum tensor Tµν, which corresponds to a mass density T00/c2. Hence a
sensible generalization for the right hand side of (1a) is:

ρ 7→ T/c2 := ηµνTµν/c2 , (3)

so that (1a) translates to

�Φ = −κT , where κ := 4πG/c2 . (4)

The next step is to generalize (1b). With respect to this problem Einstein remarks:
3 The most simple thing to do was to retain the Laplacian scalar potential and to amend the Poisson

equation by a term with time derivative, so as to comply with special relativity.
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Einstein Quote 4. Auch mußte das Bewegungsgesetz des Massenpunktes im Gravi-
tationsfeld der speziellen Relativitätstheorie angepaßt werden. Der Weg hierfür war
weniger eindeutig vorgeschrieben, weil ja die Träge Masse eines Körpers vom Gravi-
tationspotential abhängen konnte. Dies war sogar wegen des Satzes von der Trägheit
der Energie zu erwarten.4 ([1], p. 135)

It should be clear that the structurally obvious choice,5

ẍµ(τ) = ηµν∇νΦ(x(τ)) , (5)

cannot work. Four velocities are normed,

η(ẋ, ẋ) = ẋµẋµ = c2 , (6)

so that
η(ẋ, ẍ) = ẋµẍµ = 0 . (7)

hence (5) implies the integrability condition ẋµ(τ)∇µΦ(x(τ)) = dΦ(x(τ))/dτ =

0. Hence (5) implies that Φ must stay constant along the worldline of the particle,
with renders it physically totally useless. The reason for this failure lies in the fact
that we replaced the three independent equations (1b) by four equations, which led
to an overdetermination since the four-velocity still represents only three independent
functions due to the kinematical constraint (6). More specifically, it is the component
parallel to the four-velocity ẋ of the four-vector equation (5) that leads to the unwanted
restriction. The obvious way out it to just retain the part of (5) perpendicular to ẋ:

ẍµ(τ) = Pµν(τ)∇νΦ(x(τ)) , (8a)

where Pµν(τ) = ηνλP
µ
λ(τ) and

Pµ
ν(τ) := δµ

ν − ẋµ(τ)ẋν(τ)/c2 (8b)

is the one-parameter family of projectors orthogonal to the four-velocity ẋ(τ), for each
point x(τ) of the particle’s worldline. Hence, by construction, this modified equation
of motion avoids the difficulty just mentioned. We will call the theory based on (4)
and (8) the naive theory. We also note that (8) is equivalent to

d

dτ

(
m(x(τ)) ẋµ(τ)

)
= m(x(τ))ηµν∇νΦ(x(τ)) , (9)

where m is a spacetime dependent mass, given by

m = m0 exp
(
(Φ − Φ0)/c2

)
. (10)

Here m0 is a constant, corresponding to the mass at gravitational potential Φ0 (e.g.
Φ0 = 0).
4 Also, the law of motion of a mass point in a gravitational field had to be adjusted to special relativity.

Here the route was less uniquely mapped out, since the inertial mass of a body could depend on the
gravitational potential. Indeed, this had to be expected on grounds of the law of inertia of energy.

5 Throughout we write ∇µ for ∂/∂xµ.
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We could now work out consequences of this theory. However, before doing this,
we would rather put the reasoning employed so far on a more systematic basis as pro-
vided by variational principles. This also allows us to discuss general matter couplings
and check whether the matter coupling that the field equation (4) expresses is con-
sistent with the coupling to the point particle, represented by the equation of motion
(8). This has to be asked for if we wish to implement the equivalence principle in the
following form:

Requirement 1 (Principle of universal coupling). All forms of matter (including test
particles) couple to the gravitational field in a universal fashion.

We will see that in this respect the naive theory is not quite correct.

3.2 A consistent model-theory for scalar gravity

Let us now employ standard Lagrangian techniques to construct a Poincaré-invariant
theory of a scalar gravitational field, Φ, coupled to matter. We take seriously the field
equation (4) and seek an action which makes it the Euler-Lagrange equation. It is easy
to guess6:

Sfield + Sint =
1

κc3

∫
d4x

(
1
2∂µΦ∂µΦ − κΦT

)
, (11)

where Sfield, given by the first term, is the action for the gravitational field and Sint,
given by the second term, accounts for the interaction with matter.

To this we have to add the action Smatter for the matter, which we only specify
insofar as we we assume that the matter consists of a point particle of rest-mass m0

and a ‘rest’ of matter that needs not be specified further for our purposes here. Hence
Smatter = Sparticle + Srom (rom = rest of matter) where

Sparticle = −m0c
2

∫
dτ . (12)

The quantity dτ = 1
c

√
ηµνdxµdxν is the proper time along the worldline of the parti-

cle. We now invoke the principle of universal coupling to find the particle’s interaction
with the gravitational field. It must be of the form ΦTp, where Tp is the trace of the
particle’s energy momentum tensor. The latter is given by

Tµν
p (x) = m0c

∫
ẋµ(τ)ẋν(τ) δ(4)(x − x(τ)) dτ , (13)

so that the particle’s contribution to the interaction term in (11) is

Sint-particle = −m0

∫
Φ(x(τ)) dτ . (14)

6 Note that Φ has the physical dimension of a squared velocity, κ that of length-over-mass. The prefactor
1/κc3 gives the right hand side of (11) the physical dimension of an action. The overall signs are
chosen according to the general scheme for Lagrangians: kinetic minus potential energy.
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Hence the total action can be written in the following form:

Stot = − m0c
2

∫(
1 + Φ(x(τ))/c2

)
dτ

+
1

κc3

∫
d4x

(
1
2∂µΦ∂µΦ − κΦTrom

)
+ Srom .

(15)

By construction the field equation that follow from this action is (4), where
the energy momentum-tensor refers to the matter without the test particle (the self-
gravitational field of a test particle is always neglected). The equations of motion for
the test particle are then given by

ẍµ(τ) = Pµν(τ)∂νφ(x(τ)) , (16a)

where Pµν(τ) = ηµν − ẋµ(τ)ẋν(τ)/c2 (16b)

and φ : = c2 ln(1 + Φ/c2) . (16c)

Three things are worth remarking at this point:

• The projector Pµν now appears naturally.

