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Abstract

This paper shows how the study of surpluses of structure is an
interesting philosophical task. In particular I explore how local gauge
symmetry in quantized Yang-Mills theories is the by-product of the
specific dynamical structure of interaction. It is shown how in non
relativistic quantum mechanics gauge symmetry corresponds to the
freedom to locally define global features of gauge potentials. Also dis-
cussed is how in quantum field theory local gauge symmetry is replaced
by BRST symmetry. This last symmetry is apparently the result of
the fact that we do not know how to define quantum Yang-Mills theo-
ries without unphysical gauge boson states. Since Yang-Mills theories
describe successfully three of the four fundamental interactions the
elucidation of this symmetry is a pressing philosophical question.
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1 Introduction

In the context of physics symmetry is defined as an immunity to possible
change.1 In other words, it is the possibility of making a change that leaves
some aspect of the situation unchanged. Thus a symmetry is always relative
to a class of changes and what is invariant under this class must be speci-
fied. In most contexts the application of this concept is not philosophically
puzzling, but in a few we meet difficulties of interpretation. Local gauge
symmetry in quantum Yang-Mills (YM) theories is one of these problematic
cases. A local gauge symmetry is defined as a certain class of local changes
of fields that do not affect the empirical outcome of a particular theory. For
example it could be a class of transformations that leave the Lagrangian un-
changed, or change it at most by a total derivative. But this criterion is not
a necessary condition. If we want to go beyond this fact and specify exactly
what does not change in order to conserve the empirical content of a physical
theory, we encounter conceptual problems. Since no observable quantity al-
lows us to distinguish between situations related by a gauge transformation,
how can we even know if there is an active interpretation2 of that change?
At first sight local gauge symmetry seems to be a redundancy of the theory.
On the other hand we often encounter in physics opinions like:

Gauge arbitrariness of electrodynamics may appear sometimes
annoying and sometimes a deep and far-reaching principle. C.
Itzykson and J.-B. Zuber, (page 10, [12]).

Since three of the four fundamental interactions are modeled by quantum
Yang-Mills theories, these opinions seem well-founded. But how can redun-
dancy be profound? The idea seems absurd, since profundity in the context

1I borrow this elegant definition from Joe Rosen [21].
2An active interpretation implies that transformations involved are actual changes of

states.
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of physics is associated with capturing the structure of the world through
models and theories, or more modestly to produce a minimal theory. At
best, redundancy refers to a surplus of structure in the theory but does not
refer in anyway to the world. Thus, it could not be profound. In a recent
work [16], C. Martin suggested that

the local gauge symmetry is rather a by-product or accompani-
ment of the specific dynamical interaction field(s) in question.
[Emphasis in original].

He draws an interesting analogy with the place of general covariance in the
foundation of the general relativity (GR), which is a formal principle that
seems not to be arbitrary. Unfortunately GR and YM theories are sufficiently
different to make it difficult to push this analogy very far. In this paper I will
explore Martin’s thesis and show how local gauge symmetry is a by-product.
This discussion will defend that certain surpluses of structure are in a certain
sense unavoidable. They are the product of our way of theorizing. This is a
new task for philosophy of science: to identify these surpluses and understand
their role in theoretical structure. In section 2, I will expose the different
philosophical positions we can adopt towards the status of gauge symmetry.
This will give us a framework for the discussion of section 3, where local
gauge symmetry will be discussed in non relativistic and relativistic quantum
mechanics. For the latter I will show how local gauge symmetry is replaced
by BRST symmetry and how new questions arise from this change.

1.1 What is local gauge symmetry?

Most of the philosophical analyses of YM theories limit themselves to the
simplest case: electrodynamics.3 General conclusions induced from this the-
ory could be misleading. For example in electrodynamics the gauge field Fµν

is gauge invariant. This is not generally the case. Subsequently the belief
that Fµν represents a physical field because it is a covariant field that is gauge
invariant cannot be generally defended. Since I believe that YM theories form
a natural class, it seems clear to me that an analysis of a special case will
not do. YM theories are not put in the same category for arbitrary reasons.

3Note that, contrary to certains authors, I extend the category of Yang-Mills theories
to electrodynamics, an Abelien gauge theory.
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They share a basic structure that inclines me to believe that a good philo-
sophical analysis should apply to all of them.4 Therefore I will focus on the
entire class of Yang-Mills theories, and not merely on electrodynamics. This
class includes among others quantum electrodynamics and quantum chromo-
dynamics. I will concentrate my analysis on quantized YM theories and say
very little about local gauge symmetry in classical YM theories. This is for
reasons of space but also because I believe that the need for a philosophical
discussion is far greater in quantum physics; furthermore, I do not believe
that classical interpretations apply in quantum context.

