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Abstract

This paper argues that the Einstein-Minkowski space-time of special relativity pro-
vides an adequate model for classical tense logic, including rigorous definitions of tensed
becoming and of the logical priority of proper time. In addition, the extension of
classical tense logic with an operator for predicate-term negation provides us with a
framework for interpreting and defending the significance of future contingency in spe-
cial relativity. The framework for future contingents developed here involves the dual
falsehood of non-logical contraries, only one of which becomes true. This has several
methodological, metaphysical and physical advantages over the alternative traditional
frameworks for handling future contingents.

1 Introduction

Elsewhere(Forthcoming) I have argued for the existence of a distinction between the past
and the future drawn using only the standard resources of special relativity and the struc-
ture of Einstein-Minkowski space-time. However, the distinction between an indeterminate
future and a determinate past leaves us with two significant semantic problems. First, given
the usefulness of the tense logical formulation of natural language tenses, it would be useful
to demonstrate that it carries over on the transition from a global temporal structure in
a universe whose spatio-temporal structure consists of distinct 3-dimensional space and
1-dimensional time to a local structure in a 4-dimensional space-time universe. Second,
the formulation of relational indeterminacy in terms of the probability structure on the
possible states of space-time leaves the traditional problem of future contingents somewhat
obscure.

The general consensus seems to have become that no model constructed only from
resources of modern space-time physics plus standard model theory can offer a solution
to either of these problems. More precisely, it has generally been taken to be the case
that no model making use only of the standard space-time of special relativity and the
associated causal relations can account for either tensed becoming or the existence of future



contingency. First, the claim is that any explication of tensed becoming must amount to
a reduction of tense since nothing in the structure of space-time uniquely distinguishes a
present time. Second, that the ontological commitments attendant upon the space-time
conception, in particular the commitment to the existence of the entire space-time, rules
out future contingency.

The semantic structure developed in this essay addresses both of these concerns. Using
only the resources of standard model theory and the structure of Einstein-Minkowski space-
time, I demonstrate that there are two natural senses in which a four-dimensional universe
can be a model of standard tense. First, if we are willing to make use of the present
tense only locally, the entire space-time constitutes a model for the standard tense logic.
Second, I show that proper time along any world-line in Einstein-Minkowski space-time is
a standard model for tense. Finally, since the objects in the domain of the model developed
in §2 have both space-like and time-like separated elements, it demonstrates that our use
of tense logical formalism does not commit us to any particular model of the persistence
of objects.

Next, I further refine the structure introduced in §2 to deal with future contingents.
To do so I introduce two refinements to the structure. First, I introduce an operator
for predicate-negation into the tense logical language. Second, I modify the valuation
functions of the models to make use of a double indexing structure. Given the existence
of a predicate-negation operator there is a precise sense in which both the assertion and
the predicative denial that a particular object possesses a particular property or stands in
a particular relation in the future can be false. In the following section, I argue that this
account of future contingents as future falsehoods better accords with our intuitions about
the concept of the occurrence of an event. In addition, since it need not postulate either
truth-value gaps, three-valued logic, or branching space-times it has significant theoretical
advantages as well. Finally, I will argue that the double indexing structure introduced
allows us to capture the semantic content of relational indeterminacy.

2 The Language and the Model Structure

In order to demonstrate the compatibility of tense logic with Einstein-Minkowski space-
time, we consider a basic tense logical language, Zr, consisting of singular terms ty ---
tn and n-ary predicates, P7 - - P} the universal quantifier, V, negation,~, conjunction, &,
and the tense operators, F and P. The formation rules for Zr are completely standard.

Now consider a possible model structure for Zr, .#. The model is an ordered sextuple,
<W,> 7T (W),D, f,v>. W is time-oriented Einstein-Minkowski space-time of special rela-
tivity. 7 (W) is the ordinary topology on W, and > is the relation of time-like separation
between points of W. D is a (generally non-empty) set—the objects. f is the occupation
function for the objects assigning elements of D into 7 (W), open regions in W

f:D—T(W)



2.1 Explicating Einstein-Minkowski Space-Time

Technically, time-oriented Einstein-Minkowski space-time is a four-dimensional real mani-
fold with the topology of R* with a flat semi-Riemannian, Lorentz signature metric and a,
time-orientation. A real n-dimensional manifold is one that can be mapped smoothly into
R"™. In Einstein-Minkowski space-time the maps are bijections, and thus every open set
on W maps to an open set on R* and induces the standard topology. Given these maps
the concept of a smooth curve on W is well-defined and induces a vector space structure,
the tangent space, at every point of W. A semi-Riemannian, Lorentz signature metric is a
tensor field of signature <3,1> on W, that defines an inner product on the tangent space
at each point. Since Einstein-Minkowski space-time is flat, the metric tensor immediately
induces a (pseudo-)distance function between points in the space-time.