• The difference between (8) and (16) is that in the latter it is φ rather than Φ

that drives the four acceleration. This (only) difference to the naive theory was
imposed upon us by the principle of universal coupling, which, as we have just
seen, determined the motion of the test particle. This difference is small for
small Φ/c2, since, according to (16c), φ ≈ Φ(1+Φ/c2 + · · · ). But it becomes
essential if Φ gets close to −c2, where φ diverges and the equations of motion
become singular. We will see below that the existence of the critical value Φ =

−c2 is more of a virtue than a deficiency and that it is the naive theory which
displays an unexpected singular behavior.

• The universal coupling of the gravitational field to matter only involves the trace
of energy-momentum tensor of the latter. As a consequence of the traceless-
ness of the pure electromagnetic energy-momentum tensor, there is no coupling
of gravity to the free electromagnetic field, like e.g. a light wave in otherwise
empty space. A travelling electromagnetic wave will not be influenced by grav-
itational fields. Hence this theory predicts no bending of light-rays that pass
the neighborhoods of stars of other massive objects, in disagreement with ex-
perimental observations. Note however that the interaction of electromagnetic
fields with other matter will change the trace of the energy-momentum tensor of
the latter. For example, electromagnetic waves trapped in a material box with
mirrored walls will induce additional stresses in the box’s walls due to radiation
pressure. This will increase the weight of the box corresponding to an additional
mass ∆m = Erad/c2, where Erad is the energy of the radiation field. In this sense
bounded electromagnetic fields do carry weight.

Let us now focus on the equations of motion specialized to static situations. That
is, we assume that there exists some inertial coordinate system xµ with respect to
which Φ and hence φ are static, i.e. ∇0Φ = ∇0φ = 0. We have
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Proposition 1. For static potentials (16) is equivalent to

~x ′′(t) = −
(
1 − β2(t)

)
~∇φ(~x(t)) , (17)

where here and below we write a prime for d/dt, and use the standard shorthands
~v = ~x ′, ~β = ~v/c, β = ‖~β‖, and γ = 1/

√
1 − β2.

Proof. We write in the usual four-vector component notation: ẋ = cγ(1, ~β). Using
d/dτ = γd/dt and dγ/dt = γ3(~a ·~v/c2), we have on one side

ẍµ = γ4
(
~a · ~β , ~a‖ + γ−2~a⊥) , (18a)

with ~a := d~v/dt and where ~a‖ := β−2~β(~β · ~a) and ~a⊥ := ~a − ~a‖ are respectively the
spatial projections of ~a parallel and perpendicular to the velocity ~v. On the other hand
we have

−ẋµẋν∇νφ/c2 = −γ2(~β · ~∇φ)(1 , ~β) (18b)

ηµν∇νφ = (0,−~∇φ) , (18c)

so that (
ηµν − ẋµẋν/c2

)
∇νφ = − γ2

(
β · ∇φ , ~∇‖φ + γ−2~∇⊥φ

)
, (18d)

where ~∇‖ := β−2~β(~β · ~∇) and ~∇⊥ := ~∇ − ~∇‖ are the projections of the gradient
parallel and perpendicular to ~v respectively. Equating (18a) and (18d) results in

~a · ~β = − γ−2 ~β · ~∇φ , (18e)

~a = − γ−2 ~∇φ . (18f)

Since (18e) is trivially implied by (18f), (18f) alone is equivalent to (16) in the static
case, as was to be shown.

Einstein’s second quote suggests that he also arrived at an equation like (17), which
clearly displays the dependence of the acceleration in the direction of the gravitational
field on the transversal velocity. We will come back to this in the discussion section.

We can still reformulate (17) so as to look perfectly Newtonian:

Proposition 2. Let m be the rest-mass of the point particle. Then (17) implies

m~a = −~∇φ̃(~x(t)) with φ̃ := (mc2/2)γ−2
0 exp(2φ/c2) , (19)

where γ0 is an integration constant.

Proof. Scalar multiplication of (17) with ~v leads to(
ln γ + φ/c2

) ′
= 0 , (20)

which integrates to
γ = γ0 exp(−φ/c2) , (21)

where γ0 is a constant. Using this equation to eliminate the γ−2 on the right hand side
of (17) the latter assumes the form (19).
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4 Free-fall in static homogeneous fields

4.1 The scalar model-theory

Suppose that with respect to some inertial reference frame with coordinates
(ct, x, y, z) the gravitational potential φ just depends on z. Let a body be released
at x = y = z = 0 with proper velocity ẏ0 = ż0 = 0, ẋ0 = cβγ, and ṫ0 = γ,
where cβ := v := ẋ0/ṫ0 is the ordinary velocity and γ := 1/

√
1 − β2. Here an

overdot denotes the derivative with respect to proper time and we used the fact that
c2ṫ2 − ẋ2 − ẏ2 − ż2 = c2. We take the gravitational field to point into the neg-
ative z direction so that φ is a function of z with positive derivative φ ′. Note that
ż(φ ′ ◦ z) = d(φ ◦ z)/dτ for which we simply write φ̇ with the usual abuse of notion
(i.e. taking φ to mean φ ◦ z). Finally, we normalize φ such that φ(z = 0) = 0.

The equations of motion (16a) now simply read

ẗ = − ṫ φ̇/c2 , (22a)

ẍ = − ẋ φ̇/c2 , (22b)

ÿ = − ẏ φ̇/c2 , (22c)

z̈ = −
(
1 + ż2/c2

)
φ ′ . (22d)

The first integrals of the first three equations, keeping in mind the initial conditions,
are (

ṫ(τ), ẋ(τ), ẏ(τ)
)

=
(
1, cβ, 0

)
γ exp

(
−φ(z(τ))/c2

)
. (23)

Further integration requires the knowledge of z(τ), that is, the horizontal motion cou-
ples to the vertical one if expressed in proper time.7 Fortunately, the vertical motion
does not likewise couple to the horizontal one, that is, the right hand side of (22d) just
depends on z(τ). Writing it in the form

z̈ż/c2

1 + ż2/c2
= −φ̇/c2 (24)

its integral for ż(τ = 0) = 0 and φ(z = h) = 0 (so that φ(z < h) < 0) is

ż = −c

√
exp(−2φ/c2) − 1 . (25)

From this the eigentime τh for dropping from z = 0 to z = −h with h > 0 follows
by one further integration, showing already at this point its independence of the initial
horizontal velocity.

