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1. Introduction 

We use a new, distinctly “geometrical” interpretation of non-relativistic quantum 

mechanics (NRQM) to argue for the fundamentality of the 4D blockworld ontology. We 

argue for a geometrical interpretation whose fundamental ontology is one of spacetime 

relations as opposed to constructive entities whose time-dependent behavior is governed 

by dynamical laws. Our view rests on two formal results: Kaiser (1981 & 1990), Bohr & 

Ulfbeck (1995) and Anandan, (2003) showed independently that the Heisenberg 

commutation relations of NRQM follow from the relativity of simultaneity (RoS) per the 

Poincaré Lie algebra. And, Bohr, Ulfbeck & Mottelson (2004a & 2004b) showed that the 

density matrix for a particular NRQM experimental outcome may be obtained from the 

spacetime symmetry group of the experimental configuration. This shows how the 

blockworld view is not only consistent with NRQM, not only an implication of our 

geometrical interpretation of NRQM, but it is necessary in a non-trivial way for 

explaining quantum interference and “non-locality” from the spacetime perspective. 

Together the formal results imply that contrary to accepted wisdom, NRQM, the 

measurement problem and so-called quantum non-locality do not provide reasons to 

abandon the 4D blockworld implication of RoS. But rather, the deep non-commutative 

structure of the quantum and the deep structure of spacetime as given by the Minkowski 

interpretation of special relativity (STR) are deeply unified in a 4D spacetime regime that 

lies between Galilean spacetime (G4) and Minkowski spacetime (M4).  

Taken together the aforementioned formal results allow us to model NRQM 

phenomena such as interference without the need for realism about 3N Hilbert space, 

establishing that the world is really 4D and that configuration space is nothing more than 

a calculational device. Our new geometrical interpretation of NRQM provides a 

geometric account of quantum entanglement and so-called non-locality free of conflict 

with STR and free of interpretative mystery. 

In section 2 we discuss the various tensions between STR and NRQM with 

respect to the dimensionality of the world. Section 3 is devoted to an explication of the 

Kaiser et al. results and their philosophical implications. Likewise, the Bohr et al. results 

and their implications are the subject of section 4. In section 5, we present our geometric 

interpretation of quantum entanglement and “non-locality.” 
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2. Motivating the Geometric Interpretation: STR versus NRQM on the 

Dimensionality of the World 

 

 In relativity theory, we have two physical postulates (relativity and light 

postulates) and we have a geometric model or “interpretation” of those postulates – 

Minkowski’s hyperbolic 4-geometry that gives us a geometry of “light-cones.” The 

“blockworld” (BW) view tries to establish a metaphysical interpretation of the 

Minkowski geometrical rendition of special relativity. It is a view that tries to establish 

the reality of all spacetime events (contra presentism), whose structure is given by the 

special relativistic metric. We shall not rehearse the familiar arguments for the BW 

implication from the relativity of simultaneity (see Stuckey et al. 2007), but only describe 

it herein:  

 

There is no dynamics within space-time itself: nothing ever moves therein; 

nothing happens; nothing changes. In particular, one does not think of 

particles as moving through space-time, or as following along their world-

lines. Rather, particles are just in space-time, once and for all, and the world-

line represents, all at once, the complete life history of the particle. Robert 

Geroch, General Relativity from A to B (University of Chicago Press, 

Chicago, 1978) p. 20-21. 

 

When Geroch says that there is no dynamics within spacetime itself, he is not 

denying that the mosaic of the BW possesses patterns that can be described with 

dynamical laws. Nor is he denying the predictive and explanatory value of such laws. 

Rather his point is that in a BW (given the reality of all events) dynamics such as 

Schrödinger dynamics are not event factories that bring heretofore non-existent 

events (such as measurement outcomes) into being. Dynamical laws are not brute 

unexplained explainers that “produce” events. Geroch is advocating for what 

philosophers call Humeanism about laws. Namely, the claim is that dynamical laws 

are descriptions of regularities and not the brute explanation for such regularities. 

His point is that in a BW, Humeanism about laws is an obvious position to take 

because everything is just there. 

 Some have actually suggested that we ought to take the fact of BW seriously 

when doing physics and modeling reality. Huw Price (1996) for example calls it the 

“Archimedean view from nowhen” (260) and it has motivated him to take seriously the 

idea of a time-symmetric quantum mechanics. Price is primarily concerned to see if one 

can construct a local hidden-variables interpretation of NRQM that explains so-called 

quantum non-locality with purely time-like dynamics or backwards causation.  

Not only is the BW strikingly at odds with NRQM dynamically conceived, but 

NRQM and STR appear to disagree about the very dimensionality of the world. For as 

David Albert says: 

 

the space in which any realistic interpretation of quantum mechanics is 

necessarily going to depict the history of the world as playing itself out … is 

configuration-space. And whatever impression we have to the contrary (whatever 
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impression we have, say, of living in a three-dimensional space, or in a four-

dimensional space) is somehow flatly illusory (1996, p. 277). 

 

Is the world a 4D Minkowski spacetime BW as relativity tells us or is it a 3N-dimensional 

configuration space of possibly infinite dimensions as quantum mechanics tells us? How 

can we resolve this apparent conflict? If we assume that it is in fact a 4D BW as we do 

here, then what should we make of Hilbert space?  

