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Dynamics and the perception of causal events 
 

To imagine possible events, we use our knowledge of causal relationships. To look deep into 

the past and infer events that were not witnessed, we use causal relationships as well. We also 

use causal knowledge to infer what can not be directly seen in the present, for instance, the 

existence of planets around distant stars, or the presence of subatomic particles. Knowledge of 

causal relationships allows us to go beyond the immediate here and now. In this chapter I 

introduce a new theoretical framework for how this very basic concept might be mentally 

represented. 

 In effect, I propose an epistemological theory of causation, that is, a theory that specifies the 

nature of people’s knowledge of causation, the notion of causation used in everyday language 

and reasoning. In philosophy, epistemological theories are often contrasted with metaphysical 

theories, theories about the nature of reality. Since people’s concepts of causation are assumed to 

be in error, most metaphysical theories of causation seek to reform rather than describe the 

concept of CAUSE in people’s heads, (see Mackie, 1974; Dowe, 2000). Theories of causation in 

psychology have followed suit by linking people’s representations of causation to the outward 

manifestations of causation rather than to the quantities in the world that produce those 

manifestations. In this chapter, I explore another possibility, one that assumes that people can 

peer beyond the veil of the visible to represent the (invisible) elements of the world that are 

essential to causal events. In the theory of causation to be presented, I propose that while the 

essential elements of causation are invisible, they are also are highly inferable because they are 

lawfully connected to the visible properties of events. As a consequence, people’s 

representations of causation partially reproduce causation in the world. In short, I propose an 

epistemological theory that could, in many respects, also serve as a metaphysical theory.  

 
Theories of Causation of the Humean Tradition 

The distinction between causation in the mind and in the world is discussed in Hume 

(1737/1975). He noted that when people first observe a causal relationship, they may be able to 

detect spatial-temporal contiguity, a succession of events and, in particular, covariation, but not 

what is most central to people’s ordinary concept of causation, that is, force, necessary 

connection, causal power and/or energy. Since notions such as these cannot be determined from 
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observation, let alone from reasoning, Hume held that people’s ordinary notion of causation had 

no clear basis in reality (Mackie, 1974; Dowe, 2000).  

Hume’s arguments have greatly influenced psychological theories of causation. The 

invisibility of causation has led many researchers to conclude that causal relationships can only 

be induced from event frequencies. Induction from event frequencies implies that causal 

relations are represented in terms of their observable outcomes, rather than in terms of the 

physical quantities that actually produce those outcomes. Such theories are exemplified by, for 

example, Cheng and Novick’s (1991, 1992) probabilistic contrast model. In this theory, causal 

relations are based on the covariation people observe between a candidate cause and effect 

within a “focal set” of events. Specifically, facilitative causation (CAUSE) is inferred when the 

probability of the effect in the presence of a candidate cause, P(E|C), is noticeably greater than 

the probability of the effect in the absence of the cause, P(E|¬C), that is, when the difference 

between these two probabilities, ∆P, is positive. Inhibitory causation (PREVENT) is inferred 

when ∆P is negative. While the probabilistic contrast model is primarily a model of causal 

induction, it also implies a theory of causal representation in which causal relationships are 

associated with statistical dependencies. Cheng’s (1997) power PC theory of causation extends 

the probabilistic contrast model by proposing that people’s causal judgments are based on a 

theoretical entity—causal power—that can be estimated from covariation, provided certain 

conditions are honored (see Luhmann & Ahn, 2005 for a critical analysis of these assumptions). 

The power PC model fleshes out Hume’s (1748/1975) intuition that people’s ordinary notions of 

causation involve the notion of causal power and that this notion is derived from covariational 

information. Importantly, however, causal power in the power PC model is still very much a 

statistical entity: it is determined purely on the basis of co-occurrence patterns across multiple 

events, not on the physical quantities in the world that bring about those patterns (just as Hume 

would have liked).  

Another recent approach to representation of causal relationships is captured in Bayesian 

network models of causation. In Bayesian models, causal factors are linked together in a network 

of nodes and arrows indicating causal connections (Gopnik, Glymour, Sobel, Shultz, Kushnir, & 

Danks, 2004; Pearl, 2000; Sobel, Tenenbaum, & Gopnik, 2004; Sloman & Lagnado, 2002; 

Sloman, 2005; Tenenbaum & Griffiths, 2001). While Bayesian networks go beyond prior 

approaches to causation in being able to address phenomena associated with causal reasoning, 
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they remain very much theories based only on the visible. Before a Bayesian network can reason, 

it must first be constructed, and all current approaches to the construction of Bayesian networks 

involve determining statistical dependencies (Wolff, 2006). As stated above, statistical 

dependencies are summary representations that are tabulated and stored in people’s minds, not in 

the world. Such networks do not directly represent the processes and quantities that bring about 

causal relationships in the world. As pointed out by Bunge (1959), to treat statistical dependency 

approaches as theories of causation is to confuse causation for one of it tests. 

In addition to probability approaches to causation, Hume’s views have influenced accounts 

of causal perception, most notably Michotte’s (1946/1963). Michotte examined in great detail the 

stimulus conditions that give rise to the impression of causation. He focused primarily on what 

he called launching events. In the canonical launching event, an object A approaches and hits a 

stationary object B, sending it into motion. One of the main findings from this research is that 

even small changes in the stimulus conditions could greatly affect the impression of causation 

(Scholl & Tremoulet, 2000). For example, a temporal gap between the two objects can 

sometimes disrupt the impression of causation (Michotte, 1946/1963; Thinès, Costall, & 

Butterworth, 1991). Importantly, when people are asked to describe launching events, their 

descriptions typically include more than a mere specification of the objects’ motions (Choi & 

Scholl, 2005; Michotte, 1946/1963). In billiard-ball collisions (a type of launching event), for 

example, people not only see changes in motion in two objects but also view one of the balls as 

causing the other’s motion. The pattern of motion instantiated by the launching event leads to the 

apprehension of an invisible causal agency. However, Michotte (1946/1963) emphasized that 

this causal agency was not a direct representation of forces or energies in the world. Rather, it 

was a perceptual phenomenon, or illusion, possibly triggered by an innate perceptual mechanism. 