The essential point about such metrics is that they partition the tangent space at
each point of the manifold into three classes. Consider the inner product of a tangent
vector, v, with itself-its norm, g(v,v). If g(v,v)= 0, we call it null; if g(v,v)>0, it is
spacelike; if g(v,v)<O0, it is timelike. A vector is causal if it is either timelike or null. This
induces a (non-exhaustive) classification of curves on the manifold as null (timelike, causal,
or spacelike) curves if, and only if, their tangents are everywhere null (timelike, causal, or
spacelike). Finally, we say that two points are null (timelike, causal, or spacelike) separated
if they are connectable by a null (timelike, causal, or spacelike) curve.

In addition, the metric defines the length of each curve in the manifold via integration.
This serves to distinguish a special class of curves, the metric geodesics. For a positive def-
inite metric, the geodesics are simply the curves of extremal (maximal or minimal) length
between any two points. Unfortunately, the definition of a metric geodesic in mixed sig-
nature metrics is considerably more subtle because there need not be any extremal length
curve between two points. Technically, the metric geodesics of a Lorentz signature metric
have critical length. However, there is a more intuitive characterization for Minkowski
spacetime. Using the formal characterization of geodesics as critical curves, we can prove
that if the tangent to a geodesic is anywhere null (timelike, causal, or spacelike) then it is
everywhere null (timelike, causal, or spacelike). Thus, the metric does provide an exhaus-
tive classification of geodesics. Given this classification of metrics, we can independently
characterize timelike and spacelike geodesics. Thus, a timelike geodesic is the most nega-
tive length timelike curve connecting any two points. (Remember that timelike curves have
negative length.) Spacelike geodesics restricted to a spacelike hyperplane of the spacetime
are the shortest spacelike curves between any two points in the hyperplane. Next, it is
possible to prove that for a given metric, there is one, and only one, affine structure com-
patible with that metric. An affine structure and a metric are compatible if and only if all
and only the metric geodesics are affine geodesics. Thus, the metric structure induces an
affine structure, and therefore an inertial structure, on the spacetime.



The class of null vectors at a point forms a double-lobed hypercone in the tangent
space at the point, while the class of null geodesics through a point forms a double-lobed
hypercone on the manifold with its vertex at the point. Both of these structures are
often called the null cone, or the light cone. In the flat spacetime of special relativity,
this ambiguity does not matter much, since the null cone of vectors at a point uniquely
determines the null cone of curves through a point. It should be obvious from the definition
of null geodesics that every null vector is tangent to at least one such geodesic. In order
to show that the geodesic is unique we appeal to the flatness of the space. Assume that
there are two distinct null geodesics, v and 7/, through a point p which have the same
tangent vector. The requirement that the geometry of geodesics be Euclidean implies that
any two parallel geodesics remain parallel and thus share a tangent vector at every point.
However, its tangents at every point define a curve on a manifold. Therefore, v and ~/
must be the same curve, contrary to our assumption. However, note that the proof of
this fact depends essentially on the assumption of flatness, and the null cone at a point
clearly does not determine the null cone through a point in general. Because of this, 1
will maintain the distinction between the null cone at a point and the null cone through
a point. Thus, both the relation of time-like separation and the topology in the .# are
induced by the space-time rather than separately specified as that notation might imply.
Finally, a time-orientation on such a space-time is an everywhere time-like vector field on
W that determines at each point of W a distinguished lobe of the tangent space null cone
and thus of the manifold light cone as well.

2.2 Explicating the Valuation Function

The valuation function of .# takes the following form:

Definition 2.1. v is a valuation function that assigns to each t; in #r an element §; € D
and to each P} a function gp, : W — Z2(D").

