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Abstract 

According to the transitive dynamics model, people can 
construct causal structures by linking together 
configurations of force. The predictions of the model 
were tested in two experiments in which participants 
generated new causal relationships by chaining together 
two (Experiment 1) or three (Experiment 2) causal 
relations. The predictions of the transitive dynamics 
model were compared against those of Goldvarg and 
Johnson-Laird’s model theory (Goldvarg & Johnson-
Laird, 2001). The transitive dynamics model consistently 
predicted the overall causal relationship drawn by 
participants for both types of causal chains, and, when 
compared to the model theory, provided a better fit to the 
data.  The results suggest that certain kinds of causal 
reasoning may depend on force dynamic—rather than on 
logical or purely statistical—representations.     

Introduction 
People sometimes acquire new knowledge from 

what they already know (Genter & Wolff, 2000). They 
transform their knowledge to represent the world in 
new ways, or rearrange what they know to arrive at new 
conclusions. Sometimes learning involves taking 
conceptual structures apart so that new structures can be 
formed in their place. Acquiring knowledge in this 
manner can be viewed as learning from reasoning. 

Learning from reasoning is extremely common, but 
we know relatively little about how it occurs. Most of 
the research on learning has examined how people 
discover the statistical properties of the input (e.g., 
Redington, Chater & Saffran, 1998; Newport & Aslin, 
1996). Statistical approaches to learning offer accounts 
of many important phenomena, but they also face 
several difficult challenges. In particular, it is not clear 
how statistical approaches might give rise to deeper 
knowledge about a domain, specifically, the causal 
structure of a domain (e.g., Marcus, 1998).  

There have been several proposals in the Bayes’ net 
literature suggesting how people might acquire 
networks of causal relationships (Pearl, 2000; Sloman 
& Lagnado, 2005; Waldmann & Hagmayer, 2005; 
Tenenbaum & Griffiths, 2001; Griffiths & Tenenbaum, 
2005). However, as noted by Gopnick et al. (2004), 
some of these techniques are psychologically unrealistic 
due to the high memory and processing requirements 
they place on the learner. Other discovery procedures 
are more psychologically realistic but limit learning to 
situations where the learner has direct experience with 

sets of events from which the probability distributions 
of the variables can be inferred. Such situations do not 
seem consonant with the way in which causal relations 
are often learned, that is, through simple verbal or 
written descriptions of causal relations, as in a 
classroom.  Once individual causal relations are 
learned, it may be possible to combine them into larger 
structures. It is in this process of combining causal 
relations that learning from reasoning may play a 
critical role in the acquisition of networks of causal 
knowledge.  

Imagine, for example, a person with the knowledge 
that vegetation prevents erosion and that erosion causes 
landslides. These two beliefs can be represented as 
nodes and links (see Figure 1). At some point, this 
person might connect these two assertions to form a 
new conceptual structure and a new causal relationship, 
namely that vegetation prevents landslides.  

 

Fig. 1. Relationships can combine to form a new structure. 
 

In this paper we examine how the process of joining 
causal relationships might occur. Two models of 
structure building will be investigated. One of these, the 
transitive dynamics model, extends previous work on 
the representation of causal relations using vector 
semantics (Wolff, 2007). The other, the model theory 
(Goldvarg & Johnson-Laird, 2001), extends Johnson-
Laird’s (2001) theory of mental models. 

Vector semantics 
Everyday language suggests that we think about 

causal relations in terms of force. We say, for example, 
The force of his argument changed my mind, or Peer 
pressure led my son to skip class, or The moral force of 
his argument persuaded me to make a contribution. 
Such statements suggest that people might even reason 
with representations that reflect forces. Recent work in 
vector semantics suggests how these intuitions might be 
fleshed out computationally. The transitive dynamics 
model is a natural extension of the dynamics model 
(Wolff, 2007), which in turn is based on Talmy’s 
(1988) theory of force dynamics.  
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1  a. Pressure will cause the water to remain liquid below 0°C. 
    b. Small ridges cause water to stand on the concrete. 
    c. The rubber bottom will cause the cup to stay in place. 
    d. The pole will prevent the tent from collapsing. 