 

Challenges for theories of the Humean tradition 

 Many current models of causation are based on Hume’s assumption that the physical 

quantities that give rise to causal events are unavailable to the human perceiver. But on this 

assumption, I will argue, Hume was mistaken. While people cannot directly see forces and 

energies, this does not mean that such quantities cannot be directly recovered from the sensory 

input. Newtonian physics indicates that, in principle, such recovery is possible because of the 

lawful mapping between kinematics and dynamics. Kinematics specifies the observable 
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properties of an event: the shapes, sizes, spatial relations, velocities, and accelerations of the 

various entities in a motion event (Schwartz, 1999; Joskowicz & Sacks, 1991; Gilden, 1991). In 

contrast, a motion event’s dynamics concerns the invisible properties of an event (Schwartz, 

1999), specifically, the forces, potential energies, pressures, powers, elasticities, and masses that 

bring about an event. Some of the mapping between kinematics and dynamics is captured in 

Newton’s laws of motion. For example, if an object suddenly turns to the right, Newton’s 1st law 

states that the change in velocity implies acceleration, which entails the presence of a force. 

Newton’s 2nd law, F = ma, implies that the direction of the force, F, is exactly the same as the 

direction of acceleration, a. Thus, by observing an instance of change in velocity and the 

direction of that change, people can, in principle, detect the presence of a force and the direction 

of its influence. The process of computing forces from kinematics is known as inverse dynamics. 

 Within the field of physics understanding, there is general agreement that people are capable 

of performing inverse dynamics, at least to a limited extent (Hecht, 1996; Gilden 1991; Kaiser & 

Proffitt, 1984; Kaiser, Profftt, Whelan, & Hecht, 1992; Proffitt & Gilden, 1989; Twardy & 

Bingham, 2002). According to Runeson and his colleagues, people’s ability to infer the dynamic 

properties of an event is quite good, because people’s perceptual systems allow them to “see” the 

dynamics of an event via its kinematics, a proposal known as the principle of kinematic 

specification of dynamics (KSD; see Runeson & Frykolm, 1983; Runeson, Juslin, & Olsson, 

2000; Runeson & Vedeler, 1993). Others have been more conservative in their estimates of 

people’s ability to infer the dynamics of an event, suggesting that people may be able to recover 

a portion of these properties via perceptual heuristics (see Proffitt & Gilden, 1989; Hecht, 1996; 

Gilden, 1989). Clearly, people’s ability to infer dynamic properties is not perfect (e.g., 

McCloskey, 1983; McCloskey & Kohl, 1983; McCloskey, Washburn, & Felch, 1983). People 

sometimes fail to notice certain kinds of dynamic properties or impute properties that do not 

exist (Clement, 1983; McCloskey, 1983). Nevertheless, the process of inducing dynamic 

properties is not completely arbitrary. This is especially true when the dynamic properties of a 

situation do not depend on the geometry of the objects, in which case the moving entities in a 

scene can be treated as particles (Gilden, 1991; Proffitt & Gilden, 1989; Hecht, 1996; Kaiser, 

Profftt, Whelan, & Hecht, 1992).  

Beyond the empirical literature, our ability to infer the presence of dynamic properties is 

supported by everyday experience. Human bodies can detect energy. When we touch a hot pan, 
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we not only feel the solidness of the pan, but also the heat it gives off. Bigelow, Ellis, and 

Pargetter (1988) provide a similar example in the case of forces. If something bumps us and we 

stumble, we feel the force. We can argue that it is the force that is felt—not only the object—

because the same object feels different when it bumps us gently or hard. Hume’s assumption that 

people do not have access to the agencies that bring about causal events is inconsistent with work 

in physics understanding as well as with common sense. Just because forces and energies cannot 

be seen does not mean that their existence cannot be sensed in other ways, or that their presence 

cannot be inferred, relatively directly, from visual input. Therefore, one of the basic assumptions 

motivating models in the Humean tradition is false. People have at least partial access to the 

quantities in the world that bring about causation in the world. 

 

Physicalist models of causation 

 In contrast to Humean models, physicalist models hold that people’s representations of 

causation may partially copy or reproduce what goes on in the real world. The basic idea in 

physicalist approaches to causation is that people’s representations of causation specify physical 

quantities in the world, such as energy, momentum, linear and angular momentum, impact 

forces, chemical forces, and electrical forces, among others. For example, according to 

Aronson’s (1971) Transference Theory, causation implies contact between two objects in which 

a quantity possessed by the cause (e.g., velocity, momentum, kinetic energy, heat, etc.) is 

transferred to the effect. Another transference theory is proposed by Fair (1979), who holds that 

causes are the source of physical quantities, energy, and momentum that flow from the cause to 

the effect. According to Salmon’s (1994, 1998) Invariant Quantity theory, causation involves an 

intersection of world lines that results in transmission of an invariant quantity. The proposals of 

Aronson, Fair, and Salmon come from the philosophy literature. Similar proposals from the 

psychology literature have been termed generative theories of causation. According to Bullock, 

Gelman, and Baillargeon (1982), adults believe that causes bring about their effects by a transfer 

of causal impetus. Shultz (1982) suggests that causation is understood as a transmission between 

materials or events that results in an effect. According to Leslie (1994), physical causation is 

processed by a “Theory of Bodies” (ToBy) that schematizes objects as bearers, transmitters, and 

recipients of a primitive notion of force. 
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A recent proposal from the philosophy literature breaks from earlier physicalist models in 

not requiring a one-way transmission of energy or momentum. According to Dowe’s Conserved 

Quantity Theory (2000), there are two main types of causation: persistence (e.g., inertia causing 

a spacecraft to move through space) and interactions (e.g., the collision of billiard balls causing 

each ball to change direction). Causal interactions occur when the trajectories of two objects 

intersect and there is an exchange of conserved quantities (e.g., an exchange of momentum when 

two billiard balls collide). Unlike transfers, exchanges are not limited to a single direction (e.g., 

from cause to effect).   

 Assumptions of physicalist theories. Physicalist approaches to causation share several 

assumptions. First, they assume that an interaction can be identified as causal on the basis of 

properties that belong solely to that interaction. Second, defining causal relationships in terms of 

physical quantities imposes a relatively ‘local’ level of granularity on the analysis of causal 

relationships. Transfer of energy, for example, can only occur through local interactions between 

objects. Third, at the ‘local’ level of granularity, causal relationships are deterministic (Goldvarg 

& Johnson-Laird, 2001; Luhmann & Ahn, 2005): the physical quantities that instantiate direct 

causal relationships are either present or absent, not present to a probabilistic degree. Fourth, the 

‘local’ nature of causal connections implies that when there is a causal connection between two 

non-contiguous events, there must be a causal chain of intermediate links, each contiguous to the 

next (Russell, 1948). Hence, physicalist theories imply the need for causal mechanisms, as has 

been supported by work in psychology (Ahn & Bailenson, 1996; Ahn & Kalish 2000; Ahn, 