The first clause of v assigns to each name in %7 a single object within the space-time,
independently of the location of evaluation or of the location of the assigned object. The
second assigns an extension to every predicate at each point of W.

2.3 Interpretation and Consequences

We can now state the interpretation of 1 in .#. V is an interpretation function, such
that:

1. Atomic Sentences V[# ,w € W, P*(t;---ty)] =1if and only if 61---9p, € D
(a) v(t1) =01 Vv(tn) = dn

(b) w e iz, f(6)
(C) < d1---0p >€ V[Pn](w)



2. VI, weW,~ ¢)] =1if and only if V[# ,w e W,¢)| =0
3. V¥ ,weW,p&p)] =1 if and only if V[# ,we W,¢)]=V[#,we W) =1
4. V¥ ,w € W,Vxe)] if and only if Md/x where w € f(6) V[#0/x,w € W,¢)] =1

5. V[#,w € W, F¢] = 1 if and only if V[#,w' € W,¢] = 1 where v’ > w and
w' € f(v[ti]) for all t; terms in ¢

6. V[#,w € W,P¢)] = 1 if and only if V[# ,w' € W,¢)] = 1 where w > w' and
w' € f(v[ty]) for all ¢ ; terms in ¢ .

This is clearly a model for standard tense logic barring only that the index set is merely
partly ordered, but see below.

Given that the concept of an object being sequentially present along the time-like
separated points of its world-line (world-worm) is a coherent notion, whether analyzed
indexically or taken as a primitive concept, this model answers most of the fundamental
challenges to the compatibility of space-time formulations of special relativity and becom-
ing. First, we have a clear cut sense of tensed becoming, even in what is paradigmatically
taken to be a tenseless universe. Consider some object §. For simplicity assume that ¢
is point-like in that every point in f() is time-like separated from every other point. As
long as f(0) contains at least two points, p>q, there will be some well-formed formula, ¢,
in %1 such that F¢ is true at q and P¢ is true at p.

Next, the model provides us with a particularly neat argument that proper time along
any worldline just is how time is defined for an entity occupying that worldline. Consider
any arbitrary time-like curve, v in W. [4], the image of -, is a one-dimensional sub-manifold
of W. Consider D' C D, where 6 € D' iff f(§) N[y] # (. Finally, consider f’, the restriction
of f(D) to a domain of D' and the range restricted to [y]. Then, < [y],>,D', f/,v > is a
perfectly ordinary dense, linear time flow.

Finally, note that these consequences flow from a model whose prima facie metaphysical
committments are both strongly eternalist and strongly perdurantist. Eternalist, because
the model commits us to the existence of all of the objects in the domain wherever they
exist in the space-time. Perdurantist, because the basic elements of the model are both
spatially and temporally extended and clearly have both spatial and temporal parts.

3 Extending the Language and the Model to Account for
Future Contingents

While the basic model of §2 addresses the compatibility of a space-time ontology with tense
logic and demonstrates the reality of tensed becoming in Einstein-Minkowski space-time,
nothing has yet been said about “the problem of future contingents.” The next three sec-
tions rectify that lapse. In this section, I introduce a formalism that allows us to represent



the status of future contingents in Einstein-Minkowski space-time. This requires us to in-
troduce a predicate-negation operator and to modify the valuation function of the previous
section. In Section 4, I argue that the representation of the joint falsehood of what would
otherwise be contrary statements is the best available conception of future contingents.
Then Section 5 argues that given special relativity such indeterminate predicates in fact
exist.

I claim that one of the most basic intuitions about the indeterminate future is that there
is something “fuzzy” about entities to the future. Even if they exist, it is far from clear what
properties they possess or what events they are involved in—what Adolf Griinbaum called
“attribute indefiniteness.” (Griinbaum, 1963)What then would it mean to claim that an
object neither truly possesses nor truly lacks a particular attribute. Consider the following
two predicates: “...is red.” and “...is not red.” In standard first-order logic we interpret
a sentence involving the second predicate as the truth-functional negation of one involving
the second sentence. But, we need not commit ourselves to that interpretation. Let us
introduce an additional operator into .Zr: the predicate-negation operator, N. N obeys
the following two formation rules:

NP7is an n-ary predicate of Zry if and only if P}’ is. (1)