Most natural philosophers are inclined to accept that special relativity unadorned 

implies the blockworld view. Among those who might agree that special relativity 

unadorned implies a blockworld are those who think that quantum theory provides an 

excellent reason to so adorn it even apart from Hilbert space realism. That is, there are 

those who claim that quantum non-locality or some particular solution to the 

measurement problem (such as collapse interpretations) require the addition of, or imply 

the existence of, some variety of preferred frame (a preferred foliation of spacetime into 

space and time)
1
 in order to render quantum mechanics covariant and resolve potential 

conflicts between observers in different frames of reference. This trick could be done in a 

number of ways and need not involve postulating something like the “luminiferous 

aether.” For example, one could adopt the Newtonian or neo-Newtonian spacetime of 

Lorentz
 
or one could add a physically preferred foliation to M4. With a constructive 

theory of STR in hand one might also attempt to block the blockworld interpretation. As 

Callender notes (2006, 3): 

 

In my opinion, by far the best way for the tenser to respond to Putnam et al. is to 

adopt the Lorentz 1915 interpretation of time dilation and Fitzgerald contraction. 

Lorentz attributed these effects (and hence the famous null results regarding an 

aether) to the Lorentz invariance of the dynamical laws governing matter and 

radiation, not to spacetime structure. On this view, Lorentz invariance is not a 

spacetime symmetry but a dynamical symmetry, and the special relativistic effects 

of dilation and contraction are not purely kinematical. The background spacetime 

is Newtonian or neo-Newtonian, not Minkowskian. Both Newtonian and neo-

Newtonian spacetime include a global absolute simultaneity among their invariant 

structures (with Newtonian spacetime singling out one of neo-Newtonian 

spacetime’s many preferred inertial frames as the rest frame). On this picture, 

there is no relativity of simultaneity and spacetime is uniquely decomposable into 

space and time. Nonetheless, because matter and radiation transform between 

different frames via the Lorentz transformations, the theory is empirically 

adequate. Putnam’s argument has no purchase here because Lorentz invariance 

has no repercussions for the structure of space and time. Moreover, the theory 

shouldn’t be viewed as a desperate attempt to save absolute simultaneity in the 

face of the phenomena, but it should rather be viewed as a natural extension of the 

well-known Lorentz invariance of the free Maxwell equations. The reason why 

some tensers have sought all manner of strange replacements for special relativity 

when this comparatively elegant theory exists is baffling. 

 

                                                 
1
 See Tooley (1997) ch. 11, for one example. 
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The task we have set for ourselves in this paper is to take up the charge of 

Archimedean physics in a way far more radical than even time-symmetric quantum 

mechanics suggests. Our account is a hidden-variables statistical interpretation of a sort, 

but unlike Price and others we are not primarily motivated by saving locality. Rather we 

are motivated by seeing how far we can take Archimedean physics. What follows is a 

purely geometric (acausal and adynamical) account of NRQM. Our view defends the 

surprising thesis that the relativity of simultaneity plays an essential role in the spacetime 

regime for which one can obtain the Heisenberg commutation relations of non-relativistic 

quantum mechanics – the cornerstone of the structure of quantum theory. This point bears 

repeating. While it is widely appreciated that special relativity and quantum theory are 

not necessarily incompatible, what is not widely appreciated are a collection of formal 

results showing that quantum theory and the relativity of simultaneity are not only 

compatible, but in fact are intimately related. More specifically, in the present paper we 

will draw on these results and clearly show that it is precisely this “nonabsolute nature of 

simultaneity
2
” which survives the c � ∞ limit of the Poincaré group, and which entails 

the canonical commutation relations of non-relativistic quantum mechanics. These results 

lead us to formulate a new geometric account of NRQM that will be elucidated in later 

sections of the paper. 

We will also show that this geometric interpretation of NRQM nicely resolves the 

standard conceptual problems with the theory: (i) prior to the invocation of any 

dynamical interpretation of quantum theory itself and (ii) prior to the issue of whether 

any interpretation of quantum theory – i.e., a mechanics of the quantum – can be rendered 

relativistically invariant/covariant. Namely, we will provide both a geometrical account 

of entanglement and so-called “non-locality” free of tribulations, and a novel version of 

the statistical interpretation that deflates the measurement problem. Our geometrical 

NRQM has the further advantage that it does not lead to the aforementioned problems 

that some constructive accounts of NRQM face when relativity is brought into the picture, 

such as Bohmian mechanics and collapse accounts like the wave-function interpretation 

of GRW. On the contrary, not only does our view require no preferred foliation but it also 

provides for a profound, though little-appreciated, unity between STR and NRQM by way 

of the relativity of simultaneity
3
. Our interpretation of NRQM can be characterized as 

follows: 

 

(i) Realism about M4 and the BW but not Hilbert space. 

(ii) We adopt the view that NRQM is a geometric theory in the following respects:  

a. it merely provides a probabilistic rule by which new trajectories are 

generated – i.e., we take NRQM qua to provide constraints on the 

distribution of events in spacetime; 

                                                 
2
 Kaiser (1981), p. 706. 

3
 In this respect, our interpretation is close to that of Bohr and Ulfbeck. In their words, “quantal physics 

thus emerges as but an implication of relativistic invariance, liberated from a substance to be quantized and 

a formalism to be interpreted” (1995, 1). 
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b. it is not fundamentally a dynamical theory of the behavior of matter-in-

motion. Our ontology does not accept matter-in-motion as fundamental 

(though such a view is phenomenologically/pragmatically useful); 

c. quantum “entities” and their characteristic properties such as entanglement 

and non-locality are geometric features of the spacetime structure just as 

gravity is taken to be a feature of the geometry in general relativity (GR) 

and not ultimately explained by the “inner constitution” of material bodies 

themselves or dynamical forces. Though our view is more radically 

geometric than GR, even Einstein did not dream of geometrizing matter-

energy itself in GR; 

d. spatiotemporal relations are the means by which all physical phenomena 

(including both quantum and classical “entities”) are modeled, allowing 

for a natural transition from quantum to classical mechanics (including the 

transition from quantum to classical probabilities) as simply the transition 

from rarefied to dense collections of spacetime relations;  

(iii) we adopt an explanatory strategy that is faithful to our methodological and 

ontological commitments: we take the view that the determination of events, 

properties, experimental outcomes, etc., in spacetime is made with spacetime 

symmetries both globally and acausally/adynamically. That is, we will invoke 

an acausal global determination relation that respects neither past nor future 

common cause principles.  

