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Abstract 

The dynamics model, which is based on Talmy’s (1988) theory of force dynamics, characterizes 

causation as a pattern of forces and a position vector. In contrast to counterfactual and 

probabilistic models, the dynamics model naturally distinguishes between different cause-related 

concepts and explains the induction of causal relationships from single observations. Support for 

the model is provided in experiments in which participants categorized 3D animations of 

realistically rendered objects with trajectories that were wholly determined by the force vectors 

entered into a physics simulator. Experiments 1-3 showed that causal judgments are based on 

several forces, not just one. Experiment 4 demonstrated that people compute the resultant of 

forces using a qualitative decision rule. Experiments 5 and 6 showed that a dynamics approach 

extends to the representation of social causation. Implications for the relationship between 

causation and time are discussed. 
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Representing Causation 

Theories of causal representation are a natural starting point for the study of causal 

cognition. They tell us, for example, what it is that people learn when they induce causal 

relationships and what it is that they mean when they use causal language. They also place 

constraints on the kinds of processes that might be used in causal reasoning. The story would be 

simple, perhaps, if the concept of CAUSE were a conceptual primitive, as some have proposed 

(e.g., Anscombe, 1971; Carter, 1976; Jackendoff, 1983; Miller & Johnson-Laird, 1976; Norman, 

Rumelhart, & the LNR Research Group, 1975; Schank, 1972). But work in psychology, 

linguistics, philosophy and artificial intelligence suggests that causal relationships can be 

decomposed. Two dominant approaches to decomposition have emerged.  

According to dependency models, causal relationships are represented as contingencies 

between causes and effects.1 Such contingencies are encoded in terms of either counterfactual 

conditionals or probabilities. Models that represent causation in terms of probabilities in 

particular will be referred to as probability distribution models. The second major approach to 

causal representation is specified in physicalist models. The basic assumption in these theories is 

that physical causal relationships can be described and represented in terms of physical quantities 

in the world, such as energy, linear and angular momentum, impact forces, chemical forces, and 

electrical forces, among others. In these theories, non-physical causation is explained by analogy 

to physical causation (see Gentner, Holyoak, & Kokinov, 2001). 

In general, phyiscalist theories of causation have had limited impact in the cognitive 

sciences in part because of uncertainty about the units of cognition and relevant physical 

quantities involved. These limitations are addressed in a new physicalist model of causation, the 

dynamics model, which reduces causation to patterns of forces and a position vector. In a series 

of six experiments, I show that this model has several advantages over dependency models and 

other physicalist models of causation. In particular, it has better extensional adequacy, that is, it 

more accurately picks out the range of situations that are considered causal without including 

situations that are non-causal. In addition, it explains how various cause-related concepts might 

be identified on the basis of a single observation or trial.  

Experiments 1-3 show that the dynamics model, unlike other models of causation, is able to 

distinguish the concept of CAUSE from related concepts as well as from non-causal interactions. 

                                                 
1 Sloman (2006) has referred to these accounts as “make-a-difference” models.  
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Experiment 4 provides evidence in support for one of the main assumptions of the dynamics 

model: that people represent causal relationships in terms of forces. Experiments 5 and 6 show 

that the dynamics model is not limited to physical causation, but can account for the 

representation of social causation as well. In the next sections I describe dependency and 

physicalist accounts of causation in greater detail. I conclude that while dependency models 

capture important aspects of causation, they do not capture the core properties. As such, these 

models are best viewed of as tests for causation, not accounts of how it is represented in the mind 

(Bunge, 1959; Bigelow & Pargetter, 1990; Fair, 1979). 

Dependency models 

In dependency models, the effect is in some way contingent upon the cause. One major way 

of representing contingencies is in terms of statistical dependencies. A second way is in terms of 

counterfactual dependencies. In both types of dependency models, the properties of a causal 

event matter very little to the way the events are represented. In probability accounts in 

particular, all that is required is that the events be countable. This feature of dependency models 

makes it difficult for them to distinguish causation from related concepts or to account for the 

induction of causal relationships from individual observations. Before discussing these 

limitations, I review the logic motivating several of the most prominent dependency models.  

A major subclass of dependency models represents causal relationships in terms of statistical 

dependencies. A statistical dependency exists when the probability of an effect in the presence of 

a cause, P(E|C), is greater than the probability of an effect in the absence of a cause, P(E|~C). In 

Cheng and Novick’s (1991, 1992) probabilistic contrast model, this dependency is represented 

by subtracting the probability of an effect, E, in the presence of a candidate cause, C, from the 

probability of the effect in the absence of the candidate cause, in other words, ∆P = P(E|C) - 

P(E|¬C). When ∆P differs from zero, it implies that the cause and the effect covary. In contrast 

to other covariational models, this one holds that ∆P is computed with respect to a “focal set” of 

events, that is, a subset of the universal set of events. The probabilistic contrast model 

distinguishes two main types of causal relationships. A generative, or facilitative, cause is 

implied if the probability of the effect is noticeably greater in the presence of a possible cause 

than in its absence. For example, the probability of cancer in the presence of smoking is greater 

than the probability of cancer in the absence of smoking, which leads us to infer that “smoking 

causes cancer.” An inhibitory, or preventative, cause is inferred if the effect occurs noticeably 
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more often in the absence of the causal factor than in its presence. For example, the probability 

of cancer is lower in the presence of certain antioxidants than in their absence. 

Of course, not all correlations are associated with causation. Thunder correlates with power 

outages, but thunder does not cause power outages. To distinguish causal from non-causal 

correlations, it is important to control for alternative causes. In effect, we need to evaluate 

correlations on the basis of focal sets in which the candidate cause of interest does not covary (is 

not confounded) with alternative causes. This principle is built into Cheng’s (1997, 2000) power 

PC theory. In this model, causal judgments are not based on covariation directly, but rather upon a 

theoretical entity—causal power—that can be estimated from covariation, provided certain 

conditions are honored (see Luhmann & Ahn, 2005 for a critical analysis of these assumptions). 

Specifically, generative causal power is estimated from the normalization of ∆P by 1-P(E|¬C), that 

is, pcause =  ∆P / 1 - P(E|¬C) while preventative causal power, pprevent, is estimated from the 

normalization of –∆P by P(E|¬C), that is, pprevent = -∆P / P(E|¬C). Cheng (1997, 2000) shows that 

the equations associated with generative and preventative causal power apply only when all 

alternative causes of the effect vary independently of the candidate cause. Thus, the power PC 

theory can motivate why people prefer to draw causal inferences from focal sets in which 

alternative causes are not confounded with the candidate cause of interest. Further, the power PC 

theory can also explain why zero contrasts (i.e., ∆P ≈ 0) are sometimes interpreted as non-causal 

but at other times are uninterpretable. When both ∆P ≈ 0 and pcause = 0, a zero contrast will be 

interpreted as non-causal. However, when ∆P ≈ 0 and pcause is undefined, as occurs when P(E|¬C) 

= 1 due to division by 0, the zero contrast is uninterpretable. 

The probabilistic contrast and Power PC models focus on how people represent individual 

causal relationships. Clearly, though, people can also represent and reason about systems of 

causal relationships. Bayesian network theories have been used to investigate these kinds of 

representations (Gopnik, Glymour, Sobel, Shultz, Kushnir, & Danks, 2004; Glymour, 2001; 

Hagmayer & Waldmann, 2000; Hagmayer, Sloman, Lagnado, & Waldmann, in press; Lagnado, 

Waldmann, Hagmayer, & Sloman, in press; Pearl, 2000; Sobel, Tenenbaum, & Gopnik, 2004; 

Sloman & Lagnado, 2002; Sloman, 2005; Tenenbaum & Griffiths, 2001). A Bayesian network 

consists of a set of nodes, corresponding to variables, a set of arcs (arrows) indicating statistical 

dependencies, and a set of functions that define probability distributions for each node in the 

network, and by extension, the network as a whole. A very simple Bayesian network might 
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consist of only three variables, e.g., X, Y, Z, linked by two arrows, X Y Z. The arrows imply 

causal relationships. They do so, in part, by indicating how variables are conditionalized upon 

other variables. For example, in a network such as X Y Z, the probability of Z is 

conditionalized on Y, P(Z|Y), and the probability of Y is conditionalized on X, P(Y|X). In 

contrast, in a network such as X Y Z, the probability Y is conditionalized on both X and Z, 

P(Y|X & Z).  

However, the representation of causal relationships in Bayesian networks involves more 

than conditional probabilities. Conditional probabilities do not necessarily imply statistical 

dependencies. If, for example, P(Z|Y) = P(Z), it would entail that the variables Y and Z were 

independent. However, in the construction of a Bayesian network, an arrow is created between 

two variables only if the two variables are statistically dependent. Thus, in the network in which 

an arrow is drawn between two variables, such as Y  Z, the assumption is that the value of a 

child variable depends statistically on the immediate parent, hence P(Z|Y) ≠ P(Z). The process 

by which the arrows are created is very much a matter of current research (Gopnik et al., 2004). 

Pearl (2000) has proposed a method of intervention for distinguishing between different network 

structures (see also Sloman & Lagnado, 2002, 2005; Waldmann & Hagmayer, 2005). Others 

have proposed that the process of learning causal relations can occur through Bayesian inference 

(Tenenbaum & Griffiths, 2001; Griffiths & Tenenbaum, in press). Yet other researchers have 

offered a constraint-based solution, whereby algorithms are used to discover which variables 

covary with one another (see Gopnik et al., 2004). Crucially, in all of these discovery procedures, 

the causal links are discovered on the basis of statistical dependencies. 

The second major way of encoding causal dependencies is in terms of counterfactuals. 

According to a counterfactual analysis of causation, an event c is a cause of an event e if and 

only if it is the case that if c had not occurred, e would not have occurred (Lewis, 1973; Mackie, 

1974; see also Dowty, 1979; Kahneman & Tversky, 1982; Mandel & Lehman, 1996; Spellman 

& Mandel, 1999; Wells & Gavanski, 1989; Sloman, 2005). Consider a situation in which a boy 

throws a water balloon at his father, the balloon bursts, and the father gets wet. According to a 

counterfactual analysis of causation, the situation is causal because if the boy had not thrown the 

water balloon, his father would not have gotten wet. The counterfactual establishes that the 

occurrence of the effect depends on the occurrence of the cause. 
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Challenges for Dependency Models 

Probability distribution models and counterfactual models have both provided impressively 

close estimates of people’s judgments of causation (e.g., Buehner & Cheng, 1997; Griffiths & 

Tenenbaum, in press; Lober & Shanks, 2000; Mandel & Lehman, 1996; Spellman, 1996; 

Spellman & Mandel, 1999; Wasserman, Elek, Chatlosh, & Baker, 1993). However, a closer 

examination of these models suggests that the statistical and counterfactual dependencies are 

better viewed as tests for the presence of causation than as representations of its essential 

elements.    

Problems in extension. Theories of causation should be able to pick out the range of 

situations that people judge to be causal. However, current dependency models do not categorize 

causal situations in the same way as people. In particular, dependency models conflate the 

concepts of CAUSE and ENABLE. For people, these concepts are similar but not synonymous. 

In most contexts, they are not interchangeable, as illustrated by the sentences in (1) and (2).   

(1) a. A cold wind caused him to close the window. 

b. A crank enabled him to close the window. 

(2) a. ?A cold wind enabled him to close the window. 

      b. ?A crank caused him to close the window. 

The sentences in (1a) and (1b) are perfectly acceptable. However, if the verbs in (1a) and 

(1b) are switched, the resulting sentences (2) sound quite odd. Despite the clear difference 

between CAUSE and ENABLE, probability distribution models effectively treat these concepts 

as synonymous (Goldvarg & Johnson-Laird, 2001; Wolff & Song, 2003). In the case of the 

situations described in (1), the probability of closing the window is greater in the presence of a 

cold wind than in its absence. But it is also the case that the probability of closing the window is 

greater in the presence of the crank than in its absence. This implies that, without further 

assumptions, probability distribution models, such as the probability contrast model and the 

Power PC model, cannot distinguish causers from enablers since the ∆P for both causers and 

enablers is positive.2 The problem of distinguishing causers from enablers extends to Bayesian 

                                                 
2 Cheng and Novick (1991; Cheng, 1997) have argued that the probabilistic contrast and the Power PC models are 
able to differentiate causers and enablers through use of focal sets. Specifically, they propose that an enabler is a 
candidate causal factor that is constantly present in the focal set under consideration (making P(effect|¬cause 
undefined) but  covaries with the effect in other possible focal sets. Wolff and Song (2003) identify several problems 
with this proposal. Among others, this account implies that prevalent causes, like gravity, should be viewed as 
enablers since they are likely to be constantly present in at least one of the reasoner’s focal set of events, but might 
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nets. As noted by Sloman (2005), the distinction between CAUSE and ENABLE is not specified 

in the arrows that connect the variables. Of course, it might be possible to parameterize a 

Bayesian net such that a particular range of probabilities would be assigned a particular causal 

interpretation, but such interpretations are not constrained by the causal networks themselves. In 

addition to conflating the notions of CAUSE and ENABLE, probability distribution models also 

conflate the notions of PREVENT and DESPITE3 since, in both of these relationships, the agents 

serve to lower the probability of their effects. 

Counterfactual approaches to the representation of causation fare no better. Consider, again, 

the sentences in (1). According to a counterfactual criterion, the crank—which is an enabler—

should be construed as a cause because it is true that if the crank had not been present, the 

window would not have closed. However, as shown in (1b), the crank is not easily viewed as a 

cause.4 Lombard (1990) suggests that the counterfactual analysis of causation might be saved if 

only enabling conditions could be filtered out from consideration prior to application of the 

counterfactual test. However, in such a solution, the filter itself would arguably be the most 

interesting part of the theory (see also Wolff & Song, 2003; Goldvarg & Johnson-Laird, 2001). 

The problems with a counterfactual account of causation extend well beyond the distinction 

between CAUSE and ENABLE (Mandel, 2003). A well known difficulty of the counterfactual 

approaches to causation is overdetermination (Spellman, Kincannon, & Stose, 2005; Sloman, 

2005). For example, if a son and a daughter simultaneously threw water balloons at their father, 

most would agree that both were guilty of causing their father to get wet. However, according to 

a counterfactual criterion, neither should be considered a cause because if the son’s balloon had 

not been thrown, the father would still have gotten wet (because of the daughter’s balloon). A 

counterfactual criterion associates causation with a necessary condition, but people seem to 

associate causation with sufficient conditions (Mandel, 2003). Further evidence against a 

counterfactual analysis is reflected in Mandel and Lehman’s (1996) finding that people’s 

counterfactual judgments of what might change a particular outcome often do not agree with 

                                                                                                                                                             
covary with an effect such as falling in another focal set. However, in contrast to this prediction, it sounds more 
natural to say gravity caused the ball to fall than gravity enabled the ball to fall. 
3 The concept of DESPITE is one of the basic concepts implied by the dynamics model. 
4 The failures of the counterfactual criterion are not saved by Mackie’s INUS condition: like the cold wind, the 
crank can be viewed as an Insufficient but Necessary part of a complex set of factors that together were Unnecessary 
but Sufficient for closing the window. As many have noted, the concept of CAUSE, as well as ENABLE, cannot be 
characterized in terms of necessity or sufficiency (e.g., Cheng & Novick, 1991, 1992; Einhorn & Hogarth, 1986; 
Hart & Honoré, 1985; Turnbull & Slugoski, 1988; Wolff & Song, 2003; Wolff, Song, & Driscoll, 2002). 



  Causal Representation 9

their judgments of what caused the outcome (see also Spellman, et al., 2005; Spellman & 

Mandel, 1999). Perhaps even more embarrassing, the counterfactual criterion sometimes 

identifies noncausal factors as causal (Wolff & Song, 2003). For example, according to the 

counterfactual criterion, birth causes death, given the truthfulness of the counterfactual if birth 

had not occurred, death would not occur. There is evidence that counterfactual thinking can 

influence people’s causal reasoning (Spellman et al., 2005; Mandel, 2003), but neither the 

psychological or philosophical literature support the idea that causal relationships can be reduced 

to counterfactual conditionals. 