Table 1. Representations of several causal concepts. 
 Patient tendency 

for endstate 
Affector-patient 
concordance 

Endstate 
approached 

CAUSE N N Y 
ALLOW Y Y Y 
PREVENT Y N N 

Table 2. Results from Experiment 1 (Wolff, 2007) 

The dynamics model holds that people represent 
causal relations in a manner that partially copies or 
reproduces the way in which causal relationships are 
instantiated in the world. Specifically, the dynamics 
model holds that people represent causal relationships 
in terms of configurations of forces. The sentences in 1 
provide some intuitive support for this view.  

In each situation described in sentences 1a-d, 
nothing happens. Because nothing happens, there is no 
regular sequence of events or transfer or exchange of 
energy, at least at the macro-level. What is present in 
each of these situations is a configuration of forces. 
According to the dynamics model, it is this 
configuration of forces that makes these situations 
causal (sentences 1a-c) or preventative (sentences 1d). 

The dynamics model holds that the concept of 
CAUSE and related concepts involve interactions 
between two main entites: an affector and a patient (the 
entity acted on by the affector). It also holds that 
different causal relationships can be specified in terms 
of three dimensions: a) the tendency of the patient for 
an endstate, b) the presence or absence of concordance 
between the affector and the patient, and c) progress 
toward the endstate (essentially, whether the result 
occurs). Table 1 summarizes how these dimensions 
differentiate the concepts of CAUSE, ALLOW, and 
PREVENT. According to the dynamics model, when 
we say Wind caused the boat to heel, we mean that the 
patient (the boat) had no tendency to heel (Tendency = 
No), the affector (the wind) acted against the patient 

(Concordance = No) and the result (heeling) occurred 
(Endstate approached = Yes). When we say Rain 
prevented the tar from bonding, we imply that the 
patient (the tar) had a tendency to bond (Tend. = Y), the 
affector (rain) opposed this tendency (Con. = N), and 
the result did not occur (Endstate = N).  

The dynamics model specifies how these three 
dimensions can be captured in terms of configurations 
of force vectors. Real-world vectors have precise 
origins, directions, and magnitudes. Vectors in people’s 
minds, in contrast, are assumed to be more qualitative. 
Specifically, mental vectors are predicted to be 
relatively accurate with respect to direction but often 
imprecise with respect to—although not completely 
insensitive to—magnitude. It is hypothesized that 
people’s notions of force vectors are not limited to 

physical forces but also include social and 
psychological forces which, like physical forces, can be 
understood as quantities that influence people in a 
certain direction.  

In the language of vectors, a patient has a tendency 
for the endstate when the vector associated with the 
patient, B, is collinear with the vector that specifies the 
endstate, E. Given the features specified in Table 1, this 
means that the patient vector will be collinear with the 
endstate vector in the cases of ALLOW and 
PREVENT, but not CAUSE, as shown in Fig. 2. The 
patient and the affector will be in concordance when the 
vectors associated with the affector and the patient are 

collinear. This is expected to occur in the case of 
ALLOW, but not CAUSE or PREVENT. Finally, the 
result is expected to occur when the resultant vector is 
collinear with the endstate vector. This is held to occur 
in the case of CAUSE and ALLOW, but not 
PREVENT. 

Support for the model was provided in a series of 
experiments in which participants categorized 3-D 
animations of realistically rendered objects with 
trajectories that were wholly determined by the force 
vectors entered into a physics simulator (Wolff, 2007).  
(The animations can be viewed at 
http://userwww.service.emory.edu/~pwolff/CLSAnimat
ions.htm.) In these experiments, the very same physical 
forces used to generate physical scenes were used as 
inputs into a computer model to predict how those 
scenes would be described. The top of Table 2 shows 
the directions and magnitudes of the force vectors 
associated with the affector and patient that were 
entered into the physics simulator and their resultant. 