Let us assume that we have a field theory where a matter content5 is
represented by a multiplet ψ(x), where ψ belongs to an irreducible repre-
sentation r of the gauge group G. This field is coupled to a gauge potential
Aµ = Aa

µt
a
r , where tar are generators of G forming the algebra [tar , t

b
r] = ifabctcr,

where fabc are structure constants. Note that the repeated indices a, b · · ·
are summed over the generators of G. The local gauge symmetry implies
that there are no empirical consequences to the following transformations:

ψ(x) → V (x)ψ(x) (1)

Aµ → V (x)

(
Aµ +

i

g
∂µ

)
V †(x) (2)

where every matrix V (x) = exp (iαa(x)tar) ∈ G, where αa(x) are smooth
real functions of space-time, and g is the charge associated to the gauge
interaction. The corresponding infinitesimal transformation laws are

ψ(x) → (1 + iαatar)ψ(x) (3)

Aa
µ → Aa

µ +
1

g
∂µα

a + fabcAb
µα

c (4)

Note that it is because αa(x) are explicitly functions of space-time that we
call these transformations local. In this theory the field tensor is

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν (5)

4Gauge transformations in general relativity are the set of diffeomorphisms of the space-
time manifold. These transformations are not limited to an internal property like Yang-
Mills transformations, they affect the space-time manifold itself. Furthermore general
relativity is a classical theory. Yang-Mills theories are not. For these reasons I am not
expecting my analysis to apply to general relativity.

5In this paper I will work in “natural” units, where ~ = c = 1.
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and transforms under an infinitesimal gauge transformation as

F a
µν → F a

µν − fabcαbF c
µν (6)

As an example let us take G = U(1). In this case6 V (x) = exp(iα(x)). The
gauge transformations consist of

ψ(x) → eiα(x)ψ(x) (7)

Aµ → Aµ +
1

g
∂µα(x) (8)

Fµν → Fµν (9)

where −g is the electron charge e = −|e|. We recognize here the case of quan-
tum electrodynamics or in the context of non relativistic quantum mechanics,
the case of a quantized particle in interaction with a classical electromagnetic
field.

2 Philosophical positions about local gauge

symmetry

The issue I want to explore in this paper is the conflict between redundancy
and profundity of local gauge symmetry. First, we can put aside discussions
using the gauge principle (often called the gauge argument) that relate local
gauge symmetry to a kind of logic of nature. Authors following that vein
may have been tempted to justify the deepness of the local gauge symmetry
based on the logical order of nature exposed in the gauge principle. In his
Ph.D. dissertation [15], C. Martin clearly showed that the gauge argument
is at best heuristic, and that we cannot clarify the status of gauge symmetry
using only this principle. There are too many holes in the argument to justify
anything about the status of gauge symmetry. In most formulations of the
argument, local gauge symmetry is postulated without a solid justification.
For example see the fundamental paper of C.N. Yang and R.L. Mills [24].

If the gauge argument is of no help, I propose to approach gauge symmetry
directly. On the status of gauge symmetry, there are three mutually exclusive
philosophical positions7: 1) the local gauge symmetry is a physical symmetry,

6Note that in the case the group generator is the unit matrix.
7Note that these positions map the trilemma proposed by M. Redhead [20].
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2) the local gauge symmetry is not physical and we should formulate our
theories in a gauge invariant way, and 3) the local gauge symmetry is not
physical and we should keep the gauge dependence of our theories. Note that
these positions go beyond the ontological status of gauge symmetry. They
have an epistemological scope. In the philosophy of physics, we often discuss
independently ontological and epistemological questions. In the case of local
gauge symmetry this would be unwise. This symmetry is at the core of these
considerations.

2.1 The gauge symmetry is physical

This interpretation implies that a gauge transformation relates distinct phys-
ical states. This possibility was evoked by Y. Aharonov and D. Bohm [1] as
a possible consequence of the local interpretation of the effect that bears
their names. This is also what R. Feynman probably had in mind when he
defended that gauge potentials are physical actors in quantum mechanics
(chapter 15, [8]). If we adopt this interpretation the gauge symmetry is of
course not redundant because it is a symmetry of the physical model. Let
me explain this in more detail.

In a realist perspective a good physical model corresponds at least ap-
proximately to some aspects of the external world. In the best scenario
distinct physical states in the physical model8 represent distinct states of
affairs in the world. Since gauge symmetry relates distinct states, identifying
this symmetry was a scientific discovery and is not an arbitrary construction.
From the antirealist point of view things are more complex. In this context
arbitrariness is a question of degree. Asserting that the local gauge sym-
metry is physical implies that this symmetry is less arbitrary than a purely
formal symmetry of the model. It is affirming that the gauge symmetry is not
just a symmetry of the mathematical representational machinery but also a
symmetry of the physical model itself.