Single-instance identification of causal relations. Causal relationships can sometimes be 

established on the basis of a single observation (e.g., Ahn & Kalish, 2000; Goldvarg & Johnson-

Laird, 2001; Luhmann & Ahn, 2005; Wolff & Song, 2003; Tenenbaum & Griffiths, 2003; 

Sloman, 2005; White, 1999). This ability is demonstrated in the case of inferring the cause of a 

single collision event (e.g., Hubbard & Ruppel, 2002; Kruschke & Fragassi, 1996; Michotte, 

1946/1963; Schlottmann & Shanks, 1992; Scholl & Nakayama, 2004; White, 1999). It is also 

demonstrated in people’s ability to infer the cause of a particular school closing, plane crash, or 

forest fire (e.g., Kalish & Ahn, 2000; Goldvarg & Johnson-Laird, 2001; Wolff & Song, 2003).  

Single-instance identification is highly problematic for probability distribution models since 

establishing reliable probabilities requires multiple observations (Tenenbaum & Griffiths, 2001). 

Lien and Cheng (2000) address this issue by proposing that causal events might be recognized 

from single observations by means of causal categories learned earlier on the basis of 

covariational information (see also Cheng, 1993). According to this approach, people may not 

recognize, for example, that a collision event or a particular kind of social event is causal the first 

time they see it. However, after many exposures, people may begin to notice that collision events 

and certain social events involve covariation between candidate causes and effects. Once such 

events are recognized as causal, they could be stored in memory as causal categories so that the 

next time such events are encountered they can be recognized as causal right away.  

Certain aspects of Lien and Cheng’s (2000) proposal are most certainly true, but it seems 

unlikely that our ability to identify causal events should depend solely on storage of a prior 

regularity (Fair, 1979). Such an account would imply that people should not be able to recognize 

causal connections that run counter to their expectations. But this is clearly not the case. The 

passengers on the Titanic had probably never experienced (or even heard of) ice breaking 
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through iron, yet when it sank, they were able to recognize the cause. People can recognize 

causation even when it defies regularities in their experience (Fair, 1979). Another problem with 

causal categories concerns their acquisition. According to Lien and Cheng, causal categories are 

formed on the basis of covariational information, which, as discussed above, is not enough to 

differentiate CAUSE from ENABLE, or PREVENT from DESPITE. Hence, a causal category 

approach cannot explain how people differentiate causation from related concepts on the basis of 

a single observation. 

In contrast to probabilistic theories, counterfactual theories of causation can be applied to the 

identification of causal relations on the basis of a single observation (Lewis, 1973). Nevertheless, 

counterfactual theories seem to require the very knowledge they are intended to provide (Fair, 

1979; Spellman et al., 2005). For example, we might conclude that spoiled eggs caused the 

woman to get a stomachache, given the acceptability of the counterfactual if the woman had not 

eaten the eggs, she would not have gotten a stomachache. But in order to imagine this possible 

counterfactual world, we would have to already know that spoiled eggs can cause stomachaches. 

And if this fact is already known, constructing the counterfactual serves no point. 

The problems faced by dependency models suggest that there is more to peoples’ 

representations of causation than statistical or counterfactual dependencies. Specifically, such 

dependencies may be the consequence of a more grounded and embodied type of knowledge 

representation. Proposals that have attempted to capture this type of representation can be called 

physicalist theories. 

 

Physicalist models of causation 

The basic idea in physicalist approaches to causation is that such relationships can be 

reduced to physical quantities in the world, such as energy, momentum, linear and angular 

momentum, impact forces, chemical forces, and electrical forces, among others. For example, 

according to Aronson’s (1971) Transference Theory, causation implies contact between two 

objects in which a quantity possessed by the cause (e.g., velocity, momentum, kinetic energy, 

heat, etc.) is transferred to the effect. Another transference theory is proposed by Fair (1979), 

who holds that causes are the source of physical quantities, energy, and momentum that flow 

from the cause to the effect. A key difference between Aronson’s and Fair’s accounts is that for 

Fair, causation involves transfer of either energy or momentum but not velocity. According to 
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Salmon’s (1994, 1998) Invariant Quantity theory, causation involves an intersection of world 

lines that results in transmission of an invariant quantity. The proposals of Aronson, Fair, and 

Salmon come from the philosophy literature. Similar proposals from the psychology literature 

have been termed generative theories of causation. According to Bullock, Gelman, and 

Baillargeon (1982), adults believe that causes bring about their effects by a transfer of causal 

impetus. Shultz (1982) suggests that causation is understood as a transmission between materials 

or events that results in an effect. According to Michotte (1946/1963), causation is recognized 

when the parts of an event (e.g., the motions of two objects) constitute a single continuous 

movement and the motion of the first object extends into the second, what he called an 

“ampliation of motion.” According to Leslie (1994), physical causation is processed by a 

“Theory of Bodies” (ToBy) that schematizes objects as bearers, transmitters, and recipients of a 

primitive notion of force. 

A recent proposal from the philosophy literature breaks from earlier physicalist models in 

not requiring a one-way transmission of energy or momentum. According to Dowe’s Conserved 

Quantity Theory (2000), there are two main types of causation: persistence (e.g., inertia causing 

a spacecraft to move through space) and interactions (e.g., the collision of billiard balls causing 

each ball to change direction). Causal interactions occur when the world lines (e.g., trajectories) 

of two objects intersect and there is an exchange of conserved quantities (e.g., an exchange of 

momentum when two billiard balls collide). Unlike transfers, exchanges are not limited to a 

single direction (e.g., from cause to effect).   

 Assumptions of physicalist theories. Physicalist approaches to causation share several 

assumptions. First, they assume that an interaction can be identified as causal on the basis of 

properties that belong solely to that interaction. Second, defining causal relationships in terms of 

physical quantities imposes a relatively ‘local’ level of granularity on the analysis of causal 

relationships. Transfer of energy, for example, can only occur through local interactions between 

objects. Third, at the ‘local’ level of granularity, causal relationships are deterministic (Goldvarg 

& Johnson-Laird, 2001; Luhmann & Ahn, 2005). The physical quantities that instantiate a direct 

causal relationships are either present or absent, not present to a probabilistic degree. Fourth, the 

‘local’ nature of causal connections implies that when there is a causal connection between two 

non-contiguous events, there must be a causal chain of intermediate links, each contiguous to the 

next (Russell, 1948). Hence, physicalist theories imply the need for causal mechanisms, as has 
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been supported by work in psychology (Ahn & Bailenson, 1996; Ahn & Kalish 2000; Ahn, 

Kalish, Medin, & Gelman, 1995; see also Bullock et al., 1982; Shultz 1982).  

The fifth commonality is that most physicalist theories reduce causal relationships to 

quantities that cannot be directly observed. In the language of physics, physicalist models hold 

that people represent causal relationships in terms of their dynamics rather than kinematics. 

Kinematics concerns the visible properties of an event: the shapes, sizes, positions, points of 

contact, velocities, and accelerations of the various entities in a particular situation (Schwartz, 

1999; Joskowicz & Sacks, 1991; Gilden, 1991). Dynamics, on the other hand, concerns the 

invisible properties of an event, namely the underlying energies and forces that give rise to the 

motions.5  The reduction to invisible quantities reflects the physical priority of invisible 

quantities over visible quantities. The dynamics of an event are central to people’s concept of 

causation because they are central to causation in the actual world. 

Physicalist theories require that people be at least partially aware of dynamic quantities such 

as force and energy. Such awareness is supported by intuition. When someone picks up a hot pan 

and then drops it, there is more to the situation than a co-occurrence of events. People feel the 

energy (the heat) of the pan—not just the pan itself—because the same pan feels different once it 

cools down. Bigelow, Ellis, and Pargetter (1988) provide a similar example in the case of forces. 

If something bumps us and we stumble, we feel the force. Again, it is the force that is felt—not 

only the object—because the same object feels different when it bumps us hard or gently. In 

physicalist theories—in contrast to dependency theories—energies and forces enter directly into 

people’s representations of causation.6 However, these representations need not be physically 

accurate. Clearly, often, they are not (McCloskey, 1983; McCloskey & Kohl, 1983; McCloskey, 

Washburn, & Felch, 1983). All that is required is a partial sensitivity to their existence.  

Importantly, the ability to detect dynamic quantities is possible in principle because of the 

lawful mapping between kinematics and dynamics, that is, between the visible world of motions 

and the invisible world of energies and forces. Part of this mapping is captured in Newton’s laws 

of motion. For example, if an object suddenly turns to the right, Newton’s 1st law states that the 

                                                 
5 Some physicalist theories ground causation only in kinematics (Michotte & Thines, 1963) or are flexible about 
whether the representation is either in terms of kinematics or dynamics (Aronson, 1971). 
6 Physicalist theories are compatible with the idea that people’s representations of causation might be stored in 
modality specific areas of the brain, which makes such theories largely compatible with perceptual symbol 
approaches to representation (Barsalou, 1999; Goldstone & Barsalou, 1998; Robertson & Glenberg, 1998; see also 
White, 1999). 
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change in velocity implies acceleration, which entails the presence of a force. Newton’s 2nd law, 

F = ma, implies that the direction of the force, F, is exactly the same as the direction of 

acceleration, a. Thus, by observing an instance of change in velocity and the direction of that 

change, people can, in principle, detect the presence of a force and the direction of its influence.7 

The process of computing forces from kinematics is known as inverse dynamics. Work studying 

people’s ability to perform inverse dynamics suggests that they are able to construct at least 

partial representations of the dynamics of an event (Clement, 1983; Brown & Clement, 1989; 

Gilden, 1991; Hecht, 1996; Kaiser & Proffitt, 1984; Kaiser, Profftt, Whelan, & Hecht, 1992; 

Proffitt & Gilden, 1989; Runeson & Frykolm, 1983; Runeson, Juslin, & Olsson, 2000; Runeson 

& Vedeler, 1993; Twardy & Bingham, 2002).8 

The sixth assumption of physicalist theories is that physical causation is cognitively more 

basic than non-physical causation (e.g., social or psychological causation). In support of this 

assumption, the ability to perceive physical causation begins to develop earlier in infants (around 

3 to 4 months) than the ability to perceive social causation (around 6 to 8 months; Leslie, 1994; 

Cohen, Amsel, Redford, & Casasola, 1998; Oakes, 1994). The final assumption is that non-

physical causation is in some way modeled after physical causation (Leslie, 1994; Talmy, 1988). 

This modeling may occur via a process of analogy in which notions such as “effort” and 

“intention” are construed of as energies and forces. 

Evaluation of physicalist accounts of causations. While the physicalist models discussed so 

far have advantages over dependency models, they also have several limitations. As with 

dependency models, current physicalist models are unable to distinguish CAUSE from ENABLE 

because both CAUSE and ENABLE events are viewed as involving either a transfer or exchange 

of energy. (See General Discussion for further discussion of this point). Another limitation is that 

they do not easily represent the concept of PREVENT (Dowe, 2000). If prevention is 

                                                 
7 A particular configuration of forces will produce a particular kinematic pattern, but a particular kinematic pattern 
need not be associated with only one configuration of forces. This asymmetry between direct and indirect kinematics 
explains why we can have causal illusions, that is, kinematic patterns that imply forces that are not really there (e.g., 
Michotte’s (1946/1963) launch event). 
8 There has been disagreement over how the process of inverse dynamics might be accomplished in people.  
According to Runeson and his colleagues, people’s perceptual systems allow them to “see” the dynamics of an event 
via its kinematics, a proposal known as the principle of kinematic specification of dynamics (KSD; see Runeson & 
Frykolm, 1983; Runeson, Juslin, & Olsson, 2000; Runeson & Vedeler, 1993). Others have suggested that the 
process of inverse dynamics might be achieved via perceptual heuristics (see Proffitt & Gilden, 1989; Hecht, 1996; 
Gilden, 1989). The opposite process of computing kinematics from forces is called direct dynamics. The 
psychological correlate of direct dynamics would be the mental simulation of an event from knowledge of forces. 
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characterized by the lack of transfer or exchange of energy, then it does not differ from the 

absence of any kind of interaction and if it is characterized by a transfer or exchange of energy, it 

does not differ from causation. (See Dowe (2000) for an in-depth discussion of the problem of 

prevention.) The problem with the physicalist models discussed so far is that transmission or 

exchange of energy is too coarse a criterion for distinguishing causation from other kinds of 

events that also involve a transmission or exchange of energy. To distinguish causation from 

other kinds of relationships, a finer level of representation is required. 

The dynamics model 

 The dynamics model is a physicalist model of causation. As such, it holds that people 

represent causal relations in a manner that partially copies or reproduces the way in which causal 

relationships are instantiated in the real world. It also holds that people can think about non-

physical causal relationships by analogy to physical causation. However, unlike other physicalist 

models, the dynamics model does not associate causation with the transfer or exchange of a 

physical quantity. Rather, it associates causation with a pattern of forces and a position vector 

that indicates an endstate. Previous researchers have suggested that causation is closely linked to 

the notion of force (Ahn & Kalish, 2000, Bigelow et al., 1988; Leslie, 1994). In particular, 

Bigelow & Pargetter (1990) proposed that causation might be associated with a specific pattern 

of several forces, though they did not specify the exact pattern. Important parts of the dynamics 

model are also reflected in diSessa’s (1993) phenomenological primitive, Ohm’s p-prim,9 as well 

as in White’s (2000) influence and resistance model, in which causal judgments are likened to 

the passage of energy in a physical system.   

The importance of force in the representation of causation is illustrated by the causal (but 

static) situations described in (3).10  

         (3) a. Pressure will cause the water to remain liquid at slightly below 0°C. 

b. Small ridges cause water to stand on the concrete. 

c. The rubber bottom will cause the cup to stay in place.  

d. The pole prevented the tent from collapsing. 
                                                 
9 The concept of CAUSE as specified in diSessa’s Ohm’s p-prim is very similar to that specified in the dynamics 
model. According to diSessa, Ohm’s p-prim is a highly schematized knowledge structure in which an agent that is 
the locus of an impetus acts against a patient that resists this action but is changed to produce some sort of result. 
However, unlike the dynamics model, diSessa provides no theoretical machinery for differentiating Ohm’s p-prim 
from, for example, ENABLE, PREVENT or DESPITE (as discussed below), nor did he intend to since his primary 
concern was in explaining the intuitive sense of mechanism students bring to the task of learning physics. 
10 The sentences in (3) were found through searching Google. 
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In each of the situations described in (3) nothing happens. Because nothing happens, there is no 

regular sequence of events, or transfer or exchange of energy, at least at the macro-level. What is 

present in each of these situations is a configuration of forces. According to the dynamics model, 

it is this configuration of forces that makes these situations causal (3a-c) or preventative (3d). 

The dynamics model is based on Talmy’s (1985, 1988) force dynamics account of causation 

(see also Jackendoff, 1991; Pinker, 1989; Siskind, 2000; Verhagen & Kemmer, 1997; Verhagen, 

2002; Wolff, 2003; Wolff & Zettergren, 2002). By analyzing the concept of CAUSE into 

patterns of forces, Talmy showed that the concept of CAUSE could not only be grounded in 

properties of the world but also be used to define other concepts such as ENABLE, PREVENT, 

and DESPITE. He also showed how this approach to causation could be extended to many 

domains of experience, including the physical, intra-psychological, social, and institutional. I 

incorporate many of Talmy’s key ideas into the dynamics model of causation. However, I also 

introduce several new distinctions and makes significant changes to the theory’s underlying 

semantics. Key differences between the two accounts are summarized in Appendix A.  