Kalish, Medin, & Gelman, 1995; see also Bullock et al., 1982; Shultz 1982). The fifth 

commonality is that most physicalist theories reduce causal relationships to quantities that cannot 

be directly observed. In the language of physics, physicalist models hold that people represent 

causal relationships in terms of their dynamics rather than kinematics. The sixth assumption is 

that physical causation is cognitively more basic than non-physical causation (e.g., social or 

psychological causation). In support of this assumption, the ability to perceive physical causation 

begins to develop earlier in infants (around 3 to 4 months) than the ability to perceive social 

causation (around 6 to 8 months; Leslie, 1994; Cohen, Amsel, Redford, & Casasola, 1998; 

Oakes, 1994). A final assumption is that non-physical causation is in some way modeled after 

physical causation (Leslie, 1994; Talmy, 1988). This modeling may occur via a process of 

analogy in which notions such as “effort” and “intention” are construed as energies and forces. 
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Evaluation of physicalist accounts of causations. Physicalist models hold that people’s 

representations of causation refer to physical quantities in the world. As a consequence, such 

theories can provide a precise characterization of the physical agencies that bring about causal 

events. They can also provide an account of how causal relationships might be inferred on the 

basis of a single observation. This is possible because the information needed to infer causal 

relationships is available in the occurrence of individual events. While physicalist models have 

several strengths, they also have several limitations. Arguably the most important test of a theory 

of causation is whether it has extensional adequacy. A theory of causation should be able to pick 

out the range of situations that people judge to be causal while excluding situations that people 

judge to be non-causal. However, current physicalist models do not categorize causal situations 

in the same way as people. In particular, the physicalist models discussed so far conflate the 

concepts of CAUSE and ENABLE. For people, these concepts are similar but not synonymous. 

In most contexts, they are not interchangeable, as illustrated by the sentences in (1) and (2).   

 

(1) a. Hinges enabled the crutches to fold in half. 

b. A weak spot in the welding caused the crutches to fold in half. 

(2) a. ?Hinges caused the crutches to fold in half. 

b. ?A weak spot in welding enabled the crutches to fold in half. 

 

The sentences in (1a) and (1b) are perfectly acceptable. However, if the verbs in (1a) and 

(1b) are switched, the resulting sentences (2) sound odd. Importantly, however, in all of 

scenarios described in (1) and (2) there is a transmission or exchange of energy. Another 

limitation of current physicalist theories is that they do not easily represent the concept of 

PREVENT (Dowe, 2000). If prevention is characterized by the lack of transfer or exchange of 

energy, then it does not differ from the absence of any kind of interaction and if it is 

characterized by a transfer or exchange of energy, it does not differ from causation. (See Dowe 

(2000) for an in-depth discussion of the problem of prevention.) The problem with the 

physicalist models discussed so far is that transmission or exchange of energy is too coarse a 

criterion for distinguishing causation from other kinds of events that also involve a transmission 

or exchange of energy. To distinguish causation from other kinds of relationships, a finer level of 

representation is required. 
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The dynamics model 

 The dynamics model is a physicalist model of causation. As such, it holds that people 

represent causal relations in a manner that copies or reproduces the way in which causal 

relationships are instantiated in the real world. While it is primarily based in physical causation, 

it can be extended to non-physical causation by analogy. However, unlike other physicalist 

models, the dynamics model does not equate causation with the transfer or exchange of a 

physical quantity. Rather, it associates causation with a pattern of forces and a position vector 

that indicates an endstate. Previous researchers have suggested that causation is closely linked to 

the notion of force (Ahn & Kalish, 2000, Bigelow et al., 1988; Leslie, 1994). In particular, 

Bigelow & Pargetter (1990) proposed that causation might be associated with a specific pattern 

of several forces, though they did not specify the exact pattern. Important parts of the dynamics 

model are also reflected in diSessa’s (1993) phenomenological primitives, as well as in White’s 

(2000) influence and resistance model, in which causal judgments are likened to the passage of 

energy in a physical system.   

The importance of force in the representation of causation is illustrated by the causal (but 

static) situations described in (2). 

 

         (2) a. Pressure will cause the water to remain liquid at slightly below 0°C. 

b. Dirt caused the valve to stay open. 

c. Tiny barbs on the stinger cause it to remain in the wound.  

d. Guide wires prevented the Christmas tree from falling. 

 

In each of the situations described in (2) nothing happens. Because nothing happens, there is no 

regular sequence of events, or transfer or exchange of energy, at least at the macro-level. What is 

present in each of these situations is a configuration of forces. According to the dynamics model, 

it is this configuration of forces that makes these situations causal (2a-c) or preventative (2d). 

The dynamics model is based on Talmy’s (1985, 1988) force dynamics account of causation 

(see also Jackendoff, 1990; Pinker, 1989; Siskind, 2000; Verhagen & Kemmer, 1997; Verhagen, 

2002; Wolff, 2003; Wolff, 2007; Wolff & Zettergren, 2002). By analyzing the concept of 

CAUSE into patterns of forces, Talmy showed that the concept of CAUSE could not only be 

grounded in properties of the world but also be used to define other related concepts such as 
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Table 1. Representations of CAUSE, ENABLE & PREVENT  
 Patient tendency 

for endstate 
Affector-patient 

concordance 
Result: endstate approached 

CAUSE N N Y 
ENABLE Y Y Y 
PREVENT Y N N 

ENABLE, PREVENT, and DESPITE. He also showed how this approach to causation could be 

extended to many domains of experience, including the physical, intra-psychological, social, and 

institutional. I incorporate many of Talmy’s key ideas into the dynamics model of causation. 

However, I also introduce several new distinctions and makes significant changes to the theory’s 

underlying semantics.1  

The dynamics model holds that the concept of CAUSE and related concepts involve 

interactions between two main entities: an affector and a patient (the entity acted on by the 

affector). The nature of this interaction can be described at two levels of analysis. The category 

level specifies summary properties of various cause-related concepts. Distinctions at this level 

are sufficient to distinguish different classes of causal verbs (see Wolff, Klettke, Ventura, & 

Song, 2005). The computational level re-describes the distinctions at the category in terms of 

units of cognition that represent physical quantities in the world. It is at this level that causes and 

related concepts are explicitly linked to configurations of force.  

The category level of representation. The dynamics model holds that, at the category level, 

the concept of CAUSE and related concepts can be understood in terms of three dimensions 

(Wolff & Song, 2003). Specifically, as summarized in Table 1, the concepts of CAUSE, 

ENABLE, PREVENT, and DESPITE can be captured in terms of 1) the tendency of the patient 

for the endstate, 2) the presence or absence of concordance between the affector and the patient, 

and 3) progress toward the endstate. 