This said, this position is far from without flaws. Two features make
this option very costly. First, this position allows that there are distinct
states of affairs which no possible observation could distinguish. Remember
gauge symmetry implies complete empirical equivalence. The question is not
that these undistinguishable states could not exist, but in what measure they
should appear in physical theory. In the spirit of simplicity, such states should

8A physical model is a collection of idealized physical entities and their relations.
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be identified unless we can find at least indirect evidence of their existence.
This point is of course not fatal to the interpretation but combined with the
next point it may be. If we index the states of affairs by gauge potentials,
in other words if each distinct gauge potential refers to a different state, the
theory is indeterministic. This was clearly exposed by G. Belot [3]. In this
condition, the geometry of the phase space of classical electromagnetism is
determined by a presymplectic form. This structure is too weak to determine
the evolution of states. There are infinitely many trajectories through each
point of phase space. In other words, the theory is not strong or rich enough
to predict the evolution of physical states indexed by Aµ. To my knowledge
there is no equivalent proof for the quantum case, but as I will show in
section 3.1, the local value of Aµ is not the physically meaningful entity. Let
us return to the classical case. Since these evolutions are not distinguishable,
by observation we find ourselves in a very uncomfortable situation. The
reader, I am sure, recognizes the premisses of the hole argument [5]. While
some forms of indeterminism are acceptable in physics, the incapacity of
the theory to choose between possible evolutions is not. As a response we
could argue that states of affairs should not be represented by different gauge
potentials. But in that case what does it mean for the gauge symmetry to
be physical? What is changed under a gauge transformation?

Of course these points do not completely rule out that local gauge sym-
metry could be physical. But for that we will need new experimental data. If
we discover an empirical phenomenon that exhibits in a certain way a gauge
dependence, we will have to reconsider the question. Until then, we have to
interpret the local gauge symmetry as a redundancy of the theory.

2.2 Theories should be gauge invariant

If we accept the conclusion of the last subsection we have to consider local
gauge symmetry as the result of a superfluous theoretical structure. Thus
this symmetry is formal. There are two possible epistemological attitudes
towards this surplus. One of them would be to defend that all theories should
be formulated in a gauge invariant way. Gauge freedom should be eliminated.
Ideally this reduction of the theory should be done before quantization, at
the classical level. This is the position of J. Ismael and B. C. van Fraassen:

Formalisms with little superfluous structure are nice, of course,
because they reflect cleanly the structure of what they represent;
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they have fewer extra mathematical hooks on which to hang the
mental structure that we project onto phenomena. (page 390,
[11])

This position makes sense but it should not be taken literally. Even if sur-
pluses of structure are mental projections onto the world that do not refer
to a possible world structure, this does not imply that these surpluses are
always arbitrary. A surplus of structure could be an unavoidable by-product
of our way of constructing a theoretical model. This possibility has to be
explored. It is only after the analysis of the role of surpluses of structure
in the theory that we can eliminate them without a second thought. In the
cases that occupy us another question arises. When do we eliminate or re-
duce the gauge surplus? Before or after quantization? This is an important
question. There is no obvious reason why gauge reduction and quantization
should be commuting operations. Because of this the second position is more
complex than it originally appeared. It is not enough to defend that surplus
of structure should be eliminated. You have to specify how and when. As
we will show in section 3, this is not a trivial task.

Before moving on to the last position about local gauge symmetry, let
us examine in more detail how we could build classical YM theories without
this symmetry. One of the more prominent research programs in that direc-
tion is to formulate gauge interaction in terms of Wilson loops.9 K. Wilson
introduced this notion to study the behavior of the interactions strength in
quantum chromodynamics [22], an SU(3) Yang-Mills theory. The concept of
a Wilson loop is based on the notion of a Wilson line:

Uq(y, x) = P
{
eig

R 1
0 ds dxµ

ds
Aa

µ(x(s))ta
}
, (10)

where P{} is a prescription called path-ordering that takes into account the
fact that Aµ matrices do not necessarily commute at different points x. The
integration is over a path q in space-time parameterized by a real variable s
beginning at x(0) = x and finishing at x(1) = y. A Wilson loop is simply
the trace of a Wilson line Uq(x, x) beginning and ending at some space-time
point.10

9The main goal of this research program is not to formulate a gauge invariant theory,
but to develop a new theory of quantum gravity.