Fig. 2. Configurations of forces associated with CAUSE, 
ALLOW, and PREVENT.  A = the affector force, B = the patient 
force, BA = the resultant of A and B, E = endstate 

CAUSE                      ALLOW                  PREVENT



Below these configurations are the causal categories 
predicted by the model and participants’ (N=18) 
responses. The fit to the model was excellent. 

Additional experiments in Wolff (2007) show that 
the predictions of the dynamics model extend to two-
dimensional interactions and to the identification of 
social causation. In sum, the results provide support for 
the hypothesis that people think about causal 
relationships in terms of configurations of force. 

Transformations. In addition to explaining the core 
meaning of the concepts of CAUSE, ALLOW, and 
PREVENT, the dynamics model offers an explanation 
of how negation transforms the meaning of a causal 
statement. When the consequent is negated, the 
configuration of forces is interpreted with respect to the 
inverse of the endstate vector, ¬E (see Fig. 3). The 
dynamics model predicts, then, that CAUSE_NOT (A 
causes not-B) has the same meaning as PREVENT 
(e.g., Pain causes lack of sleep means, roughly, Pain 
prevents sleep).  

In contrast, when the antecedent is negated, the 
affector vector is reversed, ¬A, (see Fig. 4). Such a 
transformation predicts that NOT_ALLOW is also 
linked to PREVENT. Once again, this correspondence 
is supported by intuition (e.g., Absence of snow allows 
construction implies Snow prevents construction). 
Note, however, that the relationship between 
NOT_ALLOW and PREVENT is one of implication, 
not synonymy. In the case of synonymy, the forces are 
the same but the position vector changes (see Fig. 3). In 
implication, the forces themselves differ (A is replaced 
by ¬A; see Fig. 4).  

Speakers often use negation, though not always 
obviously. Besides the actual word not, people may use 
phrases like the absence/lack of or fail to. Sometimes 
the not is included in the meaning of the word (e.g., 
stay for not go). In addition, several types of negation 
can appear in the same sentence, as when we say The 
vegan diet does not cause lack of vitamins or Lack of 
fitness causes lack of attention. Explaining the effect of 
negation is an important problem for any theory of 
causal meaning. With these assumptions in place, we 
can now begin to describe how causal relations and 
networks might be learned through reasoning.    

Transitive Dynamics Model 
 Whereas the dynamics model is a theory of how 
individual causal relations are represented, the 
transitive dynamics model is a theory of how those 
relations are combined to form new relations. Consider, 
for example, the causal relations Garlic causes bad 
breath and Bad breath causes embarrassment. They 
can be combined to form a new relation: Garlic causes 
embarrassment. In the language of syllogistic 
reasoning, the two causal relations are premises that 
form an argument that leads to a conclusion. In the 
transitive dynamics model, the conclusion is generated 
by connecting the premises. According to the model, 
the first and second premises are connected by using 
the resultant vector in the first premise (BA) as the 
affector vector in the second premise (BBA) (see Fig. 5).  

The direction of the affector in the second premise 
is the same as the resultant in the first premise, unless 
the B terms in the two premises conflict (i.e., one is 
negated), in which case the direction of the affector in 
the second premise is reversed. A conclusion (i.e., new 
relation) is drawn by forming a new configuration of 
forces based on the two premises. The affector in the 
conclusion is the affector from the first premise; the 
endstate vector in the conclusion is the endstate vector 
from the last premise; and the patient in the conclusion 
is the resultant of the patient vectors in the premises. 
With all of these vectors in place, the conclusion can be 
interpreted like any other configuration of forces. 