 

Many will assume that a geometric interpretation such as ours is impossible 

because quantum wave-functions live in Hilbert space and contain much more 

information than can be represented in a classical space of three dimensions. The 

existence of entangled quantum systems provides one obvious example of the fact that 

more information is contained in the structure of quantum mechanics than can be 

represented completely in spacetime. As Peter Lewis says, “the inescapable conclusion 

for the wavefunction realist seems to be that the world has 3N dimensions; and the 

immediate problem this raises is explaining how this conclusion is consistent with our 

experience of a three-dimensional world” (2004, 717). On the contrary, the existence of 

the non-commutativity of quantum mechanics is deeply related to the structure of 

spacetime itself, without having to invoke the geometry of Hilbert space. Surprisingly, as 

will be demonstrated in the following section, it is a spacetime structure for which the 

relativity of simultaneity is upheld, and not challenged. 

 

 

3. The Relativity of Simultaneity and Non-relativistic Quantum Mechanics 

 Lorentz boosts (changes to moving frames of reference according to the Poincaré 

group of STR) do not commute with spatial translations since different results obtain 

when the order of these two operations is reversed. Specifically, this difference is a 

temporal displacement which is key to generating a BW. This is distinct from Newtonian 

mechanics whereby time and simultaneity are absolute per Galilean invariance. If 

spacetime was Galilean invariant, observers would agree as to which events were 

simultaneous and presentism could be true. In such a spacetime, it would not matter if 

you Galilean boosted then spatially translated, or spatially translated then Galilean 
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boosted. Prima facie, one might suspect that non-relativistic quantum mechanics would 

be in accord with Galilean spacetime. And indeed, the linear dynamics – the Schrödinger 

equation – is Galilean invariant (Brown and Holland 1999). However, as we will show, 

while it is indeed true that the Schrödinger dynamics is Galilean invariant, the appropriate 

spacetime structure for which one can obtain the Heisenberg commutation relations is not 

a Galilean spacetime! Surprisingly, it is a spacetime structure “between” Galilean 

spacetime and Minkowski spacetime, but one for which the relativity of simultaneity is 

upheld, unlike in Galilean spacetime. 

 Inevitably, the very means by which we can establish a determinate position in 

spacetime – or a determinate momentum (mass times velocity) – is going to have to 

speak to the quantum theory, a theory which places strictures on such questions. Now, a 

position can be given by an “axis of rotation” in a spacetime (just imagine a line around 

which some reference frame is spinning, or around which every other coordinate system 

is contracting if we are talking about Lorentz boosting from one frame to another). Such a 

thing can be picked out by “boost” operators, to use the language of the spacetime 

symmetry group. Given a Lorentz boost, one effectively picks out a position in spacetime 

(since the new coordinate systems given by the boost operator all share exactly their 

origin in common – thus uniquely picking out one point in 2D spacetime and a line in 3D 

spacetime, etc.). That is, the axis of rotation yields a spacetime trajectory which would 

yield a point in ‘space’ at any given time. Similarly, we might think about “momentum” 

as nothing but (speaking again in terms of spacetime groups) the generators of spatial 

translations. That is, spatially translating is simply “moving” from one position to another 

(albeit into a new frame); and this is something like a velocity (i.e., a time-derivative of 

position). 

Now, if we define a commutator between position and momentum in terms of the 

generators of boosts and spatial translations respectively – and note that they do not 

commute when simultaneity is nonabsolute (relative) – is it possible to show that one can 

arrive at the quantum-mechanical commutator of position and momentum, and have it 

equal to the quantum mechanically well-known quantity −iħ? This is equivalent to asking 

“what is the spacetime structure such that, if simultaneity is non-absolute, the Heisenberg 

commutator can be deduced?”
4
 

Quite surprisingly, it turns out that because boosts do not commute with spatial 

translations given that simultaneity is relative, one can indeed deduce the quantum 

mechanical Heisenberg commutator (in the appropriate “weakly” relativistic spacetime 

regime). This shows that some interpretation exists for both non-relativistic quantum 

mechanics and any relativistic quantum mechanical theory, where there is a single, 

unified spacetime arena from which either theory can be obtained in the appropriate 

asymptotic limit. More specifically, what the formal results in the following sections will 

show is that classical mechanics “lives in” G4, surprisingly NRQM “lives in” a spacetime 

regime that is between G4 and M4 (we can call it K4 after Kaiser) and RQFT “lives in” 

M4. It will also become clear that NRQM is truly “baby” RQFT in that it also is about 

                                                 
4
 And since quantum theory is already well-established empirically, we essentially know what needs to be 

derived, we just as-yet have not found the right spacetime structure. This is, admittedly, flipping the order 

of discovery somewhat, and asking an entirely new question regarding the “origin” of quantum theory 

(looking to spacetime structure, and not to the structure of matter per se, which is how the theory of the 

quantum was arrived at historically). 
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new trajectories—or particle creation to use dynamical lingo. All of this makes for a great 

deal more unity between spacetime structures and quantum structures than is generally 

appreciated.  