NNP? = P? (2)

Thus, the operator ‘N’ operates as, in the language of neo-Aristotelian term logic, a variety
of predicate-term negation.! Now consider the difference between ‘~Pt’ and 'NPt’ for some
one place predicate. These are logically equivalent if and only if ‘N’ designates the logical
contrary to a predicate at some we W. Let us say that a predicate such that this is the
case, according to a particular model, is determinate. That is if:

Definition 3.1.
Pis determinate if and only if v[.#,w,P}'| Uv][.#,w,NP}] =D"

However, nothing in the concept of predicate negation seems to require this constraint.
First, because most predicates do possess a range of non-logical contraries, e.g. colors.
Second, given a collection of predicates representing what we take to be intrinsic or “pro-
jectible” properties, there does seem to be a “natural” contrary to each such predicate
read as “definitely does not possess that property or relation.” The basic intuition about
“attribute-indefiniteness” seems to be captured precisely by the idea that an object neither
definitely possesses nor definitely lacks a property or relation. Finally, when we relax this
condition, we obtain a natural sense of what it is for an event to occur (see §4). Thus,
on this account, if, for simplicity, P}’ is a monadic predicate and is not determinate then
there is some 0 € D such that both P;(t) and NP;(t) are false. In the next section, I will

!Thanks to Heinrich Wansing for pointing this out to me at Logica 2007 and directing me to his useful
article, “Negation” in (Goble, 2001)



argue that this is the most plausible way to understand the status of future contingents.
However, we first need some additional technical machinery.

In particular, we must re-define the valuation function for .# so as to account for the
difference between evaluating a sentence at a point in space-time and evaluating it from, or
relative to, a point in space-time. I do this by introducing double-indexing of the valuation
function.

vi L {t} oW =D, v(tj,w;) = v(t;, wg)
2. {P’} W — {gp: W — P(D")}

The first clause, despite the restriction on the extension of the terms, is fairly standard.
The restriction simply guarantees that the extensions of the terms do not vary over “time.”
The second clause is to be read as assigning an extension to P}' at a point w only relative to
another point w’, v[P}, w'|(w) = A, where A € &2(D™). This does allow the the extensions
of the predicates to vary over “time,” in particular relative to different points along the
world-lines of objects in the space-time. The final constraint, to capture the notion that
everything is determinate when evaluated relative to itself is that:

For all P, if w=w’, then P} is determinate. (3)

However, now we have access to a specific way to capture the status of future con-
tingents. The claim that a particular entity is indeterminate with respect to a particular
property or relation results from the indeterminacy of the relevant predicate as to the par-
ticular entity—the entity falls into the “extension gap” of the predicate. In such a case,
both the assertion of the relation and the predicate-denial of the negation are false, and
the sentential-negation of both the assertion and the predicate-denial are true. I argue in
the next section that this is the correct interpretation of future contingents. When the
predicate becomes determinate, then one of the assertion or the predicate-denial becomes
true and the other remains false.

4 Are Future Contingents Actually False?

The claim at the end of the previous section that future contingency reveals itself at the
semantic level as the joint falseness of the assertion and the predicate-denial that an object
instantiates a particular property or relation runs counter to the standard attempts to
deal with the semantics of future contingents. The standard accounts of the semantics of
future contingents seem to be variations or combinations of three distinct positions—three,
or more, valued logics;(See, e.g. Prior, 1953) truth-value gaps(See, e.g. Thomason, 1970);
or branching space-times(See, e.g., Belnap, 1992; McCall, 1976, 1994). The argument that
“predicate-denial theory of future contingency” best captures our usual conception will



proceed in four phases. First, I characterize the four possibilities in terms of their account
of Aristotle’s classic sea-battle example. Next, I argue that this theory better accounts
for a significant grammatical distinction between two modes of denying that the sea-battle
will occur tomorrow. Third, that it best accounts for our ordinary intuitions about what it
means for the sea-battle, or any other event to occur. And, finally that it has the significant
advantage of doing so without “messing about” with the semantic values of our language,
the structure of our logic, or the structure of space-time.