 
************************* Insert Table 1 about here *************************** 

 

Note. Y = Yes, N = No 

 
The semantics of these three dimensions are illustrated by the sentences in (3). Consider the 

example of causation in (3a). In this sentence, the patient (the boat) does not have a tendency for 
                                                 

1 See Wolff (2006) for summary of the key differences between the two accounts.  
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the endstate (heeling). The affector (wind) is not in concordance with the patient and the result 

occurs. In enabling situations, as in (3b), the tendency of the patient (the body) is for the result 

(to digest food). The affector (vitamin B) does not oppose the patient, and the result occurs. In 

preventing situations, as in (3c), the patient (the tar) has a tendency for the result (bonding). The 

affector (the rain) opposes the tendency of the patient and the result does not occur.  

 

(3) a. Wind caused the boat to heel. 

      b. Vitamin B enables the body to digest food. 

      c. Rain prevented the tar from bonding. 

 

The computational level of analysis. The computational level of the dynamics model re-

describes the three dimensions of tendency, concordance, and result in terms of patterns of 

forces, or vectors. In discussing such vectors I make a distinction between vectors in the world 

and vectors in people’s minds. Vectors in the world are quantities that have a point of origin, a 

direction, and a magnitude. The vectors in people’s representations of causation are more 

qualitative. Specifically, vectors in people’s representations are predicted to be relatively 

accurate with respect to direction, but somewhat imprecise with respect to magnitude. People 

may be able to infer the relative magnitude of two vectors, that one is greater than another. 

Uncertainty about the magnitude of the vectors adds a certain amount of indeterminacy to 

people’s representations of force dynamic concepts. It is hypothesized that our mental notion of 

force vectors can represent not only physical forces but also social and psychological forces. 

Like physical forces, social and psychological forces can be understood as quantities that 

influence behavior in a certain direction. In this paper, all vectors are in boldface (e.g., P).  

The dynamics model specifies that four types of force vectors are relevant to the mental 

representation of cause-related concepts. A represents the force exerted on the patient by the 

affector; P represents the force (i.e., thrust) produced by the patient itself or, in the absence of 

such a force, its weight (e.g., gravity) and/or resistance to motion due to frictional forces; and O 

represents the summation of the remaining other forces acting on the patient. The patient’s path 

through space is determined by R, the resultant force acting on the patient based on the vector 

addition of A, P, and O. In addition to these four forces, people’s mental representation of the 
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patient’s location with respect to an endstate is specified by the vector E, which begins at the 

patient and ends at the endstate, as shown in Figure 1. 

 
 

************************* Insert Figure 1 about here *************************** 
 

 

 

 

 

 

 

Figure 1. Forces associated with the affector, A, patient P, and other forces, O, combine to 

produce a resultant force, R, that is directed toward the endstate, as specified by the position 

vector, E. 

With these definitions and assumptions in place, the relationship between the category and 
computational levels of the dynamics model can be specified, as summarized in Table 2. 

 
************************* Insert Table 2 about here *************************** 
 
Table 2. Dimensions in dynamics model 
 
Tendency  (of patient for endstate) 

 
P & E are collinear 

 
Concordance  (of affector & patient) 

 
A & P are collinear 

 
Result: Endstate approached 

 
R & E are collinear 

 
 
Tendency - As shown in Table 2, the patient can be viewed as having a tendency for the 

endstate when the force associated with it, P, is in the direction of the endstate, E, that is, when P 

and E are collinear. For example, in the free-body diagrams illustrating ENABLE, PREVENT 

and DESPITE in Figure 2, P lies in the same direction as E, indicating that the patient has a 

tendency for the endstate. In the CAUSE configuration, P does not point in the same direction as 

E, indicating that the patient does not have a tendency for the endstate.  

O 

Patient 

A 

P 

R E 

  Endstate 
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Concordance - The patient and the affector are in concordance when the patient’s tendency, 

P, is in the same direction as the force associated with the affector, A, that is, when P and A are 

collinear. As shown in Figure 2, collinearity holds in the case of ENABLE but not in the cases of 

CAUSE, PREVENT, and DESPITE. 

 Result – The patient will approach the endstate and eventually reach it, barring changes in 

the forces acting on the patient, when the sum of the forces acting on the patient, R, is in the 

direction of the endstate E, that is, when R and E are collinear.  

 
************************* Insert Figure 2 about here *************************** 

 
 
 
 
 
 
 
 

 
Figure 2. Configurations of forces associated with CAUSE, ENABLE, and PREVENT. 
 

 
Spanning restriction and heuristic. The dynamics model places constraints on what 

constitutes a valid configuration. Valid configurations are those in which the resultant could be 

produced from the vector addition of the component vectors. Thus, according to the dynamics 

model, understanding causal relationships involves evaluating whether R reflects the sum of the 

vectors A, P, and O in the real world. The model assumes that people are sensitive to the way in 

which forces interact in the real world. However, since vectors in the mind do not have exact 

magnitudes, their representations do not allow for exact vector addition to assess R. Instead of 

exact vector addition, I propose that people use a qualitative criterion for deciding whether a 

resultant could have been produced from the vector addition of two vectors. An implication of 

the parallelogram law of vector addition is that the resultant of two vectors will always lie on top 

of or within the region, or span,2 bounded by the vectors being added, as depicted in Figure 3. 

                                                 
2 The word “span” is used here in a more restricted sense than is used in mathematics. In its usual sense, “span” 
refers to, for example, the set of resultant vectors, ui, that can be formed from the equation u = c1v1 + c2v2, where v1 
and v2 are vectors and c1 and c2 are scalars. When using “span” in the context of the dynamics model, I restrict c1 
and c2 to values that are equal to or greater than zero, thus limiting the resultant vectors, ui, to the region bounded by 
and including v1 and v2. 

CAUSE 

A 

P 

R E 

ENABLE 

A P R E 

A 

P 

R 

E 

PREVENT 
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************************* Insert Figure 3 about here *************************** 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Despite uncertainty about the magnitudes of V1 and V2, we can infer that the resultant 
of the two vectors will reside within the area bounded by V1 and V2. 
 
If the resultant lies outside the span of the two vectors being added, the configuration violates the 

spanning restriction. According to the dynamics model, people refer to the spanning restriction 

in a heuristic—the spanning heuristic—to make rough guesses about whether a resultant was 

produced from the vector addition of the component forces. When a resultant—as indicated by a 

patient’s motion— lies within the span bounded by two vectors, the spanning heuristic warrants 

the inference that the resultant was produced from the vector addition of the two component 

vectors. When a resultant lies outside the span, the spanning heuristic holds that the result was 

not due to the addition of the two component vectors alone. 

 
Testing the dynamics model 
 

The dynamics model makes predictions about how people will interpret scenes that instantiate 

different configurations of forces. In particular, the dynamics model makes predictions about 

what kinds of events will count as causation, as opposed to enablement or prevention. Here I 

provide a summary of the experiments reported in Wolff & Zettergren (2002) and Wolff (2007). 