Findings from Wolff’s (2007) Experiment 4 indicate 
that people’s representations of force are often 
underspecified with respect to magnitude. Not knowing 
the exact magnitude of the forces adds indeterminacy to 
people’s representations of causation. The effects of 
this indeterminacy can have consequences when 
configurations of force are combined: variations in the 
magnitudes of the forces can lead to more than one 
possible conclusion. Thus, the transitive dynamics 
model offers an explanation of how causal 
interpretations might shift from deterministic to 
probabilistic. Consider, for example, the left panel in 
Figure 5. In an argument in which both relations are 
CAUSE, the conclusion will also always be CAUSE. 
According to the model, this occurs because the patient 

Fig 3. Config.s associated with A 
prevents B and A causes not-B 

Fig 4. Config.s associated with  
A prevents B and ¬A allows B

CA B 
 AllowCause CauseCause

CBA

Fig 5. Transitive arguments and configurations of force

Cause (100%) Allow (67%) Cause (33%)



Table 3. Procedure for combining relations to draw causal inferences 
Represent premises Conjoin Reduce Interpret 

A causes B   B prevents C   A     B    ¬C   
    A     B           B     ¬C ¬A     B    ¬C    A    ¬C A prevents C
  ¬A     B        ¬B       C ¬A   ¬B      C  ¬A      C  
  ¬A   ¬B        ¬B     ¬C ¬A   ¬B    ¬C  ¬A    ¬C  
 

vectors in the premises (B and C) point in the same 
direction, so their resultant, which is used as the patient 
vector used in the conclusion, will also be in the same 
direction. In contrast, when the premises of the 
argument are CAUSE and ALLOW relations, more 
than one conclusion is possible, depending on the 
relative magnitudes of the patient vectors.  

A program has been written that implements the 
combination procedure above and that allows users to 
conduct simulations in which the magnitudes of the 
vectors are systematically varied or randomly specified 
(http://userwww.service.emory.edu/~pwolff/Transitived
ynamics.htm). The only constraint on the magnitudes is 
that they preserve the relations in the premises. The 
program tallies the conclusions that follow from each 
set of magnitudes. For the ALLOW / CAUSE argument 
(A/C), for example, the program finds that if the 
magnitudes of the vectors are systematically varied, the 
premises will lead to an ALLOW conclusion 67% of 
the time and a CAUSE conclusion 33% of the time. The 
program can generate conclusions for chains up to 25 
relations. In generating conclusions, the program may 
examine many thousands of vector magnitudes. 
However, it is not assumed that people consider 
thousands of magnitudes. Indeed, the simulation above 
shows that the predictions of the model will emerge 
within an individual if they consider a small set of 
possible magnitudes or across a small set of people 
(e.g., 5-10), who each consider only one set of 
magnitudes.  

Goldvarg and Johnson-Laird’s (2001) model 
theory. The transitive dynamics model can be 
contrasted with another theory of causal reasoning, 
Goldvarg and Johnson-Laird’s (2001) model theory. 
According to Goldvarg and Johnson-Laird (2001), 
causal relations are intrinsically modal, that is, “they are 
not merely about what occurred but also about what 
might have occurred” (p. 576). Goldvarg and Johnson-
Laird (2001) associate the notions of CAUSE, 
ALLOW, and PREVENT with different combinations 
of possible co-occurrences (see Table 3 for 
representations of CAUSE and PREVENT). Negation 
simply involves changing the state of affairs of the 
antecedent or consequent. One procedure for combining 

relations is shown in Table 3. Across a wide range of 
arguments, the conclusion of the model theory is also 
the most frequent conclusion predicted by the transitive 
dynamics model, so the predictions made by the two 
theories are very similar. An important difference, 

however, is that for certain arguments the transitive 
dynamics predicts more than one conclusion. The 
predictions of the models were tested in the following 
experiments (see also Barbey & Wolff, 2006). 