3.1 NRQM: Spacetime structure for commutation relations. Kaiser
5
 has shown that the 

non-commutivity of Lorentz boosts with spatial translations is responsible for the non-

commutivity of the quantum mechanical position operator with the quantum mechanical 

momentum operator. He writes
6
, 

  

For had we begun with Newtonian spacetime, we would have the Galilean 

group instead of [the restricted Poincaré group]. Since Galilean boosts 

commute with spatial translations (time being absolute), the brackets 

between the corresponding generators vanish, hence no canonical 

commutation relations (CCR)! In the [c � ∞ limit of the Poincaré algebra], 

the CCR are a remnant of relativistic invariance where, due to the 

nonabsolute nature of simultaneity, spatial translations do not commute 

with pure Lorentz transformations. [Italics in original].  

 

Bohr & Ulfbeck
7
 also realized that the “Galilean transformation in the weakly relativistic 

regime” is needed to construct a position operator for NRQM, and this transformation 

“includes the departure from simultaneity, which is part of relativistic invariance.” 

Specifically, they note that the commutator between a “weakly relativistic” boost and a 

spatial translation results in “a time displacement,” which is crucial to the relativity of 

simultaneity. Thus they write
8
, 

 

“For ourselves, an important point that had for long been an obstacle, was 

the realization that the position of a particle, which is a basic element of 

nonrelativistic quantum mechanics, requires the link between space and 

time of relativistic invariance.” 

 

So, the essence of non-relativistic quantum mechanics – its canonical commutation 

relations – is entailed by the relativity of simultaneity.  

If the transformation equations entailed by some spacetime structure necessitate a 

temporal displacement when boosting between frames, then the relativity of simultaneity 

is true of that spacetime structure. Given this temporal displacement between boosted 

frames, and given that this implies the relativity of simultaneity, our arguments supplied 

above show that BW is true of this spacetime structure. Furthermore, since the relativity 

of simultaneity, via the kind of temporal displacement necessitated by boosting between 

frames in this spacetime regime, is essential to the Heisenberg or canonical commutation 

relations, we find a heretofore unappreciated deep unity between STR and non-

relativistic quantum mechanics. 

To outline Kaiser’s result, we take the limit c → ∞ in the Lie algebra of the 

Poincaré group for which the non-zero brackets are: 

                                                 
5
 Kaiser (1981 & 1990). 

6
 Kaiser (1981), p. 706. 

7
 Bohr & Ulfbeck (1995), section D of part IV, p. 28. 

8
 Ibid., p. 24. 
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Bohr & Ulfbeck (1995) point out that in this “weakly relativistic regime” the coordinate 

transformations now look like: 
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which is responsible for time dilation and length contraction. And, these transformations 

differ from Galilean transformations by the temporal displacement vx/c
2
 which is 

responsible for the relativity of simultaneity, i.e., in a Galilean transformation time is 

absolute so T = t. Therefore, the spacetime structure of Kaiser et al. lies between Galilean 

spacetime and Minkowski spacetime and we see that the Heisenberg commutation 

relations are not the result of Galilean invariance, where spatial translations commute 

with boosts, but rather they result from the relativity of simultaneity per Lorentz 

invariance. 

3.2 Heterodoxy: NRQM Does Not Live In Galilean Spacetime. The received view has it 

that Schrödinger’s equation is Galilean invariant, so it is generally understood that 

NRQM resides in Galilean spacetime and therefore respects absolute simultaneity
9
. 

However, as we have seen above, Kaiser (1981), Bohr & Ulfbeck (1995) and Anandan 

(2003) have shown independently that the Heisenberg commutation relations of NRQM 

follow from the relativity of simultaneity
10

. Prima facie these results seem incompatible 

with the received view, so to demonstrate that these results are indeed compatible, we 

now show that these results do not effect the Schrödinger dynamics
11

. 

Why is it that the dynamics of NRQM, given by the Schrödinger equation, are 

Galilean invariant? That is, why are the dynamics of NRQM unaffected by the relativity 

of simultaneity reflected in the geometry of Eq. 3.1?  

To answer this question we operate on |ψ> first with the spatial translation 

operator then the boost operator and compare that outcome to the reverse order of 

operations. The spatial translation (by a) and boost (by v) operators in x are: 

 

                                                 
9
 See Brown and Holland (1999). 

10
 Of course, all other commutation relations in NRQM follow from those of position and momentum – 

with the exception of spin. Since, operationally, spin measurements are simply binary outcomes in space 

related to, for example, the spatial orientation of a Stern-Gerlach apparatus, our model encompasses such 

properties as spin to the extent that we model all outcomes in space and time as irreducible relations 

between the spatiotemporal regions corresponding to source and detector. 
11

 See also Lepore (1960) who also realizes that this time-shift between frames is without effect on the 

dynamics of Schrödinger evolution. 
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xiaT
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respectively. These yield: 

 

ψψ h/iavmI

KTTK eUUUU =      (3.4) 

 

Thus, we see that the geometric structure of Eq. 3.1 introduces a mere phase to |ψ> and is 

therefore without consequence in the computation of expectation values. And in fact, this 

phase is consistent with that under which the Schrödinger equation is shown to be 

Galilean invariant
12

. 

 Therefore, we realize that the spacetime structure for NRQM, while not M4 in that 

it lacks time dilation and length contraction, nonetheless contains a “footprint of 

relativity”
13

 due to the relativity of simultaneity. Thus, there is an unexpected and 

unexplored connection between the relativity of simultaneity and the non-commutativity 

of NRQM. In light of this result, it should be clear that there is no metaphysical tension 

between STR and NRQM. This formal result gives us motivation for believing that 

NRQM is intimately connected to the geometry of (a suitable) spacetime
14

. 