In these experiments, participants viewed 3D animations that depicted a boat (the patient) 

moving in a pool of water toward a cone (the endstate); a bank of fans beside the pool (the 

affector) affected the speed and direction of the boat (see Figure 3). The boat’s path through the 

water was completely determined by a physics simulator, which allowed us to independently 

manipulate the dynamics of the situation, in particular, the forces acting on the boat. After 

                                                                                                                                                             
 

V2 

V1 
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viewing an animation, participants chose from several linguistic descriptions or “none of the 

above” (Wolff, 2007). All of the descriptions were the same (The fans ____ the boat to [from] 

hit[ting] the cone) except for the main verb, which was either caused, helped or prevented. 

 

************************* Insert Figure 4 about here *************************** 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Frame from an animation used to instantiate a CAUSE interaction.  

 
We predicted that CAUSE descriptions would be chosen when the boat initially moved away 

from the cone (Tendency = N), but eventually hit it because of the fans’ blowing in the direction 

of the cone (Concordance = N; Endstate approached = Y). We predicted that ENABLE 

descriptions would be chosen when the boat moved toward the cone (Tendency = Y), the fans 

blew in the same direction (Concordance = Y), and the boat ultimately reached the cone 

(Endstate approached = Y). We predicted that PREVENT descriptions would be chosen when 

the boat moved toward the cone (Tendency = Y), but the fans blew in another direction 

(Concordance = N) such that the boat missed the cone (Endstate approached = N). Finally, we 

predicted participants would choose the option “none of the above” when none of the above 

configurations were instantiated.  

The predictions of the dynamics model were fully borne out by the results. The lower portion 

of Table 3 shows the percentage of times people chose each of the four options for each of the 
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vector configurations. Importantly, participants did not choose prevent for all scenes in which the 

boat missed the cone (6-8). Instead, prevent was restricted to just those situations in which the 

boat had an initial tendency for the endstate (4). Likewise, participants did not choose cause or 

help just because the boat hit the cone (5). Since two vectors must be evaluated to determine 

concordance, this last result strongly suggests that participants considered the relationships 

among the vectors when choosing the description, just as predicted by the theory. 

 
************************* Insert Table 3 about here *************************** 

 
Table 3. Experiment 1 in Wolff (2007), along with associated predictions and results 
 

Config. # 1 2 3 4 5 6 7 8 
Affector ( ) 
Patient  ( ) 
Result.  ( ) 
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Predicted CAUSE ENABLE ENABLE PREVENT Unspecified Unspecified Unspecified Unspecified 
    “Cause” 94% 11% 6% - - - 6% - 
    “Help” 6% 89% 94% - 11% - - - 
    “Prevent” - - - 100% 6% - - 6% 
    “No verb” - - - - 83% 100% 94% 94% 

 
The dynamics model easily extends beyond the one-dimensional interactions used in 

Experiment 1 to two-dimensional interactions. Wolff (2007; see also Wolff & Zettergren, 2002) 

demonstrated this using the configurations shown in Table 4.  Also as shown in Table 4, 

participants’ choices matched the predictions of the theory. 

 

************************* Insert Table 4 about here *************************** 
 

 

 

 

Table 4. Configurations used in Experiment 2 of Wolff (2007), with associated predictions and results 
Config. # 1 2 3 4 5 6 7 8 9 10 
 

Affector ( ) 
Patient  ( ) 
Result.  ( ) 
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Predicted CAUSE ENABLE PREVNT PREVNT PREVNT PREVNT Unspecified Unspecified Unspecified Unspecified 

    “Cause” 89% 11% - - - - - - - - 

    “Help” .1% 83% - - - - - - - - 

    “Prevent” - - 94% 94% 89% 89% - 17% - 11% 

    “No verb” - 6% 6% 6% 11% 11% 100% 83% 100% 89% 
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The results from Wolff (2007) are consistent with the hypothesis that people’s causal 

concepts are based on configurations of force. The results also support the dynamics model’s 

account of how people determine causation on the basis of a single observation. According to the 

model, people identify causal relationships by constructing representations of the forces acting 

on the patient. However, the data so far are open to an alternative possibility; specifically, they 

could be explained in terms of kinematics rather than dynamics. In a kinematics account, only 

visible movements—specifically, the velocities—are considered in the classification of 

interactions. For example, causation might be defined as an interaction in which the patient was 

not moving toward the endstate, but then moved toward the endstate once the affector made 

contact with it. Enablement could be defined as an interaction in which the patient was moving 

toward the endstate, but then moved more quickly toward the endstate once the affector made 

contact with it. Finally, prevention might be defined as an interaction in which the patient was 

moving toward the endstate, but then moved away from the endstate once the affector made 

contact with it.  

One way to test between kinematics and dynamic approaches to causation would be to 

examine whether people are aware of the way in which forces are added. If people’s causal 

judgments are based on kinematics, peoples’ causal judgments should be insensitive to such 

violations in the way the forces are added. On the other hand, if causal judgments are based on 

the dynamics of an event, people should notice when an object moves in a way that is not 

consistent with the way forces are added.  

As discussed earlier, it is assumed that people use a qualitative criterion, the spanning 

heuristic, to determine whether a particular resultant could be derived from a particular set of 

forces. When a patient moves in a direction that lies within the area between the forces acting on 

the patient (see Figure 4), the spanning heuristic should lead people to assume that the resultant 

is produced from the vector addition of those forces. Conversely, when the resultant does not 

reside within the span of the component vectors, it can be said that the configuration violates the 

spanning restriction. 

The spanning heuristic provides a rough method of evaluating whether the net force acting 

on a patient is derivable from the overt forces acting on the patient. However, in certain 

circumstances, the heuristic may lead people to incorrectly infer that the net force acting on the 

patient is fully explained in terms of the perceived forces when, in fact, there are other forces in 
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play. Such an illusion of sufficiency is most likely to occur when there is more than one external 

force acting on the patient, that is, when the magnitude of other forces, O, is greater than 0. For 

example, consider the three scenes and free-body diagrams in Figure 5. The forces entered into 

the physics simulator for all the scenes are depicted in the first free-body diagram. In the first 

animation, a boat motors to the middle of a pool, two sets of fans turn on, and the boat moves 

toward the cone and ultimately hits it. The second panel shows a frame from an animation that is 

exactly the same as the one on the left except that the one of the fans is not shown (though its 

force is still present). In this animation, the boat moves into the area bounded by the overt forces; 

hence, according to the spanning heuristic, the fan may be construed as a cause of the boat’s 

hitting the cone. The third panel shows an animation that is also exactly the same as the one in 

the first panel except that the opposite fan is not shown. In this scene, based on single visible fan, 

the boat’s direction lies outside the area bounded by the perceived forces. According to the 

spanning heuristic, then, the visible fan cannot be construed as a cause of the boat’s hitting the 

cone.  

