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This dissertation reconsiders some traditional issues in the foundations
of quantum mechanics in the context of relativistic quantum field theory
(RQFT); and it considers some novel foundational issues that arise first in
the context of RQFT. The first part of the dissertation considers quantum
nonlocality in RQFT. Here I show that the generic state of RQFT displays
Bell correlations relative to measurements performed in any pair of spacelike
separated regions, no matter how distant. I also show that local systems
in RQFT are “open” to influence from their environment, in the sense that
it is generally impossible to perform local operations that would remove
the entanglement between a local system and any other spacelike separated
system.

The second part of the dissertation argues that RQFT does not support
a particle ontology — at least if particles are understood to be localizable ob-
jects. In particular, while RQFT permits us to describe situations in which
a determinate number of particles are present, it does not permit us to speak
of the location of any individual particle, nor of the number of particles in
any particular region of space. Nonetheless, the absence of localizable parti-
cles in RQFT does not threaten the integrity of our commonsense concept of
a localized object. Indeed, RQFT itself predicts that descriptions in terms
of localized objects can be quite accurate on the macroscopic level.

The third part of the dissertation examines the so-called observer-depend-
ence of the particle concept in RQFT — that is, whether there are any par-
ticles present must be relativized to an observer’s state of motion. Now, it is
not uncommon for modern physical theories to subsume observer-dependent
descriptions under a more general observer-independent description of some
underlying state of affairs. However, I show that the conflicting accounts
concerning the particle content of the field cannot be reconciled in this way.
In fact, I argue that these conflicting accounts should be thought of as ” com-
plementary” in the same sense that position and momentum descriptions are
complementary in elementary quantum mechanics.
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Preface

This dissertation derives from a series of articles that I wrote over the past
three years. Most of these articles have already appeared in print: An earlier
version of chapter 2 appeared as “Generic Bell correlation between arbitrary
local algebras in quantum field theory,” (jointly authored with R. Clifton)
Journal of Mathematical Physics, 41, 1711-1717 (2000), an earlier version of
chapter 3 appeared as “Entanglement and open systems in algebraic quan-
tum field theory,” (with R. Clifton), Studies in the History and Philosophy
of Modern Physics, 32, 1-31 (2001), and an earlier version of chapter 4 ap-
peared as “Reeh-Schlieder defeats Newton Wigner,” Philosophy of Science,
68, 111-133 (2001). Furthermore, parts of chapters 6 and 7 are drawn from
an article, “Are Rindler quanta real?” (with R. Clifton) that will appear
in the September 2001 issue of the British Journal for the Philosophy of
Science. 1 would like to thank each of these journals for their permission to
reprint material from these articles.

As regards the contents of this dissertation, my greatest debt by far is
to my dissertation director, Rob Clifton. As is apparent from the list of
articles above, Rob and I have worked together very closely for the past
three years — much more closely than is typical for graduate students and
their advisors in philosophy. Although the fruitfulness of this collaboration
might be attributed in part to a natural chemistry, I think that most of the
credit must go to Rob himself. Rob not only displays a highly conscientious
commitment to his students’ well-being, but he also has more intellectual
energy than anyone I have ever known. He always had new projects I could
work on, and I never once felt that I would be imposing if I needed to call
(even late at night!) to ask for his help in solving a problem. He also provided
extensive comments on everything I wrote (very often within a matter of
hours), and he never hesitated to publicly acknowledge my contributions to
his work, even if they were minor. I count myself one of the most fortunate
graduate students to have had Rob as my advisor.

I would also like to thank the other members of my dissertation commit-
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tee for reading and commenting on my dissertation, and (in some cases) for
travelling great distances to attend my defense. I have a number of other
debts to teachers, fellow students, and e-mail correspondents; in fact, far
too many debts to mention here. However, I would be remiss if I did not
mention Rainer Verch for his constant willingness to answer my mathemat-
ical questions; and both Jeremy Butterfield and David Malament for their
especially close reading of my work, for their incisive comments, and for
their encouragement.

I would like to thank the Pew Younger Scholars Program for three
years of financial support during the course of my doctoral studies, and the
Rev. Norman and Mrs. Matilda Milbank (better known to me as Gramps
and Granny) for supplying funds that enabled me to visit Oxford during the
Fall of 1999. T would also like to thank my parents and my parents-in-law for
their support — both emotional and financial — during my graduate stud-
ies. Finally, to my wife, Keller: I will never be able to thank you adequately
for bearing this burden with me.

This dissertation is dedicated to my first philosophy teacher, Dr. Regi-
nald McLelland, whose standards of philosophical rigor and clarity will al-
ways be a challenge and inspiration to me.

To the reader: Except for chapter 7, the chapters of this dissertation
are self-contained, and can be read independently of each other. Chapter
7 presupposes material from chapter 6 and should be read in conjunction
with the latter. In most cases, proofs of theorems are omitted from the main
text, and are placed in an appendix at the end of the relevant chapter. One
exception is chapter 2, which contains full proofs, with very little discussion
of the interpretive significance of the results. Some of the implications of
the results obtained in chapter 2 are discussed in chapter 3.
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Chapter 1

Introduction

Many different sorts of inquiries fall under the heading of “philosophy of
physics.” At one extreme, we have investigations of a metaphysical or epis-
temological nature that make use—if only tangentially—of facts delivered to
us by contemporary physics. At the other extreme, we have almost purely
mathematical investigations which might have their original motivation in
some philosophical question, but which are ultimately aimed at clarifying
the structure of current physical theories. It goes without saying that both
sorts of inquiry are essential for gaining an adequate grasp of the founda-
tions of physics, and of the place of contemporary physics in a scientifically
informed worldview.

With regard to elementary quantum mechanics, both sorts of founda-
tional inquiry have been carried out extensively over the past 75 years.
First, philosophers are indebted to von Neumann, who did more than any-
one else to explicate the concepts of quantum mechanics in a mathematically
rigorous fashion. Indeed, Bas van Fraassen has gone so far as to claim that,
“interpretation of quantum theory became genuinely feasible only after von
Neumann’s theoretical unification in 1932” (1991, vii). Moreover, as a re-
sult of sustained efforts by a generation of philosophers of physics, we now
have a quite clear grasp of the interpretive options for elementary quantum
mechanics and of their respective advantages and disadvantages.

On the other hand, there has been to date very little work done on
the foundations of quantum field theory. To make matters worse, the little
foundational work that has been done in this area has paid very little atten-
tion to “mathematical niceties”, and has pressed on rashly in an attempt
to get a quick metaphysical payoff. Thus, for the most part, the philosophy
of physics community is still in a state of culpable ignorance about quan-
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tum field theory. The primary goal of this dissertation is to fill the gap
in the philosophical literature left by the absence of proper “foundational”
investigations into quantum field theory.