Here we wish to be more explicit and solve the equations of motion for the one-
parameter family of solutions to (4) for T = 0 and a Φ that just depends on z, namely
Φ = gz, for some constant g that has the physical dimension of an acceleration.
As already announced we normalize Φ such that Φ(z = 0) = 0. These solutions
correspond to what one would call ‘homogeneous gravitational field’. But note that
these solutions are not globally regular since φ = c2 ln(1+Φ/c2) = c2 ln(1+gz/c2)

exists only for z > −c2/g and it is the quantity φ rather than Φ that corresponds to
the Newtonian potential (i.e. whose negative gradient gives the local acceleration).
7 In terms of coordinate time the horizontal motion decouples: dx/dt = ẋ/ṫ = cβ ⇒ x(t) = cβt.
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Upon insertion of Φ = gz, (25) can be integrated to give z(τ). Likewise, from
(25) and (23) we can form dz/dt = ż/ṫ and dz/dx = ż/ẋ which integrate to z(t) and
z(x) respectively. The results are

z(τ) = −
c2

g

{
1 −

√
1 −

(
τg/c

)2
}

, (26a)

z(t) = −
2c2

g
sin2

(
gt/2γc

)
, (26b)

z(x) = −
2c2

g
sin2

(
gx/2βγc2

)
. (26c)

For completeness we mention that direct integration of (23) gives for the other com-
ponent functions, taking into account the initial conditions t(0) = x(0) = y(0) = 0:(

t(τ), x(τ), y(τ)
)

=
(
1, cβ, 0

)
(γc/g) sin−1

(
gτ/c

)
. (27)

The relation between τ and t is

τ = (c/g) sin
(
gt/γc

)
. (28)

Inversion of (26a) and (26a) leads to the proper time, τh, and coordinate time, th, that
it takes the body to drop from z = 0 to z = −h:

τh =
c

g

√
1 −

(
1 − gh/c2

)2 ≈
√

2h/g , (29a)

th = γ
2c

g
sin−1

(√
gh/2c2

)
≈ γ

√
2h/g . (29b)

The approximations indicated by ≈ refer to the leading order contributions for small
values of gh/c2 (and any value of γ). The appearance of γ in (29b) signifies the
quadratic dependence on the initial horizontal velocity: the greater the inertial hori-
zontal velocity, the longer the span in inertial time for dropping from z = 0 to z = −h.
This seems to be Einstein’s point (cf. Quote 2). In contrast, there is no such depen-
dence in (29a), showing the independence of the span in eigentime from the initial
horizontal velocity.

The eigentime for dropping into the singularity at z = −h = −c2/g is τ∗ = c/g.
In particular, it is finite, so that a freely falling observer experiences the singularity of
the gravitational field −~∇φ in finite proper time. We note that this singularity is also
present in the static spherically symmetric vacuum solution Φ(r) = −Gm/r to (4),
for which φ(r) = c2 ln(1 + Φ/c2) exists only for Φ > c2, i.e. r > Gm/c2. The
Newtonian acceleration diverges as r approaches this value from above, which means
that stars of radius smaller than that critical value cannot exist because no internal
pressure can support the infinite inward pointing gravitational pull.

Knowing General Relativity, this type of behavior does not seem too surprising
after all. Note that we are here dealing with a non-liner theory, since the field equations
(4) become non-liner if expressed in terms of φ according to (16c).

11



4.2 The naive scalar theory

Let us for the moment return to the naive theory, given by (4) and (8). Its equations
of motion in a static and homogeneous vertical field are obtained from (22) by setting
φ = gz. Insertion into (25) leads to z(τ). The expressions z(t) and z(x) are best
determined directly by integrating dz/dt = ż/ṫ using (25) and (27). One obtains

z(τ) =
c2

g
ln

(
cos

(
gτ/c

))
, (30a)

z(t) = −
c2

g
ln

(
cosh

(
gt/γc

))
, (30b)

z(x) = −
c2

g
ln

(
cosh

(
gx/βγc2

))
. (30c)

The proper time and coordinate time for dropping from z = 0 to z = −h are therefore
given by

τh =
c

g
cos−1

(
exp

(
−hg/c2

))
≈

√
2h/g , (31a)

th =
c

g
γ cosh−1

(
exp

(
hg/c2

))
≈ γ

√
2h/g , (31b)

where ≈ gives again the leading order contributions for small gh/c2.8 The general
relation between τ and t is obtained by inserting (30a) into the expression (23) for ṫ

and integration:

τ =
2c

g

{
tan−1

(
exp(gt/γc)

)
− π/4

}
. (32)

The surprising feature of (31a) is that τh stays finite for h → ∞. In fact,
τ∞ = cπ/2g. So even though the solution φ(z) is globally regular, the solution to
the equations of motion is in a certain sense not, since the particle reaches the ‘end of
spacetime’ in finite proper time. This should presumably be seen as a worse singular
behavior than that discussed before, since it is not associated with any singular behav-
ior of the field itself. Except perhaps for the fact that the very notion of an infinitely
extended homogeneous field is itself regarded as unphysical.

4.3 Vector theory

For comparison it is instructive to look at the corresponding problem in a vector
(spin 1) theory, which we here do not wish to discuss in detail. It is essentially given
by Maxwell’s equations with appropriate sign changes to account for the attractivity
of like ‘charges’ (here masses). This causes problems, like that of runaway solutions,
due to the possibility to radiate away negative energy. But the problem of free fall in
a homogeneous gravitoelectric field can be addressed, which is formally identical to
that of free fall of a charge e and mass m in a static and homogeneous electric field
~E = −E~ez. So let us first look at the electrodynamical problem.