10Wilson loops are closely related to the geometrical concept of holonomy in a principal
fibre bundle. For a philosophical introduction to the concept of holonomy in gauge theories,
see R. Healey [10]. For a physicist’s approach, see R. Gambini and J. Pullin [9].
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Wilson loops are gauge invariant entities, but gauge potentials still appear
explicitly in their definition. This is reminiscent of a formulation of the theory
with gauge freedom. It is not mandatory to define Wilson loops using gauge
potentials. By analogy with geometry, where holonomy groups could be
defined independently of the connection, Wilson loops could be conceived
as primary entities. In fact, Gambini and Pullin assert that Wilson loops
possess the reconstruction property:

Given the Wilson loop functions evaluated for all possible loops
we can reconstruct all the gauge invariant information present in
the gauge connection. (page 63, [9])

In other words, Wilson loops contain all the physically significant information
included in the gauge potential (gauge connection). Therefore, they form a
legitimate reduction of classical YM theories.

As far as Wilson loops are concerned, it is easy to convince ourselves that
the local gauge symmetry expresses a flexibility in the choice of a locally
defined gauge potential Aµ compatible with the global structure represented
by the values of Wilson loops. Therefore local gauge symmetry is clearly the
by-product of our preference to define physical fields locally. This interpre-
tation is limited, for now, to classical physics and is dependent on the type
of reduction we choose. I will show in section 3 there is a natural way to
extend this interpretation to non relativistic quantum mechanics.

2.3 We should keep the gauge dependence

The third philosophical option is to keep the gauge dependence in the for-
mulation of the theory as long as we can, even if we know that nothing in
the world corresponds to the surplus of structure that is responsible for the
symmetry. This position may seem paradoxical, but in fact it is more in tune
with the practice of physicists. Since the rising of quantum physics the rela-
tion between theories and the world is much more subtle than before. Like
the famous example of Dirac’s equation, the apparent surplus of today could
be the empirical part of tomorrow. Of course, sometimes a surplus should
be eliminated but not before we understand what it was doing in the theory
in the first place. Consider the following example. In 1979, the physicist L.
O’Raifeartaigh wrote:

The reason that the gauge structure of the weak interactions lay
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undiscovered for so long is that the symmetry of the gauge group
is in this case broken. [Emphasis in original], (page 162, [18]).

If we believe that the gauge surplus is an epistemological mistake and that
it should have been put aside long ago, O’Raifeartaigh’s remark has no per-
tinent content. This is of course not the right attitude to take toward the
writing of physicists. The challenge for the philosopher of physics is not just
to identify where the physicist is careless about foundations, but also to ex-
plain how to interpret physical discourse in a meaningful way. How otherwise
can we understand spontaneously broken gauge symmetry? Physicists speak
casually of the gauge structure of theories. What is this structure and what
is its role in the theory? This is a question philosophers should answer. It
could even be the beginning of new field of investigation in philosophy of
physics: the study of the role of superfluous structure in theory. This re-
search would probably give us new answers to old philosophical questions
about the nature of scientific representation. But my immediate goal is not
so ambitious. In the next section I will concentrate on local gauge symmetry
in quantum YM theories.

3 The non arbitrariness of local gauge sym-

metry

In this section I will work within the framework of the third philosophical
position about local gauge symmetry. So I will keep the gauge dependence
as long as possible. I will show how this symmetry is a by-product and what
we can learn from it.

3.1 Nonrelativistic quantum Yang-Mills theories

In this subsection I will show that the interpretation about local gauge sym-
metry that resulted from the Wilson loops formulation of YM theories is
right in the non relativistic quantum context. Let us begin by studying local
gauge symmetry in the simplest quantum case, when a classical electromag-
netic field interacts with a non relativistic quantized particle.11 I will analyze
this case using the space-time approach to quantum mechanics, often called

11In this discussion I will always neglect the spin.
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the Feynman path integral approach (see [7]). This quantum formalism is
rarely used in philosophical analysis so I will explain it in some detail. This
pedagogical effort will be rewarded. In this formalism we can show explicitly
how the gauge interaction enters in the theory which will clarify greatly how
supplementary degrees of freedom appear in the theory.

First, let me define the basic quantity of the Feynman path integral for-
malism: the propagator.

Definition 1 (The propagator) The probability amplitude (also called pro-
pagator) that a particle that was at the position ~r1 at time t = 0 is at position
~r2 at time t = T is

K(T,~r2; 0, ~r1) =

∫
D(~q(t)) eiS[~q(t)] (11)

where S[~q(t)] is the classical action of the path ~q(t); in other words S[~q(t)] =∫ T

0
L(~̇q, ~q) dt, where L(~̇q, ~q) is the Lagrangian of the particle. The integral∫
D(~q(t)) is a sum over all possible trajectories between x = (0, ~r1) and y =

(T,~r2).