The dynamics model holds that the concept of CAUSE and related concepts involve 

interactions between two main entities: an affector and a patient (the entity acted on by the 

affector). The nature of this interaction can be described at two levels of analysis. The category 

level specifies summary properties of various cause-related concepts. Distinctions at this level 

are sufficient to distinguish different classes of causal verbs (see Wolff, Klettke, Ventura, & 

Song, 2005). The computational level re-describes the distinctions at the category in terms of 

units of cognition that represent physical quantities in the world. It is at this level that causes and 

related concepts are explicitly linked to configurations of force.  

The category level of representation. The dynamics model holds that, at the category level, 

the concept of CAUSE and related concepts can be understood in terms of three dimensions 

(Wolff & Song, 2003). Specifically, as summarized in Table 1, the concepts of CAUSE, 

ENABLE, PREVENT, and DESPITE can be captured in terms of 1) the tendency of the patient 

for the endstate, 2) the presence or absence of concordance between the affector and the patient, 

and 3) progress toward the endstate. These three binary dimensions allow for eight possible 

combinations of values. According to the dynamics model, two of these combinations (Y-Y-N & 

N-Y-Y) do not correspond to a causal relation because they violate the spanning restriction (see 
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below). Two other combinations (N-N-N, N-Y-N) are described by multiple words (see 

Appendix A). The remaining four possible concepts are listed in Table 1 and discussed below.  

 

Table 1. Representations of CAUSE, ENABLE, PREVENT & DESPITE 
 Patient tendency 

for endstate 
Affector-patient 

concordance 
Result: endstate approached 

CAUSE N N Y 
ENABLE Y Y Y 
PREVENT Y N N 
DESPITE Y N Y 

Note. Y = Yes, N = No 

 

The semantics of these three dimensions are illustrated by the sentences in (4). Consider the 

example of causation in (4a). In this sentence, the patient (the boat) does not have a tendency for 

the endstate (heeling). The affector (wind) is not in concordance with the patient and the result 

occurs. In enabling situations, as in (4b), the tendency of the patient (the body) is for the result 

(to digest food). The affector (vitamin B) does not oppose the patient, and the result occurs. In 

preventing situations, as in (4c), the patient (the tar) has a tendency for the result (bonding). The 

affector (the rain) opposes the tendency of the patient and the result does not occur. In situations 

where a result occurs despite a certain influence, as in (4d), the tendency of the patient (the river) 

is towards the result (flooding), and the affector (the dikes) opposes the patient’s tendency. In 

this case, the patient is stronger than the affector and the endstate occurs.   

 

(4) a. Wind caused the boat to heel. 

      b. Vitamin B enables the body to digest food. 

      c. Rain prevented the tar from bonding. 

      d. The river flooded the town despite the dikes. 

 

The category level of representation is supported by recent findings examining the similarity of 

different causal concepts (Wolff & Song, 2003; Wolff et al., 2002). As indicated in Table 1, the 

dynamics model predicts that the concepts of CAUSE, ENABLE, and PREVENT are equally 

similar in meaning since each shares one feature with each other concept: ENABLE and 

PREVENT both involve patients with a tendency for the result; CAUSE and PREVENT both 
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involve opposition; and CAUSE and ENABLE both lead to results. Therefore, if we were to plot 

these concepts in a similarity space, they should reside roughly equidistant from each other. In 

fact, this is exactly what was found when 26 people sorted 48 sentences from the British 

National Corpus that contained 23 verbs of causation known as periphrastic causative verbs11 

(e.g., the verbs cause, enable, and prevent in (1)) (Wolff & Song, 2003). Participants’ sorts were 

well fit by a two-dimensional MDS solution. As Figure 1 shows, the periphrastic causative verbs 

in English fall into the three categories predicted by the dynamics model. Importantly, the 

clusters associated with the three concepts reside roughly equidistant from one another, also as 

predicted. These results have been replicated with both specific and generic statements of 

causation. Several rating studies (Wolff et al., 2002; Wolff & Song, 2003), further support the 

dynamics model’s (category level) characterization of causal concepts as differing with respect 

to the dimensions of tendency, concordance, and result.  

 

 

 

 

 

 

 

 

 

 

Figure 1. MDS solution of periphrastic causative verbs. 

 

The computational level of analysis. The computational level of the dynamics model re-

describes the three dimensions of tendency, concordance, and result in terms of patterns of 

forces, or vectors. In discussing such vectors I make a distinction between vectors in the world 

and vectors in people’s minds. Vectors in the world are quantities, such as velocity and force, 

that have a point of origin, a direction, and a magnitude. The vectors in people’s representations 

                                                 
11 Periphrastic causative verbs are sometimes called “pure” causatives since they encode the notion of CAUSE (broadly 
construed) without specifying a particular result. They behave syntactically and semantically like the verbs cause, enable, and 
prevent in (1) (Fodor, 1970; Levin & Rappaport Hovav, 1994; Shibatani, 1976; Wolff, 2003; Wolff et al., 2005).  
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of causation are more qualitative. Specifically, vectors in people’s representations are predicted 

to be relatively accurate with respect to direction, but often imprecise with respect to, though not 

completely insensitive to, magnitude. People may sometimes be able to infer the relative 

magnitude of two vectors, that one is greater than another. Uncertainty about the magnitude of 

the vectors adds a certain amount of indeterminacy to people’s representations of force dynamic 

concepts. It is hypothesized that our mental notion of force vectors includes not only physical 

forces but also social and psychological forces. Like physical forces, social and psychological 

forces can be understood as quantities that influence behavior in a certain direction. In this paper, 

all vectors are in boldface (e.g., P). Vectors in the world will be indicated by the subscript “w” 

(e.g., Pw) while vectors in the mind will be unmarked. Double vertical lines (e.g., ||Pw||) are used 

to denote magnitude. 

At the computational level, the dynamics model specifies that four types of force vectors are 

relevant to the mental representation of cause-related concepts. The vector A represents the 

direction of the force that is exerted on the patient by the affector; P represents the direction of 

the force that is generated by the patient itself or, in the absence of such a force, its resistance to 

change due to frictional or inertial forces; and O represents the direction of the force which is 

based on the summation of the remaining other forces acting on the patient. R represents the 

direction of the force which is the resultant force acting on the patient based on the vector 

addition of Aw, Pw, and Ow. In addition to these four forces, people’s mental representation of the 

patient’s location with respect to an endstate is specified by the vector E, which reflects the 

direction and magnitude of the position vector Ew. When the endstate and patient are points, E 

simply begins at the patient and ends at the endstate, as shown in Figure 2. 

 
 

 

 

 

 

Figure 2. Forces associated with the affector, A, patient P, and other forces, O, combine to 

produce a resultant force, R, that is directed toward the endstate, as specified by the position 

vector, E. 
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According to the dynamics model, people arrange the vectors A, P, O, R, and E in a mental 

structure or schema that resembles a free-body diagram like the one depicted in Figure 1, except 

that in their mental representations, the magnitudes—indicated by the lengths of the arrows—are 

relatively uncertain. The circles specify the location of the patient entity with respect to the 

endstate. The location of the affector entity is not specified because all we need to know is the 

direction of its influence. It is assumed that the patient is always represented as a point whereas 

the endstate may be represented as either a point or an area. It is also assumed that changes in 

state (e.g., melting, breaking, opening) are represented in much the same way as changes of 

location.12  When the endstate is an area, the endstate’s location can be specified by a set of real 

1- or 2-dimensional position vectors, such that every vector from the patient’s position to a point 

that could be considered a part of the endstate would be an element of that set.13  Finally, it is 

assumed that in cause-related configurations, ||A|| and ||P|| are greater than 0, but ||R|| and ||O|| 

can equal 0.  

With these definitions and assumptions in place, the relationship between the category and 

computational levels of the dynamics model can be specified, as summarized in Table 2. 

 

Table 2. Dimensions in dynamics model 
 
Tendency  (of patient for endstate) 

 
P & E are collinear 

 
Concordance  (of affector & patient) 

 
A & P are collinear 

 
Result: Endstate approached 

 
R & E are collinear 

 

Tendency - As shown in Table 2, the patient can be viewed as having a tendency for the 

endstate when the force associated with it, P, is in the direction of the endstate, E, that is, when P 

and E are collinear.14 For example, in the free-body diagrams illustrating ENABLE, PREVENT 

and DESPITE in Figure 3, P lies in the same direction as E, indicating that the patient has a 
                                                 
12 As proposed in the localist hypothesis, mental and physical states can be viewed as physical locations, and 
changes in mental and physical states can be construed as motion through space (Anderson, 1971; Lakoff & 
Johnson, 1980; Langacker, 1986; for a review, see Levin & Rappaport Hovav, 2005). I assume then that restrictions 
on the representation of motion events likely extend to the representation of changes in state (Pinker, 1989). 
13 In the more general case in which the endstate is other than a point, I expect the definition of concordance must be 
changed to include a certain level of angular tolerance that would be based, in part, upon the relative size of the 
target and its proximity to the patient. 
14 What matters in the assessment of collinearity is appearance, not objective reality. Hence, people’s assessments of 
collineararity are not expected to be mathematically perfect. 
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CAUSE                  ENABLE                             PREVENT                             DESPITE 

tendency for the endstate. In the CAUSE configuration, P does not point in the same direction as 

E, indicating that the patient does not have a tendency for the endstate.  

Concordance - The patient and the affector are in concordance when the patient’s tendency, 

P, is in the same direction as the force associated with the affector, A, that is, when P and A are 

collinear. As shown in Figure 2, collinearity holds in the case of ENABLE but not in the cases of 

CAUSE, PREVENT, and DESPITE. 

 Result – The patient will approach the endstate and eventually reach it, barring changes in 

the forces acting on the patient, when the sum of the forces acting on the patient, R, is in the 

direction of the endstate E, that is, when R and E are collinear. If ||R|| equals 0, R and E are not 

collinear. 

 

 

 

 

 

Figure 3. Configurations of forces associated with CAUSE, ENABLE, PREVENT and 

DESPITE. 

Spanning restriction and heuristic. The dynamics model places constraints on what 

constitutes a valid configuration. Valid configurations are those in which the resultant could be 

produced from the vector addition of the component vectors. Thus, according to the dynamics 

model, understanding causal relationships involves evaluating whether R reflects the sum of the 

vectors Aw, Pw, and Ow. People are sensitive to the way in which forces interact in the real world. 

However, since they represent forces only in terms of A, P, and O (and not Aw, Pw, and Ow), 

they cannot use exact vector addition to assess R. Instead of exact vector addition, I propose that 

people use a qualitative criterion for deciding whether a resultant could have been produced from 

the vector addition of two vectors. An implication of the parallelogram law of vector addition is 

that the resultant of two vectors will always lie on top of or within the region, or span,15 bounded 

by the vectors being added, as depicted in Figure 4. 

                                                 
15 The word “span” is used here in a more restricted sense than is used in mathematics. In its usual sense, “span” 
refers to, for example, the set of resultant vectors, ui, that can be formed from the equation u = c1v1 + c2v2, where v1 
and v2 are vectors and c1 and c2 are scalars. When using “span” in the context of the dynamics model, I restrict c1 

E R 

A 

E 

P 

P A R R P A E P 

R 
A 

E 



  Causal Representation 21

 

 

 

 

 

 

Figure 4. Despite uncertainty about the magnitudes of V1 and V2, we can infer that the resultant 

of the two vectors will reside within the area bounded by V1 and V2. 

 

If the resultant lies outside the span of the two vectors being added, the configuration violates the 

spanning restriction. According to the dynamics model, people refer to the spanning restriction 

in a heuristic—the spanning heuristic—to make rough guesses about whether a resultant was 

produced from the vector addition of the component forces. When a resultant—as indicated by a 

patient’s motion— lies within the span bounded by two vectors, the spanning heuristic warrants 

the inference that the resultant was produced from the vector addition of the two component 

vectors. When a resultant lies outside the span, the spanning heuristic holds that the result was 

not due to the addition of the two component vectors alone. 

Testing the dynamics model 

Arguably the most important test of a theory of causation is whether it has extensional 

adequacy. A theory of causation should be able to pick out the range of situations that people 

judge to be causal while excluding situations that people judge to be non-causal. Unlike 

dependency models and other physicalist models, the dynamics model makes predictions about 

what kinds of events will count as causation, as opposed to enablement or prevention. These 

predictions were tested in the following experiments. 

In Experiments 1-4 people viewed animations depicting an affector (e.g., a bank of fans) 

acting on a patient (e.g., a boat). The motions of the patient were generated by a physics 

simulator. The inputs to the simulator were the forces associated with the affector and the patient 

and the patient’s mass. In Experiments 5 and 6, the animations depicted intentional forces. A 

                                                                                                                                                             
and c2 to values that are equal to or greater than zero, thus limiting the resultant vectors, ui, to the region bounded by 
and including v1 and v2. 
 



  Causal Representation 22

physics simulator could not be used to implement intentional forces, but because the motions 

were computer generated, they could be precisely manipulated across conditions. 

The animations in Experiments 1-4 showed an inflatable boat, the patient, moving across a 

shallow pool in relation to a half-submerged cone, the target (see Figure 5). Each animation had 

two parts. First, the boat moved from the side of the pool to the center, establishing its tendency. 

Then, a bank of fans (the affector) started blowing. Thus, in the second part of every animation, 

the force produced by the boat itself combined with the force exerted by the fans to give rise to a 

resultant force that determined the boat’s direction and speed. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Frame from an animation used to instantiate a CAUSE interaction.  

 

After viewing an animation, participants chose from several linguistic descriptions or “none 

of the above.” All of the descriptions were the same except for the main verb, which was either 

caused, helped or prevented. I predicted that CAUSE descriptions would be chosen when the 

boat initially moved away from the cone (Tendency = N), but eventually hit it because of the 

fans’ blowing in the direction of the cone (Concordance = N; Endstate approached = Y). I 

predicted that ENABLE descriptions would be chosen when the boat moved toward the cone 

(Tendency = Y), the fans blew in the same direction (Concordance = Y), and the boat ultimately 

reached the cone (Endstate approached = Y). I predicted that PREVENT descriptions would be 

chosen when the boat moved toward the cone (Tendency = Y), but the fans blew in another 

direction (Concordance = N) such that the boat missed the cone (Endstate approached = N). 
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Finally, I predicted participants would choose the option “none of the above” when none of the 

above configurations were instantiated.  

Experiment 1: One-dimensional interactions 

According to the dynamics model, people’s causal judgments will be sensitive to the pattern 

of forces instantiated in a particular animation, and they will be able to make these judgments on 

the basis of a single observation. This experiment examined the ability of the dynamics model to 

predict how people would describe configurations of force limited to a single dimension. 

Method 

     Participants. The participants were 18 University of Memphis undergraduates. All 

participants were native speakers of English. 

     Materials. Eight 3D animations were made from an animation package called Discreet 3ds 

max 4. The direction and speed of the boat was calculated by a physics simulator called Havok 

Reactor. In each animation the boat was initially located four boat-lengths away from the center 

of the pool. In the first half of the animation, the boat moved towards the center, ostensibly under 

its own power. Once the boat reached the center, the fans began blowing. The animation ended 

when the boat hit the cone or the side of the pool.  

The top of Table 3 shows the direction and magnitudes of the force vectors associated with 

the affector and patient that were entered into the physics simulator. The affector, Aw, and 

patient, Pw, vectors were either in the direction of the target or in the opposite direction. In half 

of the interactions, the affector vector was 1.7 times stronger than the patient vector, while in the 

remaining interactions the strengths were reversed. Specifically, in configurations 1, 2, 4, and 6, 

||Aw|| = .984 Newtons and ||Pw|| = .59 Newtons. In configurations 3, 5, 7, and 8, ||Aw|| = .59N and 

||Pw|| = .984N. The magnitude of the other forces vector, Ow, was set to 0 Newtons. The boat’s 

mass was 1 kg. The duration of the animations for configurations 1-8 were 17, 8, 6, 17, 10, 5, 10, 

and 5 seconds respectively. 