3.3 Philosophical significance. One important point should be brought out, which reveals 

how we understand the relationship between spacetime structure (given by relativity) and 

the theory of quantum mechanics (in a non-Minkowskian, but non-Galilean, spacetime 

regime, i.e., K4). Most natural philosophers agree that STR just constrains the set of 

possible dynamical theories to those which satisfy the light and relativity postulates. It is 

often worried, as we have pointed out, that somehow quantum theory violates those 

constraints. The view we adopt here is importantly different, in that we distinguish 

between: 

 

(a) the question of how to relate the structures of quantum theory and relativity 

(b) the question of the compatibility of constructive interpretations of quantum 

theory and whether they violate relativistic constraints.  

 

 Using a collection of formal results, we show that the spacetime structure for which one 

can obtain the Heisenberg commutation relations is one where the relativity of 

simultaneity is upheld – a fact often not appreciated in most interpretations of quantum 

theory. Furthermore, with an ontology of spacetime relations, we show how to construct a 

quantum density operator from the spacetime symmetry group of any quantum 

experimental configuration, and how one can use this to deduce and then explain the 

phenomenon of quantum interference – all by appealing to nothing more than a spacetime 

structure for which one can obtain the Heisenberg commutator while obeying the 

relativity of simultaneity. 

                                                 
12

 See Eq. 6 in Brown and Holland (1999). A derivation  of Eq. 3.1, assuming the acceptability of a phase 

difference such as that in Eq. 3.4, is in Ballentine (1990), p. 49 – 58. 
13

 This phrase was used by Harvey Brown in a conversation with the authors while describing his work 

with Peter Holland (Brown and Holland, 1999). 
14

 The Bohr et al. result of section 5 below shows how to relate this spacetime geometry to non-relativistic 

quantum mechanics by showing how a quantum density operator can be constructed from the spacetime 

symmetry group of the quantum mechanical experiment. 
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 We take the deepest significance of the Kaiser et al. results to be that, given the 

asymptotic relationship between the spacetime structure of special relativity and the 

“weakly relativistic” spacetime structure of quantum theory, non-relativistic quantum 

mechanics is something like a relativity theory in an “embryonic” stage. It is 

“embryonic” in that it is yet without the Lorentz-contraction factor γ that appears in the 

familiar Lorentz transformation equations of special relativity
15

.  

Having identified the appropriate spacetime structure for the Heisenberg 

commutation relations, and having discovered that this structure upholds the relativity of 

simultaneity, we have provided a geometric explanation for the quantum. A natural 

question now arises: what would the appropriate description of NRQM and quantum 

mechanical phenomena such as interference be like in light of the asymptotic relationship 

between relativity and quantum theory? Our “geometric” interpretation of NRQM 

elaborated below is one answer to this question, an answer grounded in our fundamental 

ontology of spacetime relations. 

 

4. Density Matrix Obtained via Symmetry Group 

Having found which spacetime structure is appropriate for the Heisenberg commutation 

relations (whose empirical manifestation is quantum interference), we now seek to 

address the question of how to model – in spacetime and not in Hilbert space – any 

quantum system which manifests quantum interference. That is, we are asking: 

 

 how can we describe a quantum system with nothing more than the 

geometry of spacetime, where the relativity of simultaneity and the non-

commutivity of position and momentum obtain? 

 

The following formal results provide us with an answer to this question. 

4.1 Formalism. We present a pedagogical version of the appendix to Bohr, Mottelson and 

Ulfbeck
 
(2004a) wherein they show the density matrix can be derived using only the 

irreducible representations of the symmetry group elements, g ∈ G. We begin with two 

theorems from Georgi 

 

The matrix elements of the unitary, irreducible representations of G are a 

complete orthonormal set for the vector space of the regular representation, or 

alternatively, for functions of g ∈ G (1999, 14) 

 

which gives 

If a hermitian operator, H, commutes with all the elements, D(g), of a 

representation of the group G, then you can choose the eigenstates of H to 

transform according to irreducible representations of G. If an irreducible 

representation appears only once in the Hilbert space, every state in the 

irreducible representation is an eigenstate of H with the same eigenvalue  

(ibid., p. 25). 

                                                 
15

 And given that it is the contraction/dilation phenomena, characteristic of relativity, that motivates the 

introduction of the “field” as a unifying structural device, non-relativistic quantum mechanics in light of 

this new spacetime structure is simply relativity minus the “field.” 
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What we mean by “the symmetry group” is precisely that group G with which 

some observable H commutes (although, these elements may be identified without 

actually constructing H). Thus, the mean value of our hermitian operator H can be 

calculated using the density matrix obtained wholly by D(g) and <D(g)> for all g ∈ G. 

Observables such as H are simply ‘along for the ride’ so to speak. 

To show how, in general, one may obtain the density matrix using only the 

irreducible representations
16

 D(g) and their averages <D(g)>, we start with eqn. 1.68 of 

Georgi (ibid.,18) 

[ ] [ ]∑ =−

g

kmjlablmbkja

a gDgD
N

n
δδδ)()( 1  

where na is the dimensionality of the irrep, Da, and N is the group order. If we consider 

but one particular irrep, D, this reduces to the orthogonality relation (eqn. 1) of Bohr et al. 