Now consider the classical problem of future contingents from Aristotle’s de Interpre-
tatione. Assume that it is not now determined whether a sea-battle will occur tomorrow.
It still seems to be the case that:

Either a sea-battle will occur tomorrow or a sea-battle will not occur tomorrow.  (4)

The problem arise because (4) seems to be a tautology, and thus true at all times, including
the present. However, this seems to require that one its two disjuncts must also be true
now. But, that seems to imply that it is, in fact, now determined whether a sea-battle will
happen tomorrow, contrary to the initial assumption.

On a 3-valued account of logic, the interpretation of Aristotle’s sea-battle depends
on the precise version of “disjunction” one chooses to use to interpret (4). Since the
first disjunct is to be assigned the middle truth-value, so must the second. Then, if one
chooses the “weak” definition, such that the value of the disjunction is the maximum of the
disjuncts, (4) is also indeterminate. The “weak” definition, thus, “solves” the problem by
diagnosing a previously unrecognized ambiguity in the logical connectives. On the “strong,”
or additive, definition, the disjunction is true. Thus, it solves the puzzle only by denying
excluded middle. On an account such that neither disjunct currently possesses a truth-
value, that they occupy a truth-value gap, the tautology is true because the truth of the
disjunction holds on every possible consistent assignment of truth values to the disjuncts.
On the branching space-time account (4) is true because, while it is not now determined
which branch will become actual, whatever branch becomes actual will have one disjunct
true and one false. Thus, both of these “solutions” solve the problem by denying excluded
middle. The second, where the branching allegedly takes place in physical space-time, also
poses massive problems for the physics of space-time.

On the theory defended here, (4) is true, if it is true, in precisely the way that all
disjunctions are true, by having one true disjunct. Consider two readings of the second
disjunct of (4).

It is not the case that a sea-battle will occur tomorrow. (5)

A sea-battle will not occur tomorrow. (6)

On this account (4) is only a tautology when we read the second disjunct as (5). In that
case it is true because (5) is. But, if we read the second disjunct as (6), then (4) is not



a tautology, and if the occurrence of the sea-battle is indeterminate, it is in fact false.
Consider a name, t, and the predicate

S=‘...is a sea-battle in the Mediteranean.’ (7)
Then, (5) would be translated into Zrn as:
~ FSt (8)

and (6) as:
FNSt 9)

However, notice the suggestive difference between these two readings. (8) is quite plausibly
read as the present denial that a sea-battle takes place in the future. But, since the sea-
battle has not actually occurred, it does seem plausible that the denial that it has occurred
is true. (9), on the other hand, nowasserts, about the future, that it will not be occupied by
a sea-battle. But, since we nothing now determines whether that will be the case, it seems
equally plausible that such an assertion be presently false. Such a grammatical distinction
can never be anything but suggestive. However, I claim that the model introduced here
has additional advantages.

First, consider what we ordinarily mean when we claim that an event occurs. As a
general rule, this amounts to a claim that some entity comes to possess some property or
to stand in some relation that it previously did not. On this reading, we can give a precise
content to this notion. Consider some property, represented by the predicate P;, that is
indeterminate with respect to an object §. When the object comes to possess the property,
it literally is added to the extension of P;. The availability of this straightforward account
of occurrence confers a significant theoretical advantage on this approach.

Finally, it handles future contingents without any of the messiness of the other three
accounts, although certainly with its own kind. We need not become involved in the messy
debates over the plausibility of multiply valued logics and of the need to formulate plausible
consequence relations for them. We need not deny the law of excluded middle. And, we
can continue to use our ordinary physics on ordinary space-time. However, do we have any
reason to believe that ordinary space-time contains such future contingents? In the next
section, I argue that we do.

5 Does the World Contain Future Contingents?

We have reason to believe that every space-time point not past causally separated from a
given point is relationally indeterminate to that point. That relation is defined in terms of
an abstract characterization of the state of space-time as follows.

Start with space-time theories. Let’s say that, abstractly, such a theory consists of a
space-time and the assignment of possible values to every point of space-time. In the stan-
dard cases, assignments of scalar, vector or tensor fields to the space-time. A specification



of all of the available types of values to each point of the space-time, I will call the state
of the space-time. Now, let us consider topologically open regions of space-time, down to
points. Obviously, given the state of space-time, the relevant values are also determined
for each such region. In the absence of a dynamics, there is a meaningful sense in which all
possible assignments of such values are equally allowable. But, of course, this is not what
we want to know. We do not deal in God’s eye views of space-time, except at the most
abstract levels. We deal with regions of space-time.