In the simulated world, the pool was 20 feet by 21 feet. The boat was 1’1” long and 8” wide. 

The bank of fans was 10’ long, 1’9’’ high, and 7’’ wide. The camera was directed toward the 

center of the pool at an angle of 25 degrees and was located 10’9’’ from the center of the pool. 

The animations for this and all following experiments can be viewed at 
http://userwww.service.emory.edu/~pwolff/CLSAnimations.htm. 
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Procedure. The animations were presented in random order on Windows-based computers. 

After each animation, participants chose a sentence that best described the occurrence. All of the 

sentences were the same (The fans ____ the boat to [from] hit[ting] the cone) except for the 

verb, which was either caused, helped or prevented. Another option was none of the above. 

Participants indicated their answers by clicking a radio button next to their choice. 

 Design. Participants saw all eight animations. There were two factors: ConfigType 

(CAUSE, ENABLE, PREVENT, UNSPECIFIED) and ResponseType (Cause, Help, Prevent, No 

verb). 

  

Table 3. Experiment 1 predictions and results by configuration and response type (mean (SD)) 
 

Config. # 1 2 3 4 5 6 7 8 
 N-N-Y Y-Y-Y Y-Y-Y Y-N-N Y-N-Y N-Y-N N-N-N N-Y-N 
Affector ( ) 
Patient  ( ) 
Result.  ( ) 
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Predicted CAUSE ENABLE ENABLE PREVENT Unspecified Unspecified Unspecified Unspecified 
    “Cause” .94 (.236) .11 (.323) .06 (.236) - - - - - 
    “Help” .06 (.240) .89 (.323) .94 (.236) - .11 (.323) - .06 (.236) - 
    “Prevent” - - - 1 (0) .06 (.236) - - .06 (.236) 
    “No verb” - - - - .83 (.383) 1 (0) .94 (.236) .94 (.236) 

 

Results and discussion 

The key question addressed in this experiment was whether the dynamics model could 

predict which situations would be judged to be causal, enabling, preventing or unclassifiable. 

The predictions of the dynamics model were fully borne out by the results. The bottom of Table 

3 shows the percentage of times people chose each of the four options for each configuration of 

forces The results were analyzed using log-linear modeling. Like ANOVA, log-linear modeling 

can be used to test for main effects and interactions between those main effects. A log-linear 

model based on the factors ConfigType (4), and ResponseType (4) and their two-way interaction 

was fitted to the observed frequencies.16 A Pearson’s chi-square implied that such a model 

agreed well with the observed frequencies, as there was no evidence for a difference between the 

predictions of the model and the observed frequencies, χ2(3, N = 144) = .158, p < .984.  

Each factor and interaction was removed from this model to examine its relative 

contribution to the model’s fit. As predicted, removing the interaction between ConfigType and 

ResponseType from the model resulted in a significant decrease in the fit, χ2(9, N = 144) = 
                                                 
16 In all experiments, cells with a frequency of zero were randomly assigned the values 1 or 2.  
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111.87, p < .0005. This interaction indicates that people provided different responses for 

different configurations. Removal of the main factors of ConfigurationType, χ2(3, N = 144) = 

1.56, p = .669 and ResponseType, χ2(3, N = 144) = .16, p = .983, did not have a significant effect 

on the fit of the model.  

As predicted, people chose the sentence containing cause to describe the CAUSE 

configuration, χ2(3, N = 18) = 35.19, p < .0005; the sentence containing help to describe the 

ENABLE configuration, χ2(3, N = 18) = 58.70, p < .0005; the sentence containing prevent to 

describe the PREVENT configuration, χ2(3, N = 18) = 32, p < .0005; and the option “none of the 

above” for the unspecified configurations, χ2(3, N = 72) = 153.60, p < .0005. The results 

demonstrate that the dynamics model is able to differentiate related causal concepts and that 

causal relations can be apprehended from a single observation. 

Importantly, the results indicate that people’s categorizations of force configurations are 

based on two forces, not just one. For example, if people’s judgments were based only on the 

affector force, they would have chosen prevent whenever the boat missed the cone (6-8). Instead, 

prevent was restricted to cases in which the boat had an initial tendency for the endstate (4)—as 

indicated by the patient’s force—just as predicted by the model. Likewise, people would have 

chosen either cause or help when the boat hit the cone (5), but they did not. In configuration 5, 

help was not chosen, according to the model, because the affector and patient vectors were in 

opposition; cause was not chosen, according to the model, because the patient had a tendency for 

the endstate. People’s causal judgments clearly involved multiple forces. 

The results show that the dynamics model can explain the difference between causation and 

other concepts for interactions occurring within a single dimension. Interestingly, the model 

easily extends to situations across two dimensions, as is examined in the next experiment. 

 

Experiment 2: Two-dimensional interactions 

The procedures in Experiment 2 were the same as in Experiment 1. The materials were the 

same as well, except that the angles between the forces associated with the affector and patient 

varied from 0° to 180° degrees in 45° increments. It was predicted that peoples’ descriptions 

would match the force configurations hypothesized to instantiate the different causal relations—

or, in the case of the unspecified configurations, people would choose “none of the above.”   

Method 
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Participants. The participants were 18 University of Memphis undergraduates. All participants 

were native speakers of English. 

Materials. Ten 3D animations were the same as in Experiment 1 except that the affector and 

patient force vectors were oriented in several directions other than directly towards or away from 

the target, and the magnitudes of Aw and Pw were always the same (.59 Newtons). The ten vector 

configurations at the top of Table 4 include five in which the patient vector is oriented away 

from the target by 45° (1, 7-10) and five in which the patient vector is oriented towards the target 

(2-6). The affector vector was rotated around the patient from 180° (i.e., in the direction opposite 

to the endstate) to 360° (in the same direction as the endstate) in 45° increments. The size of the 

various elements in the scene and the location of the simulated camera were the same as in 

Experiment 1. Animations 1-4 and 6-7 were 5 seconds long; animations 5 and 9 lasted 6 seconds; 

animation 10 lasted 7 seconds; and animation 8 lasted 8 seconds.   

Procedure The procedure was the same as in Experiment 1. 

Design. Participants saw all ten animations. There were two factors: ConfigType (CAUSE, 

ENABLE, PREVENT, UNSPECIFIED) and ResponseType (Cause, Help, Prevent, No verb).  

 

Table 4.  
Experiment 2 predictions and results by configuration and response type (mean (SD)) 
Config. # 1 2 3 4 5 6 7 8 9 10 
 N-N-Y Y-Y-Y Y-N-N Y-N-N Y-N-N Y-N-N N-N-N N-N-N N-N-N N-N-N 
 

Affector ( ) 
Patient  ( ) 
Result.  ( ) 
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Predicted CAUSE ENABLE PREVNT PREVNT PREVNT PREVNT Unspecified Unspecified Unspecified Unspecified 

    “Cause” .89 (.323) .11 (.323) - - - - - - - - 

    “Help” .11 (.323) .83 (.384) - - - - - - - - 

    “Prevent” - - .94 (.236) .94 (.236) .89 (.323) .89 (.323) - .17 (.383) - .11 (.323) 

    “No verb” - .06 (.236) .06 (.236) .06 (.236) .11 (.323) .11 (.323) 1 (0) .83 (.384) 1 (0) .89 (.323) 

 

Results and discussion 

The key question addressed in this experiment is whether the dynamics model can account 

for peoples’ judgments of causation when the forces span two dimensions. The predictions of the 

dynamics model were supported once again. The lower portion of Table 4 shows the percentage 

of times people chose each of the four possible options for each configuration of force. The 

results provide further evidence that CAUSE and related concepts are determined on the basis of 

multiple forces. If causal judgments were based on only one force, there would be no basis for 
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distinguishing CAUSE from ENABLE, nor any basis for distinguishing the PREVENT from the 

non-classifiable situations in which the boat did not hit the cone (configurations 7-10). Not only 

do the results demonstrate that the dynamics model can distinguish CAUSE from other relations, 

they also show that the model can distinguish causation from non-causation.  

The above conclusions are supported by log-linear modeling. A log-linear model based on 

the factors ConfigType (4), and ResponseType (4) and their two-way interaction was fitted to the 

observed frequencies. A Pearson’s chi-square indicated that such a model agreed well with the 

observed frequencies, as implied by the lack of a difference between the predictions of the full 

model and the observed frequencies, χ2(3, N = 180) = .233, p < .972.  

Each factor and interaction was removed from this model to examine their relative 

contribution to the model’s fit. As predicted, removing the interaction between ConfigType and 

ResponseType from the model resulted in a significant decrease in the fit, χ2(9, N = 180) = 

105.71, p < .0005. This interaction indicates that people responded differently to different 

configurations. Removal of the main factors of ConfigType, χ2(3, N = 180) = .23, p = .972, and 

ResponseType, χ2(3, N = 180) = .16, p = .984, did not have a significant effect on the fit of the 

model.  

As predicted, people chose the sentence containing cause to describe the CAUSE 

configuration (1), χ2(3, N = 18) = 29.48, p < .0005; the sentence containing help to describe the 

ENABLE configuration (2), χ2(3, N = 18) = 29.63, p < .0005; the sentence containing prevent to 

describe the PREVENT configurations (3-6), χ2(3, N = 72) = 35.19, p < .0005; and the option 

“none of the above” for the unspecified configurations (7-10), χ2(3, N = 72) = 32.182, p < .0005. 

While the results so far support the dynamics model, several concerns could be raised. First, 

in Experiments 1 and 2, only three verbs were considered: cause, help, and prevent. If the 

dynamics model is an account of how people represent the concepts of CAUSE, ENABLE, and 

PREVENT in general and not just the meanings of three particular verbs, similar results should 

obtain for other verbs of causation such as get, make, enable, block or keep. Likewise, the 

dynamics model should be shown to extend to scenarios other than the one used in Experiments 

1 and 2. Finally, as previously noted, the dynamics model predicts another concept that has not 

yet been considered, namely, DESPITE. As listed in Table 1, the concept of DESPITE is 

associated with a patient that has a tendency for the endstate, an affector is not concordant with 

the patient, and a result that occurs (see Figure 3). Such configurations seem to be implied in 
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such sentences as The boat reached the shore despite the current or The bird overcame the high 

winds to reach her nest. 

The following experiment addressed these concerns. First, the verbs used in Experiments 1 

and 2 were each replaced by three different verbs. The verbs were chosen from among the 

CAUSE, ENABLE, and PREVENT verbs studied in Wolff and Song (2003). Participants viewed 

and chose descriptions for four different scenarios. Finally, the description choices included a 

DESPITE option.  

I predicted that for the CAUSE configurations, people would choose descriptions based on 

different CAUSE verbs; for the ENABLE configurations, people would choose descriptions 

based on ENABLE verbs; for the PREVENT configurations, people would choose descriptions 

based on PREVENT verbs; and for the DESPITE configurations, people would choose 

descriptions containing despite. For the unspecified configurations, I predicted that participants 

would choose the none-of-the-above option. This pattern of results was predicted to occur across 

the four scenarios.  

I also predicted that the pattern of results would be the same for the different CAUSE and 

PREVENT verbs. However, for the ENABLE verbs, I predicted that for this set of animations, 

people would prefer to use the verb help to the verbs enable and let. As suggested by the results 

in Experiments 1 and 2, the verb help can be used to describe a situation in which the affector 

assists the patient towards an endstate even though the patient may be able to reach the endstate 

without this assistance. For example, helping someone finish his homework does not necessarily 

imply that he cannot finish it on his own. In contrast, enable and let seem to imply that the 

patient cannot reach the endstate without the aid of the affector (Goldvarg & Johnson-Laird, 

2001). This additional implication was not warranted in the case of the animations used in 

Experiments 1 and 2 or in the animations in the next experiment. I expected, then, that people 

would be more willing to use help than enable or let for the animations in the next experiment.  

Experiment 3 

 The methods and materials were similar to those used in Experiments 1 and 2, except that in 

this experiment, four different scenarios were presented, several different CAUSE, ENABLE, 

and PREVENT verbs were used, and a DESPITE option was added to the list of descriptions. 

Method 
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Blimp & docking tower 
 

Ice boat & bonfire 

  
 

Helicopter and landing pad 
 

 
Boat and cone 

  

Participants. The participants were 27 University of Memphis undergraduates. All participants 

were native speakers of English. 

Materials. The experiment involved twenty-four animations that were based on one of four 

scenarios: 1) a blimp moving with respect to a docking tower, 2) an ice boat moving with respect 

to a bonfire, 3) a helicopter moving with respect to a landing pad, and 4) a boat moving with 

respect to a cone in a pool. Sample frames of the four scenarios are depicted in Figure 6. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Sample frames from the different kinds of animations used in Experiment 3.  

 

 In each animation, the patient was initially located four patient-lengths away from the center 

of the scene. In the first half of the animation, the patient moved towards the center under its own 

power. Once the patient reached the center, the wind or the fans started blowing. Wind was 

indicated by moving smoke or water vapor. The animation ended when the patient reached the 

endstate or neared the side of the screen. 

The directions of the forces entered into the physics simulator are shown in Table 5 and the 

magnitude of these forces are shown in Appendix B. The blimp animations were 11, 6, 6, 9, 4, 

and 8 seconds for configurations 1-6, respectively. The ice boat animations were 8, 3, 6, 7, 3, and 
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6 seconds long for configurations 1-6, respectively. The helicopter animations were 10, 4, 6, 7, 4, 

and 6 seconds for configurations 1-6, respectively. Finally, the motor boat animations were 16, 6, 

6, 10, 6, and 9 seconds for configurations 1-6, respectively. 

Procedure. The procedure was similar to that used in Experiments 1 and 2. The animations 

were presented in random order on Windows-based computers. After each animation, 

participants chose a sentence that best described the occurrence. All of the sentences were 

structurally the same (The wind ____ the blimp to [from] reach[ing] the docking tower) except 

for the verb. In the CAUSE sentences, the verbs used were cause, make, or get. ENABLE 

sentences included enable, help, or let, and PREVENT sentences included prevent, block or 

keep. The DESPITE option always used the preposition despite (e.g., The blimp reached the 

docking tower despite the wind). The order of the sentence choices varied randomly for each 

animation except for the last choice, which was always none of the above. Participants indicated 

their answers by clicking a radio button next to their choice. 

 Design. Participants saw all twenty-four animations, which instantiated the six 

configurations displayed in Table 5 for each of the four scenarios displayed in Figure 6. There 

are 27 combinations of verbs (33) that can be formed from three CAUSE, ENABLE, and 

PREVENT verbs. Each participant saw sentences based on one of these combinations for all of 

the animations he or she saw. There were four factors: ConfigType (CAUSE, ENABLE, 

PREVENT, DESPITE, UNSPECIFIED), Scenario (Blimp, Ice boat, Helicopter, Raft), 

ResponseType (Cause, Enable, Prevent, Despite, NoVerb), and VerbType (e.g., cause, enable, 

prevent). 
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Table 5. Experiment 3 predictions and results by configuration and response type (mean (SD)) 
Configuration # 1 2 3 4 5 6 
Type CAUSE ENABLE PREVENT DESPITE Unspecified Unspecified 
 N-N-Y Y-Y-Y Y-N-N Y-N-Y N-Y-N N-N-N 

Affector ( ) 
Patient  ( ) 
Result.  ( ) 

 
 

 E  

 
 

 E  

 
 

 E  

 
 

 E  

 
 

 E  

 
 
 E  

CAUSE .84 (.366) .19 (.398) - .02 (.135) - - 
     Cause .28 (.450) .06 (.247) - .02 (.135) - - 
     Make .29 (.459) .06 (.230) - - - - 
     Get .27 (.445) .07 (.263) - - - - 
       
ENABLE .03 (.165) .69 (.467) .04 (.211) .01 (.096) .03 (.165) - 
     Enable .01 (.096) .19 (.390) .04 (.211) - .01 (.096) - 
     Help .02 (.135) .37 (.485) - - .01 (.096) - 
     Let - .13 (.337) - .01 (.096) .01 (.096) - 
       
PREVENT .05 (.211) - .91 (.291) - .11 (.316) .05 (.211) 
     Prevent .02 (.135) - .29 (.454) - .04 (.190) .03 (.165) 
     Keep .01 (.096) - .30 (.459) - .04 (.190) .02 (.135) 
     Block .02 (.135) - .32 (.470) - .04 (.190) - 
       
DESPITE 
     Despite 
 

 
.01 (.096) 

 
.04 (.190) 

 
.02 (.135) 

 
.96 (.190) 

 
- 

 
.04 (.190) 

None of the above .07 (.263) .08 (.278) .03 (.165) .01 (.096) .86 (.347) .91 (.278) 
 

Results 

The predictions of the dynamics model were supported once again. Table 5 shows the 

proportion of times people chose each of the five possible response types (CAUSE, ENABLE, 

PREVENT, DESPITE, NOVERB) broken down by verb for each of the vector configurations.17 

People chose CAUSE verbs for the CAUSE configuration, ENABLE verbs for the ENABLE 

configuration, PREVENT verbs for the PREVENT configuration, the preposition despite for the 

DESPITE configuration, and none of the above for the remaining configurations.  