 

************************* Insert Figure 5 about here *************************** 

 

 

 

 

 

 

 

 

 

Figure 5. In each animation, the boat motors to the middle, the fans turn on, the boat changes 
course, and the boat hits the cone. Each animation is based on the same configuration of forces 
as shown in the first panel. However, in the second and third panels, only one of the two fans 
appears in the animation, as implied by the incomplete. 

 
 
These predictions were tested in an experiment in which participants saw four pairs of 

animations (Wolff, 2006). Like the middle and rightmost animations in Figure 5, these 

   
Affector ( ) 
Patient  ( ) 
Result.  ( ) 
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animations depicted situations in which two external forces were in play, but only one was 

shown. One member of each minimal pair depicted a situation in which the resultant was within 

the span of the observable forces and the other member depicted a situation in which the 

resultant was not within that span. As predicted, participants were quite willing to say that the 

fan “caused” the boat to hit the cone when the resulting direction of the boat was within the span 

of the two observable forces (percent “caused” = 84%). Also, as predicted, participants were 

quite unwilling to say that the fan “caused” the boat to hit the cone when the boat moved in a 

direction that was outside of the area spanned by the two observable forces (percent caused = 

18%). When the boat moved outside of the area span of the observable forces, people decided 

that it was not physically possible for the result to be due to the observable forces alone.  

In both kinds of scenarios, the boat changed direction immediately after the fans began to 

blow, so neither temporal nor spatial contiguity was a determining factor in participants’ 

judgments. The two kinds of animations were equally “physically accurate” since they were 

based on exactly the same underlying forces. They were also equally “incomplete” in that only 

one of the two forces acting on the boat was shown. Finally, both kinds of animations were 

equally “natural” in the sense that we are likely to encounter scenes in which any of a number of 

external forces may be hidden.  

Support for the spanning heuristic also makes clear that that people’s judgments of causation 

do not require knowing the exact magnitudes of the forces. In the spanning conditions, the 

animations did not provide enough information to determine whether the boat’s course was due 

to the force associated with just the one fan or due to that force in combination with (an)other 

hidden force(s). Nevertheless, when the boat moved within the span of the overt forces, people 

agreed that the fan “caused” the boat to hit the cone. Thus, precise knowledge of magnitudes is 

not necessary for classifying the situation as causal. What appears to be necessary, instead, is 

awareness of the direction of the forces, which supports the hypothesis that people think about 

causation in terms of vectors. In sum, the results of this experiment support three main 

assumptions of the dynamics model, namely, that people think about causal situations in terms of 

vectors, that they perform vector addition via the spanning heuristic, and that their causal 

judgments are based on the dynamic properties of an event, which are derived from the 

kinematics.   
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In addition to these results, several other problems remain for a kinematics-only account of 

causation. As discussed above, the concept of CAUSE extends to situations in which there are 

conflicting forces, but no change occurs (e.g., The rubber bottom caused the cup to stay in 

place). A kinematics-based account cannot distinguish these static causal situations from 

situations that are static but simply spatial (e.g., *The tree causes the roof to be under the 

branch). Another limitation to a kinematics approach is that it does not easily explain our 

language for non-physical causation. In describing social causation, we rarely talk about “social 

velocities” or “peer accelerations.” Rather, we talk about “social forces” and “peer pressures.” 

Our language for describing social interactions implies that we think about these interactions in 

terms of dynamic properties. We can talk about “psychological forces” as when we describe 

someone as strong willed or internally conflicted. Ordering someone to do something is easily 

viewed as imparting an invisible, directional influence that may or may not produce an effect.  

These patterns in language suggest that the dynamics model might be extended to account 

for people’s causal judgments of scenes involving intentions and desires. Consider, for example, 

the scenarios depicted in Figure 6, in which a woman is standing in a raft and pointing in a 

particular direction. She indicates the direction she wants to move by pointing. If intentions are 

analogous to physical forces, as assumed in the dynamics model, people should prefer to say that 

the fans caused the woman to reach the cone when the woman is pointing away from the cone 

and that the fans enabled her to reach the cone when the woman is pointing towards the cone. In 

addition, they should report that the fans prevented her from reaching the cone when she points 

towards the cone, but is pushed away from it.  
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************************* Insert Figure 6 about here *************************** 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 6. The scene depicts a CAUSE situation since the woman does not want to go to the cone 
(as indicated by the direction of her pointing) but the fans push her there nevertheless.  
 

These possibilities were tested in an experiment involving intentional forces (Wolff, 2006). 

Participants saw two kinds of animations. Half of the animations were based on physical forces 

only, just as in the previous experiments. In the remaining animations, the underlying 

configurations of forces were exactly the same as those used in the physical-only animations. 

The main difference was that the patient’s tendency was indicated by a woman’s intention (as 

represented by her pointing). Specifically, in physical-and-intentional animations, the motor boat 

was replaced with a round rubber raft with a woman inside of it. Because the boat did not have 

an engine, the tendency of the patient (i.e., the woman in the round rubber raft) could not be 

specified by its self-motion. Rather, for these animations, the patient’s tendency was specified by 

the woman pointing in a certain direction. Thus, for the CAUSE animations, the tendency of the 

patient was indicated by the boat motoring away from the cone in the physical force-only 

condition and by the woman pointing away from the cone in the physical-and-intentional force 

CAUSE 

 
 

 E 
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condition. In the ENABLE and PREVENT animations, the tendency of the patient was indicated 

by the boat motoring toward the cone and the woman pointing toward the cone.  

As in the previous experiments, participants saw the animations and described them by 

choosing sentences containing either cause-verbs (cause, get, make), enable-verbs (enable, help, 

let), prevent-verbs (block, keep, prevent), or the option “none of the above.” The results showed 

that people treated the woman’s intention as if it were a physical force. In the animations in 

which both forces were physical, the results were the same as in previous experiments: people 

prefer cause-verbs for the CAUSE animations (94%), enable-verbs for the ENABLE animations 

(89%), prevent-verbs for the PREVENT animations (100%). The pattern of responses was the 

same when the patient’s tendency was determined by where the woman was pointing. People 

preferred cause-verbs for the CAUSE animations (94%), enable-verbs for the ENABLE 

animations (83%), prevent-verbs for the PREVENT animations (100%). The results indicated 

that the dynamics model can be extended to situations involving non-physical forces. In Wolff 

(2006), I show that the dynamics model extends to situations in which all of the forces are either 

intentions or desires. 

