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The paradoxes of the EPR experiment with two particles are shown to originate in the implicit
assumption that the particles are always located in the classical space. There exists a substitute for
this assumption that yields a new definition of reality and offers a resolution of the paradoxes.
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The Bohr-Einstein debate on the meaning of quantum
theory culminated in the famous EPR paper [1] followed
by Bohr’s reply [2]. At this time the issue of complete-
ness of the theory was at stake. The completeness turned
out to be dependent on the physical quantities designated
to be real in the theory. In [1] EPR consider a pair of
non-interacting entangled particles. The state function
of the pair is such that, given the position or momen-
tum of the first particle one can predict the position or
momentum of the second. Because the particles do not
interact, EPR argue that both position q and momentum
p of the second particle must be real. On the other hand,
quantum mechanics denies that q and p can be simulta-
neously determined. Accordingly, EPR conclude that the
quantum-mechanical description of reality is incomplete.

In his reply [2], Bohr denies that position and momen-
tum of a particle may be simultaneously real. He argues
that the measuring instrument itself defines the reality
of either position or momentum of the particle and that
the quantum-mechanical description is complete. The
two points of view can be summarized as follows.

(A) Both, the position and the momentum of the parti-
cle in the example are real. Quantum-mechanical
description of reality is incomplete.

(B) The position and momentum of the particle cannot
be simultaneously real. The measuring device itself
defines the reality of one or the other. Quantum-
mechanical description of reality is complete.

Bohr’s position is generally adhered within the quantum
community. It comes at a price of accepting that the re-
ality of either position or momentum of the second (pos-
sibly distant) particle may be decided instantaneously
by a measurement performed on the first particle. The
resulting “spooky action at a distance” or quantum non-
locality has never been acknowledged by Einstein and
remains a mystery of the theory.

In this Letter a definition of reality that is capable
of resolving the paradox of quantum non-locality will be
proposed. This definition is consistent with Bohr’s con-
clusion that either q or p but not both are real in the EPR
example. At the same time it disagrees with the Bohr’s
positivist’s statement that the measuring device defines
the reality. In this it is in line with the EPR realist’s at-
titude and the statement of incompleteness of quantum

description. The Letter is a continuation of [3] where a
similar approach was used to address the paradoxes of
the double-slit experiment.

Recall that a single spinless particle found at a point
u ∈ R3 is described in quantum mechanics by the eigen-
function δ3u(x) ≡ δ3(x − u) of the position operator x̂.
Moreover, there is an obvious one-to-one correspondence
ω between R3 and the set M3 of all delta functions δ3u
via ω : u −→ δ3u. Hence, ω maps points in the classical
space to states of the particle located at these points. As
shown in the Letter, for an appropriate Hilbert space H
the map ω is an isometric embedding, which means that
R3 andM3 are identical manifolds with a metric. In other
words, the classical Euclidean space R3 can be identified
in a physically meaningful way with a submanifold of the
Hilbert space of states H.

Consider now a pair of distinguishable particles such
that the first particle is located at a point u and the sec-
ond at a point v in R3. In classical mechanics such a pair
is described by a single point (u,v) in the configuration
space R6 = R3 × R3. In quantum mechanics the pair is
described by the point δ3u⊗δ

3
v(x1,x2) ≡ δ3u(x1)δ3v(x2) in

the tensor product space H ⊗H. Here H is the space of
states of one of the particles, which is assumed to be the
same for both particles. Given the right H, the one-to-
one map ω⊗ω : (u,v) −→ δ3u ⊗ δ3v identifies the configu-
ration space R6 with the six dimensional submanifold M6

of H ⊗H consisting of the state functions δ3u(x1)δ3v(x2).
As before, the map ω ⊗ ω is physically meaningful as it
identifies each pair of points in the classical space R3 with
the state of the pair of particles located at these points.