[ ] [ ]∑ =−

g

kmjllmkj
gDgD

N

n
δδ)()( 1     (4.1) 

where n is the dimension of the irrep. Now multiply by [D(g′)]jk and sum over k and j to 

obtain 

[ ] [ ] [ ] [ ] [ ]∑ ∑∑∑∑ ==−

g

lm

k

jkkmjl

j

jklmkj

kj

gDgDgDgDgD
N

n
)'()'()'()()( 1 δδ  

The first sum on the LHS gives: 

[ ] [ ]∑ −− =
j

kkjkkj
gDgDgDgD )]'()([)'()( 11  

The sum over k then gives the trace of D(g
-1

)D(g′), so we have: 

[ ] { } lm

g

lm
gDgDgDTrgD

N

n
)]'([)'()()( 1 =∑ −  

Dropping the subscripts we have eqn. 2 of Bohr et al: 

{ } )'()'()()( 1
gDgDgDTrgD

N

n

g

=∑ − .       (4.2) 

If, in a particular experiment, we measure directly the click distributions 

associated with the various eigenvalues of a symmetry D(g), we obtain its average 

outcome, <D(g)>, i.e., eqn. 3 of Bohr et al: 

 

)()( i

i

i pgD λλ∑=        (4.3) 

where λi are the eigenvalues of D(g) and p(λi) are the distribution frequencies for the 

observations of the various eigenvalues/outcomes.  
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 Hereafter, “irreps.” 
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In terms of averages, Bohr et al. eqn. 2 becomes: 

 

{ } )'()'()()( 1
gDgDgDTrgD

N

n

g

=∑ −      (4.4) 

which they number eqn. 4. Since we want the density matrix to satisfy the standard 

relation (Bohr et al. eqn. 5): 

 

{ } )'()'( gDgDTr =ρ        (4.5) 

it must be the case that (Bohr et al. eqn 6): 

∑ −≡
g

gDgD
N

n
)()( 1ρ        (4.6) 

That this density operator is hermitian follows from the fact that the symmetry operators 

are unitary. That is, D(g
-1

) = D
†
(g) implies <D(g

-1
)> = <D(g)>*, thus: 

 

ρρ ==== ∑∑∑ −−−++

ggg

gDgD
N

n
gDgD

N

n
gDgD

N

n
)()()()(*)()( 111 . 

[The second-to-last equality holds because we are summing over all g and for each g 

there exists g
-1

.] So, the density operator of eqn. 4.6 will be hermitian and, therefore, its 

eigenvalues (probabilities) are guaranteed to be real. This is not necessarily the case for 

D(g), since we know only that they are unitary. However, we need only associate 

detector clicks with the eigenvalues of D(g) and in this perspective one does not attribute 

an eigenvalue of D(g) to a property of some ‘click-causing particle’. Therefore, whether 

or not the eigenvalues of any particular D(g) are real or imaginary is of no ontological or 

empirical concern. 

4.2 Philosophical significance. With the above formal result in hand, we can now provide 

a clear answer to the question posed at the beginning of this section: 

 

 the spacetime symmetry group of the quantum mechanical experiment will 

yield the quantum mechanical density matrix. 

 

The methodological significance of the Bohr et al. formal result is that any NRQM 

system may be described with the appropriate spacetime symmetry group. But the 

philosophical significance of this proof is more interesting, and one rooted in our 

ontological spacetime relationalism. 

Our view is a form of ontological structural realism which holds that the features 

of our world picked out by STR and NRQM are structures; moreover, we think that the 

structures picked out by our most successful theories to date – spacetime theories – are 

geometrical structures. And those structures, if taken seriously, are, we posit, structures 

of spacetime relations. Furthermore, we see the quantum theory as providing a further 

structural constraint on the distribution of spacetime events. Isolated to an idealized 

model of “sources,” “detectors,” “mirrors,” etc. (see figure 5 for an idealized 

interferometer), our ontology is that each and every “click” or “measurement event” 
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observed in the detector region is itself evidence of a spacetime relation between the 

source and detector. So, while the “click” itself maybe regarded as a transtemporal or 

classical object, it is not “caused by” a structural entity such as a particle that is 

independent from the physical spacetime geometry of this entire measurement process 

and experimental set-up, rather, the click itself is a manifestation of spatiotemporal 

relations between elements of the experimental set-up. It is in this way, via our radical 

ontology of spacetime relations
17

, that the essential features of quantum systems with 

interference can be described with features of the spacetime geometry without appealing 

to features of the usual Hilbert space of quantum mechanical states 
18

.  

Secondly, as will be demonstrated below, the Bohr et al. proof will allow us to 

show that the posit of a blockworld – the reality of all spacetime events, and hence in our 

ontology, of all spacetime relations constituting those events – does real explanatory 

work. While one can imagine quite trivial explanations of EPR-Bell correlations invoking 

the blockworld
19

, the Bohr et al. result will allow us to provide a non-trivial, geometric 

explanation for such quantum correlations.  

Thirdly, as demonstrated below, the Bohr et al. result provides the foundation for 

our distinctly geometrical ontological structuralist
20

 interpretation of NRQM. This 

ontology is an ontology of spatiotemporal relations which are the means by which all 

physical phenomena (including both quantum and classical “entities”) are modeled. Our 

relationalism allows for a natural transition from quantum to classical mechanics 

(including the transition from quantum to classical probabilities) as simply the transition 

from rarefied to dense collections of spacetime relations
21

. 