 
Summary 

The dynamics model describes how people’s representations of causation reproduce 

causation in the real world. It explains how people’s representations of causation are specified in 

terms of forces, which are the very quantities that cause events in the real world. The 

assumptions embodied in the dynamics model contrast with those of Hume and models of the 

Humean tradition. Hume (1748/1975) maintained that people’s conceptualization of causation 

went beyond kinematics to include such notions as force, necessary connection, causal power 

and/or energy. Importantly, however, he also held that because such notions could not be directly 

seen, they were constructs of the mind rather than reflections of what went on in the world. 

Because these quantities could not be seen, Hume argued, they must emerge from the 

observation of a regular succession of events. 

 Michotte’s (1946/1963) assumptions about causation in launching events were very similar 

to Hume’s assumptions about causation in general. Like Hume, Michotte argued that people’s 

notion of causation extended beyond the kinematics of an event: when an object A strikes an 

object B and sends it into motion, people inferred the presence of a causal relationships, not just 
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a sequence of motions. Also like Hume, Michotte felt that the impression of causation did not 

directly reflect the dynamics of the event. Instead, he felt that the impression was a visual 

illusion formed from a (possibly innate) perceptual mechanism. Michotte’s view of causation 

differed from Hume’s in that he held that the causal impression could be formed on the basis of a 

single observation rather than requiring multiple occurrences for its apprehension.  

 The dynamics model shares certain assumptions with Michotte’s account of causation for 

launching events. Both accounts hold that people’s representations of causation extend beyond 

kinematics and that the induction of causation can occur on the basis of a single observation. 

However, unlike Michotte’s and Hume’s accounts, the dynamics model holds that people’s 

representations of causation copy, or replicate, certain aspects of the dynamics of an event, and 

as a consequence, people’s causal representations capture important aspects of the quantities that 

bring about causation in the world. This does not imply that people are able to recover all of the 

dynamic properties of an event. Work in physics understanding shows that this clearly does not 

happen. However, people do appear to be able to construct partial representations of an event’s 

dynamics. In particular, they appear to be relatively good at recovering the direction of forces.  

 

Launching events and dynamics 

 Given the close similarities between the dynamics model and Michotte’s account of 

causation, one might wonder why Michotte chose to argue against a dynamics account of the 

causal impression. As reviewed below, the evidence that Michotte used to argue against a 

dynamics account of causation is open to alternative explanations. In addition, when we look 

more closely at Michotte’s own experiments, we find that many of his results provide evidence 

against his own hypotheses and support for dynamics.  

 Michotte’s arguments against dynamics. One reason why Michotte felt that the causal 

impression was not due to dynamics is that people sometimes reported perceiving causation in 

events that he viewed as physically impossible. For example, people reported perceiving 

causation in situations in which objects A and B are moving, object A faster than object B, and 

when the two make contact, object A stops and object B slows down (Michotte, 1946/1963, p. 

71). On the basis of such results, Michotte concluded that the causal impression is not based on 

past experience with the world. Had people referred to past experience, they would have 

expected object B to speed up, not slow down, after being hit. However, while such a sequence 
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of events may be unusual, it is not necessarily at odds with Newtonian physics. Friction can 

change dramatically over the course of an object’s movement, as when a ball rolls off an asphalt 

road and onto a gravel driveway. Michotte’s “impossible” event is not, in fact, impossible in the 

world, and so his finding does not necessarily rule out the role of dynamics in the perception of 

causation.   

 Another of Michotte’s arguments for the independence of the launching effect and real 

world causation is that sometimes the causal impression failed to obtain for trajectories that 

people experience in the real world. In support of this point, Michotte conducted several 

experiments (34 and 35) in which object A hits object B directly, and B travels at an angle away 

from its expected straight line path. The degree of deviation from B’s expected straight path 

ranged from 25° to 90°; as the size of the angle increased, the impression of causation grew 

weaker. Michotte points out that this result is at variance with our real world experience in which 

two colliding objects can travel at angles (besides 180°) and still be viewed as causal (e.g., 

billiards, marbles). However, Michotte’s collision events were quite different from those 

involving billiard balls and marbles. In particular, since object A hit object B directly, Newtonian 

physics would predict that object B should move straight ahead, not at an angle. In addition, in 

Michotte’s Experiment 35, from which it seems most of his conclusions were derived, the 

objects were rectangles instead of circles. If a rectangle were to hit another rectangle straight on, 

it would, indeed, be quite surprising and inconsistent with Newtonian physics if the second 

rectangle veered off at an angle, especially a right angle. Thus, in complete contrast to 

Michotte’s stated conclusions, his work showing how changes in direction weaken the causal 

impression actually supports the conclusion that there is a tight relationship between the causal 

impression and dynamics in the world. 

 Yet another reason why Michotte believed the causal impression was only a perceptual 

phenomenon is that people experience the causal impression even when the objects involved are 

spots of light, shadows, or lines painted on a rotated disk. In other words, people perceive 

causation while also knowing that such causation does not occur in the real world (1946/1963, p. 

84-85). However, a dynamics approach to causation does not imply that people cannot be subject 

to illusions of causation. A particular configuration of forces will produce only one kinematic 

pattern, but a single kinematic pattern is potentially consistent with more than one configuration 

of forces. This asymmetry explains why causal illusions can sometimes occur: people may infer 
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the wrong configuration of forces from a particular kinematic pattern. This is especially likely 

when the actual forces driving the kinematics are obscured, as in the case of Michotte’s 

launching events. Further, the process of inducing forces is likely to be at least partially 

automatic (Runeson & Frykolm, 1983), so causal illusions may occur even when the inferred 

configuration of forces is inconsistent with prior knowledge of the situation.  

 How Michotte’s findings indicate the role of dynamics in the perception of causation.  

Michotte emphasized that the causal impression was not a mere copy or reproduction of what 

goes on in the real world. If anything, however, many of Michotte’s findings indicate just the 

opposite. For example, Michotte observed that the causal impression disappeared fully when 

there was a gap of around 150 ms between the moment objects A and B made contact and the 

moment B began to move. This finding is readily explained by the dynamics model. When object 

A hits object B, the force imparted on B is instantaneous. If object B begins moving well after it 

is hit, its movement cannot be due to the force imparted by object A. Another finding of 

Michotte’s is that the perception of causation is strongest when object A makes physical contact 

with object B. This finding is also consistent with a dynamics approach since contact forces 

cannot exist unless objects make contact with one another.  

Yet another finding of Michotte’s concerns a phenomenon he referred to as the radii of 

action. The radii of action are the portions of the paths traveled by A and B that subjectively 

appear to be relevant to the impression of causation. In particular, when B travels beyond A’s 

radius of action, it appears to be moving on its own, not as a consequence of the collision. 