As the above quote from van Fraassen indicates, mathematical rigor can
be—and should be—an aid, rather than a hindrance, to the interpreter of
physics. Unfortunately, much of what goes by the name of “quantum field
theory” still lies in a hazy area between the intuitive and the mathematically
rigorous. The approach of this dissertation will be to place a premium on
mathematical rigor. Thus, in this dissertation, “quantum field theory” will
mean that part of quantum field theory that has been formalized in language
acceptable to the current community of mathematicians.

1.1 Nonlocality in quantum field theory

Very early in the development of quantum theory, worries arose about a
potential conflict between the correlations predicted by quantum theory and
the “physical world view” of classical physics—especially relativistic field
theories—in which the state of a local system is independent of the state of
distant systems. However, it was John S. Bell (1964) who first elucidated
the peculiar nonlocality of quantum theory, by showing rigorously that the
correlations predicted by quantum theory cannot be reproduced by any local
hidden variable model.

Philosophers of physics have spent a great deal of time analyzing Bell’s
result, and discussing its implications for the relationship between quantum
theory and the theory of relativity. However, these discussions have paid
very little regard to what happens in manifestly relativistic theories such as
relativistic quantum field theory (RQFT). In Part I, T attempt to fill this
gap in current discussions of quantum nonlocality and relativity.

One of the central results of (axiomatic) RQFT is the Reeh-Schlieder
theorem (Reeh & Schlieder 1961), which shows that any field state with
bounded energy (e.g., the vacuum state) is “cyclic” for each local algebra
of observables. (i.e., by applying elements of a local algebra to the vector,
one can generated the entire state space.) It was very quickly realized that
this cyclicity property has some or other connection with quantum nonlo-
cality. For example, Segal (1964) expressed his worries about the nonlocality
entailed by the Reeh-Schlieder theorem as follows:

...this apparently meant that the entire state vector space of
the field could be obtained from measurements in an arbitrarily
small region of spacetime! (Segal 1964, 140)
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However, it was only very recently—with Redhead’s (1995a) analysis—that
it became clear that cyclicity should have some straightforward connection
with the forms of quantum nonlocality that are familiar from elementary
quantum mechanics.

In chapter 2, we confirm Redhead’s intuition by showing that cyclic
states are entangled (Proposition 2.2); i.e., they cannot be thought of as
representing our ignorance of the “hidden” state of each local system. Thus,
any bounded energy state in RQFT, including the vacuum state, is entangled
across any two spacelike separated regions.

In chapter 2 we also derive one of the main results of this dissertation,
around which much of the discussion of chapter 3 will focus. In particular,
we show that for any pair of mutually commuting von Neumann algebras,
if both algebras are “of infinite type” then the set of states Bell correlated
across these algebras lies dense in the state space (Proposition 2.1). Since
algebras of local observables in quantum field theory are always of infinite
type, this result shows that for any pair of spacelike separated systems, a
dense set of field states violate Bell’s inequalities relative to measurements
that can be performed on the respective subsystems (Proposition 2.3). (This
outcome can be contrasted with elementary quantum mechanics, where “de-
coherence effects” will most often drive a pair of systems into a classically
correlated state.)

In chapter 3, I turn to another form of nonlocality in RQFT. In particu-
lar, folklore has it that in relativistic quantum field theories, a local system
cannot be isolated or shielded from outside effects. First, I make this idea
precise by showing that in RQFT, no local operations can remove entangle-
ment between a local system and its environment. I then argue, however,
that this robustness of entanglement does not pose the sort of methodolog-
ical threat that Einstein, among others, thought would result from taking
quantum theory to be complete.

On the whole, Part I shows that the familiar sorts of quantum nonlocality
return with a vengeance in RQFT. Thus, we have a strong confirmation of
the fact that there no fundamental conflict between “quantum nonlocality”
and the “locality” required by the special theory of relativity. In particular,
the locality principles of special relativity are enforced in RQFT by means
of the spectrum condition (which prohibits superluminal energy-momentum
transfer) and the microcausality condition (which maintains that observables
associated with spacelike separated regions are compatible). However, we
will see in Part II that the microcausality assumption itself is incompatible
with the existence of localizable particles—showing that some aspect of our
“classical” concept of locality will have to be abandoned in the move to
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relativistic quantum theories.

1.2 Localizable particles

When it comes to questions of interpretation, the name “quantum field the-
ory” is unfortunate—since it suggests that quantum field theory is a theory
about fields. However, we should not assume apriori that QFT lends itself
more easily to a field ontology than to a particle ontology. For example, the
non-relativistic free Bose field can be thought of perfectly well as a system
of a variable number of localizable particles.

However, in Part 11, we show that there are very good reasons for think-
ing that relativistic QFT is not a theory of localizable particles. First, in
chapter 4, we consider a proposal—due to Irving Segal (1964) and Gordon
Fleming (2000)—which is supposed to restore the intuitive picture of parti-
cle localization to relativistic QFT. However, I show that the Segal-Fleming
proposal is able to secure a notion of localizable particles only at the ex-
pense of violating the microcausality condition. Furthermore, I defend the
“received position” according to which a failure of microcausality would en-
tail a genuine conflict with relativistic causality. Thus, the Segal-Fleming
approach to localization should be rejected.

In chapter 5, I consider the issue of particle localization in relativistic
quantum theories from a more abstract perspective. According to physics
folklore, there is some fundamental conflict between relativistic causality
and particle localization, so that no relativistic quantum theory will permit
a notion of localizable particles. This intuition was made rigorous in a the-
orem by Malament (1996) which shows that there is no nontrivial system
of localizing projections that satisfies microcausality. In chapter 5, I gen-
eralize this result by giving three no-go theorems (Theorems 5.1, 5.2, and
5.3) which show that there is no nontrivial system of localization operators
(including projection operators, effects, and number operators) that satis-
fies microcausality. Nonetheless, I argue (in section 5.7) that the absence
of localizable particles in relativistic QF'T does not threaten the integrity of
our commonsense—as well as scientifically educated—use of the concept of
a localizable object. In particular, RQFT itself predicts that descriptions
in terms of localized objects, while strictly false, can nonetheless be quite
accurate within most familiar contexts.

The upshot of Part II, then, is that no relativistic quantum theory, in-
cluding RQFT, permits a notion of localizable particles. However, if we dis-
pense with the requirement of locazability, RQFT does permit a notion of
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“particles” or “objects,” as things that can be aggregated or counted. (For-
mally speaking, although there are no local number operators, there is still
a global number operator.) However, we then run into another difficulty—
viz., the particle concept is not invariant. In particular, different observers
may disagree about whether or not there are particles in a given state of the
field. Thus, the objective of Part III is to determine whether we can salvage
any aspect of the particle concept given this failure of invariance.

1.3 Inequivalent particle concepts

Part III takes up the the issue of inequivalent particle concepts in RQFT.
As a prolegomenon, chapter 6 treats the general issue of inequivalent repre-
sentations of the canonical commutation relations (CCRs) and, more gener-
ally, of inequivalent representations of an abstract C*-algebra of observables.
Philosophers have just recently realized that the existence of inequivalent
representations of the CCRs gives rise to a host of interesting foundational
questions. However, these inequivalent representations do not fit naturally
into the categories of “theoretical relations” discussed by philosophers of
science. In particular, inequivalent representations do not correspond to
different (inequivalent, or incommensurable) theories; and neither can they
be thought of as different—but ultimately equivalent, or intertranslatable—
formulations of one and the same theory.