Recall that a single particle with momentum p is given
in quantum mechanics by the eigenstate eipx of the mo-
mentum operator p̂. Consider the subset M̃3 of the space
of states H consisting of the functions eipx with p ∈ R3.
Once again, for an appropriate realization of the space
of states H the map ρ : p −→ eipx is an isometric em-
bedding of the classical momentum space R3 into the
space of states. One can similarly consider the space R6

of pairs (p,q) of momenta of two particles. The map
ρ ⊗ ρ : (p,q) −→ eipx1eiqx2 identifies R6 with the sub-

manifold M̃6 of H ⊗H consisting of the state functions
eipx1eiqx2 . The embeddings ρ and ρ⊗ ρ are both physi-
cally meaningful as they identify the momentum of each
particle with the corresponding state. Note that the clas-
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sical phase space of the pair cannot be embedded in such
a way into the space of states. This is because there is
no state in H for which both position and momentum
of a particle are defined. Geometrically speaking, the
intersections M3 ∩ M̃3 and M6 ∩ M̃6 are empty.

The maps ω, ρ, ω ⊗ ω, ρ ⊗ ρ allows one to identify
the physical quantities of position and momentum of a
particle or a pair of particles with the variable ϕ taking
values in one of the manifolds M3, M̃3, M6, M̃6. Sup-
pose that the state function ϕ itself is the most appro-
priate way of describing the reality. Note in particular
that: (1) the state function yields the most complete de-
scription of quantum system and its evolution; (2) the
state function is the “smallest” object that provides such
a complete description in a sense that it contains only
the experimentally verifiable information; (3) in special
cases the knowledge of state function is equivalent to the
knowledge of precise position or momentum of particles
in the system. In fact, (1) is known to be true in quan-
tum mechanics, (3) was already discussed. As for (2),
note that in principle, given sufficiently many copies of
the system, one can experimentally determine the mod-
ulus and the phase (up to a constant initial phase) of the
state function as precisely and one wishes. So, (2) is an
accurate statement as well. The following alternative to
the above positions (A), (B) is then proposed:

(C) Physical reality of a pair of particles is most appro-
priately described by the state variable ϕ of the pair.
The evolution of the pair in time is a path ϕt in
the space of states. The variable ϕ generalizes the
classical positions and momenta of the particles and
reduces to those in special cases. Neither positions
nor momenta of the particles are generally defined.
The positions are defined if and only if ϕ takes val-
ues in the submanifold M6 of the space of states
H ⊗ H of the pair. The momenta are defined if
and only if ϕ takes values in the submanifold M̃6

of H ⊗ H. Because the intersection M6 ∩ M̃6 is
empty, the positions and momenta cannot be simul-
taneously defined. The process of measurement does
not create a reality: the state exists before and after
the measurement. Rather, similarly to any interac-
tion, a measurement simply moves the state. In
particular, a measuring device that measures posi-
tions of the particles brings the initial state ϕ to
a point of M6. Similarly, a device that measures
momenta of the particles forces the state onto M̃6.

How does statement (C) help understand the EPR ex-
periment? EPR consider a pair of particles in one di-
mension in an entangled state given by the state function
ϕ(x1, x2) =

∫ ∞

−∞
e

i

~
(x1−x2+x0)dp, where x0 is a constant.

From the form of ϕ one can see that whenever the po-
sition of the first particle is known to be u, the position
of the second must be x0 + u. Similarly, whenever the
momentum of the first particle is p, the momentum of

the second must be −p (see [1]). Let H be the Hilbert
space of states of each particle so that ϕ is in H ⊗ H.
Note that neither the position nor the momentum of the
particles in this state is defined. In the geometric terms
that means, once again, that ϕ does not belong to the
submanifolds M6 or M̃6 of H ⊗ H. After the measure-
ment of position of the first particle, the state ϕ moves to
a point of M6. Similarly, the measurement of momentum
of the first particle brings the state to M̃6. So, the system
moves from the state in which neither position nor mo-
mentum of the particles is real to a state in which either
position or momentum (but not both) of the particles
is real. This is of course consistent with the Bohr’s in-
terpretation. However, for Bohr the act of measurement
defines the reality. In particular, no physical description
of collapse is possible. Here on the other hand, the reality
is defined by the state. Because the state exists before
and after the measurement, it becomes possible to ana-
lyze the collapse both mathematically and physically. In
particular, it becomes possible to address the paradoxes
of the EPR experiment.