Michotte found that object B’s radius of action increased with the speed of object A. Michotte 

offered no explanation for the phenomenon of radii of action. However, the dynamics model 

offers a natural explanation for this effect: as object A’s speed increases, the force it imparts on 

B increases, and in turn, so will the distance B travels as a consequence of the impact of A (for a 

related proposal, see Hubbard & Ruppel, 2002). 

Finally, according to Michotte, the causal impression should be strongest when the two parts 

of a launching event constitute a single continuous movement, whereby the motion of the first 

object extends into the second and there is an “ampliation of motion.” According to this 

hypothesis, any differences in velocity between the first and second objects should decrease the 

causal impression since any differences in velocity would make the sequence of events less 

continuous. However, in contrast to this prediction, Michotte found that the causal impression 
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was stronger when the speed of object B was slower than that of object A. Specifically, in 

Experiments 15 and 39, people reported a much stronger causal impression when the ratio in 

speed of objects A and B was 4:1 than when the ratio was 1:1. This result is consistent with the 

dynamics model, which predicts that the second object should move less rapidly than the first 

because the second object resists moving in the direction of the force acting on it. That 

resistance, due to friction and inertia, means that the second object will move more slowly than 

the first (and ultimately will come to a stop). When object B’s speed is the same as object A’s, 

the dynamics model predicts that the causal impression should be weaker because of the absence 

of evidence for such resistance.     

Conclusion 

Humean theories of causation do not deny that people’s everyday notions of causation are 

associated with invisible quantities such as energy or force. But they would say that such notions 

were better viewed as part of the occult than the actual world. For these theories, out of sight is 

out of mind. 

A physicalist approach does not deny the importance of kinematic features, but such features 

do not form the basis for people’s causal representations; rather, they are the keys for unlocking 

the dynamics of an event. People’s ability to infer these properties is by no means perfect, but 

neither is it arbitrary. In particular, people may be reasonably good at inferring the presence of 

forces and their direction, but relatively insensitive to their magnitude. The dynamics of an event 

are central to people’s concept of causation because they are central to causation in the actual 

world. Because dynamic properties can be sensed, a physicalist approach to causation not only 

grounds causation in the world, it also explains how causation might be experienced in our own 

bodies, and why such notions of causal power, energy, and force are not just side-effects of 

statistical dependencies. 
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Table 1. Representations of CAUSE, ENABLE & PREVENT  
 Patient tendency 

for endstate 
Affector-patient 

concordance 
Result: endstate approached 

CAUSE N N Y 
ENABLE Y Y Y 
PREVENT Y N N 

 

Note. Y = Yes, N = No 

 
 
Table 2. Dimensions in dynamics model 
 
Tendency  (of patient for endstate) 

 
P & E are collinear 

 
Concordance  (of affector & patient) 

 
A & P are collinear 

 
Result: Endstate approached 

 
R & E are collinear 

 
 

Table 3. Experiment 1 in Wolff (2007), along with associated predictions and results 
 

Config. # 1 2 3 4 5 6 7 8 
Affector ( ) 
Patient  ( ) 
Result.  ( ) 

 
 

 E 

 
 

 E  

 
 

 E  

 
 

 E  

 
 

 E  

 
 

 E  

 
 

 E 

 
 

 E  

Predicted CAUSE ENABLE ENABLE PREVENT Unspecified Unspecified Unspecified Unspecified 
    “Cause” 94% 11% 6% - - - 6% - 
    “Help” 6% 89% 94% - 11% - - - 
    “Prevent” - - - 100% 6% - - 6% 
    “No verb” - - - - 83% 100% 94% 94% 

 
 

Table 4. Configurations used in Experiment 2 of Wolff (2007), with associated predictions and results 
Config. # 1 2 3 4 5 6 7 8 9 10 
 

Affector ( ) 
Patient  ( ) 
Result.  ( ) 

 

 
E 

 

 
 E 

 
 E 

 

 
 E 

 

 
 E 

 
 E  

 

 
E 

 

 
E 

 

 

 
E 

 
 

E  

Predicted CAUSE ENABLE PREVNT PREVNT PREVNT PREVNT Unspecified Unspecified Unspecified Unspecified 

    “Cause” 89% 11% - - - - - - - - 

    “Help” .1% 83% - - - - - - - - 

    “Prevent” - - 94% 94% 89% 89% - 17% - 11% 

    “No verb” - 6% 6% 6% 11% 11% 100% 83% 100% 89% 
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Figure Captions 
 

Figure 1. Forces associated with the affector, A, patient P, and other forces, O, combine to 

produce a resultant force, R, that is directed toward the endstate, as specified by the position 

vector, E. 

Figure 2. Configurations of forces associated with CAUSE, ENABLE, PREVENT and DESPITE 

Figure 3. Despite uncertainty about the magnitudes of V1 and V2, we can infer that the resultant 

of the two vectors will reside within the area bounded by V1 and V2. 

Figure 4: Frame from an animation used to instantiate a CAUSE interaction.  

Figure 5. In each animation, the boat motors to the middle, the fans turn on, the boat changes 
course, and the boat hits the cone. Each animation is based on the same configuration of forces 
as shown in the first panel. However, in the second and third panels, only one of the two fans 
appears in the animation, as implied by the incomplete. 
 
Figure 6. The scene depicts a CAUSE situation since the woman does not want to go to the cone 
(as indicated by the direction of her pointing) but the fans push her there nevertheless.  
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Figure 1. Forces associated with the affector, A, patient P, and other forces, O, combine to 

produce a resultant force, R, that is directed toward the endstate, as specified by the position 

vector, E. 

 
 
 
 
 
 
 
 

 
Figure 2. Configurations of forces associated with CAUSE, ENABLE, and PREVENT. 
 

 
 
 
 
 
 
 
 
 
 
Figure 3. Despite uncertainty about the magnitudes of V1 and V2, we can infer that the resultant 
of the two vectors will reside within the area bounded by V1 and V2. 
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Figure 4: Frame from an animation used to instantiate a CAUSE interaction.  

 
 

 

 

 

 

 

 

 

 

 

 

Figure 5. In each animation, the boat motors to the middle, the fans turn on, the boat changes 
course, and the boat hits the cone. Each animation is based on the same configuration of forces 
as shown in the first panel. However, in the second and third panels, only one of the two fans 
appears in the animation, as implied by the incomplete. 

   
Affector ( ) 
Patient  ( ) 
Result.  ( ) 

 

E E 

 

 E
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Figure 6. The scene depicts a  CAUSE situation since the woman does not want to go to the cone 

(as indicated by the direction of her pointing) but the fans push her there nevertheless.  
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