 

5. The Geometric Interpretation of NRQM 

 In order to motivate our relational approach to physical reality, consider first a 

rival interpretation of NRQM which is antithetical to the view we are developing here, 

Bohmian mechanics. Bohmian mechanics provides us with a classical-like picture of 

reality
22

. It begins by modeling the behavior of a classical-like particle whose velocity is 

determined, via “Bohm’s equation” (i.e., the “guiding field”), by a wave-function; the 

wave-function evolves according to Schrödinger’s equation (Maudlin 1994, 118). Such 

particles always have well-defined locations in spacetime, and their total Hamiltonian is 

constructed from both a non-classical quantum potential and classical potential fields. In 

a basic twin-slit experiment, a simple picture of the mechanism behind the interference 

pattern is provided: a particle is directed deterministically by the guiding field to a 

particular location and registered as a “click” in a detector. Measurement on Bohm’s 

theory is just like any other physical interaction. A constructive account of measurement, 

                                                 
17

 Which, if you want to speak constructively, “constitute” the spacetime geometry. 
18

 A Hilbert space is not analogous to spacetime geometry, but rather to phase-space geometry. Anandan 

(1991) for example adopts the view that the geometry of Hilbert space is appropriate for a geometric 

interpretation of quantum theory. 
19

 E.g. Barrett (2004) critiques one such trivial explanatory model, which he calls a “teleological spacetime 

map.” 
20

 See French & Ladyman 2003a for an account of ontological strucuturalism in the context of quantum 

theory. 
21

 Though a full explication and defense of this view is unfortunately beyond the scope of this paper. 
22

 See Holland (1993) p. 26 and 81ff.; Barrett (1999) sections 5.2 – 5.6; and Maudlin (1994) p. 116ff. for 

the sense in which Bohm is classical-like. 
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from particle to “click” registration, is provided by breaking down the whole process into 

particles and wave-functions. A “click” is clearly the result of a causal process (however 

non-classical/non-local that process might be), and evidences a particle trajectory in 

spacetime. 

Given our geometrical interpretation of NRQM, it should be clear that we do not 

take detector events to be indicators of the trajectories of classical-like particles and 

wave-functions, propagating from the source to the detector as in Bohm’s mechanics or 

even, as it turns out, like disturbances in a field per RQFT. In RQFT for a scalar field 

without scattering or sources we have for the transition amplitude (Zee 2003, 18) 

 

( ) ( )

∫
∫

=








− ϕϕ

ϕ
Vdxdi

eDZ

24

2
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    5.1 

 

According to Zee, NRQM then obtains in (0+1) dimensions. In Zee’s derivation of eqn. 

5.1 from NRQM, the field φ is obtained in the continuum limit of a discrete set of 

oscillators qa distributed in a spatial lattice. Any one of these qa is supposed to replace φ 

in eqn. 5.1 to reduce to NRQM. However, each qa is fixed in space so the notion that 

we’re integrating over all possible paths in space (standard treatment) from a source to a 

detector when we compute Z is not ontologically consistent with the fact that we integrate 

over all values of q but not over all values of the index ‘a’ in qa. We rather suggest that 

the method for reducing RQFT to NRQM is to associate sources J(x) with elements in the 

experimental set up while assuming the q’s are distributed discretely therein. Thus, we 

want to obtain NRQM from 

( ) ( )

∫
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 rather than eqn. 5.1. This leaves us to compute   

Consider for example the twin-slit experiment, which “has in it the heart of 

quantum mechanics. In reality, it contains the only mystery” (Feynman et al, 1965, italics 

theirs).   
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5.1 Interpretive consequences of our geometrical NRQM. 

The Measurement Problem. According to the account developed here, we offer a 

deflation of the measurement problem with a novel form of a hidden-variables “statistical 

interpretation.” The fundamental difference between our version of this view and the 

usual understanding of it is the following: whereas on the usual view the state description 

refers to an “ensemble” which is an ideal collection of similarly prepared quantum 

particles, “ensemble” according to our view is just an ideal collection of spacetime 

regions Di “prepared” with the same spatiotemporal boundary conditions per the 

experimental configuration itself. The union of the click events in each Di, as i → ∞, 

produces the characteristic Born distribution
23

. Accordingly, probability on our 

geometrical NRQM is interpreted per relative frequencies. It should be clear, also, that 

probabilities are understood as the likelihood that a particular relation between source-

detector in spacetime is realized, from among a set of all equally likely relations between 

source-detector. 

On our view, the wave-function description of a quantum system can be 

interpreted statistically because we now understand that, as far as measurement outcomes 

are concerned, the Born distribution has a basis in the spacetime symmetries of 

experimental configurations. Each “click,” which some would say corresponds to the 

impingement of a particle onto a measurement device and whose probability is computed 

from the wave-function, corresponds to a spacetime relation in the context of the 

experimental configuration. The measurement problem exploits the possibility of 

extending the wave-function description from the quantum system to the whole 

measurement apparatus, whereas the spacetime description according to our geometrical 

quantum mechanics already includes the apparatus via the spacetime symmetries 

instantiated by the entire experimental configuration. The measurement problem is 

therefore a non-starter on our view. 

 

Entanglement & Non-locality. On our geometric view of NRQM we explain 

entanglement as a feature of the spacetime geometry
24

 as follows. Each detection event, 

which evidences a spacetime relation, selects a trajectory from a family of possible 

trajectories (one family per entangled ‘particle’). In the language of detection events qua 

relations, it follows that correlations are correlations between the members of the families 

of trajectories and these correlations are the result of the relevant spacetime symmetries 

for the experimental configuration. And, since an experiment’s spacetime symmetries are 

manifested in the Hamilton-Jacobi families of trajectories throughout the relevant 

spacetime region D, there is no reason to expect entanglement to diminish with distance 

from the source. Thus, the entanglement of families of trajectories is spatiotemporally 

global, i.e., non-local. That is, there is no reason to expect entanglement geometrically 

construed to respect any kind of common cause principle. Obviously, on our geometric 

interpretation there is no non-locality in the odious sense we find in Bohm for example, 

that is, there are no instantaneous causal connections (construed dynamically or in terms 

                                                 
23

 There would be N first events in trials with N entangled particles, since each “particle” would correspond 

to a family of possible trajectories. 
24

 Established in section 2 as one which is “weakly” relativistic in that it lacks the Lorentz contraction 

factor. 
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of production—bringing new states of affairs into being) between space-like separated 

events—no action at a distance. However our view is non-local in the sense that it 

violates the locality principle. The locality principle states: the result of a measurement is 

probabilistically independent of actions performed at space-like separation from the 

measurement. Keep in mind that in our BW setting, talk of “actions performed” gets only 

a purely logical-counterfactual meaning—the entire experimental EPR set-up, its past, 

present and future if you will and the spacetime symmetries of that set-up are all just 

there—no one could really perform some alternative measurement on the other wing of 

the experiment.  