In order to get a handle on inequivalent representations, I provide a four-
part classification of the different positions that can be taken on the issue
(see p. 123). Each position is distinguished by the ontological significance it
attributes to certain elements of the mathematical formalism—viz., whether
it attributes physical significance to observables can only be “weakly approx-
imated” by elements in the CCR (Weyl) algebra, and whether it attributes
physical significance to states in one, or more than one, folium of the state
space of the CCR (Weyl) algebra.

Chapter 7 takes up the special case of the Minkowski and Rindler vac-
uum representations of the CCRs. Here we are faced with the ontological
puzzle that RQFT seems to predict that an observer traveling at a constant
(nonzero) rate of acceleration will detect an infinite number of “particles”
(commonly called “Rindler quanta”) in the Minkowski vacuum state. Vari-
ous responses have been offered to this “paradox of the observer-dependence
of particles.” On the one hand, operationalists—such as Davies (1984)—
claim that since, “quantum mechanics is an algorithm for computing the
results of measurements,” we need to bother about whether there really are
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particles in the Minkowski vacuum state. In reaction, some philosophers of a
more realist bent have argued against the “reality” of the particles detected
by the accelerated observer (cf. Arageorgis 1995; Earman 2001)—thus priv-
ileging the description given by the inertial observer over the description
given by the accelerating observer.

I argue, however, that the realist response (i.e., to deny the physical sig-
nificance of Rindler quanta) oversimplifies the problem of inequivalent rep-
resentations. In particular, the relationship between the Minkowski number
observable and Rindler number observable is directly analogous to the rela-
tion between the position and momentum observables in elementary quan-
tum mechanics. Thus, the choice of a representation of the Weyl algebra
(or any abstract C*-algebra of observables) should be thought of as directly
analogous to a choice of a basis in elementary quantum mechanics; and the
claim that there is a privileged representation (say, the Minkowski vacuum
representation) is no less controversial than the claim that there is a pre-
ferred basis (say, the position basis) in elementary quantum mechanics.

1.4 Operator algebras for quantum theory

Here we give a brief review of some of the basic concepts of operator alge-
bras that will be used throughout the dissertation. Our basic reference is
(Kadison & Ringrose 1997), which we will abbreviate hereafter by KR.

An abstract C*-algebra is a Banach x-algebra, where the involution and
norm are related by ||A*A|| = ||A||?>. Thus the algebra B(H) of all bounded
operators on a Hilbert space H is a C*-algebra, with * taken to be the adjoint
operation, and || - || the operator norm

IA]l = sup { [|Az|| : = € H, [|=[| = 1} . (1.1)

(As is standard practice, we use the same notation for the operator norm
on B(H) and the vector norm on H.) Moreover, any *-subalgebra of B(H)
that is closed in the operator norm is a C*-algebra and, conversely, one can
show that every abstract C*-algebra has a concrete (faithful) representation
as a norm-closed #-subalgebra of B(H), for some appropriate Hilbert space
H (KR 1997, Remark 4.5.7).

Let F be any family of bounded operators acting on some Hilbert space
H. Let F’ denote the commutant of F, i.e., the set of all operators on H
that commute with every operator in F. Observe that F C F”, that F C G
implies G’ C F', and (hence) that 7/ = F"”. A C*-algebra R acting on H
is called a von Neumann algebra just in case R = R”. This is equivalent,
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via von Neumann’s double commutant theorem (KR 1997, Theorem 5.3.1),
to the assertion that I € R and R is closed in the strong operator topology,
where A; — A strongly just in case ||(4; — A)z|| — 0 for all z € H.

If a net {A;} C R converges to A € R in norm, then since

1(Ai = Az < [|Ai = Al [|l]] (1.2)

the convergence is also strong. Hence every von Neumann algebra is also a
(C*-algebra. However, not every C*-algebra of operators is a von Neumann
algebra. For example, the C*-algebra IC of all compact operators on an
infinite-dimensional Hilbert space H—that is, the norm closure of the *-
subalgebra of all finite rank operators on H—does not contain the identity,
nor does K satisfy K = K”. Indeed, K" = B(H), because only multiples of
the identity commute with all finite-dimensional projections, and of course
every operator commutes with multiples of the identity.

If F is a self-adjoint family of of operators acting on H (i.e., if A € F
then A* € F), then it is easy to verify that F’ is a von Neumann algebra.
Of course, it also follows then that F” is a von Neumann algebra. If R
is a von Neumann subalgebra of B(H) such that 7 C R, then R C F,
which in turn entails F” C R” = R. Thus F” is the smallest von Neumann
algebra containing F, i.e., the von Neumann generated by F. For example,
the von Neumann algebra generated by all finite rank operators is the whole
of B(H).

Let A be a C*-algebra with identity I, and let w be a linear functional
on A. We say that w is positive just in case w(A*A) > 0 for any A € A. We
say that w is a state just in case w is positive and w(I) = 1. For example, if
D is a positive, trace-class operator on H, then the mapping

w(A) = Te(DA),  AcB(H), (1.3)

is a positive linear functional on B(H). If Tr(D) = 1, then w is a state. If
‘R is a von Neumann algebra and w is a state on R, we say that w is normal

just in case there is some density operator D on H such that (1.3) holds for
all A e R.
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Chapter 2

Generic Bell correlation
between arbitrary local
algebras in quantum field
theory

2.1 Introduction

There are many senses in which the phenomenon of Bell correlation, origi-
nally discovered and investigated in the context of elementary nonrelativistic
quantum mechanics (Bell 1987; Clauser et al. 1969), is “generic” in quantum
field theory models. For example, it has been shown that every pair of com-
muting nonabelian von Neumann algebras possesses some normal state with
maximal Bell correlation (Summers 1990; see also Landau 1987b). More-
over, in most standard quantum field models, all normal states are maxi-
mally Bell correlated across spacelike separated tangent wedges or double
cones (Summers 1990). Finally, every bounded energy state in quantum
field theory sustains maximal Einstein-Podolsky-Rosen correlations across
arbitrary spacelike separated regions (Redhead 1995a), and has a form of
nonlocality that may be evinced by means of the state’s violation of a con-
ditional Bell inequality (Landau 1987a). (We also note that the study of
Bell correlation in quantum field theory has recently borne fruit in the in-
troduction of a new algebraic invariant for an inclusion of von Neumann
algebras (Summers & Werner 1995; Summers 1997).)

Despite these numerous results, it remains an open question whether
“most” states will have some or other Bell correlation relative to arbitrary
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spacelike separated regions. Our main purpose in this chapter is to verify
that this is so: for any two spacelike separated regions, there is an open
dense set of states which have Bell correlations across those two regions.