 The above conclusions are supported by log-linear modeling. A log-linear model based on 

the factors ConfigType (5), Scenario (4), ResponseType (5) and their two- and three-way 

interactions was fitted to the observed frequencies. A Pearson’s chi-square indicated that such a 

model agreed well with the observed frequencies, as implied by the lack of a difference between 

the predicted frequencies of the model and the observed frequencies, χ2(48, N = 540) = 16.91, p 

                                                 
17 In the following analyses, responses to the two animations with unspecified configurations are averaged together 
to make the frequencies of responses to these configurations comparable with the other types of configurations that 
are instantiated by only one animation.  
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> .999. Each factor and interaction was removed from this model to examine its relative 

contribution to the model’s fit. As predicted, removing the interaction between ConfigType and 

ResponseType from the model resulted in a significant decrease in the fit, χ2(16, N = 540) = 

886.26, p < .0005. This interaction indicates that responses differed across different 

configuration types. Removal of the remaining two-way interactions 

(ScenarioType*ResponseType, χ2(12, N = 540) = 5.61, p = .934, ScenarioType* ConfigType, 

χ2(12, N = 540) = 3.31, p = .993, and the one three-way interaction, ConfigType 

*ResponseType*ScenarioType, χ2(48, N = 540) = 16.45, p > .999, did not have a significant 

effect on the fit of the model. Removal of the main factors of ConfigType, χ2(4, N = 540) = 1.68, 

p = .794, ResponseType, χ2(4, N = 540) = 2.37, p = .668, did not have a significant effect on the 

fit of the model either. Importantly, removing the main factor of ScenarioType, χ2(4, N = 540) = 

0.47, p = .926, had no appreciable effect on the fit of the model. The nonsignificance of this 

factor and its associated interactions suggests that people treated the various scenarios as 

essentially the same, as predicted. The results indicate that the most important factor in people’s 

choice of description was not the specific content of the animations, but rather the underlying 

configuration of force. 

Combining the responses across scenarios, the Pearson’s chi-square indicated that 

participants chose CAUSE descriptions for the CAUSE configuration (1), χ2(4, N = 108) = 

279.96, p < .0005; ENABLE descriptions for the ENABLE configuration (2), χ2(4, N = 108) = 

127.13, p < .0005; PREVENT descriptions for the PREVENT configuration, (3), χ2(4, N = 108) 

= 333.34, p < .0005; and DESPITE descriptions for the DESPITE configurations (4, N = 108), 

χ2(4, N = 108) = 387.47, p < .0005. Finally, participants chose none of the above for the 

unspecified configurations (5), χ2(4, N = 108) = 290.18, p < .0005, and 6, χ2(4, N = 108) = 

337.46, p < .0005 (see Table 5). 

 It was expected that the dynamics model would be able to capture the conceptual 

commonalities shared by the verbs that encode the general notions of CAUSE, ENABLE, and 

PREVENT. In support of this, participants showed no preference for one of the CAUSE verbs 

over the others, χ2(2, N = 108) = 0.154, p = .926. In addition, in describing the PREVENT 

configurations, participants showed no preference for one of the PREVENT verbs over the 

others, χ2(2, N = 108) = 0.265, p = .876. However, in the case of the ENABLE configurations, 
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participants showed a stronger preference for the verb help than for the verbs enable and let, 

χ2(2, N = 108) = 15.027, p = .001. In the animations used in this experiment, the patient 

appeared likely to reach the goal even without the presence of the affector, which, as discussed 

earlier, reflects the special semantics of the verb help, whereby the result could be achieved by 

the patient itself. In contrast, the verbs enable and let imply situations in which the outcome is 

unlikely to occur unless the affector is present. Nevertheless, all three verbs, as well as other 

ENABLE verbs imply a patient with a tendency for the endstate and an affector that does not 

oppose it. Because of these common elements of meaning, people were often willing to use 

enable and let to describe the ENABLE animations though not as frequently as help (see Table 

5). Differences in the meanings of ENABLE verbs will be discussed further in reference to 

Experiment 6. 

 The results from Experiments 1-3 show that the dynamics model, unlike dependency and 

other physicalist models meets the criterion of extensional adequacy. The results also support the 

dynamics model’s account of how people determine causation on the basis of a single 

observation. According to the model, people identify causal relationships by constructing 

representations of the forces acting on the patient. However, the data so far are open to an 

alternative possibility; specifically, they could be explained in terms of kinematics rather than 

dynamics. In a kinematics account, only visible movements—specifically, the velocities—are 

considered in the classification of interactions. For example, causation might be defined as an 

interaction in which the patient was not moving toward the endstate, but then moved toward the 

endstate once the affector made contact with it. Enablement could be defined as an interaction in 

which the patient was moving toward the endstate, but then moved more quickly toward the 

endstate once the affector made contact with it. Finally, prevention might be defined as an 

interaction in which the patient was moving toward the endstate, but then moved away from the 

endstate once the affector made contact with it.  

 One way to test between kinematics and dynamic approaches to causation would be to 

examine whether people are aware of the way in which forces are added. If people’s causal 

judgments are based on the dynamics of an event, they should be relatively sensitive to motions 

that do not conform to the way forces are added. On the other hand, if people’s causal judgments 

are based on kinematics, peoples’ causal judgments should be insensitive to such violations. 
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As discussed earlier, it is assumed that people use a qualitative criterion, the spanning 

heuristic, to determine whether a particular resultant could be derived from a particular set of 

forces. Thus, when a patient moves in a direction that lies within the area between the forces 

acting on the patient (see Figure 4), the spanning heuristic should lead people to assume that the 

resultant is produced from the vector addition of those forces. Conversely, when the resultant 

does not reside within the span of the component vectors, it can be said that the configuration 

violates the spanning restriction. 

The spanning heuristic provides a rough method of evaluating whether the net force acting 

on a patient is derivable from the overt forces acting on the patient. However, in certain 

circumstances, the heuristic may lead people to incorrectly infer that the net force acting on the 

patient is fully explained in terms of the perceived forces when, in fact, there are other forces in 

play. Such an illusion of sufficiency is most likely to occur when there is more than one external 

force acting on the patient, that is, when ||Ow|| > 0N. For example, consider the three scenes and 

free-body diagrams in Figure 7. The forces entered into the physics simulator for all the scenes 

are depicted in the first free-body diagram. In the first animation, a boat motors to the middle of 

a pool, two sets of fans turn on, and the boat moves toward the cone and ultimately hits it. The 

second panel shows a frame from an animation that is exactly the same as the one on the left 

except that the one of the fans is not shown (though its force is still present). In this animation, 

the boat moves into the area bounded by the overt forces; hence, according to the spanning 

heuristic, the fan may be construed as a cause of the boat’s hitting the cone. 

 

 

 

 

 

 

 

 

 

Figure 7. In each animation, the boat motors to the middle, the fans turn on, the boat changes 
course, and the boat hits the cone. Each animation is based on the same configuration of forces 

   
Affector ( ) 
Patient  ( ) 
Result.  ( ) 

 

E E 

 

 E
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as shown in the first panel. However, in the second and third panels, only one of the two fans 
appears in the animation, as implied by the incomplete. 

 

The third panel shows an animation that is also exactly the same as the one in the first panel 

except that the opposite fan is not shown. In this scene, based on single visible fan, the boat’s 

direction lies outside the area bounded by the perceived forces. According to the spanning 

heuristic, then, the visible fan cannot be construed as a cause of the boat’s hitting the cone. The 

idea that people’s causal judgments are sensitive to the resultant forces acting on the patient was 

tested in the next experiment.  

Experiment 4 

This experiment examined whether people’s causal judgments are based on dynamics or 

kinematics. I predicted that if peoples’ representations of causation are based on dynamics, 

people should be sensitive to violations in the way the forces are added in a situation; otherwise, 

they should not be sensitive to such violations.  

Participants saw four pairs of animations like those in the second and third panels in Figure 

7 (both instantiating CAUSE configurations). In all of the animations, two affector forces were in 

play, but only one of the forces was shown. In each pair of animations, one animation depicted a 

situation in which the resultant was within the span of the overt forces, and the other depicted a 

situation in which the resultant was not within the span. Participants were to indicate whether the 

fan in the animation “caused” the boat to hit the cone. Per the spanning heuristic, it was predicted 

that when the resultant lay within the span of the forces associated with the boat and the fans, 

people would agree that the fans caused the boat to hit the cone. It was also predicted that when 

the resultant was outside the span of the overt forces, people would indicate that the fans did not 

cause the boat to hit the cone.  

Method 

Participants. The participants were 20 Emory University undergraduates. All participants were 

native speakers of English. 

Materials. Four pairs of 3D animations depicting boats and fans were constructed from the four 

base configurations shown in the top row of Table 6. In each animation, three forces acted on the 

patient: the force generated by the patient itself, Pw, and two external forces, Aw1 and Aw2, which 

were ostensibly generated by the banks of fans (see Figure 7). The two animations in each pair 

were constructed from the same set of forces and showed only one bank of fans; the animations 
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differed in which of the two banks was shown. In one animation, the spanning restriction was 

honored: the resultant—as indicated by the direction of the boat after the fans started blowing—

was within the area bounded by the force associated with the visible bank of fans and the force 

associated with the boat. In the other member of each pair, the spanning restriction was not 

honored: the resultant LAY outside the area bounded by the forces associated with the visible 

bank of fans and the boat. 

 The directions of the forces entered into the physics simulator are given in Table 6. More 

precisely, in configuration 1, the angles between Aw1 and Ew, Pw and Ew, and Aw2 and Ew were 

90°, 45°, and 90°, respectively. In configuration 2, the angles between Aw1 and Ew, Pw and Ew, 

and Aw2 and Ew were 45°, 45°, and 135°, respectively.  In configuration 3, the angles between 

Aw1 and Ew, Pw and Ew, and Aw2 and Ew were 180°, 45°, and 45°, respectively. In configuration 

4, the angles between Aw1 and Ew, Pw and Ew, and Aw2 and Ew were 90°, 45°, and 45°, 

respectively. The magnitudes of the forces are shown in Table 6. The duration of the animations 

based on configurations 1-4 were 7, 6, 20, and 8 seconds respectively. 

 As in previous animations, the BOAT was initially located four BOAT-lengths away from 

the center of the pool. The patient moved towards the center of the pool under its own power. 

Once the patient reached the center, the fans started blowing. The animation ended when the 

patient hit the endstate or neared the side of the screen. To help people see the directions of the 

boats, a second smaller animation was included in the upper right-hand corner of the main 

animation. In this second animation, the same scene was shown from a simulated camera angle 

that was directly above the pool and looking down.  

 



  Causal Representation 37

Table 6. Experiment 4 predictions and results by configuration and response type (mean (SD)) 
Configuration # 1 2 3 4 
     
 Base configurations 
 

Affector ( ) 
Patient  ( ) 
Result.  ( ) 
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Magnitudes ||Aw1|| = 1.4N 

||Aw2|| = 1N  
||Pw|| = 1N 

||Aw1|| = 2N, 
||Aw2|| = 1N, 
||Pw|| = 1N 

||Aw1|| = 1N 
||Aw2|| = 1N 
||Pw|| = 1N 

||Aw1|| = 1N  
||Aw2|| = 2.4N 
||Pw|| = 1N 

     
 Within span variant (affector = A1) 
  

E 

 

E 

 

 
 

 E  

 

 

E 

 
Proportion  “Yes” 
cause 

.75 (.444) .85 (.366) 1 (0) .75 (.444) 

     
 Outside of span variant (affector = A2) 
  

 E 

 

 
 E

 
 E  

 
 

E  
Proportion  “Yes” 
cause 

.2 (.410) .15 (.366) 0 (0) .35 (.489) 

     
 

 

Procedure. Participants saw all eight animations in random order on Windows-based 

computers. After each animation, participants responded “Yes” or “No” to the question “Did the 

fans cause the boat to hit the cone?” Participants were then asked to “[r]ate how confident you 

are in your answer” on a five-point Likert scale (not confident, slightly confident, confident, 

very confident, extremely confident). Participants indicated their answers by clicking a radio 

button next to their choice. Participants progressed through the animations at their own pace and 

could repeat an animation as many times as they wanted. 

 Design. The main factor of SpanType (spanning honored; spanning not honored) was run 

within participants.  

Results and Discussion 

 The results indicated that people were sensitive to violations in the adding of the overt forces. 

When the boat moved in a direction that was consistent with the spanning restriction, participants 

were quite willing to say that the fan “caused” the boat to hit the cone (M = .838, SD = .203). 
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However, when the boat moved in a direction that was not consistent with the spanning 

restriction, participants were not willing to say that the fan “caused” the boat to hit the cone (M = 

.175, SD = .282).  

 This observation was supported by t-tests that showed that the proportion of responses 

affirming that the fans caused the boat to hit the cone was higher in the spanning condition than 

in the no-spanning condition across both participants, t(19) = 9.668, p < .0005, and items, t(6) = 

7.10, p < .0005. Importantly, the difference between the spanning and no-spanning conditions 

was not due to differences in uncertainty about how to classify the events. Participants in both 

the spanning (M = 3.73, SD = .884) and no-spanning conditions (M = 4.05, SD = .746) indicated 

that they were “very confident” in their causal judgments. Participants’ levels of confidence were 

marginally higher in the no-spanning condition than in the spanning condition across 

participants, t(19)=2.08, p = .051, but not across items, t(6) = 1.21, p = .273. 

The results are not easily explained if people based their causal judgments only on the 

kinematics of the scenes. In terms of kinematics, causation might be defined as occurring when 

the patient was not moving towards the endstate, but then moved towards the endstate once the 

affector made contact with it. According to this definition, the fans should have been considered 

a cause in both the spanning and non-spanning conditions, but they were chosen as causes only 

in the spanning condition. It could be noted that the patient moved away from the fans in all of 

the spanning conditions, and that in three of the four non-spanning conditions, the boat moved 

towards the fans. However, in the fourth pair of animations, the boat moved away from the fans 

in both conditions. Even when the boat moved away from the fans, people viewed the fans as 

non-causal, presumably because the boat’s motion was not consistent with the way the forces 

could be added.   

In addition to these results, several other problems remain for a kinematics account of 

causation. As discussed above, the concept of CAUSE extends to situations in which there are 

conflicting forces, but no change occurs (e.g., Pressure can cause water to remain liquid at 

slightly below 0°C). A kinematics-based account cannot motivate why these situations can be 

viewed as causal nor can it distinguish such situations from static, non-causal situations (e.g., 

*The tree causes the roof to be under the branch). Another limitation to a kinematics approach is 

that it does not easily explain our language for non-physical causation. In describing social 
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causation, we rarely talk about “social velocities” or “peer accelerations.” Rather, we talk about 

“social forces” and “peer pressures.” 