To calculate the propagator, we have to sum functions of the action for all
possible trajectories between x and y. The presence of this sum is the main
difference between quantum and classical physics. In classical physics the
main objective is to find the trajectory followed by the particle. In quantum
physics, all trajectories contribute to the propagator. It is the relative phase
between these contributions that generates intrinsically quantum phenom-
ena.12

Now let us imagine that our system is a quantized charged particle of
Lagrangian L. What is the effect of adding an electromagnetic interaction to
this system? Classically we know that the Langrangian of a charged particle
(charge e) will be modified in the following way:

L(~̇q, ~q) → L(~̇q, ~q) + e
(
~v(t) · ~A(~q(t))− φ(~q(t))

)
, (12)

where ~v(t) is the velocity of the particle, ~A the vector potential and φ the
scalar potential. The contribution of each path will be modified in the fol-

12Of course, I am not at all saying that the particle is following all the paths at the
same time. We are not talking about physical trajectories here.
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lowing way:

exp (iS[~q(t)]) → exp

(
iS[~q(t)] + ie

∫ (
~v(t) · ~A(~q(t))− φ(~q(t))

)
dt

)
(13)

= exp (iS[~q(t)]) · exp

(
ie

∫ (
d~q

dt
· ~A− φ

)
dt

)
(14)

= exp (iS[~q(t)]) · exp

(
−ie

∫
q

Aµdx
µ

)
(15)

Due to the effect of electromagnetic interaction the contribution of each path
is modified by a nonintegrable phase factor, which is the Wilson line for this
path. This is an important result. In 1974 [23], C.N. Yang argued that the
concept of nonintegrable phase factor could be taken as the basis of a gauge
interaction. In our example this means that the fact that the interaction is
in the form of a Wilson line is the signature of a gauge interaction.13 Let me
rephrase this point. We recognize that we are faced with an electromagnetic
interaction because the interaction takes the form of a Wilson line in the path
integral.14 Identifying the gauge structure of interaction is just that. If the
interaction was of another form, it would not be a YM interaction.

Having established this point, let us discuss the symmetry itself. The
propagator consists in the sum of contributions of all paths. If we look at
the relative phase caused by the interaction between two particular paths q1
and q2:

eiS[~q1(t)]e
−ie

R
q1

Aµdxµ

+ eiS[~q2(t)]e
−ie

R
q2

Aµdxµ

(16)

= e
−ie

R
q1

Aµdxµ
(
eiS[~q1(t)] + eiS[~q2(t)]e

−ie
H

q21
Aµdxµ

)
(17)

where q21 = q2 − q1. Examination of the term in parentheses reveals that
it is gauge invariant since the last factor - the only one that could be gauge
dependent - is a Wilson loop, which as has already been noted is gauge
invariant. This is a noteworthy point. Although individual phase factors are
gauge dependent, the relative phase between paths is not. In other words,
in any gauge the relative phase between contributions of two paths stays
unchanged. Under a gauge transformation Aµ → A′

µ = Aµ − 1
e
∂µα a phase

13Note that it is ultimately the reason why it is justified to interpret Aµ as a connection
in a principal fibre bundle.

14A Wilson line associated to the gauge group U(1).

12



factor associated with a path q beginning at x and ending at y becomes:

exp

(
−ie

∫
q

Aµdx
µ

)
→ exp

(
−ie

∫
q

Aµdx
µ

)
exp

(
i

∫ y

x

∂µα(x)dxµ

)
(18)

=V (y) exp

(
−ie

∫
q

Aµdx
µ

)
V †(x), (19)

where V (x) = exp(iα(x)). As we can see, the effect of a gauge transformation
is integrable. It only depends on the value of α(x) at x and y. Knowing this,
we can infer that under a gauge transformation the propagator becomes:

K(y;x) → K ′(y;x) = V (y)K(y;x)V †(x) (20)

Since in K(y;x), y is the variable and x an initial condition, the factor V †(x)
is just a global phase change with no physical significance. Local gauge
symmetry postulates that K and K ′ are physically equivalent because the
propagator is a representation of a wave function. This is not trivial since
V (y) depends smoothly of space-time. Returning to the path integral formal-
ism, we can see that the physical equivalence between K and K ′ corresponds
to the absence of relative phase change between path contributions due to
electromagnetic interaction. The action of V (y) corresponds to changing the
standard phase against which the contribution of each path is compared. Lo-
cal gauge symmetry is asserting that any change of gauge potential that does
not modify relative phase between path contributions is physically meaning-
less. In other words, it is a passive local gauge recalibration. From that I
conclude that quantum mechanics is not sensible to a local change of Aµ if it
does not change global properties expressed by Wilson loops. In our exam-
ple, local gauge symmetry is the by-product of the way the electromagnetic
interaction is coupled to a quantized particle, namely by nonintegrable phase
factors. The heart of this gauge theory is the way these phase factors are
defined and the fact that we have to take into account the contribution of
all possible trajectories. Local gauge symmetry is the unavoidable product
of this definition.15