In section 2.2 we prove the general result that for any pair of mutually
commuting von Neumann algebras of infinite type, a dense set of vectors
will induce states which are Bell correlated across these two algebras. In
section 2.3 we introduce, following Werner (1989), a notion of “nonsepara-
bility” of states that generalizes, to mixed states, the idea of an entangled
pure state vector. We then show that for a pair of nonabelian von Neu-
mann algebras, a vector cyclic for either algebra induces a nonseparable
state. Finally, in section 2.4 we apply these results to algebraic quantum
field theory.

2.2 Bell correlation between infinite von Neumann
algebras

Let ‘H be a Hilbert space, let S denote the set of unit vectors in H, and let
B(H) denote the set of bounded linear operators on H. We will use the same
notation for a projection in B(H) and for the subspace in ‘H onto which it
projects. If z € S, we let w, denote the state of B(H) induced by z. Let
R1,R2 be von Neumann algebras acting on H such that Ry C RY, and let
R12 denote the von Neumann algebra {R1 UR2}” generated by Ry and Ra.
Following (Summers & Werner 1995), we set

Tio = {(1/2>[A1(B1 + Bg) + AQ(Bl — Bg)] :

A= A € Ry, Bi = Bf € Rg,—1 < A;, B; < 1}. (2.1)

Elements of 719 are called Bell operators for Ri2. For a given state w of
ng, let

B(w) = sup{|w(R)|: R € Ti2}. (2.2)

If w = wg|r,, for some z € S, we write G(x) to abbreviate B(wz|Rr,,)-
From (2.2), it follows that the map w — f(w) is norm continuous from the
state space of R12 into [1,v/2] (Summers & Werner 1995, Lemma 2.1). Since
the map x — wy|R,, is continuous from S, in the vector norm topology, into
the (normal) state space of Ri2, in the norm topology, it also follows that
r — [(z) is continuous from & into [1,v/2]. If B(w) > 1, we say that
w violates a Bell inequality, or is Bell correlated. In this context, Bell’s
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theorem (Bell 1964) is the statement that a local hidden variable model
of the correlations that w dictates between R; and R is only possible if
B(w) = 1. Note that the set of states w on Rz that violate a Bell inequality
is open (in the norm topology) and, similarly, the set of vectors z € S that
induce Bell correlated states on R is open (in the vector norm topology).
We assume now that the pair Rq, Ry satisfies the Schlieder property.
That is, if A € Ry and B € Ry such that AB = 0, then either A = 0 or
B =0. Let V € Ry and W € R5 be nonzero partial isometries.! Suppose
that the initial space V*V of V is orthogonal to the final space VV* of V;
or, equivalently, that V2 = 0. Similarly, suppose W?2 = 0. Consider the
projections
E=V'V+VV* F=W*W +WW*. (2.3)

We show that there is a Bell operator R for Ry such that }Nzy = /2y for
some unit vector y € EF, and R(I — E)(I — F)=(I — E)(I - F).
Let

A=V 4+V* Bi=W+W*
Ay = i(VF—V) By = i(W* — W) (2.4)
Ag = [V, V*] Bs = [W, W*].

Note that A? = F, the A; are self-adjoint contractions in R1, A;F = FA; =
A;, and [A1, Ag] = 2iA3. Similarly, Bi2 = F, the B; are self-adjoint contrac-
tions in Ro, B;F = FB; = B;, and [By, Bs] = 2iBs. If we let R denote the
Bell operator constructed from A;, B;, a straightforward calculation shows
that (cf. Landau 1987b)

1
R?>=EF — Z[Al, A5][B1, Bo] = EF + A3Bs. (2.5)

Note that P = VV* #£ 0 is the spectral projection for Az corresponding to
eigenvalue 1, and Q = WW™* £ 0 is the spectral projection for B3 corre-
sponding to eigenvalue 1. Since R, Rs satisfy the Schlieder property, there
is a unit vector y € PQ, and thus A3Bsy = y. Since PQ < EF, it follows
from (2.5) that R%y = 2y. Thus, we may assume without loss of general-
ity that Ry = v/2y. (If Ry # v/2y, then interchange By, By and replace A;
with —A;. Note that the resulting Bell operator R’ = —R and R'yy = /2o,
where yo = (V2y — Ry)/|[V2y — Ryl € EF.)  _

Now for i = 1,2, let A, = (I —E)+ A;and B, = (I — F) + B;. It is

LA partial isometry V is an operator on a Hilbert space H that maps some particular
closed subspace C' C 'H isometrically onto another closed subspace C' C H, and maps C*
to zero.
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easy to see that EZQ =1 and Ef =1, so the 21; and Ez are again self-adjoint
contractions in R1 and Ry respectively. If we let R denote the corresponding
Bell operator, a straightforward calculation shows that

R=(I-E)I—-F)+(I—E)B +A(-F)+R. (2.6)

Since the /2 eigenvector y for R lies in EF, we have ﬁy = Ry = V2y.
Furthermore, since A;(I — E) = 0 and B;(I — F) = 0, we have R(I — E)(I —
F)=(I-E)(I - F) as required.

A special case of the following result, where R and Ro are type I
factors, was proved as Proposition 1 of (Clifton, Halvorson, & Kent 2000).
Recall that R is said to be of infinite type just in case the identity I is
equivalent, in R, to one of its proper subprojections.

Proposition 2.1. Let R1,Ro be von Neumann algebras acting on 'H such
that R1 C RS, and R1,Re satisfy the Schlieder property. If Ri,Rs are of
infinite type, then there is an open dense subset of vectors in S which induce
Bell correlated states for Ris.

Note that the hypotheses of this proposition are invariant under isomor-
phisms of Rq2. Thus, by making use of the universal normal representation
of R12 (KR 1997, 458), in which all normal states are vector states, it follows
that the set of states Bell correlated for R1, Rs is norm dense in the normal
state space of Rqs.

Proof of the proposition: Since R is infinite, there is a properly infinite pro-
jection P € Ry (KR 1997, Prop. 6.3.7). Since P is properly infinite, we may
apply the halving lemma (KR 1997, Lemma 6.3.3) repeatedly to obtain a
countably infinite family {P,} of mutually orthogonal projections such that
P, ~ Py for all n and ) 7| P, = P. (Halve P as P, + Fy; then halve
Fy as P» + F5, and so on. Now replace P; by P — Zflo:z P,; cf. KR 1997,
Lemma 6.3.4.) Let Py = I — P. For each n € N, let V,, denote the partial
isometry with initial space V,V,, = P, and final space V,,V,J = P,;1. By
the same reasoning, there is a countable family {Q,} of mutually orthog-
onal projections in Ry and partial isometries W,, with WW,, = @, and
W, W = Qn+1. For each n € N, let

*

Al,n = Vn+1 + Vrf—l-l Bl,n = n+1 + n+1- (2 7)
A2,n = i(V*+1 - Vn+1) B27n = Z(W;-i-l - Wn+1), ’

n



2.3 Cyclic vectors and entangled states 13

and let

E, = Vreran-i-l + Vn+1VJ+1 = Pot1+ Poyo, (2'8)
Fn = W;+1Wn+1 + Wn+1W;+1 = Qn—f—l + Qn—I—Q‘ (29)

Define ﬁm and ém as in the discussion preceding this proposition, let ﬁn
be the corresponding Bell operator, and let the unit vector y, € E,F, be
the v/2 eigenvector for R,.