To see how this can be done, let’s express the state
function ϕ of the EPR-pair in the form

ϕ(x1, x2) =

∫
δu(x1)δx0+u(x2)du. (1)

In this form the state ϕ is a superposition of all states
δu(x1)δx0+u(x2) that correspond to the first particle be-
ing at a point u and the second at the point x0 + u.
In discussing the EPR experiment one usually makes a
tacit assumption that the two particles are always located
in the classical space. The fact that the superposition
in (1) contains various terms δu(x1)δx0+u(x2) signifies
then that the particles are located at all pairs of points
(u, x0 + u) at once. That is, the particles must somehow
“split” between these points. This thinking leads one to
the conclusion that measuring position of the first parti-
cle we somehow “collect” the particle into a single point
and pass this information through the classical space to
the second particle so that it could also “assemble” at a
predetermined point. This is certainly paradoxical! So,
how could a measurement of position x1 of the first parti-
cle instantaneously fix the position x2 of the second, pos-
sibly distant particle?

According to (C), the reality is not given by the com-
ponents δu(x1)δx0+u(x2) of ϕ, but rather by the state ϕ
itself. So the pair does not “split” between various points
in the classical space but is given instead by a single point
ϕ in the space of states H ⊗H, away from the submani-
fold M6. The fact that ϕ is not a product ξ(x1)χ(x2) of
two functions signifies that the reality before the collapse
cannot be described in terms of individual particles. In-
stead, the state function ϕ of the pair provides the only
adequate representation of reality. Furthermore, to mea-
sure position of the “first particle” is to bring the pair
represented by ϕ toM6. Indeed, by definition of ϕ, when-
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ever the first particle is at the point x1 = a, the second
particle is at x2 = x0 + a. Consequently, the state func-
tion of the pair after the measurement is δa(x1)δx0+a(x2),
which is a point in M6. So instead of collecting pieces
of the particles, spread over the classical space, the pro-
cess of collapse moves the pair from the point ϕ onto the
manifold M6. Thus, the process of collapse is a path ϕt

in the space of states that connects the point ϕ in H⊗H
to the point δa ⊗ δx0+a in M6.

How could the collapse happen instantaneously even
when the particles are far apart? Because the process
of collapse is happening on the space of states H ⊗ H
and not on the classical space, the spatial distance be-
tween the particles is irrelevant. What matters now is
the distance between the states ϕ and δu ⊗ δx0+u and
the speed of evolution ϕt in the space of states. Impor-
tantly, the distance between the states may be small even
when the distance between the particles is known to be
large. Indeed, as shown below, for an appropriate space
of states H the map ω ⊗ ω identifies the classical con-
figuration space R6 with a submanifold of an arbitrarily
small sphere SH⊗H in H ⊗H. Accordingly, the distance
between any two states may be arbitrarily small. In this
case a finite speed of the evolution ϕt on the space of
states may be perceived as an instantaneous process on
the classical space. Namely, it is claimed that

(S) An apparently discontinuous, nonlocal process of col-
lapse on the classical space can be modeled by a
continuous, local process on the space of states.

Before proving (S), let’s address yet another mystery
of the EPR pair: How could the reality of either position
or momentum of the second particle be instantaneously
determined by the observer’s decision to measure posi-
tion or momentum of the first particle? Once again, the
key to resolving this mystery is to observe that before the
measurement, the pair of the particles is not located in
the classical configuration space M6 or the classical mo-
mentum space M̃6. In particular, the particles are not
spread over all possible positions or momenta. (This by
itself would be contradictory. Indeed, should the par-
ticles be spread over possible positions or possible mo-
menta? If that depends on a measurement, then how
would a particular spreading be created?) Under the
position measurement “on the first particle”, the entire
pair moves along a path ϕt from the point ϕ to a point
δa(x1)δx0+a(x2) on the submanifold M6 of H ⊗H. Like-
wise, the momentum measurement on the first particle
brings the pair along a different path ϕ̃t from ϕ to a
point eiqx1e−iqx2 on the submanifold M̃6 of H ⊗H. So a
particular measuring device (either a man-made instru-
ment or a natural phenomenon) moves the pair to either

M6 or M̃6. The discontinuous, nonlocal nature of the
collapse can be now explained via statement (S).