Experiment 1 

Method 
 Participants The participants were 30 Emory 
University undergraduates. 
 Materials  The materials were based on real-world 
causal statements found on the internet. For example, 
for the argument not-A causes not-B and B causes C, 
people saw statements like Leaf loss causes lack of 
shade and Shade causes cooling. Six examples were 
found for all 32 argument types shown in Table 5 for a 
total of 192 example arguments (384 causal 
statements). 
 Procedure  In this experiment, participants saw the 
32 arguments (in Table 5) one at a time and then chose 
a conclusion from a list of ten possible conclusions (A 
causes C, A allows C, A prevents C, A causes not-C, A 
allows not-C, A prevents not-C, not-A causes C, not-A 
allows C, not-A prevents C, or none of the above).   
Results and Discussion 

As Table 5 shows, participants’ conclusions were 
well explained by the transitive dynamics model. To 
test the transitive dynamics model against the model 
theory, the predictions of each model were correlated 
with people’s responses for each cell in Table 5. A 
paired t-test indicated that the average Spearman 
correlation between people’s responses and the 
transitive dynamics model (M = .74) was higher than 
the average Spearman correlation between people’s 
responses and the model theory (M = .59), t(31) = 2.19, 
p <  0.01. The findings were the same when analyzed 
nonparametrically using the Wilcoxon Signed Ranks 
Test, Z = 2.54, p = 0.01. The transitive dynamics model 
predicted participants’ first or second response for all of 
the arguments. The model theory was also often able to 
predict participants’ most frequent response. 
Nevertheless, the transitive dynamics model out-
performed the model theory because it could identify 
not only the primary response but also secondary 
responses.  
 Arguments linking two PREVENT relations (or 
C_N/P) are especially interesting. The dynamics model 
predicts either CAUSE or ALLOW responses, which is 
how people responded. The model theory, in contrast, 
predicts PREVENT responses. Interestingly, these 
arguments capture the core meaning of the verbs allow, 
permit, and enable, which seems to be “to prevent a 
prevention.” It may be that these verbs actually refer to 
chains of events, rather than individual configurations. 
 



Table 5. Predicted percentages (%) and results for Exp. 1 
(C=CAUSE, A=ALLOW, P=PREVENT, n_C=not-A CAUSE, etc.) 
 
  Argument Model theory Transitive Dynamics Results 

C/C CAUSE CAUSE (100) CAUSE (82) 
C/A ALLOW 

 
ALLOW (67)  
CAUSE (33) 

ALLOW (70)  
CAUSE (19) 

C/P PREVENT PREVENT (100) PREVENT (75) 
C/n_C PREVENT 

 
PREVENT (50) 
N_CAUSE (50) 

PREVENT (54) 
N_CAUSE (31) 

A/C ALLOW 
 

ALLOW (60)  
CAUSE (40) 

ALLOW (68)  
CAUSE (30) 

A/A ALLOW ALLOW (100) ALLOW (82) 
A/P N_CAUSE 

 
N_CAUSE (60)  
PREVENT(40) 

N_CAUSE (15) 
PREVENT (76) 

A/n_C N_CAUSE N_CAUSE (100)  N_CAUSE (62) 
P/C PREVENT 

 
PREVENT (50)  
N_CAUSE (50) 

PREVENT (69) 
N_CAUSE (30) 

P/A PREVENT 
 

PREVENT (67)  
N_ALLOW (33) 

PREVENT (65) 
N_ALLOW (30) 

P/P PREVENT 
 

ALLOW (50)  
CAUSE (50) 

ALLOW (49)  
CAUSE (8)  

P/n_C CAUSE CAUSE (100) CAUSE (58)  
n_A/C N_CAUSE N_CAUSE (100) N_CAUSE (80) 
n_A/A N_ALLOW 

 
N_ALLOW (67) 
N_CAUSE (33) 

N_ALLOW (50) 
N_CAUSE (23) 

n_A/P ALLOW N_PREVENT (100) N_PREVENT (66)
n_A/n_C ALLOW 

 
N_PREVENT (50)  
CAUSE (50) 

N_PREVENT (48) 
CAUSE (31) 

C_n/C PREVENT 
 

PREVENT (50)  
ALLOW_N (50) 

PREVENT (54) 
N_CAUSE (18) 

C_n/A PREVENT 
 

PREVENT (67)  
N_ALLOW (33) 

PREVENT (56) 
N_ALLOW (35) 

C_n/P PREVENT 
 

CAUSE (50)  
ALLOW (50) 

CAUSE (49)  
ALLOW (14) 