Now, let  be any unit vector in H. Since > ' (P, < I — E, and
since ) 2y P; = I, we have (I — E,,) — I in the strong-operator topology.
Similarly, (I — F,,) — I in the strong-operator topology. Therefore if we let

(I —Ey)(I - Fy)x

Ty = , 2.10
"= T~ BT~ Rl (210
we have
z =lim(I — E,)(I — F,)z = limz,,. (2.11)
n n
Note that the inner product (x,,y,) = 0, and thus
zn=(1—n"YHY2, + 0712y, (2.12)

is a unit vector for all n. Since lim,, 2, =, it suffices to observe that each z,
is Bell correlated for Ri2. Recall that R, (I —Ey,)(I—F,) = (I - E,)(I - Fy),
and thus R,z, = ©,. A simple calculation then reveals that

B(zn) > (Rpzn,zn) = A—n"YH+n"V2 > 1. (2.13)

O]

2.3 Cyclic vectors and entangled states

Proposition 2.1 establishes that Bell correlation is generic for commuting
pairs of infinite von Neumann algebras. However, we are given no informa-
tion about the character of the correlations of particular states. We provide
a partial remedy for this in the next proposition, where we show that any
vector cyclic for Ry (or for Ry) induces a state that is not classically corre-
lated; i.e., it is “nonseparable.”

Again, let R1,R2 be von Neumann algebras on H such that Ry C RY.
Recall that a state w of Rqo is called a normal product state just in case w
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is normal, and there are states w; of Rq and wy of Ry such that
w(AB) = w1 (A)wa(B), (2.14)

for all A € Ri,B € Ra. Werner (1989), in dealing with the case of
B(C") ® B(C"), defined a density operator D to be classically correlated—
the term separable is now more commonly used—just in case D can be
approximated in trace norm by convex combinations of density operators of
form D ® Dy. Although Werner’s definition of nonseparable states directly
generalizes the traditional notion of pure entangled states, he showed that
a nonseparable mixed state need not violate a Bell inequality; thus, Bell
correlation is in general a sufficient, though not necessary condition for a
state’s being nonseparable. On the other hand, it has since been shown that
nonseparable states often possess more subtle forms of nonlocality, which
may be indicated by measurements more general than the single ideal mea-
surements which can indicate Bell correlation (Popescu 1995). (See Clifton,
Halvorson, & Kent 2000 and Clifton & Halvorson 2000 for further discus-
sion.)

In terms of the linear functional representation of states, Werner’s sepa-
rable states are those in the norm closed convex hull of the product states of
B(C™) @ B(C"). However, in case of the more general setup—i.e., Ry C RY,
where R1,Ro are arbitrary von Neumann algebras on H—the choice of
topology on the normal state space of R1s will yield in general different def-
initions of separability. Moreover, it has been argued that norm convergence
of a sequence of states can never be verified in the laboratory, and as a result,
the appropriate notion of physical approximation is given by the (weaker)
weak™ topology (Emch 1972; Haag 1992). And the weak* and norm topolo-
gies do not generally coincide even on the normal state space (Dell’Antonio
1967).

For the next proposition, then, we will define the separable states of
Ri2 to be the normal states in the weak™ closed convex hull of the normal
product states. Note that f(w) =1 if w is a product state, and since (3 is a
convex function on the state space, f(w) = 1 if w is a convex combination of
product states (Summers & Werner 1995, Lemma 2.1). Furthermore, since
3 is lower semicontinuous in the weak* topology (Summers & Werner 1995,
Lemma 2.1), f(w) = 1 for any separable state. Contrapositively, any Bell
correlated state must be nonseparable.

We now introduce some notation that will aid us in the proof of our
result. For a state w of the von Neumann algebra R and an operator A € R,
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define the state w on R by

wA(X) = m, (2.15)

if w(A*A) # 0, and let w? = w otherwise. Suppose now that w(A*A) # 0
and w is a convex combination of states:

W= Aiw;. (2.16)

i=1
Then, letting A = w(A*A)~lw;(A*A)\;, w? is again a convex combination
wA = Z M, (2.17)

i=1

Moreover, it is not difficult to see that the map w — w? is weak* continuous

at any point p such that p(A*A) # 0. Indeed, let O; = N(p? : X1,..., Xp,€)
be a weak* neighborhood of p. Then, taking

Oy=N(p: A"A, A" X A,..., A" X, A,0), (2.18)
and w € 09, we have
|p(A*X;A) — w(A* X A)| < 6, (2.19)

fori=1,...,n, and
|p(A*A) —w(A*A)| < 0. (2.20)

By choosing § < p(A*A) # 0, we also have w(A*A) # 0, and thus

04 (X:) — w(X3)| < O(9) < e, (2.21)
for an appropriate choice of §. That is, w? € O, for all w € Oy and w — w4
is weak® continuous at p.

Specializing to the case where Ry C R, and Ria = {R1 U Ra}’, it is
clear from the above that for any normal product state w of Ri2 and for
A € Ry, w? is again a normal product state. The same is true if w is a
convex combination of normal product states, or the weak™® limit of such
combinations. We summarize the results of this discussion in the following
lemma:
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Lemma 2.1. For any separable state w of Ria and any A € R1, w? is again
separable.

Proposition 2.2. Let R1,Ro be nonabelian von Neumann algebras such
that Ry C RY. If x is cyclic for R, then wy is nonseparable across Ria.

Proof. From Lemma 2.1 of (Summers & Werner 1995), there is a normal
state p of Rig such that G(p) = V2. But since all normal states are in the
(norm) closed convex hull of vector states (KR 1997, Thm 7.1.12), and since
[ is norm continuous and convex, there is a vector v € S such that 5(v) > 1.
By the continuity of 8 (on S), there is an open neighborhood O of v in §
such that 3(y) > 1 for all y € O. Since x is cyclic for R4, there is an A € R
such that Az € O. Thus, 8(Ax) > 1 which entails that wa, = (w;)? is a
nonseparable state for Rio. This, by the preceding lemma, entails that w,
is nonseparable. ]

Note that if R; has at least one cyclic vector x € S, then R; has a
dense set of cyclic vectors in S (Dixmier & Marechal 1971). Since each of
the corresponding vector states is nonseparable across R1s, Proposition 2.2
shows that if R; has a cyclic vector, then the (open) set of vectors inducing
nonseparable states across Rz is dense in §. On the other hand, since the
existence of a cyclic vector for R; is not invariant under isomorphisms of
R12, Proposition 2.2 does not entail that if Ry has a cyclic vector, then
there is a norm dense set of nonseparable states in the entire normal state
space of Ri2. (Contrast the analogous discussion preceding the proof of
Proposition 2.1.) Indeed, if we let R1 = B(C?) ® I, Ry = I @ B(C?), then
any entangled state vector is cyclic for R1; but, the set of nonseparable states
of B(C?)® B(C?) is not norm dense (Clifton & Halvorson 2000; Zyczkowski
et al. 1998). However, if in addition to R; or Ry having a cyclic vector,
R12 has a separating vector (as is often the case in quantum field theory),
then all normal states of R12 are vector states (KR 1997, Thm. 7.2.3), and it
follows that the nonseparable states will be norm dense in the entire normal
state space of Rqa.