The results also support the dynamics model’s assumption that people’s judgments of 

causation do not require knowing the exact magnitudes of the forces. In the spanning conditions, 

the animations did not provide enough information to determine whether the boat’s course was 

due to the force associated with just the one fan or due to that force in combination with 

(an)other hidden force(s). Regardless, when the boat moved within the span of the overt forces, 

people agreed that the fan “caused” the boat to hit the cone. Knowledge of the precise 

magnitudes is not necessary for classifying the situation as causal. What appears to be necessary 

is awareness of the direction of the forces, which supports the hypothesis that people think about 

causation in terms of vectors. 

Causation involving physical and non-physical forces. The results so far suggest that the 

dynamics model meets the criterion of extensional adequacy at least for purely physical events. 

However, non-physical forces in causation are extremely common. If the dynamics model is a 

general model of causation, we need to know whether its ability to explain causal judgments 

extends to causal relationships that involve non-physical influences, including intentions, desires, 

and social directives. As discussed previously, such influences can be construed of as forces 

since they can be viewed as having an origin, direction and magnitude (Copley, in press). Talmy 

(1988) also has argued that intentions and desires could be treated as roughly analogous to 

physical forces, as illustrated in sentences like the ones in (5). 

(5) a.   Ice caused the branches to bend. (physical forces only) 

b.   Seeing the ice caused Michelle to stay home. (psychological forces) 

c. Michelle caused Tom to stay home by telling him about the ice. (social forces) 

d. Ice storm warnings caused schools in Atlanta to close. (institutional forces) 

The causation implied in (5a) involves physical forces only. The causation in (5b) implies 

psychological forces only. Michelle’s tendency to go to work is opposed by the realization that it 

would be unwise to travel with ice on the road. The scenario in (5c) exemplifies social forces. 

Michelle tells Tom to say home, and, in effect, successfully opposes his tendency to go to work. 

Finally, the sentence in (5d) illustrates the effect of institutional forces. Here, the storm warning 

system for a large city brings about the closure of schools in the area.  
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Talmy noted that people are able to interpret interactions involving different kinds of forces. 

For example, consider the scenario depicted in Figure 8, in which a woman is standing in a raft 

and pointing in a particular direction. She indicates the direction she wants to move by pointing. 

In the left panel, she wants to move away from the cone while in the right panel she wants to 

move towards it. In both scenes, the fans turn on and push the raft to the cone. If intentions are 

analogous to physical forces, as assumed in the dynamics model, people should prefer to say that 

the fans caused the woman to reach the cone for the left panel while for the right panel they 

should prefer to say that the fans enabled her to reach the cone. Similarly, if the woman is 

pointing towards the cone but is blown away from it, people should prefer to say that she was 

prevented from reaching the cone. These predictions were tested in the next experiment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. CAUSE (left panel) and ENABLE (right panel) animations with the patient  

tendency based on the woman’s intention as indicated by her pointing 

 

Experiment 5 

 In this experiment participants saw two types of animations. Half of the animations depicted 

physical causation and involved the same animations used in Experiments 1-4, namely fans 

acting on a boat. The remaining animations were exactly the same, except that the motorized 

boat was replaced with a round raft with a woman in it who pointed either towards or away from 

CAUSE ENABLE 

  
 

 E 
 

 

 E 
 

  



  Causal Representation 41

the cone (the endstate). It was predicted that people would interpret the woman’s pointing as 

indicating patient tendency. Animations in which all of the forces were physical constituted the 

physical-force-only condition while animations in which the affector force was physical but the 

patient’s force was an intention constituted the mixed-force condition. 

Method 

Participants. The participants were 18 University of Memphis undergraduates. All 

participants were native speakers of English. 

Materials. Eight 3D animations were constructed from the four, 1-dimensional base 

configurations depicted in Table 7. Four of the animations were the same as those used in 

Experiments 1-2. The remaining animations depicted a similar scene, but the boat was replaced 

with a woman in a raft who pointed either towards or away from the cone. Each set of 

animations included a CAUSE, ENABLE, PREVENT, and unspecified configuration. In the 

physical-force-only condition, as in previous experiments, the boat initially moved toward the 

center under its own power. Once it reached the center, the fans started blowing. In the mixed-

force condition, there was no initial movement of the raft; instead, the tendency was indicated by 

the woman’s pointing. In all other respects, the animations in the two conditions were the same. 

The animations ended when the patient hit the cone or neared the side of the pool, and the 

camera angle for all of the animations was the same.  

The directions of the forces entered into the physics simulator are shown in Table 7. The 

magnitudes of these forces were as follows. For configuration 1, ||Aw|| = 2N and ||Pw|| = 1N. For 

configuration 2, ||Aw|| = .5N and ||Pw|| = .5N. For configuration 3, ||Aw|| = 1.5N and ||Pw|| = 1N. 

For configuration 4, ||Aw|| = .5N and ||Pw|| = .5N. In the remaining configurations, Pw was an 

intentional force, so the only force entered into the physics simulator was ||Aw||, which equaled 

1N. The duration of the animations for configurations 1-8 were 17, 8, 6, 17, 10, 5, 10, and 5 

seconds respectively. 

Procedure. The procedure was similar to that in Experiments 1-3. The animations were 

presented in random order on Windows-based computers. After each animation, participants 

chose a sentence that best described the occurrence. All the sentences were structurally the same 

(The fans ____ the boat to [from] hit[ting] the cone or The fans ____ the woman to [from] 

reach[ing] the cone). The sentences differed in the main verb, which was either causeD, helpED, 

or preventED. The order of the sentence choices was presented randomly for each animation 



  Causal Representation 42

except for the last choice, which was always none of the above. Participants indicated their 

answers by clicking a radio button next to their choice. 

 Design. Participants saw all eight animations. There were three factors: ConfigType 

(CAUSE, ENABLE, PREVENT, UNSPECIFIED), ForceType (Physical, Mixed), and 

ResponseType (Cause, Enable, Prevent, NoVerb).  

 

Table 7.  
Experiment 5 predictions and results by configuration and response type (mean (SD)) 
 Physical Forces Only Physical and Psychological Forces 
Config. # 1 2 3 4 5 6 7 8 
 N-N-Y Y-Y-Y Y-N-N N-N-N N-N-Y Y-Y-Y Y-N-N N-N-N 
Affector ( ) 
Patient  ( ) 
Result.  ( ) 
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Predicted CAUSE ENABLE PREVENT Unspecified CAUSE ENABLE PREVENT Unspecified 
    “Cause” .94 (.236) - - -  .94 (.235) .11 (.323) - - 
    “Help” - .89 (.323) - .06 (.236)  - .83 (.383) - .11 (.323) 
    “Prevent” .06 (.236) - 1 (0) .11 (.323)  - - 1 (0) .11 (.323) 
    “No verb” - .11 (.323) - .84 (.383)  .06 (.236) .06 (.236) - .78 (.428) 

 

Results 

The results indicated that the dynamics model can be extended to situations involving non-

physical forces. The bottom of Table 7 shows the proportion of times each response type was 

chosen for the animations in the physical-force only and the mixed-force conditions. The results 

show that people treated the woman’s intention as if it were a physical force. 

 This conclusion is supported by log-linear modeling. A log-linear model based on the 

factors ConfigType (4), ForceType (2), and ResponseType (4) and their two- and three-way 

interactions was fitted to the observed frequencies. A Pearson’s chi-square indicated that such a 

model agreed well with the observed frequencies, and there was no evidence that the observed 

frequencies, χ2(12, N = 144) = 2.622, p < .998, differed from the predictions of the model.  

Each factor and interaction was removed from this model to examine its relative 

contribution to the model’s fit. As predicted, removing the interaction between ConfigType and 

ResponseType from the model resulted in a significant decrease in the fit, χ2(12, N = 144) = 

210.88, p < .0005. This interaction indicates that responses differed across configuration types. 

Removal of the remaining two-way interactions, ForceType*ResponseType, χ2(4, N = 144) = 

.34, p = .987, ForceType*ConfigType, χ2(3, N = 144) = .08, p = .994, and the one three-way 

interaction, ConfigType*ResponseType*ScenarioType, χ2(12, N = 144) = 2.67, p > .998, did not 
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have a significant effect on the fit of the model. Removal of the main factors of ConfigType, 

χ2(3, N = 144) = .28, p = .964, and ResponseType, χ2(4, N = 144) = 2.73, p = .604, did not have 

a significant effect on the fit of the model either. Importantly, removing the main factor of 

ForceType, χ2(1, N = 144) = .07, p = .796, had no appreciable effect on the fit of the model. The 

nonsignificance of this factor and its associated interactions indicates that there is no evidence 

that people treated the mixed-force animations differently from the physical-force-only 

animations. Rather, the most important factor in how people responded to the animations was 

how the forces were configured.  

Combining the responses across ForceType, the Pearson’s chi-square indicated that 

participants chose CAUSE descriptions over the other descriptions for the animations in which 

the patient did not have a tendency for the endstate, but reached it anyway (1 & 5), χ2(4, N = 36) 

= 86.89, p < .0005. Participants chose ENABLE descriptions when the patient had a tendency for 

the endstate and then was assisted by the fans (2 & 6, N = 36), χ2(4) = 70.09, p < .0005. 

Participants chose PREVENT descriptions when the patient had a tendency for the endstate but 

was blown away from it (3 & 7, N = 36), χ2(4) = 91.17, p < .0005. Finally, participants chose 

none of the above when the force configurations did not map onto any one of the four main kinds 

of configurations, χ2(4, N = 36) = 60.61, p < .0005.  

The results for this experiment demonstrate the dynamics model’s ability to explain causal 

judgments that require the consideration of non-physical forces. In addition, the animations 

depicting the CAUSE and ENABLE configurations provide further evidence against a 

kinematics approach to causation since the two configurations were exactly the same in terms of 

kinematics. The only difference was the direction in which the woman was facing.  

To further test the extensional adequacy of the dynamics model, we need to know whether it 

can account for causal judgments in which all of the influences are non-physical. Consider, for 

example, the pairs of scenarios depicted in Figure 9. Each pair represents two frames18 from an 

animation involving three people. The woman is the patient, the police officer is the affector, and 

the man on the corner is the endstate. In the first frame of the top row, the woman points away 

from the man to indicate that she does not wish to go toward him. In the second frame, the 

officer gestures that she should cross the street towards the man. She crosses the street (albeit 

reluctantly) toward the man. This animation involves physical motions, but what makes it a 
                                                 
18 The frames shown in Figure 10 are actually cropped versions of the larger scene that is shown in Figure 11. 
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CAUSE scenario are the intentions and desires of the patient and affector. Specifically, it depicts 

causation because the woman does not want to approach the man, but the officer wants her to 

anyway, and the woman complies with the wishes of the officer. The dynamics model predicts 

that people will describe this scene with a sentence like The officer caused the woman to walk to 

the man.  

The second pair of frames comes from an animation instantiating an ENABLE scenario. In 

this animation, the woman points towards the man, indicating that she wants to go toward him. 

The officer gestures for her to cross in the direction of the man, and she does so. The dynamics 

model predicts that people will describe this animation with an ENABLE verb, e.g., The officer 

let the woman walk to the man.  

The third pair of frames comes from an animation instantiating a PREVENT configuration. 

In the first frame, the woman points toward the man to indicate that she wants to go to him. 

However, the officer gestures to the woman that she must walk in another direction, away from 

the man. The woman complies with the officer and so does not approach the man. According to 

the dynamics model, people should describe this situation with a PREVENT sentence such as 

The officer prevented the woman from walking to the man. 

The fourth row shows a pair of frames from an animation instantiating a DESPITE 

configuration. In the first frame, the woman points toward the man to indicate that she wants to 

go to him. The officer gestures to the woman that she must cross the other street away from the 

man. However, the woman defies the officer and approaches the man. According to the 

dynamics model, people should describe this situation with a DESPITE sentence like The woman 

crossed to the man despite the officer.  

The fifth row depicts frames from an animation instantiating an UNSPECIFIED 

configuration that violates the spanning restriction. In this animation, the woman points toward 

the man, indicating that she wants to go to him, the officer gestures for her to cross the street in 

that direction, but she crosses the other street. This scenario violates the spanning restriction 

since the observed resultant lies outside the region bounded by the intentional forces implied by 

the woman’s and the officer’s gestures. The dynamics model does not specify categories for 

configurations of force that violate the spanning restriction. Therefore, it predicts that people will 

view the scene as non-causal. These predictions were tested in the next experiment. 
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Experiment 6 

 The central question addressed in this experiment is whether the dynamics model can 

account for the representation of social causation. Participants were presented with situations in 

which all of the forces were non-physical. The affector force was indicated by the pointing 

gestures of a police officer and the patient force, by the gestures of a woman. In some 

animations, the intentions of the police officer and the woman were in conflict, while in other 

animations, they were in concordance. In certain animations, the woman went where she wanted 

to go, while in other animations she did not. According to the dynamics model, these are the 

basic ingredients of how people recognize and represent causation in social situations.19 

Method 

Participants. The participants were 20 Emory University undergraduates. All participants 

were native speakers of English. 

Materials. Ten 3D animations were constructed, two each instantiating CAUSE, ENABLE, 

PREVENT, DESPITE, and UNSPECIFIED configurations. The five base configurations are 

depicted in Table 8. Two animations were made from each base configuration. In five of these 

animations, the endstate, the man, was located at the corner closest to the taxi, as shown in 

Figure 9. In the remaining animations, the endstate was located at the corner closest to the VW 

beetle, as shown in Figure 10.   

 

 

 

 

 

 

 

 

 

 

Figure 10. Entire scene shown to participants in Experiment 6. 

                                                 
19 The animations used in this experiment are taken from a separate line of research with Larry Barsalou and Aron 
Barbey, both of whom had a major role in their design. 
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CAUSE 
 

 
 Tendency for Endstate = No 

 
Endstate Approached = YES 

 
 
 

ENABLE 

  
 Tendency for Endstate = Yes 

 
Endstate Approached= YES 

 
 
 
 
PREVENT 

  
 Tendency for Endstate = Yes 

 
Endstate Approached = NO 

   

 
 
 
 
DESPITE 

  
 Tendency for Endstate = Yes 

 
Endstate Approached = Yes 

   
 
 
 
 
UNSPECIFIED 
 
(also, in violation  
of the spanning  
restriction) 

  
 Tendency for Endstate = Yes 

 
Endstate Approached = No 

Figure 9: Sample frames from social situations instantiating CAUSE, ENABLE, PREVENT, 
DESPITE, and UNSPECIFIED configurations.  
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The animations had four main parts. In the first, the woman walked to a corner of an intersection 

and then stopped. As the woman walked, an officer stood in the middle of an intersection with 

his hand held up to imply that the cars should remain stopped. In addition, a man stood at another 

corner, waving at the woman to get her attention. In the second part, the woman pointed to a 

corner, either toward or away from the man. If the woman wanted to go to the man, she pointed 

in his direction and waved at him. If the woman did not want to go toward the man, she not only 

pointed away from him, but also avoided looking in his direction. In the third part, the officer 

gestured for the woman to start walking using a circular motion with one of his hands. The 

officer then pointed to one of the corners with the same arm he used to gesture to the woman. 