C_n/n_C CAUSE CAUSE (100) CAUSE (82) 
A_n/C N_CAUSE N_CAUSE (100)  N_CAUSE (31) 
A_n/A N_CAUSE 

 
N_CAUSE N (50)  
PREVENT (33) 

N_CAUSE (26) 
PREVENT (41) 

A_n/P ALLOW ALLOW (100) ALLOW (62) 
A_n/n_C ALLOW 

 
ALLOW (60) 
CAUSE (40) 

ALLOW (57)  
CAUSE (37) 

P_n/C CAUSE CAUSE (100) CAUSE (26) 
P_n/A ALLOW 

 
ALLOW (67) 
CAUSE (33) 

ALLOW (55)  
CAUSE (16) 

P_n/P PREVENT PREVENT (100)  PREVENT (64) 
P_n/n_C PREVENT 

 
PREVENT (50)  
N_CAUSE (50) 

PREVENT (70) 
N_CAUSE (23) 

n_C_n/C N_PREVENT 
 

N_PREVENT (50)  
N_CAUSE (50) 

N_PREVENT (50)
N_CAUSE (31) 

n_C_n/A ALLOW 
 

N_PREVENT (67)  
ALLOW (33) 

N_PREVENT (57) 
ALLOW (27) 

n_C_n/P N_CAUSE 
 

N_CAUSE (50) 
N_ALLOW (50) 

N_CAUSE (21) 
N_ALLOW (23) 

n_C_n/nC N_CAUSE N_CAUSE (100) N_CAUSE (75) 
 

Experiment 2 

Method 
 Participants The participants were 16 Emory 
University undergraduates. 
 Materials   The materials were based on real-world 
causal statements found on the internet.  For example, 
for the argument A allows B, B prevents C, and C 
causes D (i.e., A/P/C), people saw statements like 
Vacations allow rest.  Rest prevents exhaustion.  
Exhaustion causes sickness.  Participants saw fifteen 
kinds of 3-premise arguments (C/C/C, C/C_N/A, A/ 
C_N /C, A/C/C, C/A/C, C/C/A, C_N/C/C, C/P/C, C/C/ 

C_N, C/ C_N/ C_N, C_N/C/ C_N, C_N / C_N /C, A/ 
C_N / C_N, C_N /A/ C_N, C_N / C_N /A). Four 
examples of each argument, for a total of 60 arguments, 
were constructed from causal statements found on the 
internet (e.g., Antibiotics cause lack of infection, 
Infections cause rashes, Rashes cause blisters).    
 Procedure  Participants chose conclusions for each 
argument from a list of 10 possible conclusions (A 
causes D, A allows D, A prevents C, A causes not-D, A 
allows not-D, A prevents not-D, not-A causes D, not-A 
allows DC, not-A prevents D, or none of the above).  
 
Results 
 As Table 6 illustrates, the results provided further 
support for the transitive dynamics model. To compare 
the dynamics model with the model theory, the 
responses to each argument were correlated with the 
predictions of each theory. A paired t-test indicated that 
the average Spearman correlation between people’s 
responses and the transitive dynamics model (M = .58) 
was higher than the average Spearman correlation 
between people’s responses and the model theory (M = 
.28), t(14) = 2.9, p = 0.01.  The findings were the same 
when analyzed nonparametrically using the Wilcoxon 
Signed Ranks Test, Z = 2.55, p = 0.011. The results 
provide further support for the hypothesis that certain 
causal arguments are consistent with more than one 
conclusion since the main difference between the 
predictions of the dynamics model and the model 
theory was in the possibility of more than one response 
(in the case of the dynamics model). In sum, the 
transitive dynamics model offers a framework that 
extends from initial perception of causal relations 
(Wolff, 2007) to causal reasoning.  
 