The equations of motion (the Lorentz force law) are

mz̈µ = eηµνFνλż
λ , (33)

8 To see this here use e.g. the identity cos−1(x) = tan−1
`√

x−2 − 1
´
.
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where F03 = −F30 = −E/c and all other components vanish. Hence, writing

E := eE/mc , (34)

we have

cẗ = − E ż , (35a)

ẍ = 0 , (35b)

ÿ = 0 , (35c)

z̈ = − E cṫ . (35d)

With the same initial conditions as in the scalar case we immediately have

x(τ) = cβγτ , y(τ) = 0 . (36)

(35a) and (35d) are equivalent to

(ct± z)¨= ∓E(ct± z)˙, (37)

which twice integrated lead to

ct(τ)± z(τ) = A± exp(∓Eτ) + B± , (38)

where A+, A−, B+, and B− are four constants of integration. They are determined by
z(0) = ż(0) = t(τ) = 0 and cṫ2 − ẋ2 − ẏ2 − ż2 = c2, leading to

t(τ) = (γ/E) sinh(Eτ) (39)

and also
z(τ) = − (2cγ/E) sinh2(Eτ/2) . (40a)

Using (39) and (36) to eliminate τ in favour of t or x respectively in (40a) gives

z(t) = −
γc

E

(√
1 + (tE/γ)2 − 1

)
, (40b)

z(x) = −
2γc

E
sinh2(xE/2βγc) . (40c)

Inverting (40a) and (40b) gives the expressions for the spans of eigentime and inertial
time respectively, that it takes for the body to drop from z = 0 to z = −h:

τh = (2/E) sinh−1
(√

Eh/2γc
)

≈ γ−1/2
√

2h/Ec , (41a)

th = (γ/E)

√(
1 + Eh/γc

)2
− 1 ≈ γ+1/2

√
2h/Ec . (41b)

This is the full solution to our problem in electrodynamics, of which we basically
just used the Lorentz force law. It is literally the same in a vector theory of gravity, we
just have to keep in mind that the ‘charge’ e is now interpreted as gravitational mass,
which is to be set equal to the inertial mass m, so that e/m = 1. Then Ec becomes
equal to the ‘gravitoelectric’ field strength E, which directly corresponds to the strength
g of the scalar gravitational field. Having said this, we can directly compare (41) with
(29). For small field strength we see that in both cases th is larger by a factor of γ than
τh, which just reflects ordinary time dilation. However, unlike in the scalar case, the
eigentime span τh also depends on γ in the vector case. The independence of τh on
the initial horizontal velocity is therefore a special feature of the scalar theory.
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4.4 Discussion

Let us reconsider Einstein’s statements in Quote 2, in which he dismisses scalar gravity
for it predicting an unwanted dependence on the vertical acceleration on the initial
horizontal velocity. As already noted, we do not know exactly in which formal context
Einstein derived this result (i.e. what the “von mir versuchten Theorie” mentioned
in Quote 2 actually was), but is seems most likely that he arrived at an equation like
(17), which clearly displays the alleged behavior. In any case, the diminishing effect
of horizontal velocity onto vertical acceleration is at most of quadratic order in v/c.

Remark 1. How could Einstein be so convinced that such an effect did not exist?
Certainly there were no experiments at the time to support this. And yet he asserted
that such a prediction “did not fit with the old experience [my italics] that all bodies
experience the same acceleration in a gravitational field” (cf. Quote 2). What was it
based on?

One way to rephrase/interpret Einstein’s requirement is this: the time it takes for
a body in free fall to drop from a height h to the ground should be independent of its
initial horizontal velocity. More precisely, if you drop two otherwise identical bodies
in a static homogeneous vertical gravitational field at the same time from the same
location, one body with vanishing initial velocity, the other with purely horizontal
initial velocity, they should hit the ground simultaneously.

But that is clearly impossible to fulfill in any special relativistic theory of gravity,
independent of whether it is based on a scalar (or vector) field. The reason is this:
suppose −∇µφ = (0, 0, 0,−g) is the gravitational field in one inertial frame. Then it
takes exactly the same form in any other inertial frame which differs form the first one
by 1) spacetime translations, 2) rotations about the z axis, 3) boosts in any direction
within the xy-plane. So consider a situation where with respect to an inertial frame
F body 1 and body 2 are released simultaneously at z = 0 with initial velocities ~v1 =

(0, 0, 0) and ~v2 = (v, 0, 0). One is interested whether the bodies hit the ‘ground’
simultaneously. The ‘ground’ is represented in spacetime by the hyperplane z = −h

and ‘hitting the ground’ is taken to mean that the wordline of the particle in question
intersects this hyperplane. Let another inertial frame, F ′, move with respect to F at
speed v along the x axis. With respect to F ′ both bodies are released simultaneously
at z ′ = 0 with initial velocities ~v ′1 = (−v, 0, 0) and ~v ′2 = (0, 0, 0). The field is still
static, homogeneous, and vertical with respect to F ′.9 In F ′ the ‘ground’ is defined
by z ′ = −h, which defines the same hyperplane in spacetime as z = −h. This is
true since F and F ′ differ by a boost in x–direction, so that the z and z ′ coordinates
coincide. Hence ‘hitting the ground’ has an invariant meaning in the class of inertial
systems considered here. However, if ‘hitting the ground’ are simultaneous events in
F they cannot be simultaneous in F ′ and vice versa, since these events differ in their x

coordinates. This leads us to the following
9 This is true for gravitational fields that derive from a scalar potential as well as vector potentials. In

the scalar case even the strength, ‖~∇φ‖, of the field is the same in F and F ′, whereas in the vector case
the strength in F ′ is enhanced by a factor γ = 1/

p
1 − v2/c2. For our argument to work we just need

that the field is again static, homogeneous, and vertical. It therefore applies to the scalar as well as the
vector case.
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Remark 2. Due to the usual relativity of simultaneity, the requirement of ‘hitting the
ground simultaneously’ cannot be fulfilled in any Poincaré invariant theory of gravity.

But there is an obvious reinterpretation of ‘hitting the ground simultaneously’,
which makes perfect invariant sense in Special Relativity, namely the condition of
‘hitting the ground after the same lapse of eigentime’. As we have discussed in detail
above, the scalar theory does indeed fulfill this requirement (independence of (29a)
from γ) whereas the vector theory does not (dependence of (41a) on γ).

Remark 3. The scalar theory is distinguished by its property that the eigentime for
free fall from a given altitude does not depend on the initial horizontal velocity.