To prove (S) it suffices to provide a specific model satis-
fying the statement. For this, consider the Hilbert space

obtained by completing the space L2(R
3) of complex-

valued square-integrable functions on R3 in the norm de-
fined by the inner product

(ϕ,ψ)H =

∫
e−

1

2
(x−y)2ϕ(x)ψ(y)d3xd3y. (2)

By plugging in ϕ = ψ = δ3a one concludes thatH contains
the delta functions and the norm of any delta-function is
one. So ω identifies R3 with a submanifold M3 of a unit
sphere SH inH. Note that for finitely many different vec-
tors ak the functions δ3ak

are linearly independent. Also,
no element of H is orthogonal to all delta functions. It
follows that the manifold M3 “spirals through” all avail-
able dimensions forming a complete set in H (see Fig.
1). The induced metric on M3 is given by the compo-

FIG. 1: R
3 as a submanifold of the sphere S

H

nents gik = ∂2k(x,y)
∂xi∂yk
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, where k(x,y) = e−
1

2
(x−y)2

is the kernel of the metric (2). Differentiation yields the
ordinary Euclidean metric, so that M3 is identical (i.e.,
isometric) to the Euclidean space R3 (see [4]).

Because the classical space R3 is isometrically embed-
ded into H, the distances on SH can be measured in
the ordinary units of length. To make the distance be-
tween any two states on SH small, the unit sphere it-
self must be small. Accordingly, the unit of length must
be small. For instance, in the Planck system of units
the radius of the unit sphere SH is one Planck length
(≈ 1.6 · 10−35m). In this case the distance between any
two states on the sphere (which is equal to the angle θ
between the corresponding vectors in H) does not exceed
π Planck lengths. For example, the distance between δ3a
and δ3b increases monotonically with ‖a − b‖R3 and tends
to π/2 Planck lengths as ‖a − b‖R3 tends to infinity. Of
course, when this distance is measured along the classical
space “spiral” M3 (rather than the great circle connect-
ing the states), it takes arbitrarily large values, equal to
the norm ‖a − b‖R3 .

Note that when the Planck system of units is used, the
kernel k(x,y) = e−

1

2
(x−y)2 of the metric (2) is an ex-

tremely sharp, practically point-supported function. In-
deed, k(x,y) falls off to almost zero within the first few
Planck lengths of ‖x − y‖R3 . That means that for the
usual in applications functions, k(x,y) behaves like the
delta function δ3(x−y). By replacing the kernel k(x,y)
in (2) with δ3(x − y) one obtains the ordinary L2-inner
product:

∫
δ3(x − y)ϕ(x)ψ(y)d3xd3y =

∫
ϕ(x)ψ(x)d3x.

It follows that theH-norms of the usual square-integrable
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functions are extremely close to their L2-norms. That
verifies that the Hilbert space H is physical, i.e., it can
be consistently used in quantum mechanics in place of
the ordinary space L2(R

3).
Consider first the collapse of a single particle state un-

der a measurement of the particle’s position. Assume
that collapse is the motion along a geodesic ϕt connect-
ing the initial and the terminal states on SH [6]. Because
geodesics are continuous curves, the path ϕt is continu-
ous. Also, because the equation of geodesics is a differ-
ential equation, the metric on a small neighborhood of a
point is sufficient to find the path ϕt near that point. In
other words, the collapse is in this case a continuous lo-
cal process on the sphere of states. Suppose now that the
speed of collapse on the sphere of states is equal to the
speed of light. Recall that the distance between any two
states on SH does not exceed π Planck lengths. It fol-
lows that the collapse of an arbitrary initial state onto an
arbitrary terminal state happens in less than 10−43s. For
instance, the collapse from the superposition c1δ