2.4 Applications to algebraic quantum field theory

Let (M, g) be a relativistic spacetime. The basic mathematical object of al-
gebraic quantum field theory (see Haag 1992; Borchers 1996; Dimock 1980) is
an association between precompact open subsets O of M and C*-subalgebras
A(O) of a unital C*-algebra A. (We assume that each A(O) contains the
identity I of A.) The motivation for this association is the idea that A(O)
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represents observables that can be measured in the region O. With this in
mind, one assumes

1. Isotony: If O; C Oq, then A(O7) C A(O3).
2. Microcausality: A(O") C A(O)".

Here O" denotes the interior of the set of all points of M that are spacelike
to every point in O.

In the case where (M, g) is Minkowski spacetime, it is assumed in addi-
tion that there is a faithful representation x — ax of the translation group
of M in the group of automorphisms of 4 such that

3. Translation Covariance: ax(A(O)) = A(O + x).

4. Weak Additivity: For any O C M, A is the smallest C*-algebra con-
taining

UxGM ‘A(O + X).

The class of physically relevant representations of A is decided by further
desiderata such as—in the case of Minkowski spacetime—a unitary repre-
sentation of the group of translation automorphisms which satisfies the spec-
trum condition. Relative to a fixed representation 7, we let R.(O) denote
the von Neumann algebra 7(A(O))” on the representation space H,. In
what follows, we consider only nontrivial representations (i.e., dim H, > 1),
and we let S; denote the set of unit vectors in H;.

Proposition 2.3. Let {A(O)} be a net of local algebras over Minkowski
spacetime. Let w be any representation in the local quasiequivalence class of
some irreducible vacuum representation (e.g. superselection sectors in the
sense of Doplicher-Haag-Roberts (1969) or Buchholz-Fredenhagen (1982)).
If 01,02 are any two open subsets of M such that Oy C O, then the set
of vectors inducing Bell correlated states for R(01), R(0O2) is open and
dense in S;.

Proof. Let O3, O4 be precompact open subsets of M such that O3 C 01,04 C
O3, and such that O3+ N C O} for some neighborhood N of the origin. In an
irreducible vacuum representation ¢, local algebras are of infinite type (Ho-
ruzhy 1988, Prop. 1.3.9), and since O3 + N C O}, the Schlieder property
holds for R(03), R¢(O4) (Schlieder 1969). If 7 is any representation in the
local quasiequivalence class of ¢, these properties hold for R;(O3), R~(Oy)
as well. Thus, we may apply Proposition 2.1 to conclude that the set of
vectors inducing Bell correlated states for R(O3), R-(0y4) is dense in S;.
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Finally, note that any state Bell correlated for R;(O3), R(O4) is Bell cor-
related for R;(O1), R (02). O

Proposition 2.4. Let (M, g) be a globally hyperbolic spacetime, let {A(O)}
be the net of local observable algebras associated with the free Klein-Gordon
field (Dimock 1980), and let ™ be the GNS representation of some quasifree
Hadamard state (Kay € Wald 1991). If O1,02 are any two open subsets of
M such that Oy C O), then the set of vectors inducing Bell correlated states
for Rz(01),R(02) is open and dense in Sy.

Proof. The regular diamonds (in the sense of Verch 1997) form a basis for
the topology on M. Thus, we may choose regular diamonds Os, O4 such
that O3 C O; and O4 C O,. The nonfiniteness of the local algebras
R=(03),Rz(0y4) is established in (Verch 1997, Thm. 3.6.g), and the split
property for these algebras is established in (Verch 1997, Thm. 3.6.d). Since
the split property entails the Schlieder property, it follows from Proposi-
tion 2.1 that the set of vectors inducing Bell correlated states for R (O3), Rx(O4)
[and thereby Bell correlated for R(01), R(O2)] is dense in S;. O

There are many physically interesting states, such as the Minkowski
vacuum itself, about which Propositions 2.3 and 2.4 are silent. However,
Reeh-Schlieder type theorems entail that many of these physically inter-
esting states are induced by vectors which are cyclic for local algebras, and
thus it follows from Proposition 2.2 that these states are nonseparable across
any spacelike separated pair of local algebras. In particular, although there
is an upper bound on the Bell correlation of the Minkowski vacuum (in
models with a mass gap) that decreases exponentially with spacelike sep-
aration (Summers & Werner 1995, Prop. 3.2), the vacuum state remains
nonseparable (in our sense) at all distances. On the other hand, since non-
separability is only a necessary condition for Bell correlation, none of our
results decide the question of whether the vacuum state always retains some
Bell correlation across arbitrary spacelike separated regions.



Chapter 3

Entanglement and open
systems in algebraic
quantum field theory

... despite its conservative way of dealing with physical principles, algebraic
QFT leads to a radical change of paradigm. Instead of the Newtonian view
of a space-time filled with a material content one enters the reality of
Leibniz created by relation (in particular inclusions) between ‘monads’

(~ the hyperfinite type I11; local von Neumann factors A(O) which as
single algebras are nearly void of physical meaning).

— Bert Schroer (1998)

3.1 Introduction

In PCT, Spin and Statistics, and All That, Streater and Wightman claim
that, as a consequence of the axioms of algebraic quantum field theory
(AQFT), “it is difficult to isolate a system described by fields from outside
effects” (2000, 139). Haag makes a similar claim in Local Quantum Physics:
“From the previous chapters of this book it is evidently not obvious how to
achieve a division of the world into parts to which one can assign individu-
ality. . . Instead we used a division according to regions in space-time. This
leads in general to open systems” (1992, 298). By a field system these au-
thors mean that portion of a quantum field within a specified bounded open
region O of spacetime, with its associated algebra of observables A(O) (con-
structed in the usual way, out of ‘field operators’ smeared with test-functions
having support in O). The environment of a field system (so construed) is

19
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naturally taken to be the field in the region O’, the spacelike complement of
O. But then the claims above appear, at first sight, puzzling. After all, it
is an axiom of AQFT that the observables in A(O’) commute with those in
A(O). And this implies—indeed, is equivalent to—the assertion that stan-
dard von Neumann measurements performed in O’ cannot have ‘outside
effects’ on the expectations of observables in O (Liiders 1951). What, then,
could the above authors possibly mean by saying that the field in O must
be regarded as an open system?