In general, with regard to this requirement, the following should be mentioned:

Remark 4. Einstein’s requirement is (for good reasons) not implied by any of the mod-
ern formulations of the (weak) equivalence principle, according to which the world-
line of a freely falling test-body (without higher mass-multipole-moments and without
charge and spin) is determined by its initial spacetime point and four velocity, i.e. inde-
pendent of the further constitution of the test body. In contrast, Einstein’s requirement
relates two motions with different initial velocities.

Finally we remark on Einstein’s additional claim in Quote 2, that there is also a
similar dependence on the vertical acceleration on the internal energy. This claim, too,
does not survive closer scrutiny. Indeed, one might e.g. think at first that (17) also
predicts that, for example, the gravitational acceleration of a box filled with a gas de-
creases as temperature increases, due to the increasing velocities of the gas molecules.
But this arguments incorrectly neglects the walls of the box which gain in stress due
to the rising gas pressure. According to (4) more stress means more weight. In fact, a
general argument due to von Laue [3] shows that these effects precisely cancel. This
has been lucidly discussed by Norton [6] and need not be repeated here.

5 Periapsis precession

The Newtonian laws of motion predict that the line of apsides remains fixed relative to
absolute space for the motion of a body in a potential with 1/r–falloff. Any deviation
from the latter causes a rotation of the line of apsides within the orbital plane. This may
also be referred to as precession of the periapsis, the orbital point of closest approach
to the center of force.

A convenient way to calculate the periapsis precession in perturbed 1/r–potentials
is provided by the following proposition (taken from an exercise in the textbook on
mechanics by Landau & Lifshitz):

Proposition 3. Consider the Newtonian equations of motion for a test particle of mass
m in a perturbed Newtonian potential

U(r) = −
α

r
+ ∆U(r) , (42)

where α > 0 and ∆U(r) is the perturbation. The potential is normalized so that it
tends to zero at infinity, i.e. ∆U(r → ∞) → 0. Let 2π+∆ϕ denote the increase of the
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polar angle between two successive occurrences of periapsis. Hence ∆ϕ represents
the excess over a full turn, also called the ‘periapsis shift per revolution’. Then the
first-order contribution of ∆U to ∆ϕ is given by

∆ϕ =
∂

∂L

{
2m

L

∫π

0
r2
∗(ϕ; L, E) ∆U

(
r∗(ϕ; L, E)

)
dϕ

}
. (43)

Here ϕ 7→ r∗(ϕ; L, E) is the solution of the unperturbed problem (Kepler orbit) with
angular momentum L and energy E. (As we are interested in bound orbits, we have
E < 0.) It is given by

r∗(ϕ; L, E) =
p

1 + ε cos ϕ
, (44a)

where

p : =
L2

mα
, (44b)

ε : =

√
1 +

2EL2

mα2
. (44c)

Note that the expression in curly brackets on the right hand side of (43) is understood
as function of L and E, and the partial differentiation is to be taken at constant E.

Proof. In the Newtonian setting, the conserved quantities of energy and angular mo-
mentum for the motion in a plane coordinatized by polar coordinates, are given by

E = 1
2m(r ′2 + r2ϕ ′2) + U(r) , (45)

L = mr2ϕ ′ , (46)

where a prime represents a t-derivative. Eliminating ϕ ′ in (45) via (46) and also using
(46) to re-express t-derivatives in terms of ϕ-derivatives, we have

L2

m2r4

(
(dr/dϕ)2 + r2

)
= 2

E − U

m
. (47)

This can also be write in differential form,

dϕ =
±dr L/r2√

2m
(
E − U(r)

)
− L2/r2

, (48)

whose integral is just given by (44).
Now, the angular change between two successive occurrences of periapsis is twice

the angular change between periapsis (i.e. rmin) and apoapsis (i.e. rmax):

∆ϕ + 2π = 2

∫ rmax

rmin

dr L/r2√
2m

(
E − U(r)

)
− L2/r2

= −2
∂

∂L

{∫ rmax

rmin

dr

√
2m

(
E − U(r)

)
− L2/r2

}
,

(49)
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where the term in curly brackets is considered as function of L and E and the partial
derivative is for constant E.

Formula (49) is exact. Its sought after approximation is obtained by writing
U(r) = −α/r + ∆U(r) and expanding the integrand up to linear order in ∆U. Taking
into account that the zeroth order term just cancels the 2π on the left hand side, we get:

∆ϕ ≈ ∂

∂L

2m

∫ rmax

rmin

∆U(r)dr√
2m

(
E + α/r

)
− L2/r2


≈ ∂

∂L

{
2m

L

∫π

0
r2
∗(ϕ; L, E)∆U

(
r∗(ϕ; L, E)

)
dϕ

}
.

(50)

In the second step we converted the r–integration into an integration over the azimuthal
angle ϕ. This we achieved by making use of the identity that one obtains from (48)
with U(r) = −α/r and r set equal to the Keplerian solution curve r∗(ϕ; L,M) for the
given parameters L and E. Accordingly, we replaced the integral limits rmin and rmax by
the corresponding angles ϕ = 0 and ϕ = π + ∆ϕ/2 respectively. Since the integrand
is already of order ∆U, we were allowed to replace the upper limit by ϕ = π, so that
the integral limits now correspond to the angles for the minimal and maximal radius
of the unperturbed Kepler orbit r∗(ϕ; L, E) given by (44a).

Let us apply this proposition to the general class of cases where ∆U = ∆2U+∆3U

with

∆2U(r) = δ2/r2 , (51a)

∆3U(r) = δ3/r3 . (51b)

In the present linear approximation in ∆U the effects of both perturbations to ∆ϕ

simply add, so that ∆ϕ = ∆2ϕ + ∆3ϕ. The contributions ∆2ϕ and ∆3ϕ are very
easy to calculate from (43). The integrals are trivial and give πδ2 and πδ3/p respec-
tively. Using (44b) in the second case to express p as function of L, then doing the L

differentiation and finally eliminating L again in favour of p using (44b), we get

∆2ϕ = − 2π

[
δ2/α

p

]
= − 2π

[
δ2/α

a(1 − ε2)

]
, (52a)

∆3ϕ = − 6π

[
δ3/α

p2

]
= − 6π

[
δ3/α

a2(1 − ε2)2

]
, (52b)

were we also expressed p in terms of the semi-major axis a and the eccentricity ε via
p = a(1 − ε2), as it is usually done. Clearly this method allows to calculate in a
straightforward manner the periapsis shifts for general perturbations ∆nU = δn/rn.
For example, the case n = 3 is related to the contribution from the quadrupole moment
of the central body.