Even if local gauge symmetry has no physical content it is not arbitrary.
It depends on the structure of gauge interaction. It is the liberty we have

15This example could be generalized to non-abelian YM theories. In that case phase
factors would be traces of potential matrices. But I do not know any applications of such
theories in the non relativistic regime.
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in defining locally distinct Aµ that are physically equivalent. The gauge
structure of interaction is of course the real discovery.

If we return to the philosophical positions of section 2, positions 2 and
3 are still available to us. We can keep the gauge dependence of the theory
and continue to describe the interaction in terms of the action of Aµ. For
example, we could interpret the gauge potential as a connexion in a principal
fibre bundle P (M4, G, π), without forgetting that it is only the global fea-
tures of Aµ that are physically significant.16 Or we could argue for a more
economical description in terms of Wilson loops. At this point both posi-
tions are perfectly justifiable. In this case we do not have to worry about the
order between quantization and reduction since the gauge potential is not
quantized.

3.2 Relativistic quantum mechanics

It is now time to study the status of local gauge symmetry in relativistic
quantum mechanics. I will concentrate my study on perturbative quantum
field theory. After all, it is in this theoretical framework that YM theories
have been most successful.

Even in the simplest case, the quantization of a free electromagnetic field,
local gauge symmetry causes trouble. Part of the quantization procedure
using Feynman path integrals is to solve functional integrals of the sort∫

D(A) eiS[A] (21)

where S is the gauge invariant action of a free field S =
∫
−1

4
(Fµν)

2d4x.
The sum represented by the integral

∫
D(A) is over all possible potential Aµ

configurations. It is a direct generalization of the notion of path integral.
Due to the gauge invariance, for any potential of the form Aµ = −1

e
∂µα

the action is zero. The sum over these potentials makes the integral explode.
More generally, the integral is badly defined because we are redundantly
integrating over a continuous infinity of physically equivalent field configura-
tions. Gauge symmetry has become a problem. We must reduce the degrees
of freedom to make the theory finite.17 We have seen one way to do this

16Knowing that the gauge groupoid is probably a better geometrical construction.
17Note that this problem is distinct from renormalization. Here infinity is produced at

the tree level of Feynman diagrams.
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with Wilson loops. But it is difficult to build a computable perturbative
quantum theory of loops. Physicists have devised another approach: fixing
the gauge. For example, we could add a covariant constraint of the type
∂µAµ = 0 (Lorentz gauge). In the Lagrangian formalism implementing this
constraint corresponds to adding to L a gauge fixing term: Lgf = 1

2ξ
(∂µAµ)2,

where ξ can be any finite constant.18 As you can see the reduction of the
gauge surplus takes place before quantization.

At this point we might worry about the fact that the Lagrangian density
is not gauge invariant anymore. By adding the gauge fixing term, did we not
modify deeply the structure of the gauge theory to the point that it is not
the same theory at all? Fortunately this is not the case. It can be proven
that every physical prediction is in fact independent of ξ and thus, of the
gauge fixing term. All other nice properties of gauge theory are conserved
and especially renormalizability. If we compute empirical results based on a
gauge-fixed L where photons interact with fermions, we obtain a remarkable
accord with empirical data.

If we stop our analysis here we have to conclude that local gauge sym-
metry is essentially a classical feature. It appears in nonrelativistic quan-
tum mechanics because gauge potentials are not quantized, but in a fully
quantized theory it is an annoying nuisance that must be eliminated before
quantization and therefore has no new interesting interpretation.