A similar puzzle is raised by a famous passage in which Einstein (1948)
contrasts the picture of physical reality embodied in classical field theories
with that which emerges when we try to take quantum theory to be complete:

If one asks what is characteristic of the realm of physical ideas
independently of the quantum theory, then above all the fol-
lowing attracts our attention: the concepts of physics refer to a
real external world, i.e., ideas are posited of things that claim a
“real existence” independent of the perceiving subject (bodies,
fields, etc.)...it appears to be essential for this arrangement of
the things in physics that, at a specific time, these things claim
an existence independent of one another, insofar as these things
“lie in different parts of space”. Without such an assumption
of the mutually independent existence (the “being-thus”) of spa-
tially distant things, an assumption which originates in everyday
thought, physical thought in the sense familiar to us would not
be possible. Nor does one see how physical laws could be for-
mulated and tested without such clean separation. ...For the
relative independence of spatially distant things (A and B), this
idea is characteristic: an external influence on A has no immedi-
ate effect on B; this is known as the “principle of local action,”
which is applied consistently in field theory. The complete sus-
pension of this basic principle would make impossible the idea of
the existence of (quasi-)closed systems and, thereby, the estab-
lishment of empirically testable laws in the sense familiar to us.
(ibid, 321-322; Howard’s 1989 translation)

There is a strong temptation to read Einstein’s ‘assumption of the mutu-
ally independent existence of spatially distant things’ and his ‘principle of
local action’ as anticipating, respectively, the distinction between separa-
bility and locality—or between nonlocal ‘outcome-outcome’ correlation and
‘measurement-outcome’ correlation—that some philosophers argue is cru-
cial to unraveling the conceptual implications of Bell’s theorem (see, e.g.,
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Howard 1989). However, even in nonrelativistic quantum theory, there is no
question of any nonlocal measurement-outcome correlation between distinct
systems or degrees of freedom, whose observables are always represented
as commuting. Making the reasonable assumption that Einstein knew this
quite well, what is it about taking quantum theory at face value that he saw
as a threat to securing the existence of physically closed systems?

What makes quantum systems open for Einstein, as well as for Streater
and Wightman, and Haag, is that quantum systems can occupy entangled
states in which they sustain nonclassical EPR correlations with other quan-
tum systems outside their light cones. That is, while it is correct to read
Einstein’s discussion of the mutually independent existence of distant sys-
tems as an implicit critique of the way in which quantum theory typically
represents their joint state as entangled, we believe it must be the outcome-
outcome EPR correlations associated with entangled states that, in Ein-
stein’s view, pose a problem for the legitimate testing of the predictions
of quantum theory. One could certainly doubt whether EPR correlations
really pose any methodological problem, or whether they truly require the
existence of physical (or ‘causal’) influences acting on a quantum system
from outside. But the analogy with open systems in thermodynamics that
Einstein and the others seem to be invoking is not entirely misplaced.

Consider the simplest toy universe consisting of two nonrelativistic quan-
tum systems, represented by a tensor product of two-dimensional Hilbert
spaces Ci ® (C2B, where system A is the ‘object’ system, and B its ‘envi-
ronment’. Let z be any state vector for the composite system A + B, and
D 4(z) be the reduced density operator z determines for system A. Then
the von Neumann entropy of A, E4(x) = —Tr(Da(xz)In Dy(x)) (= Ep(x)),
varies with the degree to which A and B are entangled. If x is a product
vector with no entanglement, F4(z) = 0, whereas, at the opposite extreme,
Ea(z) = In2 when z is, say, a singlet or triplet state. The more A and B
are entangled, the more ‘disordered’ A becomes, because it will then have
more than one state available to it, and A’s probabilities of occupying them
will approach equality. In fact, exploiting an analogy to Carnot’s heat cycle
and the second law of thermodynamics (that it is impossible to construct a
perpetuum mobile), Popescu and Rohrlich (1997) have shown that the gen-
eral principle that it is impossible to create entanglement between pairs of
systems by local operations on one member of each pair implies that the von
Neumann entropy of either member provides the uniquely correct measure
of their entanglement when they are in a pure state. Changes in their degree
of entanglement, and hence in the entropy of either system A or B, can only
come about in the presence of a nontrivial interaction Hamiltonian between
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them. But the fact remains that there is an intimate connection between a
system’s entanglement with its environment and the extent to which that
system should be thought of as physically closed.

Returning to AQFT, Streater and Wightman, as well as Haag, all in-
tend to make a far stronger claim about quantum field systems—a point
that even applies to spacelike-separated regions of a free field, and might
well have offended Einstein’s physical sensibilities even more. The point is
that quantum field systems are unavoidably and intrinsically open to en-
tanglement. Streater and Wightman’s comment is made in reference to
the Reeh-Schlieder (1961) theorem, a consequence of the general axioms of
AQFT. We shall show that this theorem entails severe practical obstacles to
isolating field systems from entanglement with other field systems. Haag’s
comment goes deeper, and is related to the fact that the algebras associated
with field systems localized in spacetime regions are in all known models of
the axioms type III von Neumann algebras. We shall show that this fea-
ture of the local algebras imposes a fundamental limitation on isolating field
systems from entanglement even in principle.

Think again of our toy nonrelativistic universe A + B, with Alice in
possession of system A, and the state x entangled. Although there are
no unitary operations Alice can perform on system A that will reduce its
entropy, she can still try to destroy its entanglement with B by performing
a standard von Neumann measurement on A. If Py are the eigenprojections
of the observable Alice measures, and the initial density operator of A + B
is D = P, (where P, is the projection onto the ray = generates), then the
post-measurement joint state of A + B will be given by the new density
operator

D—D = (P, @ Py(P. @)+ (P. @ IP,(P-®1). (3.1)

Since the projections Py are one-dimensional, and x is entangled, there are
nonzero vectors at € C4 and bf € C% such that (Py ® I)x = af ® b, and
a straightforward calculation reveals that D’ may be re-expressed as

D' =Tr[(Py @ )PPy ® Py + Tr[(P- @ )P, P- ® Py (3.2)

Thus, regardless of the initial state x, or the degree to which it was entan-
gled, D’ will always be a convex combination of product states, and there
will no longer be any entanglement between A and B. One might say that
Alice’s measurement operation on A has the effect of isolating A from any
further EPR influences from B. Moreover, this result can be generalized.
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Given any finite or infinite dimension for the Hilbert spaces Ha and Hp,
there is always an operation Alice can perform on system A that will de-
stroy its entanglement with B no matter what their initial state D was,
pure or mixed. In fact, it suffices for Alice to measure any nondegenerate
observable of A with a discrete spectrum. The final state D’ will then be
a convex combination of product states, each of which is a product density
operator obtained by ‘collapsing’ D using some particular eigenprojection
of the measured observable.!