The officer always gestured with the arm that was closest to the corner to which he ultimately 

pointed. In the fourth part, the woman crossed the street. The total length of each animation was 

approximately 17 seconds. In each animation, the scene, camera angle, and lighting were exactly 

the same 

Procedure. The procedure was similar to that in Experiments 1, 2, 3, and 5. The animations 

were presented in random order on Windows-based computers. After each animation, 

participants chose a sentence that best described the occurrence. Three of the choices were based 

on the exact same sentence (The officer ____ the woman to[from] walk[ing] up to the man), 

except for the main verb which was either caused, enabled, or prevented. The DESPITE option 

was the sentence The woman walked to the man despite the officer. The last option was none of 

the above. The order of the sentence choices was changed randomly for each animation except 

for the last choice, which was always the option none of the above. Participants indicated their 

answers by clicking a radio button next to their choice. 

 Design. Participants saw all ten animations. There were two factors: ConfigType (CAUSE, 

ENABLE, PREVENT, DESPITE, UNSPECIFIED) and ResponseType (Cause, Enable, Prevent, 

Despite, NoVerb).  

Results 

The results indicate that the dynamics model can be extended to explain people’s judgments 

about social causation. The bottom of Table 8 shows the proportion of times people chose each 

of the five possible response types (CAUSE, ENABLE, PREVENT, DESPITE, NOVERB) to 

describe each of the configuration types. The results provide further evidence that the dynamics 

model is able to distinguish CAUSE from other causal concepts, and that causal relations can be  
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Table 8. Experiment 6 predictions and results by configuration and response type 
(mean (SD)) 
Configuration # 1 2 3 4 5 
Type CAUSE ENABLE PREVENT DESPITE UNSPECIFIED 
 N-N-Y Y-Y-Y Y-N-N Y-N-Y Y-Y-N 
Affector ( ) 
Patient  ( ) 
Result.  ( ) 
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“Cause” .84 (.239) - - - - 
“Enable” .13 (.226) .94 (.158) - .08 (.187) .16 (.336) 
“Prevent” .03 (.115) - .90 (.315) - .08 (.187) 
“Despite” - .03 (.115) - .92 (.187) - 
“No verb” - .03 (.115) .10 (.315) - .76 (.348) 

 

identified from a single occurrence. In addition, the results support the claim that the concept of 

CAUSE is based on the relationship between several forces. If, for example, people considered 

only the affector force without factoring in that of the patient (i.e., the tendency of the woman), 

there would be no way of distinguishing between the concepts of CAUSE and ENABLE. 

 The above conclusions are supported by log-linear modeling. A log-linear model based on 

the factors ConfigType (5), and ResponseType (5) and a single two-way interaction was fitted to 

the observed frequencies. A Pearson’s chi-square indicated that such a model agreed well with 

the observed frequencies as there was no evidence for a difference between the predicted 

frequencies and the actual frequencies, χ2(4, N = 200) = 1.66, p < .798.  

Each factor and interaction was removed from this model to examine its relative 

contribution to the model’s fit. As predicted, removing the interaction between ConfigType and 

ResponseType from the model resulted in a significant decrease in the fit, χ2(16, N = 200) = 

367.01, p < .0005. This interaction indicates that responses differed across configuration types. 

Removal of the main factors of ConfigType, χ2(4, N = 200) = 1.59, p = .812, and ResponseType, 

χ2(4, N = 200) = 3.33, p = .505, did not have a significant effect on the fit of the model.  

Focusing on particular response types, Pearson’s chi-square indicated that participants chose 

CAUSE descriptions more often than the other types of descriptions for the animations in which 

the woman did not have a tendency for the endstate, but ended up walking toward the man (1), 

χ2(4, N = 40) = 98.05, p < .0005. Participants chose ENABLE descriptions when the woman had 

a tendency for the endstate and was directed toward the endstate by the officer (2), χ2(4, N = 40) 

= 126.44, p < .0005. Participants chose PREVENT descriptions when the woman had a tendency 

for the endstate but was directed away by the officer (3), χ2(4, N = 40) = 79.73, p < .0005. 
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Participants chose DESPITE descriptions when the woman had a tendency for the endstate and 

walked toward it in opposition to the direction of the officer (4), χ2(4, N = 40) = 79.62, p < 

.0005. Finally, participants chose “none of the above” when the force configurations did not map 

onto any one of the four main kinds of configurations (5), χ2(4, N = 40) = 106, p < .0005. 

Participants were quite willing to use the verb enable to describe the ENABLE 

configurations in the present experiment. As discussed earlier, the various ENABLE verbs differ 

in what they imply about what might occur in the absence of the affector. The verb help (and 

sometimes enable) leaves open the possibility that the result could occur in the absence of the 

affector. In contrast, the verbs allow, let, permit (and sometimes enable) imply that the result 

could not occur without the force of the affector. Participants’ willingness to use the verb enable 

indicates that the ENABLE configuration of forces is not restricted to the verb help. However, 

what may have made the ENABLE animations in this experiment particularly conducive to the 

verb enable (or allow) is that the police officer, in effect, removed an institutional force acting 

against the woman’s crossing the street. The officer’s gestures in the ENABLE animation 

indicated that he was removing the prohibition against crossing a street in busy traffic, hence 

allowing the woman’s tendency to be realized. As discussed in Appendix A, it may be possible 

to represent the removal of a force by interpreting a configuration in terms of the inverse of the 

affector vector (~A instead of A) and/or in terms of preventing a prevention. Finally, it is 

interesting to note that participants were somewhat more willing to use the verb enable to 

describe the CAUSE animation (13%) than in previous experiments. This might reflect a greater 

willingness to use the verb enable to describe social causation than physical causation. 

The current experiment demonstrated that the spanning restriction is enforced even in 

situations involving non-physical forces. In the case of the UNSPECIFIED configuration in the 

current experiment, the woman had a tendency for the endstate, the officer directed her to the 

endstate, but she walked away. This set of factors does not add up to a causal situation, as 

reflected in participants’ preference for the choice none of the above to describe this situation. 

We may encounter such situations in real life and engage in a similar kind of reasoning. For 

example, suppose that Jane wanted to go to the movies (but didn’t have means to get there) and 

that her friends invited her to go with them, but then she didn’t go. A person observing this 

sequence of events might be puzzled by Jane’s behavior or come up with possible explanations, 

e.g., Jane forgot about the appointment, or she changed her mind. However, regardless of the 
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explanation, the interaction between Jane and her friends cannot be said to instantiate a causal or 

preventative relation. The dynamics model explains why.  

Finally, the findings provide further evidence against dependency models, which are unable 

to predict that causation across different domains should share anything more than statistical or 

counterfactual dependencies. It is striking, then, that in these experiments, the distinctions used 

in judgments about physical causation were the same as those used for social causation. Across 

domains, causal judgments reflected attention to the dimensions of tendency, concordance, and 

result. Dependency models—unlike the dynamics approach—cannot motivate why these 

similarities should exist. 

General Discussion 

 In order to understand how people learn and reason about causal relationships, we need to 

understand how causal relations are represented in the mind. A theory of causal representation 

should be able to pick out the range of situations that people consider to be causal while excluding 

situations that people do not consider to be causal. Dependency models—both probabilistic and 

counterfactual—fail in this respect because the range of situations they classify as causal is too 

broad. In addition, a theory of causal representation should explain people’s ability to determine 

causal relationships on the basis of a single observation. Here, again, dependency models have 

problems because they hold that people require multiple observations to establish causation. Some 

have suggested that the identification of causal relationships on the basis of a single observation 

might be accomplished by the application of causal categories formed on the basis of covariational 

information. However, causal categories based on dependency information would still be too 

inclusive. Moreover, if causal categories depended on pre-stored causal categories, people would 

only be able to identify causal relations that conformed to their prior experience, which raises the 

developmental question of how such an account would ever get off the ground. Physicalist models 

offer an account of how people might identify causal relations on the basis of a single example, but 

in the past, they have not been able to distinguish causation from other cause-related concepts such 

as enablement and prevention. The dynamics model, introduced in this paper, is able to both 

differentiate causation from non-causation and explain how people identify causal relations from a 

single observation. According to the dynamics model, causal concepts are represented in terms of 

relationships among various forces and a position vector. 
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 The model was supported by a series of experiments in which participants watched 3D 

animations of complex causal events. The animations were the same in every respect except for the 

underlying configurations of forces, which produced different patterns of motion, and so 

instantiated different causal relationships. In Experiment 1, people distinguished different causal 

interactions occurring within a single dimension. In Experiment 2, people distinguished causal 

interactions occurring over more than one dimension. Experiment 3 showed that the results from 

Experiments 1 and 2 were generalizable to other verbs and scenarios. It also provided support for 

the proposed representation of DESPITE, another causal concept predicted by the model. 

Experiment 4 provided evidence against the possibility that people’s causal judgments in 

Experiments 1-3 were based only on their kinematics by showing that people are sensitive to 

violations of the underlying dynamic properties of an event. Experiment 5 demonstrated that the 

dynamics model could be applied to situations involving both physical and intentional forces. 

Finally, Experiment 6 showed that the dynamics model makes accurate predictions regarding 

people’s causal judgments of purely social interactions. The results from this last experiment 

show that the dynamics model extends beyond physical causation. 

Patterns of force underlying counterfactual thinking and probabilistic causes 

 The dynamics model is intended as an account of the core concept of causation. While it has 

certain advantages over dependency models, it is not necessarily incompatible with them to the 

extent that they can be viewed as tests of causation. Interestingly, the dynamics model can be 

used to model at least certain kinds of counterfactual judgments and probability distributions.  

 

 

 

 

 

 

 

 Figure 11: A configuration of forces associated with CAUSE. 

 

 Consider, for example, the configuration of forces in Figure 11, which was used in 

Experiment 2. People’s overwhelming interpretation of this configuration was that the affector 
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(A) caused the patient to reach the endstate (E). This configuration can be used as the basis of a 

counterfactual. As discussed earlier, a counterfactual criterion of causation holds that an event c 

is a cause of an event e if and only if it is the case that if c had not occurred, e would not have 

occurred. In Figure 11, if the affector force were removed, the resultant would not point towards 

the endstate, supporting the conclusion that the affector is a cause because it is necessary for the 

result. In this way, the dynamics model specifies the knowledge needed to conduct 

counterfactual reasoning about causation.  

The model can also motivate why causation is associated with a positive statistical 

dependency. Imagine a group of configurations instead of just one configuration. The 

proportion—hence probability— of configurations in which the resultant points towards the 

endstate to produce an effect could be determined with respect to the presence of the affector, 

P(E|A), and its absence, P(E|~A). If most of the configurations were CAUSE configurations, 

P(E|A) would be greater than P(E|~A), implying a positive correlation. If most of the 

configurations were PREVENT configurations, P(E|A) would be less than P(E|~A), implying a 

negative correlation. This link between configurations and correlations explains why statistical 

dependency is often a valuable cue to causation.  

 In the case of an individual occurrence, causal relationships are deterministic. However, in 

the case of multiple instances, causal relationships can be probabilistic, as when we say Heavy 

rains cause flooding. However, this does not require that the underlying representation change 

from vectors to probabilities. In the dynamics model, uncertainty is built into the representation 

of causation because people do not know the exact magnitude of the vectors. Over chains of 

configurations, in which the resultants of one configuration are used as the affectors in the next, 

these variations in the magnitude of the vectors can lead to different conclusions even though the 

component configuration are the same. This means that if we observed multiple chains, the 

overall conclusion would be probabilistic. The dynamics model is compatible, then, with both 

deterministic and probabilistic causation (see Barbey & Wolff, 2006).  

 

Other dependency models 

Besides the dependency models discussed in the introduction, two other dependency models 

have had an important impact on research on the representation of causation. According to 

associative learning models, causal relations are defined in terms of association weights (Baker, 
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Murphy, & Vallée-Tourangeau, 1996; Shanks & Dickinson, 1987). One strength of these models 

is that they provide an account of how causal relations might be determined through an 

associative learning process as defined by, for example, the Rescorla-Wagner learning rule. 

However, in associative learning models, causal categories are typically represented in terms of a 

value on a single output that can be either positive, negative, or zero. Consequently, these 

accounts are basically limited to the distinction between generative and preventative causation 

(Cheng & Holyoak, 1995; Cheng, Park, Yarlas, & Holyoak, 1996; Cheng, 1997). These models 

also assume learning procedures that require multiple observations in order for causal relations to 

be established, leaving unexplained people’s ability to discern a causal relation from a single 

observation except when such an observation matches an already established causal relationship. 

 Another influential dependency theory of causation is Goldvarg and Johnson-Laird’s (2001) 

model theory. According to the model theory, causal relations are intrinsically modal, that is 

“[t]hey are not merely about what occurred but also about what might have occurred” (p. 576). In 

this theory, various causal-related concepts, including CAUSE and ALLOW,20 are differentiated 

from each other in terms of possible co-occurrences of the cause and the effect. At its core, the 

model theory defines causal concepts in terms of necessity and sufficiency. The claim A caused 

B is false if A can occur without the occurrence of B, that is, if A is not a sufficient condition for 

the occurrence of B. The claim A allowed B is false if B can occur without A, that is, the claim is 

false if A is not a necessary condition for the occurrence of B. In sum, causes are factors that are 

sufficient, and maybe also necessary, for their effects while allowers are factors that are 

necessary, but not sufficient, for their effects (see Mandel, 2003). 

 The model theory has several strengths. First, it proposes how causal relations might be 

determined on the basis of a single example (but see Wolff & Song, 2003). Second, it is 

supported by Mandel and Lehman’s (1998) finding that people tend to define causation (and 

prevention) in terms of tests of sufficiency more than in terms of tests of necessity. Another 

important contribution is that it addresses the problem of how to distinguish the concept of 

CAUSE from ALLOW (or ENABLE).  

 However, certain predictions of the model theory are not supported by the results in 

Experiments 1-6. In Experiment 2, the affector force in the CAUSE configuration was an 

                                                 
20 Goldvarg and Johnson-Laird prefer the mnemonic ALLOW to the mnemonic ENABLE because they suggest that 
the verb allow is more neutral with respect to intentionality than is the verb enable. 
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necessary but not sufficient condition for the result to occur. The model theory predicts people 

should have described these configurations as instances of ALLOW when, in fact, they were 

described as instances of CAUSE. In Experiment 5, the affector in the ENABLE animation 

involving the woman in the raft was a necessary and sufficient condition for the result. The 

model theory predicts people should have viewed this scene as causal when, in fact, they viewed 

it as enabling. The model theory addresses many of the shortcomings of other dependency 

models, but its semantics is based on necessary and sufficient conditions, which often lead it to 

make predictions that do not match people’s judgments of causation. 

Implications for physicalist models of causation 

 The results from Experiments 1-6 not only highlight problems for dependency models, they 

also reveal some of the limitations of prior physicalist models. In the psychological literature, 

causation has been characterized as a transmission of motion (e.g., Michotte, 1946/1963; 

Kruschke & Fragassi, 1996) or of causal impetus (Bullock, Gelman & Baillargeon, 1982; 

Hubbard & Ruppel, 2002; Shultz, 1982). Similarly, in the philosophy literature, causation has 

been reduced to a transfer of a conserved quantity, such as momentum or energy (Aronson, 

1971; Fair, 1979; Salmon, 1994, 1998). The experiments in this paper allow for a fairly direct 

test of these proposals. Because the materials were generated from a physics simulator, the 

amount of energy and momentum transferred from the cause to the effect can be calculated. If 

causation is reducible to the transmission of energy or momentum, then it should be possible to 

identify causal relationships on the basis of these quantities.   

 Table 9 shows the amounts of momentum and energy involved in the boat scenarios from 

Experiments 1 and 2. I explain how these quantities were calculated in Appendix C.  The results 

from this analysis indicate no relationship between the amounts of momentum and energy 

transferred and various causal relationships. For example, in Experiment 2 (configuration #1), 

the CAUSE animation involved positive energy transfer, but in Experiment 1 (configuration #1), 

the CAUSE animation involved negative energy transfer. The transfer of energy was negative 

because the fans decreased the velocity of the boat and, hence, the boat’s kinetic energy. 

Similarly, PREVENT animations were sometimes associated with negative energy transfer (Exp. 