Table 6. Predicted percentages (%) and results for Experiment 2 
(C=CAUSE, A=ALLOW, P=PREVENT, n_C=not-A CAUSE, etc.) 
Argument Model theory Transitive Dynamics Results 
C/C/C CAUSE CAUSE (100) CAUSE (65) 
C/C_n/A PREVENT PREVENT (98) PREVENT (45) 
A/C_n /C ALLOW_N ALLOW_N (82) 

PREVENT (10) 
ALLOW_N (45)  
PREVENT (30) 

A/C_n/ C_n PREVENT 
 

ALLOW (89) 
CAUSE (11) 

ALLOW (45) 
CAUSE(15) 

C_n/A/ C_n PREVENT 
 

CAUSE (54) 
ALLOW (13) 

ALLOW (40) 
CAUSE (25) 

C_n/ C_n/A PREVENT 
 

ALLOW (88) 
CAUSE (12) 

ALLOW (65) 
CAUSE (9) 

A/C/C ALLOW 
 

CAUSE (67) 
ALLOW (33) 

CAUSE (25) 
ALLOW (75) 

C/A/C ALLOW 
 

CAUSE (66) 
ALLOW (33)  

CAUSE (15) 
ALLOW (55) 

C/C/A ALLOW 
 

CAUSE (50) 
ALLOW (50)  

CAUSE (18) 
ALLOW (79) 

C_n/C/C PREVENT 
 

ALLOW_N (72) 
PREVENT (26) 

ALLOW_N (15) 
PREVENT (65) 

C/P/C PREVENT 
 

PREVENT (75) 
ALLOW_N (24) 

PREVENT (85) 

C/C/C_n PREVENT    PREVENT (100) PREVENT (90) 
C/C_n/ C_n PREVENT 

 
CAUSE (75) 
ALLOW (25) 

CAUSE (79) 
ALLOW (20) 

C_N/C/ C_N PREVENT 
 

ALLOW (74) 
CAUSE (26)  

CAUSE (50) 
ALLOW (30) 

C_n/ C_n/C PREVENT 
 

CAUSE (75) 
ALLOW (25) 

CAUSE (60) 
ALLOW (30) 



Conclusions 
Together, the dynamics model and the transitive 

dynamics model offer an account of how people 
initially acquire individual relationships and then 
combine those relationships to form new causal 
relationships and structures. As noted in Wolff (2007), 
people might acquire causal relationships from the 
perception of configurations of forces. However, the 
dynamics model also readily explains how causal 
relationships might be acquired from simply hearing or 
reading statements of causation (e.g., CO2 emissions 
are causing global warming). This is possible because 
the dynamics model is also a model of causal meaning 
(Wolff & Song, 2003). An account of the acquisition of 
causal relations through language is critical since 
language is arguable the main source of causal 
knowledge (Sloman, 2005). It is very unlikely, for 
example, that people could learn that CO2 emissions 
cause global warming on the basis of their own 
personal experience with CO2 and global warming.  
 The results from Experiments 1 and 2 also support a 
new account of negation. The transitive dynamics 
model offers an explanation for how the absence of an 
influence can be a cause (e.g., Lack of nutrition causes 
hair loss). An absent cause is a force that is realized 
when another force is removed, at which point an effect 
occurs. Negation in the dynamics model extends the 
breadth of the model from 4 to 32 different possible 
expressions of causation. In addition, unlike the model 
theory, the dynamics model can differentiate relations 
of synonymy from relations of implication between 
these possible expressions.  
 In the transitive dynamics model, individual causal 
relationships are deterministic, but causal relationships 
involving non-contiguous factors can become 
probabilistic. This is especially the case when the 
transitive dynamics model is extended to causal 
structures involving converging and diverging causal 
relations (not discussed in this paper). The dynamics 
model offers an explanation for how people’s estimates 
about the probabilities of events might be encoded in 
the structure of their causal network. 
 Finally, the dynamics model offers an account of 
how causal knowledge might be shared across people. 
People regularly engage in causal reasoning without 
full knowledge of the causal interactions involved. To 
make reasonable inferences and decisions, they may 
compensate for their incomplete representations by 
drawing on the knowledge of others through verbal 
communication. The dynamics model shows how 
verbal communication might be enough to begin the 
process of causal reasoning and knowledge creation. 
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