What we really want to know is given the (full or partial) specification of the state
of a region of space-time, how does that, given a relevant theory, constrain the states of
other regions of space-time? Obviously, to do this we need a dynamics which connects the
states of different regions of space-time and connects the various “elements” of the state.
Assign equal probability to all dynamically consistent states of the entire space-time. Now
consider an arbitrary region, an open set in the usual topology, R of the space-time. Some
of the dynamically possible states of the space-time assign the same state to that region,
some of them assign different states. Thus, the states of regions inherit the probability
that they will be in a given state from the initial probability assignment to states of the
space-time. That is, for all possible states r of R, we can derive the probability that R
is in state r, prob(r=R). But, now consider another region, S. Via the usual definition of
conditional probability, we can define for each state s of S, the probability that S is in s
given that R is in r, prob(s=S|r=R) for each of possible state r of R.

Finally, given that our goal is to investigate what regions of space-time are indetermi-
nate relative to certain other regions in various space-times, the minimal constraints on
the dynamics are the relations of causal connection appropriate to the space-time under
consideration.

Definition 5.1. caus(S,R) if and only if the state of S could causally influence the state
of R.

First, note that in these definitions regions can be replaced with points as the degenerate
case of regions in the usual topology. Second, Definition 5.1 allows us to define a partition
of the space-time, relative to any given region R, into the causal past, C(R); the causal
present, P(R); and the causal future, F(R), as follows:

Definition 5.2. Vg, R Ip{(¢ € C(R)) < (p € R &causgp & ~ causpq)}

Definition 5.3. V¢, R 3p{(¢ € P(R)) & (p € R &causgp & causpq)}
Definition 5.4. V¢, R Ip{(¢ € F(R)) & (p € R & ~ causgp & causpq)}

It will also be useful to have a name for the entire region from which R is causally
accessible, i.e. the union of C(R) and P(R): call it, A(R). We are now ready to say what it
is for the state of one region of space-time to determine the state of another region.

10



Definition 5.5. S determines R [det(S,R)] if and only if for each possible state s of S,
there exists a state r of R, such that for some QCS, QC A(R) and for the state q of Q
induced by s, prob(r=R|q=Q)=1.

Finally, we can return to the question that opened this section, what would it be for
the future to be open? Given the above it must be that the future is open if it is not
determined, in the sense of Def. 5.5, by the past. Which past? Given that the future is
defined relative to our changing space-time location, it must be relative to our past. Thus,
define the following two concepts:

Definition 5.6. A point q, is Relationally Indeterminate (RI) relative to a point q;
if and only if there is no RC A(q;) such that det(R,qq)

Definition 5.7. A point q, is determinate relative to a point q; if and only if there is
an RC A(q;) such that det(R,qo)

Therefore, we can finally state that the future is open, in the only sense that seems
to matter, if and only if it is relationally indeterminate relative to our changing location.
Or, alternatively, that an event happens at q, relative to q; only when the state of q, is
determinate relative to q;. Given a standard and natural reading of special relativity,
future regions of space-time are, in fact, relationally indeterminate.

There are serious problems with representing this concept of the state of space-time
and, thus, of relational indeterminacy in a basically first-order language. However, we can
make a first pass at it as follows. Consider a toy space-time theory in which the only values
assigned to space-time are two scalar fields. Such a scalar field assigns two real number
values to each point of space-time. We can then define two sets of monadic predicates, Q;
and R;, as follows. Divide the possible values of each of the two fields into a collection
of half-open sets, {[0,1), [1,2)...[n,+)}. Associate a predicate with each element of the
partition so that:

Definition 5.8. Q,w iff the value of the Q-field is such that n< Q(w)<(n + 1)

And, similarly for P. Take the domain to be open sets on the space-time and the
occupation function to be identity. Now, assume that we have a dynamics for P and Q given
by ordinary partial-differential equations with a well-formed initial value problem(IVP).
Given the existence of a well-formed IVP, then the specifications of the fields on any single
space-like hypersurface (Cauchy surface) have a single dynamically acceptable extension
to the remainder of space-time. But, for any region less than a complete Cauchy surface
we have the same only for some spatio-temporal volume, less than the entire space-time,
determined by the volume of the initial region. However, outside of that determinate
region, P and Q can take pretty much any values depending on the state of the remainder
of space-time.