 We understand quantum facts to be facts about the spatiotemporal relations of a 

given physical system, not facts about the behavior of particles, or the interactions of 

measurement devices with wave-functions, or the like. Entanglement and non-locality are 

built into the structure of spacetime itself via relations. Correlations between space-like 

separated events that violate Bell’s inequalities are of no concern as long as spacetime 

symmetries instantiated by the experimental apparatus warrant the correlated spacetime 

relations. Since the non-local correlations derive from the spatiotemporal relations per the 

spacetime symmetries of the experiment, satisfaction of any common-cause principle is 

superfluous. To sloganize: ours is a purely geometric/spacetime interpretation of non-

relativistic quantum mechanics. 

 That the density matrix may be obtained from the spacetime symmetries of the 

Hamiltonian is consistent with the notion that ψ*ψ provides the distribution for detector 

events in single-event trials for each family of trajectories obtained via the Hamilton-

Jacobi formalism. Our view exploits this correspondence to infer the existence of a 

spacetime relation between source and detector for each detector event.  

Subsequent detector events in close spatiotemporal proximity to the first tend to 

fall along a trajectory of the family consistent with the first event thereby allowing for the 

inference of a “particle.” In this sense, what constitutes a “rarefied” distribution of 

spacetime relations is but one relation per “particle,” i.e., family of trajectories, since 

subsequent events tend to trace out classical trajectories (scattering and particle decay 

events aside). It is a collection of these single-event trials that will evidence quantum 

interference in, for example, the twin-slit experiment. 

Our account provides a clear description, in terms of fundamental spacetime 

relations, of quantum phenomena that does not suggest the need for a “deeper” causal or 

dynamical explanation. If explanation is simply determination, then our view explains the 

structure of quantum correlations by invoking what can be called acausal global 

determination relations. These global determination relations are given by the spacetime 

symmetries which underlie a particular experimental set-up. Not objects and dynamical 

laws, but rather acausal spacetime relations per the relevant spacetime symmetries do the 

fundamental explanatory work according to our version of geometrical quantum 

mechanics. We can invoke the entire spacetime configuration of the experiment so as to 

predict, and explain, the EPR-Bell correlations. Indeed, it has been the purport of this 

paper that the spacetime symmetries of the quantum experiment can be used to construct 

its quantum density operator, that such a spacetime is one for which simultaneity is 

relative, and that events in the detector regions evidence spatiotemporal relations. 

  This constitutes an acausal and non-dynamical characterization and explanation of 

entanglement. According to our view, the structure of EPR correlations are determined 
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by the spacetime relations instantiated by the experiment, understood as a spatiotemporal 

whole. This determination is obtained by systematically describing the spatiotemporal 

symmetry structure of the Hamiltonian for the experimental arrangement
25

. Since 

 

(i) the explanation lies in the spacetime symmetries as evidenced, for example, in 

the family of trajectories per the Hamilton-Jacobi formalism, 

(ii) each family of trajectories characterizes the distribution of spacetime relations, 

(iii) we take those relations to be a timeless “block,”  

(iv) these relations collapse the matter-geometry dualism, 

therefore, 

(v) our geometrical quantum mechanics provides for an acausal, global and non-

dynamical understanding of quantum phenomena. 

 

  

6. Conclusion. 

Can one do justice to the non-commutative structure of NRQM without being a 

realist about Hilbert space? Our geometric interpretation constitutes an affirmative 

answer to this question. The trick is to appreciate that while everything “transpires” or 

rather resides in a 4D spacetime and nowhere else, nonetheless, some phenomena, 

namely quantum phenomena, cannot be modeled with worldlines if one is to do justice to 

its non-commutative structure. Thus while clicks in detectors are perfectly classical 

events, the clicks are not evidence of constructive quantum entities such as particles with 

worldlines, rather, the clicks are manifestations of spacetime relations between elements 

of the experimental configuration—distributions per the spacetime symmetries. Thus on 

our view there is no “Dedukind cut” between the quantum and the classical as some 

versions of the Copenhagen interpretation would have it. After all, we can explain 

asymptotically the transition from the quantum to the classical in terms of density of 

“events.” And there is also no “Einstein separability” between the system being measured 

and the system doing the measuring on our interpretation. Our view respects the causal 

structure of Minkowski spacetime in the sense that there are no faster than light 

“influences” or “productive” causes between space-like separated events as there are in 

Bohm for example. So our view is not non-local in any robustly dynamical sense. 

However our view does violate Einstein separability and it does have static “correlations” 

outside the lightcone as determined acausally and globally by the spacetime symmetries.  

Such acausal global determination relations do not respect any common cause 

principle. This fact should not bother anyone who has truly transcended the idea that the 

dynamical or causal perspective is the most fundamental one. We are providing a model 

of an irreducibly relational blockworld, which is what realism about the quantum 

structure and the 4D spacetime structure yields once one accepts the implication therein 

of Hilbert space anti-realism.  

    

 

 

                                                 
25

 The experimental apparatus itself providing the particular initial and final “boundary conditions” needed 

for a prediction unique to the apparatus. 
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