On the other hand, if we believe that quantum electrodynamics is just a
theory in the class of Yang-Mills theories, we have to check if this pessimistic
conclusion applies to non-Abelian YM theories. As I will show the answer is
not simple. We have to be much more careful in our analysis. Let us study
a non-Abelian theory of fermions interacting with gauge bosons represented
by gauge potentials:

L = −1

4
(F a

µν)
2 + ψ̄(iγµDµ −m)ψ +

1

2ξ
(∂µAa

µ)2 (22)

Even if the gauge fixing term makes the path integral finite another problem
arises: the unitarity of this theory is lost.19 There is a nonzero probability
for a physical process to produce external gauge bosons that are not trans-
versely polarized. These are unphysical states because non-transverse polar-
ized bosons would be massive, making it impossible for the theory to be gauge

18We add ξ to have a more general gauge fixing term.
19See chapter 16.1 of [19].
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invariant even at the classical level. I put aside the case of spontaneously
broken gauge symmetry. Moreover these states are not experimentally ob-
served. A solution to this problem was devised in 1967 by L.D. Faddeev and
V.N. Popov [6]. They decided to look at the question of the reduction of
gauge theories with a new angle. They proposed to reduce directly the gauge
surplus in the quantum context. To do so they had to modify the measure
of the Feynman path integral to count each physical configuration only once.
This way they could isolate the interesting part of the functional integral.
If we use the Faddeev-Popov procedure on the free photon integral already
discussed, we find that this technique is equivalent to adding a gauge fixing
term. We regain the solution discussed before. The surprise is in non-Abelian
cases. There the Lagrangian is transformed by the addition of two terms

Lgf + Lg =
1

2ξ
(∂µAa

µ)2 + c̄a
(
−∂µDac

µ

)
cc (23)

where Dac
µ = ∂µδ

ac + gfabcAb
µ. The new fictitious anticommuting fields are

called Faddeev-Popov ghosts. These fields appear only inside Feynman dia-
grams as virtual particles. If they are included in computations they restore
the unitarity of quantum non-Abelien YM theories. Renormalizability is also
apparently the result of this inclusion.

Let us review what we have done so far. Local gauge symmetry is the
result of a surplus of structure. This surplus causes problems when we quan-
tized the gauge bosons represented by gauge potentials. To eliminate this
surplus and conserve unitarity of the theory we must add a structure: the
ghosts fields. To understand what happened to the local gauge symmetry
we will have to study a new symmetry of the gauge-fixed Lagrangian, which
involves the ghost in an essential way.

3.2.1 The BRST symmetry

The BRST symmetry20 was introduced By Becchi, Rouet, Stora [2] and in-
depedently by Tyutin. To express this symmetry in its simplest form, let us
rewrite the Faddeev-Popov Lagrangian by introducing a new commutative
scalar field Ba:

L = −1

4
(F a

µν)
2+ψ̄(iγµDµ−m)ψ+−ξ

2
(Ba)2+Ba∂µAa

µ+ c̄a
(
−∂µDac

µ

)
cc (24)

20Note that this subsection relies heavily on [19].
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The new field has a quadratic term without derivatives so it is not a normal
propagating field. It has no independent dynamics, and is known as an
auxiliary field. Integrating Ba by completing the square, we recover precisely
the gauge fixing term. This Lagrangian density is thus equivalent to the
Faddeev-Popov Lagrangian.

Now let ε be an infinitesimal anticommuting parameter. The following
infinitesimal BRST transformation of the fields is a symmetry of L:

Aa
µ → Aa

µ + ε
(
∂µc

a + gfabcAb
µc

c
)

(25)

ψ → (1 + igεcata)ψ (26)

ca → ca − 1

2
gεfabccbcc (27)

c̄a → c̄a + εBa (28)

Ba → Ba (29)

The BRST transformation is a global symmetry of the gauge-fixed Lagrangian
for any value of the gauge parameter ξ.21 Note that the transformation
of the fields Aa

µ and ψ is a local gauge transformation whose parameter is
αa(x) = gεca(x). Even if we are studying an apparently gauge-fixed La-
grangian the local gauge symmetry has returned, but in a new guise, since ε
is an anticommuting (Grassmann) number. Since BRST symmetry guaran-
tees the good behavior of the theory, it is natural to consider BRST symmetry
as a fundamental symmetry of quantum YM theories, as local gauge sym-
metry was the foundation of classical YM theories. If this is the case the
status of ghost fields is the new question. This question has been extensively
discussed by T. Kugo and I. Ojima in [13]. I will review their result.