5.1 Scalar model-theory

All this applies directly to the scalar theory if its equation of motion is written in the
Newtonian form (19). The static, rotationally symmetric, source-free solution to (4) is
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Φ(r) = −GM/r and hence

φ̃(r) = (m0c
2/2)γ−2

0

(
1 −

GM

rc2

)2

. (53)

In order to normalize the potential so that it assumes the value zero at spatial infinity
we just need to drop the constant term. This leads to to

α = γ−2
0 GMm, (54a)

δ2 = α
GM

2c2
, (54b)

so that

∆ϕ = ∆2ϕ = − π

[
GM/c2

a(1 − ε2)

]
= − 1

6∆GRϕ , (55)

where ∆GRϕ is the value predicted by General Relativity. Hence scalar gravity leads to
a retrograde periapsis precession

5.2 Naive scalar theory

In the naive scalar theory we have φ(r) = −GM/r in (19) and therefore

φ̃(r) = (m0c
2/2)γ−2

0 exp
(
−2GM/c2r

)
= (m0c

2/2)γ−2
0

{
1 − 2

(
GM

c2r

)
+ 2

(
GM

c2r

)2

−
4

3

(
GM

c2r

)3

+ · · ·

}
.

(56)

Again we subtract the constant term to normalize the potential so as to assume the
value zero at infinity. Then we simply read off the coefficients α, δ2, and δ3:

α = 2(GM/c2) (m0c
2/2)γ−2

0 , (57a)

δ2 = 2(GM/c2)2 (m0c
2/2)γ−2

0 , (57b)

δ3 = −4
3(GM/c2)3 (m0c

2/2)γ−2
0 . (57c)

Hence we have
∆ϕ = ∆2ϕ + ∆3ϕ , (58a)

where

∆2ϕ = − 2π

[
GM/c2

a(1 − ε2)

]
, (58b)

∆3ϕ = + 4π

[
GM/c2

a(1 − ε2)

]2

. (58c)

Recall that (52) neglects quadratic and higher order terms in ∆U. If we expand ∆U

in powers of GM/c2r, as done in (56), it would be inconsistent to go further than to
third order because ∆U starts with the quadratic term so that the neglected corrections
of order (∆U)2 start with fourth powers in GM/c2r. Hence (58) gives the optimal
accuracy obtainable with (43). For solar-system applications GM/c2a is of the order
of 10−8 so that the quadratic term (58c) can be safely neglected. Comparison of (58b)
with (55) shows that the naive scalar theory gives a value twice as large as that of the
consistent model theory, i.e. −1/3 times the correct value (predicted by GR).
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5.3 Vector theory

We start from the following

Proposition 4. The equations of motion (33) for a purely ‘electric’ field, where F0i =

−Fi0 = Ei/c and all other components of Fµν vanish, is equivalent to(
γ(t)~x ′(t)

) ′
= ~E

(
~x(t)

)
, (59)

where ′ denotes d/dt, γ(t) := 1/
√

1 − ‖~x ′(t)‖2/c2, and ~E := e~E/mc.

Proof. We have d/ds = γ d/dt, dγ/dt = γ3(~β · ~β ′). Now,

z̈µ = cγ
(
γ ′, (γ~β) ′

)
, and (e/m) Fµ

νżν = cγ
(
~E · β, ~E

)
, (60)

so that (33) is equivalent to

~E · ~β = γ ′ = γ3(~β · ~β ′) , (61a)
~E = (γ~β) ′ = γ3~β ′

‖ + γ~β ′
⊥ . (61b)

where ‖ and ⊥ refer to the projections parallel and perpendicular to ~β respectively.
Since (61b) implies (61a), (33) is equivalent to the former.

We apply this to a spherically symmetric field, where ~E = −~∇φ with φ = φ(r) =

−GM/r. This implies conservation of angular momentum, the modulus of which is
now given by

L = γ mr2ϕ ′ (62)

Note the explicit appearance of γ, which e.g. is not present in the scalar case, as one
immediately infers from (17). This fact makes Proposition 3 not immediately applica-
ble. We proceed as follows: scalar multiplication of (59) with ~v = ~x ′ and m leads to
the following expression for the conserved energy:

E = mc2(γ − 1) + U , (63)

where U = mφ. This we write in the form

γ2 =

(
1 +

E − U

mc2

)2

. (64a)

On the other hand, we have

γ2 ≡ 1+(βγ)2 = 1+(γ/c)2(r ′2+r2ϕ ′2) = 1+
L2

m2c2r4

(
(dr/dϕ)2 + r2

)
, (64b)

where we used (62) to eliminate ϕ ′ and convert r ′ into dr/dϕ, which also led to a
cancellation of the factors of γ. Equating (64a) and (64b), we get

L2

m2r4

(
(dr/dϕ)2 + r2

)
= 2

Ẽ − Ũ

m
(65)
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where

Ẽ := E
(
1 + E/2mc2

)
, (66a)

Ũ := U
(
1 + E/mc2

)
− U2/2mc2 . (66b)

Equation (65) is just of the form (47) with Ẽ and Ũ replacing E and U. In particular
we have for U = mφ = −GMm/r:

Ũ(r) = −
α

r
+

δ2

r2
(67)

with

α = GMm(1 + E/mc2) , (68a)

δ2 = −
G2M2m

2c2
. (68b)

In leading approximation for small E/mc2 we have δ2/α = −GMm/2c2. The ad-
vance of the periapsis per revolution can now be simply read off (52a):

∆ϕ = π

[
GM/c2

a(1 − ε2)

]
= 1

6∆GRϕ . (69)

This is the same amount as in the scalar model-theory (compare (55)) but of opposite
sign, corresponding to a prograde periapsis precession of 1/6 the value predicted by
General Relativity.
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6 Energy conservation

From a modern viewpoint, Einstein’s claim as to the violation of energy conservation
seems to fly in the face of the very concept of a Poincaré invariant theory. After all,
time translations are among the symmetries of the Poincaré group, thus giving rise to a
corresponding conserved Noether charge. Its conservation is a theorem and cannot be
questioned. The only thing that seems logically questionable is whether this quantity
does indeed represent physical energy. So how does Einstein arrive at his conclusion?