Define a state description for a point of space-time,
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Definition 5.9. €, is the set{~P1w ... ~P;_pw, Pyw,~P w... ~Pyw,

~Quw. .. NQ(ifl)wv inv’\’Q(iJrl)w oo ~Quuw}
where i < P(w) < (i +1) and j < Q(w) < (j + 1).

Clearly a specification of the state of space-time, as above, determines a state de-
scription in this sense for every point and region of space-time. Just as clearly, the state
description, Q¢ of a Cauchy surface possesses a single dynamically acceptable extension
to a state-description, Qw for the entire space-time. However, just as clearly there will
be more than one dynamically acceptable extension of any region less than a complete
Cauchy surface. Certainly if we make n sufficiently large and the partition used to define
the predicates fine enough. But, I do not see any principled bar to defining such a language
for any physical theory defined as above.?

Thus, we can now define semantic relational indeterminacy as follows. Now, considering
arbitrary predicates and domains again.

Definition 5.10. < ¢;---d, >€ v[P", w'[(w) if and only if for R, the causal past of w',
P"(t1 - - - ty) belongs to every dynamically acceptable extension of Qg for some < ty - --t,, >
such that v(t1) = d1 -+ v(tn) = 0n.

and

Definition 5.11. < §; -6, >€ v[NP", w'|(w) if and only if for R, the causal past of
w', NP"(t1 ---t,) belongs to every dynamically acceptable extension of Qp for some <
t1 -ty > such that V(tl) =0y V(tn) = 0,.

Then, given the existence of relational indeterminacy and a sufficiently carefully de-
signed language, there will be at least some indeterminate predicates of Zry.

6 Conclusion

To conclude, I have argued, first, that Einstein-Minkowski space-time with the standard
topology and a time ordering provides a model structure for standard tense logic when we
restrict the use of the present tense to local regions of space-time. In addition, when we
consider proper time along a world-line within Einstein-Minkowski space-time, it consti-
tutes a completely standard dense linear time flow. Given this we have a full conception of
tensed becoming within Einstein-Minkowski space-time when we postulate that objects are
sequentially “present” along their world-lines, whether we explain that sequential presence
indexically or take it as a metaphysical primitive.

2Actually, I am eliding a whole class of problems in first-order representations of physical values, here.
Including problems about values that vary along multiple dimensions; the nature of vector and tensor fields;
and zero-value physical quantities, just to name a few. For an interesting discussion of these issues, focused
on the last problem, see Balashov (1999)
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Second, I have argued that when we extend standard first-order tense logic to include
a predicate-negation operator, we can formulate a precise definition of the status of future-
contingents as the joint falsehood of the assertion and of the predicate-denial that an
object within the model possesses a certain property or stands in a particular relation.
This provides a rigorous account of the concept of the “attribute indefiniteness” of future
entities. Finally, even in a deterministic universe, the causal structure of special relativity
guarantees that at least some indeterminacy will occur to the future of any region of space-
time that does not constitute a Cauchy surface of the dynamics.

Finally, let me indicate two additional features of the theory developed here. First,
at least for worlds with a fixed background space-time, the model structure can easily be
adapted to other possible worlds, and probably to the actual world, where space-time is
at best locally Minkowskian. Second, it also allows us to formulate a rigorous notion of
what it means to say that time is or is not real within a given world. That is, we should
accept that time is real in a given possible world just in case the space-time of that world
supports a model for tense logic. Even more so, we might have worlds where time is, in
a sense, partly real. Thus, suppose that a given space-time is not globally orientable and,
thus does not possess a global time orientation. In such a world, for any time-orientation<,
there are points p, q such that both p<q and q<p. It might still be locally orientable and
particular curves within the space-time might possess an orientation. Such curves, when
viewed as the world-lines of objects in the space-time, constitute models of tense logic for
objects occupying those world-lines. It would then be reasonable to claim that time is real
for those objects, but not for objects in other regions of the space-time. And, this would
be a perfectly objective fact about the entities and their histories within space-time. Not
a subjective fact about time-perception.
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