1, config 4; Exp. 2, config. 5 and 6) and other times with positive energy transfer (Exp. 2, config. 

3 and 4). PREVENT involved positive energy transfer when, for example, the fans sped the boat 

past the endstate (Exp. 2, config. 3 and 4). ENABLE animations were consistently associated  
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Table 9. Amount of energy and momentum transferred from the fans to the boat in the animations 
used in Experiments 1 and 221 

 

Experiment 1 
Config. # 1 2 3 4 5 6 7 8 
Affector ( ) 
Patient  ( ) 
Result.  ( ) 

 
 

 E 

 
 

 E  

 
 

 E  

 
 

 E  

 
 

 E 

 
 

 E  

 
 

 E 

 
 

 E  

Type CAUSE ENABLE ENABLE PREVENT DESPITE Unspecified Unspecified Unspecified 
Energy 
transferred 
(joules)  

 
-.060 

 
.727 

 
.509 

 
-.060 

 
-.277 

 
.727 

 
-.277 

 
.509 

Momentum 
transferred 
(kg*m/s) 

 
.817 

(at 180°) 

 
.817 

(at 0°) 

 
.481 

(at 0°) 

 
.817 

(at 180°) 

 
.481 

(at 180°) 

 
.817 

(at  0°) 

 
.481 

(at  180°) 

 
.481 

(at 0°) 
         

Experiment 2 
Config. # 1 2 3 4 5 6 7 8 
  

E 

 

 
 E  

 E 

 

 E 

 

 E 

 

 
 E  

 
E  

 
E 

 
Type CAUSE ENABLE PREVENT PREVENT PREVENT PREVENT Unspecified Unspecified 
Energy 
transferred 
(joules) 

 
.118 

 
.348 

 
.269 

 
.118 

 
-.005 

 
-.040 

 
.269 

 
-.005 

Momentum 
transferred 
(kg*m/s) 

 
.451  

(at 39.5°) 

 
.521  

(at 0°) 

 
.488 

(at 18.5°) 

 
.451  

(at 39.5°) 

 
.424  

(at 59.5°) 

 
.115  

(at 180°) 

 
.488 

(at 18.5°) 

 
.424  

(at 59.5°) 
         

 

with positive energy transfer, and the DESPITE animation was associated with negative energy 

transfer. However, since CAUSE and PREVENT animations were associated with both negative 

and positive energy transfer, energy transfer cannot be used to identify these relations. Transfer 

of momentum was no better a diagnostic. In Experiments 1 and 2, for example, CAUSE and 

PREVENT were exactly the same in terms of transfer of momentum, and in Experiment 2, 

transfer of momentum in one of the ENABLE animations matched the transfer of momentum in 

one of the unspecified configurations.  

Dowe’s Conserved Quantity Theory (2000) proposes that causation does not depend on 

transfer or transmission, but rather the exchange of conserved quantities, such as energy, 

momentum, or charge. As Dowe argues, the notion of exchange is weaker than that of transfer. 

In particular, CQ theory does not require that the energy or momentum move from the cause to 

the effect. The results in Table 9 support Dowe’s CQ theory, but also reveal its limitations. Every 

transfer of a conserved quantity involves an exchange of conserved quantities, and vice versa. 

                                                 
21 In the interest of space, configurations 9 and 10 from Experiment 2 are not included in Table 9. 
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For example, when the fans (i.e., the air molecules) transferred energy to the boat, the boat 

extracted energy from the air molecules. Thus, all of the interactions in Experiments 1 and 2 

involved an exchange of conserved quantities. Because all of the interactions involved exchanges 

of energy, CQ theory cannot tell us which of the interactions were causal, as opposed to 

enabling, preventative, or unclassifiable.  

Causation and time 

In most theories of causation, causation supervenes on time. For example, in probability 

distribution models, causation is reduced to probabilities of events, i.e., segments of time. Time 

is also crucial in the way causation is characterized in the linguistics literature, where causal 

relations are viewed as necessarily composed of two events—a causing subevent and a resulting 

subevent—that occur in sequence (Dowty, 1979; Croft, 1991; Jackendoff, 1990; Levin & 

Rapoport, 1988; Levin & Rappaport Hovav, 1995; Pustejovsky, 1991; Van Valin, 1990, among 

others). However, some have suggested that the relationship between causation and time might 

be the other way around, specifically, that people might individuate events in terms of causation 

(Davidson, 1969/1980; Bullock et al., 1982).  

The proposal that causation individuates events is circular if causation is itself composed of 

events (Avrahami & Kareev, 1994). However, in force dynamics, causation does not depend on 

events; rather, it depends on space. From this perspective, it may be possible to re-evaluate the 

proposal that events might unitized in terms of causation.  

From a force dynamic perspective, causation is not tied to a sequence of two events, though 

it can certainly be instantiated by such sequences. Indeed, the dynamics model provides a new 

explanation for why billiard-ball events, like the ones studied by Michotte (1946/1963), are 

construed as causal (see also Leslie, 1994). Specifically, when object A hits object B, it exerts a 

force on object B that opposes B’s tendency to remain at rest due to friction. When the forces 

acting on object B are added together, they sum to a resultant that accelerates object B. Many of 

Michotte’s findings can be motivated by the dynamics model. For example, spatial contiguity is 

important since a configuration of contact forces requires physical contact. Temporal contiguity 

is also important because the configuration of forces that results from this contact lasts for only a 

moment. In effect, the dynamics model shows how launch events can be linked to other kinds of 

causation (e.g., the causal situations examined in this paper) and need not be viewed as the 

product of an innate perceptual mechanism (for a review, see Scholl & Tremoulet, 2000).  
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 One of the most interesting consequences of force dynamics is that it can be applied to 

statics, that is, to situations in which nothing happens, and yet there is a continuing state of 

causation, as in Dirt caused the valve to stay open or Tiny barbs on the stinger cause it to remain 

in the wound. Force dynamics can also be applied to situations where there is continuous change 

without a clear temporal separation of cause and effect events, as in Gravity causes the earth to 

orbit the sun or Greenhouse gases are causing temperatures to rise. The dynamics approach 

accounts naturally for these types of causal relationships because it does not require that cause 

and effect events occur in succession. Rather, what is required is simultaneity. Causal relations 

can hold for a single moment or an indefinite period of time. Even in the case of collision events, 

in which the actions of the causer clearly precede changes in the patient, there is a single 

moment—the moment of contact—in which there is a convergence of forces. According to the 

dynamics model, it is this moment in time that is critical to defining such interactions as causal. 

From a force dynamic perspective, temporal priority is not a requirement of causation; rather, it 

is an artifact of the way forces often converge.  

Conclusions 

Causation is an atemporal spatial arrangement of forces. The implications of this conclusion 

are in sharp contrast to those assumed in dependency models. In probability distribution models, 

the properties of a causal event matter very little to the way causal events are represented. All 

that is required is that such events be countable. Thus, in these theories, causation is largely a 

product of the mind, namely, its ability to keep track of event frequencies and correlations. 

According to the dynamics model, in contrast, causation is mostly a product of the world, and 

representing causation involves representing the physical quantities that bring these causal events 

about. Not only can causes be counted, they can also be sensed and perceived, and what we feel 

can factor directly into how causes are represented, namely, as patterns of forces.  
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Appendix A 

The dynamics model and Talmy’s theory of force dynamics 

The dynamics model is based on Talmy’s theory of force dynamics. However, there are 

several ways in which the two accounts differ, as listed below. 

1. In Talmy’s theory, the fundamental dimensions for distinguishing different causal 

concepts are 1) the intrinsic tendency of the agonist (or patient) for rest or motion, 2) the balance 

of strengths (i.e., the relative strength of the agonist and antagonist), and 3) the result of the force 

interaction. These first three dimensions account for steady-state force dynamic patterns 

instantiating CAUSE, PREVENT, and two types of DESPITE. In contrast, the basic dimensions 

in the dynamics model include two of Talmy’s basic dimensions: 1) tendency of the patient and 

2) occurrence of the result. However, the third dimension in the dynamics model, concordance, is 

not one of Talmy’s basic dimensions. According to Talmy, most force dynamic interactions 

involve opposition between the antagonist (affector) and agonist (patient), hence the terms 

“antagonist” and “agonist.” In the dynamics model, forces are often in concordance, as also 

proposed by Jackendoff (1990). These three dimensions allow for eight possible combinations of 

features. Six of these combinations map onto the following concepts: CAUSE (N-N-Y), 

PREVENT (Y-N-N), ENABLE (Y-Y-Y), DESPITE (Y-N-Y), ENABLE-NOT (N-Y-N), and 

DESPITE_N (N-N-N). The remaining two combinations of features (Y-Y-N & N-Y-Y) are 

never realized because they map onto impossible configurations of vectors. For example, the 

combination of features Y-Y-N implies that the patient and the affector point toward the 

endstate, which implies that their resultant must also point toward the endstate. If the resultant 

points toward the endstate, the result must occur; hence, the last feature of this combination 

could not be “N.”     

2. Talmy’s first three dimensions are redundant with each other. Knowing the value of any 

two of the dimensions determines the value of the third. For example, if the agonist’s tendency is 

for rest, but the agonist enters into a state of action, the balance of strengths must be that the 

antagonist is stronger than the agonist. As a consequence, Talmy’s first three dimensions actually 

reduce to just two dimensions, with the intrinsic tendency of the agonist and the result being 

perhaps the most important. In contrast, in the dynamics model, the three main dimensions are 

not fully redundant with each other. This means that none of the dimensions can be removed 

without compromising the model’s ability to distinguish different concepts. 
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3. Talmy’s first three dimensions allow for eight (23) possible concepts, but the meanings of 

only four of them are described, specifically, CAUSE, PREVENT, and two types of DESPITE. 

Talmy does not explain the meanings of the remaining four possible concepts or offer an 

explanation for why they are rarely realized in language or experience. Indeed, three of the 

remaining concepts are quite odd. For example, one of these concepts represents a situation in 

which the agonist has a tendency for action, the antagonist is weaker than the agonist, but the 

agonist remains at rest. In contrast, the dynamics model is able to account for all of the possible 

combinations of features that can be generated from its three main dimensions.  

4. In Talmy’s theory, the antagonist is stronger than the agonist in CAUSE and ENABLE 

configurations. In the dynamics model, the antagonist is necessarily stronger only in the case of 

one-dimensional CAUSE configurations. In two-dimensional configurations, the antagonist need 

not be stronger than the agonist. 

5. In Talmy’s theory, all interactions are restricted to a single dimension. In the dynamics 

model, interactions can occur across more than one dimension. More than one dimension may be 

involved in causal relationships in which the cause is necessary, but not sufficient, for the effect 

(e.g., Rain caused the crops to grow). 

6. In Talmy’s theory, the agonist (patient) can have a tendency for either rest or motion. In  

the dynamics model, in contrast, tendency is defined with respect to direction toward an endstate. 

According to the dynamics model, when a patient is at rest or is moving away from the endstate, 

it is not considered to have a tendency for the endstate. Thus, the dynamics model implies two 

ways in which an entity might not have a tendency for the endstate while Talmy’s theory implies 

only one way. 

7. In Talmy’s theory, an agonist can change state by entering into a state of motion or a state 

of rest. Thus, in Talmy’s theory, prevention implies coming to a stop. In the dynamics model, 

changes of state also include changes in direction. As a consequence, in the dynamics model, 

prevention can involve either coming to a stop or continuing to move, but in a direction away 

from the endstate.  

8. Talmy’s force dynamics does not allow for interactions in which, for example, one 

antagonist causes the result while another enables it. In the dynamics model, in contrast, such 

situations are readily allowed through the use of multiple affector vectors. As a consequence, the 



  Causal Representation 71

dynamics model, unlike Talmy’s theory, is able to explain why certain interactions involve both 

causes and enabling conditions.  

9. The concept of HELP is related to but different from the concepts of ALLOW or LET. 

Talmy (1988) accounts for the concept of LET in terms of the removal of the antagonist. 

Talmy’s intuitions can be implemented in the dynamics model as a sequence of PREVENT 

configurations in which the resultant of the first configuration is used as the affector of the 

second (see Barbey & Wolff, 2006). For example, when we say that Green tea prevents 

Alzheimer’s and Alzheimer’s prevents remembering, this implies that Green tea allows 

remembering. According to this analysis, the concepts of ALLOW and LET are complex 

predicates in which something prevents a prevention, and thus allows it to occur. The dynamic 

models offers yet another way of representing the concepts of ALLOW and LET, specifically, by 

using the inverse of the A vector in a PREVENT configuration. The inverse of the A vector 

(NOT-A) would have approximately the same magnitude as A, but would be opposite in 

direction. Such an account predicts that the expression A prevents B implies ~A allows/lets B. For 

instance, the cat prevents the mice from playing implies the absence of the cat allows the mice to 

play. 

10. Beyond the first three basic dimensions, Talmy’s theory of force dynamics includes 

other dimensions such as 1) addition and/or removal of a property, 2) the presence versus 

absence of contingent forces, and 3) increases in strength versus constancy in strength. Talmy 

included these dimensions to show how force dynamics might be extended to interactions 

beyond causal interactions. The dynamics model will also need to include additional dimensions 

in order to capture the range of situations examined in Talmy (1988).  
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Appendix B 

 

Magnitudes of forces used in Experiment 3. 

 

Blimp Ice boat Helicopter Motor boat  
Config. ||Aw|| ||Pw|| ||Aw|| ||Pw|| ||Aw|| ||Pw|| ||Aw|| ||Pw|| 

1 1.57N 1.18N 1.7N .90N 1.57N 1N .591N .394N 
2 1.57N 1.18N 1.7N .90N 1.57N 1N .591N .394N 
3 1.18N 1.18N .90N .90N 1N 1N .591N .591N 
4 1.18N 1.57N .90N 1.7N 1N 1.57N .394N .590N 
5 1.57N 1.18N 1.7N .90N 1.57N 1N .590N .394N 
6 1.18N 1.57N .90N 1.7N 1N 1.57N .394N .590N 
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Appendix C 

 

How momentum and energy transfer were calculated for Table 9. 

Momentum is transferred when a force acting on an object changes that object’s speed or 

direction. For example, if wind increases an object’s speed, momentum from the air molecules is 

transferred to the object. If wind decreases an object’s speed, momentum is transferred in the 

opposite direction. Momentum, p, is given by multiplying mass, m, by velocity, v, or simply p = mv. 

To calculate the amount of momentum transfer (i.e., impulse), the initial momentum of the object, pi, 

is subtracted from the final momentum, pf, or ∆p = pf - pi, In Experiments 1 and 2, the boat’s mass 

was 1 kg. As a consequence, the change in momentum in these experiments is given by ∆p = vf– vi. 

Since the boat was accelerating before and after the fans turned on, I used the average velocity of the 

boat before and after the fans turned on to calculate the velocities. The average velocity is the 

displacement over total time, that is, =v d / t∆ . Momentum is reported in kilograms * 

mass/second (kg*m/s) However, because momentum is a vector, it is also necessary to indicate 

the direction of the momentum vector. In Table 9, the direction of the change in momentum is 

indicated with respect to the direction of the initial velocity vector.  

 An object’s momentum is closely linked to its kinetic energy, as reflected in their equations: 

whereas momentum is given by p = mv, kinetic energy is given by KE = ½mv2. When a force 

increases an object’s speed, it increases its kinetic energy. When a force changes on object’s 

kinetic energy, it performs work on that object, W=∆KE. Thus, work measures energy transfer. 

For example, when the fans performed positive work on the boat (i.e., sped the boat up), energy 

(actually, air molecules) was transferred from the fans to the boat. When the fans performed 

negative work on the boat, energy was transferred from the boat to the air molecules. Because 

the boat’s mass was 1kg, the energy transfer to the boats could be calculated by W = ½v2
final - 

½v2
initial.  