6.1 Einstein’s argument

Einstein first pointed out that the source for the gravitational field must be a scalar
built from the matter quantities alone, and that the only such scalar is the trace T

µ
µ

of the energy-momentum tensor (as pointed out to Einstein by von Laue, as Einstein
acknowledges, calling T

µ
µ the “Laue Scalar”). Moreover, for closed stationary systems

the so-called Laue-Theorem (first proven in [3] for static systems and later slightly
generalized to stationary ones) states that the integral over space of Tµν must van-
ish, except for µ = 0 = ν; hence the space integral of T

µ
µ equals that of T00, which

means that the total (active and passive) gravitational mass of a closed stationary sys-
tem equals its inertial mass. However, if the system is not closed, the weight depends
on the stresses (the spatial components T ij).

~g

– strutB

shaft
|

Figure 1: Sliding box
filled with radiation in a
gravitational field ~g.

His argument proper is then as follows (compare
Fig. 1): consider a box B filled with electromagnetic ra-
diation of total energy E. We idealize the walls of the box
to be inwardly perfectly mirrored and of infinite stiffness,
i.e. they can support normal stresses (pressure) without
any deformation. The box has an additional vertical strut
in the middle connecting top and bottom walls, which sup-
ports all the vertical material stresses that counterbalance
the radiation pressure, so that the side walls merely sus-
tain normal and no tangential stresses. The box can slide
without friction along a vertical shaft whose cross section
corresponds exactly to that of the box. The walls of the
shaft are likewise idealized to be inwardly perfectly mir-
rored and of infinite stiffness. The whole system of shaft
and box is finally placed in a homogeneous static gravi-
tational field, ~g, which points vertically downward. Now
we perform the following process. We start with the box being placed in the shaft in
the upper position. Then we slide it down to the lower position; see Fig. 2. There we
remove the side walls of the box—without any radiation leaking out—such that the
sideways pressures are now provided by the shaft walls. The strut in the middle is left
in position to further take all the vertical stresses, as before. Then the box together
with the detached side walls are pulled up to their original positions; see Fig. 3. Fi-
nally the system is reassembled so that it assumes its initial state. Einstein’s claim is
now that in a very general class of imaginable scalar theories the process of pulling
up the parts needs less work than what is gained in energy in letting the box (with
side walls attached) down. Hence he concluded that such theories necessarily violate
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Figure 2: Lowering
the box in the gravi-
tational field with side
walls attached.

Figure 3: Raising the box
in the gravitational field
with side walls taken off.

energy conservation.
Indeed, radiation-plus-box is a closed stationary system in von Laue’s sense.

Hence the weight of the total system is proportional to its total energy E, which we
may pretend to be given by the radiation energy alone since the contributions from the
rest masses of the walls will cancel in the final energy balance, so that we may formally
set them to zero at this point. Lowering this box by an amount h in a static homoge-
neous gravitational field of strength g results in an energy gain of ∆E = hgE/c2. So
despite the fact that radiation has a traceless energy-momentum tensor, trapped radia-
tion has a weight given by E/c2. This is due to the radiation pressure which puts the
walls of the trapping box under tension. Tension makes an independent contribution to
weight, independent of the material that supports it. For each parallel pair of side-walls
the tension is just the radiation pressure, which is one-third of the energy density. So
each pair of side-walls contribute E/3c2 to the (passive) gravitational mass (over and
above their rest mass, which we set to zero) in the lowering process when stressed, and
zero in the raising process when unstressed. Hence, Einstein concluded, there is a net
gain in energy of 2E/3c3 (there are two pairs of side walls).

But it seems to me that Einstein neglects a crucial contribution to the energy bal-
ance. In contrast to the lowering process, the state of the shaft S is changed during the
lifting process, and it is this additional contribution which just renders Einstein’s argu-
ment inconclusive. Indeed, when the side walls are first removed in the lower position,
the walls of the shaft necessarily come under stress because they now need to provide
the horizontal balancing pressures. In the raising process that stress distribution of the
shaft is translated upwards. But that does cost energy in the theory discussed here,
even though it is not associated with any proper transport of the material the shaft is
made from. As already pointed out, stresses make their own contribution to weight,
independent of the nature of the material that supports them. In particular, a redis-
tribution of stresses in a material immersed in a gravitational field generally makes a
non-vanishing contribution to the energy balance, even if the material does not move.
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This will be seen explicitly below.

6.2 Energy conservation in the scalar model-theory

Corresponding to Poincaré-invariance there are 10 conserved currents. In particular,
the total energy E relative to an inertial system is conserved. For a particle coupled to
gravity it is easily calculated and consists of three contributions corresponding to the
gravitational field, the particle, and the interaction-energy of particle and field:

Egravity =
1

2κc2

∫
d3x

(
(∂ctΦ)2 + (~∇Φ)2

)
, (70a)

Eparticle = m0c
2 γ(v) , (70b)

Einteraction = m0 γ(v)Φ
(
~z(t), t

)
, (70c)

Let’s return to general matter models and let T
µν
total be the total stress-energy tensor

of the gravity-matter-system. It is the sum of three contributions:

T
µν
total = T

µν
gravity + Tµν

matter + T
µν
interaction , (71)

where10

T
µν
gravity =

1

κc2

(
∂µΦ∂νΦ − 1

2ηµν∂λΦ∂λΦ
)
, (72a)

Tµν
matter = depending on matter model , (72b)

T
µν
interaction = ηµν(Φ/c2)Tmatter . (72c)

Energy-momentum-conservation is expressed by

∂µTtotal
µν = Fν

external , (73)

where Fν
external is the four-force of a possible external agent. The 0-component of it (i.e.

energy conservation) can be rewritten in the form

external power supplied =
d

dt

∫
D

d3x T00
total +

∫
∂D

T0k
totalnk dΩ . (74)

If the matter system is of finite spatial extent, meaning that outside some bounded
spatial region, D, we have that T

µν
matter vanishes identically, and if we further assume

that no gravitational radiation escapes to infinity, the surface integral in (74) vanishes
identically. Integrating (74) over time we then get

external energy supplied = ∆Egravity + ∆Ematter + ∆Einteraction , (75)

with
Einteraction =

∫
D

d3x (Φ/c2)Tmatter , (76)

and where ∆(something) denotes the difference between the initial and final value
of ‘something’. If we apply this to a process that leaves the internal energies of the
10 We simply use the standard expression for the canonical energy-momentum tensor, which is good

enough in the present case. If S =
∫

L dtd3x, it is given by Tµ
ν := (∂L/∂Φ,µ)Φ,ν − δµ

νL.
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gravitational field and the matter system unchanged, for example a processes where the
matter system, or at least the relevant parts of it, are rigidly moved in the gravitational
field, like in Einstein’s Gedankenexperiment of the ‘radiation-shaft-system’, we get

external energy supplied = ∆

{∫
D

d3x (Φ/c2)Tmatter

}
. (77)

Now, my understanding of what a valid claim of energy non-conservation in the present
context would be is to show that this equation can be violated. But this is not what
Einstein did (compare Conclusions).