Let Qφ be the BRST transformation of the field φ: δφ = εQφ. For ex-
ample, QAa

µ = Dac
µ c

c. Then for any field Q2φ = 0. This is a consequence of
the anticommuting nature of the transformation. If we change our perspec-
tive and now consider our YM theory in the Hamiltonian formalism after
canonical quantization, we will find an interesting result. Because the La-
grangian has a continuous symmetry there will be a conserved current with
a conserved charge Q that commutes with the Hamiltonian. What we have
shown implies that the operator Q is nilpotent: Q2 = 0. The action of Q

21In the BRST transformation the role of ghosts and antighosts seem different. This is
only an appearance, it possible to define the equivalent anti-BRST transformation. See
[17].
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divides the eigenstates of H into three subspaces. H1 is the subspace of
states that are not annihilated by Q. H2 is the subspace of states of the form
|ψ2〉 = Q|ψ1〉 where |ψ1〉 ∈ H1. Finally H0 is the subspace of states that sat-
isfy Q|ψ0〉 = 0 but are not in H2. T. Kugo and I. Ojima argued that among
the single-particle states, forward polarized gauge bosons and antighosts be-
long to H1, ghosts and backward gauge bosons belong to H2, and transverse
gauge bosons belong to H0. Thus the physical Hilbert space does not contain
ghosts or antighosts. Unphysical gauge boson polarization adds supplemen-
tary degrees of freedom to the theory, ghosts and antighosts subtract them.
Their input could be understood as negative degrees of freedom. The BRST
transformation Q gives us the relation between these states.

From this discussion we conclude that the reduction of the gauge surplus
in classical and quantum YM theories seems different. In classical physics
we could fix the gauge; this is not possible in the same sense here. Fix-
ing the gauge implies adding ghosts and antighosts to the theory. This is
equivalent to imposing BRST symmetry, which implies a new kind of gauge
dependence. This apparent circularity led researchers to look for an interpre-
tation of BRST symmetry in the context of geometry. Since in the classical
case geometrical interpretation of Yang-Mills theory is considered enlighten-
ing. Indeed, classical YM theories have a very natural representation in the
principal fibre bundle formalism. If we define the base space as a Minkowski
space M4 and the fibre as the gauge group G, there is a natural way to
interpret the gauge potential as a connection defined on M4. The previous
analysis would suggest that the ghost field corresponds to a nonphysical part
of the differential connection. This approach is appealing but unfortunately
not realizable. J.M. Leinaas and K. Olaussen [14] proved that it is impossible
to model a Grasmann field, like the ghost, of path integration by differential
forms on a suitable finite dimensional manifold. This study blocks any simple
classical interpretation of the ghosts fields. It does not mean that any geo-
metrical representation of BRST transformation is impossible, but it must
be constructed in a different geometrical framework, for example in the space
of connections [4]. The anticommuting nature of the BRST symmetry gives
a new flavour to local gauge symmetry making the quantum case irreducible
to the classical one.

We have seen that in the non relativistic case local gauge symmetry is
the result of the liberty we have to define locally non local physical features
of fields. In the relativistic version, local gauge symmetry is replaced by
a quantum equivalent of the BRST symmetry. This new symmetry must
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be imposed to conserve the unitarity and renormalizability of non-Abelien
YM theories. By analogy with the non relativistic case, we could say that
BRST symmetry is the result of our incapacity to define a satisfying quantum
theory without unphysical bosons states. More questions need to be solved.
For example, how could we relate the interpretations of local gauge symmetry
in relativistic and non relativistic quantum YM theories? For now, I have no
answer.

Our list of philosophical positions about local gauge symmetry seemed to
fall short. Of course the gauge surplus should be eliminated (position 2). We
cannot have a useful theory without this reduction. But to do it properly we
have to fix the gauge and to add a new surplus. The result of this process
is that the gauge surplus is replaced by the BRST surplus. In a certain way
we seem to be forced to defend a version of position 3. This is new. Until
now the choice between keeping or reducing a surplus of structure has been
a philosophical one. The BRST surplus seems to be a theoretical necessity.
Perhaps it is not so and this is a failure of our imagination. Maybe we did
not find the right way to reduce this surplus. To quantize directly Wilson
loops could be a possible answer. To my knowledge this program has not yet
demonstrated that it can reproduce the empirical results obtained from the
Fadeev-Popov Lagrangian.

4 Conclusion

In this paper, I have shown that the study of surpluses of structure is a fer-
tile topic for philosophy. This important subject has often been neglected
in philosophical research. In particular, the study of local gauge symmetry
gives us elements about the structure of interaction and about limits and
constraints that result from the mathematical framework we use to represent
physical structure. These kinds of questions at the frontier between ontology
and epistemology are a new domain to explore. It is in quantum physics,
where theories are mathematically rich that we should begin this work. This
paper provides clues but many questions about field representations, espe-
cially in relativistic quantum mechanics, remain unanswered. In particular,
the tension between local and global description of fields needs to be clar-
ified. In this context BRST symmetry should be studied in much greater
detail. If, as physicists say, local gauge symmetry (BRST symmetry) is the
heart of our best theories that describe fundamental interactions, it is the
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role of philosophers to explain how surpluses of structure could play such an
important role. Surpluses of structure should be taken seriously.
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