3
x1

+c2δ
3
x2

of two position eigenstates of a particle onto the state δ3x1

of the particle found at the point x1 happens in less than
this time interval for all values of x1 and x2 at once! On
the other hand, if the process of collapse is supposed to
propagate in the classical space from x1 to x2 at a con-
stant speed, then that speed must be infinite. Even with
the limitation that the distance between x1 and x2 does
not exceed the size of the universe (≈ 1027m), the above
time interval would still require the collapse to have a
ridiculous speed of ≈ 1070m/s! By all standards the re-
sulting process is a discontinuous action at a distance.

In the case of a position measurement on a pair of par-
ticles consider the tensor product H ⊗H with the above
space H. The norm of the state δ3a ⊗ δ3b in H ⊗H is the
product of the H-norms of each delta-function, so it is
equal to one. Accordingly, the set M6 forms a submani-
fold of the unit sphere SH⊗H in H ⊗H. As before, this
sphere can be made small by using the Planck scale, in
which case the previous consideration applies. To include
the collapse due to a measurement of momentum of a
particle or a pair of particles, one must change H so that
to include the eigenstates of the momentum operator.
In particular, by changing the kernel of the metric (2) to

e−αx2

e−(x−y)2e−αy2

, where α > 0, one obtains a possible
such space. At the same time, for a sufficiently small co-
efficient α other earlier discussed properties remain valid.
In particular, the new Hilbert space H̃ remains physical
and the metric induced on the submanifolds M3 and M̃3

is arbitrarily close to the Euclidean metric. The spaces
H̃ and H̃ ⊗ H̃ are appropriate for modeling collapse pro-
cesses involving position and momentum measurements
on a single particle or a pair of particles. In all these
cases the previous model applies making collapse a con-
tinuous local process on the sphere of states that looks
like an instantaneous process on the classical space. This
completes the proof of statement (S).

It is generally accepted that quantum mechanical de-
scription of reality is more meager than the classical de-
scription. For instance, position and momentum of a
particle in quantum mechanics do not have a simulta-
neous meaning. However, if reality is to be described by
the state function of the system, the situation is reversed.
For example, a complete classical description of a system
of N particles at a given time requires 6N numbers (posi-
tions and momenta of the particles). On the other hand,
to identify the state of a single particle at a given time
one needs in general infinitely many numbers (compo-
nents of the state function in a basis). So the state gives
a much richer (although different) information about the
system than the classical mechanical physical quantities.

One may wonder how could the state function descrip-
tion of reality be richer if the outcomes of our experi-
ments are specific values of the physical quantities? The
answer is simple: the state function contains information
about all outcomes of the experiments on the system at
once. It follows that quantum mechanics contains more
information about reality than it normally gets credit
for. Because the state is available to experimental de-
termination, one should not insist that reality can only
be associated with a specific outcome of a measurement.
Rather, all possible outcomes of measurements on copies
of a system identify a single reality of the system before
measurement. Namely, these outcomes are projections of
the reality that identify the reality itself (i.e., the state
or the position of the system in the space of states).

The new definition of reality opens a way of investi-
gating what happens to quantum system before, during,
and after it has been measured. The fact that this can
be done suggests that the current quantum mechanics is
indeed incomplete. This incompleteness is not due to the
lack of classicality in the quantum description. On the
contrary, it originates in the lack of a consistent eradica-
tion of classicality from the basic tenets of quantum the-
ory. By identifying the outcomes of measurements with
the special cases of the reality associated with the state,
one obtains a tool for embedding the classical into the
quantum. The very first steps in this direction demon-
strate that by properly completing the theory one can
successfully resolve the mysteries of quantum mechanics
and provide a much richer description of reality than the
classical physics could ever hope for.
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