If the matter system stretches out to infinity and conducts energy and momentum
to infinity, than the surface term that was neglected above gives a non-zero contribution
that must be included in (77). Then a proof of violation of energy conservation must
disprove this modified equation. (Energy conduction to infinity as such is not in any
disagreement with energy conservation; you have to prove that they do not balance in
the form predicted by the theory.)

6.3 Discussion

For the discussion of Einstein’s Gedankenexperiment the term (76) is the relevant one.
It accounts for the weight of stress. Pulling up a radiation-filled box inside a shaft also
moves up the stresses in the shaft walls that must act sideways to balance the radiation
pressure. This lifting of stresses to higher gravitational potential costs energy, accord-
ing to the theory presented here. This energy was neglected by Einstein, apparently
because it is not associated with a transport of matter. He included it in the lowering
phase, where the side-walls of the box are attached to the box and move with it, but
neglected them in the raising phase, where the side walls are replaced by the shaft,
which does not move. But as far as the ‘weight of stresses’ is concerned, this differ-
ence is irrelevant. What (76) tells us is that raising stresses in an ambient gravitational
potential costs energy, irrespectively of whether it is associated with an actual transport
of the stressed matter or not. This would be just the same for the transport of heat in
a heat-conducting material. Raising the heat distribution against the gravitational field
costs energy, even if the material itself does not move.

7 Conclusion

From the foregoing I conclude that, taken on face value, neither of Einstein’s rea-
sonings that led him to dismiss of a scalar theories of gravity prior to being checked
against experiments are convincing. For example, I would not use them in lectures on
General Relativity.

First, energy—as defined by Noether’s theorem—is conserved in our model the-
ory. Note also that the energy of the free gravitational field is positive definite in this
theory. Secondly, the eigentime for free fall in a homogeneous static gravitational field
is independent of the initial horizontal velocity. Hence our model-theory serves as
an example of an internally consistent theory which, however, is experimentally ruled
out. As we have seen, it predicts −1/6 times the right perihelion advance of Mer-
cury and also no light deflection (not to mention Shapiro time-delay and various other
accurately measured effects which are correctly described by GR).
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The situation is slightly different in a special-relativistic vector theory of gravity
(Spin 1, mass 0). Here the energy is clearly still conserved (as in any Poincaré in-
variant theory), but the energy of the radiation field is negative definite due to a sign
change in Maxwell’s equations which is necessary to make like charges (i.e. masses)
attract rather than repel each other. Hence there exist runaway solutions in which a
massive particle self-accelerates unboundedly by radiating negative gravitational radi-
ation. Also, the free-fall eigentime now does depend on the horizontal velocity. Hence,
concerning these theoretical aspects, scalar gravity is much better behaved.

Finally I wish to mention another general aspect that is relevant to the present
discussion.11 Consider the dynamical problem of an electromagnetically bound sys-
tem, like an atom, where (classically speaking) an electron orbits a charged nucleus
(both modelled as point masses). Place this system in a gravitational field that varies
negligibly over the spatial extent of the atom and over the time of observation. The
electromagnetic field produced by the charges will be unaffected by the gravitational
field (due to its traceless energy momentum tensor). In contrast, (15) tells us that the
dynamics of the particle is influenced by the gravitational field, even for strictly con-
stant potentials. The effect can be conveniently summarized by saying that the masses
of point particles scale by a factor of 1 + Φ/c2 = exp(φ/c2) when placed in the po-
tential φ. This carries over to Quantum Mechanics so that atomic length scales, like
the Bohr radius (in MKSA units)

a0 :=
ε0 h2

m πe2
(78)

and time scales, like the Rydberg period (inverse Rydberg frequency)

TR :=
8ε2

0h
3

me4
(79)

change by a factor exp(−φ/c2) due to their inverse proportionality to the electron mass
m (h is Planck’s constant, e the electron charge, and ε0 the vacuum permittivity). This
means that, relative to the units on which the Minkowski metric is based, atomic units
of length and time vary in a way depending on the potential. Transporting the atom
to a spacetime position in which the gravitational potential differs by an amount ∆φ

results in a diminishment (if ∆φ > 0) or enlargement (if ∆φ < 0) of its size and
period relative to Minkowskian units. This effect is universal for all atoms.

The question then arises as to the operational significance of the latter. Should
we not rather define spacetime lengths by what is measured using atoms? After all,
as Einstein repeatedly remarked, physical notions of spatial lengths and times should
be based on physically constructed rods and clocks which are consistent with our dy-
namical equations. The Minkowski metric would then merely turn into a redundant
structure without direct observational content.12 From that perspective one may indeed
criticize special-relativistic scalar gravity for making essential use of dispensable abso-
lute structures, which eventually should be eliminated, just like in the ‘flat-spacetime-
approach’ to GR (see e.g. [8] and Sect. 5.2 in [2] for more references). In view of
11 I thank John Norton for asking a question that led to these remarks.
12 Note that the argument presented here, which is merely based on the Lagrangian for point-particles

(which is also the relevant one in Quantum-Mechanics) does not show that in full generality. ‘Clocks’
and ‘rods’ not based on atomic frequencies and lengths scales are clearly conceivable.
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Quote 1 one might conjecture that this more sophisticated point was behind Einstein’s
criticism. If so, it is well taken. But physically it should be clearly separated from the
other accusations which we discussed here.
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