The upshot is that if entanglement does pose a methodological threat, it
can at least be brought under control in nonrelativistic quantum theory. Not
so when we consider the analogous setup in quantum field theory, with Alice
in the vicinity of one region A, and B any other spacelike-separated field
system. We shall see that AQFT puts both practical and theoretical limits
on Alice’s ability to destroy entanglement between her field system and B.
Again, while one can doubt whether this poses any real methodological prob-
lem for Alice—an issue to which we shall return in earnest later—we think
it is ironic, considering Einstein’s point of view, that such limits should be
forced upon us once we make the transition to a fully relativistic formulation
of quantum theory.

We begin in section 3.2 by reviewing the formalism of AQFT, the concept
of entanglement between spacelike-separated field systems, and the mathe-
matical representation of an operation performed within a local spacetime
region on a field system. In section 3.3, we connect the Reeh-Schlieder
theorem with the practical difficulties involved in guaranteeing that a field
system is disentangled from other field systems. The language of operations
also turns out to be indispensable for clearing up some apparently para-
doxical physical implications of the Reeh-Schlieder theorem that have been
raised in the literature without being properly resolved. In section 3.4, we
discuss differences between type I1I von Neumann algebras and the standard

1 The fact that disentanglement of a state can always be achieved in this way does
not conflict with the recently established result there can be no ‘universal disentangling
machine’, i.e., no unitary evolution that maps an arbitrary A+ B state D to an unentangled
state with the same reduced density operators as D (Mor 1998; Mor & Terno 1999). Also
bear in mind that we have not required that a successful disentangling process leave
the states of the entangled subsystems unchanged. Finally, though we have written of
Alice’s measurement ‘collapsing’ the density matrix D to D’, we have not presupposed
the projection postulate nor begged the question against no-collapse interpretations of
quantum theory. What is at issue here is the destruction of entangling correlations between
A and B, not between the compound system M + A, including Alice’s measuring device
M, and B.
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type I von Neumann algebras employed in nonrelativistic quantum theory,
emphasizing the radical implications type III algebras have for the ignorance
interpretation of mixtures and entanglement. We end section 3.4 by con-
necting the type III character of the algebra of a local field system with the
inability, in principle, to perform local operations on the system that will
destroy its entanglement with other spacelike-separated systems. We offer
this result as one way to make precise the sense in which AQFT requires a
radical change in paradigm—a change that, regrettably, has passed virtually
unnoticed by philosophers of quantum theory.

3.2 AQFT, entanglement, and local operations

The basic mathematical object of AQFT on Minkowski spacetime M is an
association O +— A(O) between bounded open subsets O of M and C*-
subalgebras A(O) of an abstract C*-algebra A (Horuzhy 1988; Haag 1992).
The motivation for this association is that the self-adjoint elements of A(O)
represent the physical magnitudes, or observables, of the field intrinsic to
the region O. We shall see below how the elements of .A(O) can also be used
to represent mathematically the physical operations that can be performed
within O, and often it is only this latter interpretation of A(O) that is
emphasized (Haag 1992, 104). One naturally assumes

Isotony: If O1 C Oq, then A(O7) C A(O>).

As a consequence, the collection of all local algebras A(O) defines a net
whose limit points can be used to define algebras associated with unbounded
regions, and in particular A(M), which is identified with A itself.

One of the leading ideas in the algebraic approach to fields is that all
of the physics of a particular field theory is encoded in the structure of its
net of local algebras.? But there are some general assumptions about the
net {A(O) : O C M} that all physically reasonable field theories are held to
satisfy. First, one assumes

Microcausality: A(O") C A(O)".

One also assumes that there is a faithful representation x — ax of the
spacetime translation group of M in the group of automorphisms of A,
satisfying

2In particular, though smearing any given field ‘algebra’ on M defines a unique net,
the net underdetermines the field; see (Borchers 1960).
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Translation Covariance: ax(A(O)) = A(O + x).

Weak Additivity: For any O C M, A is the smallest C*-algebra
containing (Jy¢,, A(O +x).

Finally, one assumes that there is some irreducible representation of the
net {A(O) : O C M} in which these local algebras are identified with von
Neumann algebras acting on a (nontrivial) Hilbert space H, A is identified
with a strongly dense subset of B(H), and the following condition holds

Spectrum Condition: The generator of spacetime translations,
the energy-momentum of the field, has a spectrum confined to
the forward light-cone.

While the spectrum condition itself only makes sense relative to a repre-
sentation (wherein one can speak, via Stone’s theorem, of generators of the
spacetime translation group of M—now concretely represented as a strongly
continuous group of unitary operators {U(x)} acting on H), the requirement
that the abstract net have a representation satisfying the spectrum condi-
tion does not require that one actually pass to such a representation to
compute expectation values, cross-sections, etc. Indeed, Haag and Kastler
(1964) have argued that there is a precise sense in which all concrete repre-
sentations of a net are physically equivalent, including representations with
and without a translationally invariant vacuum state vector ). Since we are
not concerned with that argument here®, we shall henceforth take the ‘Haag-
Araki’ approach of assuming that all the local algebras {A(O) : O C M}
are von Neumann algebras acting on some H, with A” = B(H), and there
is a translationally invariant vacuum state Q € H.4

We turn next to the concept of a state of the field. Generally, a physical
state of a quantum system, represented by some von Neumann algebra R C

3See chapter 6 of this dissertation, as well as Arageorgis et al. (2001), for somewhat
different criticisms of the Haag-Kastler argument.

4 Since we do, after all, live in a heat bath at 3 degrees Kelvin, some might think it
would be of more immediate physical interest if we investigated entanglement in finite
temperature “KMS” representations of the net {A(O) : O C M} that are “disjoint” from
the vacuum representation. However, aside from the fact that the vacuum representa-
tion is the simplest and most commonly discussed representation, we are interested here
only in the conceptual foundations of particle physics, not quantum statistical mechanics.
Moreover, much of value can be learned about the conceptual infrastructure of a theory by
examining particular classes of its models—whether or not they are plausible candidates
for describing our actual world. (In any case, we could hardly pretend to be discussing
physics on a cosmological scale by looking at finite temperature representations, given
that we would still be presupposing a flat spacetime background!)
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B(H), is given by a normalized linear expectation functional 7 on R that
is both positive and countably additive. Positivity is the requirement that
7 map any positive operator in R to a nonnegative expectation (a must,
given that positive operators have nonnegative spectra), while countable
additivity is the requirement that 7 be additive over countable sums of
mutually orthogonal projections in R.> Every state on R extends to a state
p on B(H) which, in turn, can be represented by a density operator D, on
H via the standard formula p(-) = Tr(D,-) (KR 1997, 462). A pure state
on B(H), i.e., one that is not a nontrivial convex combination or mixture
of other states of B(H), is then represented by a vector x € H. We shall
always use the notation p, for the normalized state functional (z, - x)/|z||?
(= Tr(Py-)). If, furthermore, we consider the restriction p,|r, the induced
state on some von Neumann subalgebra R C B(H), we cannot in general
expect it to be pure on R as well. For example, with H = Ci ® C%,
R = B(CQA) ® I, and x entangled, we know that the induced state p.|r,
represented by Da(z) € B(C%), is always mixed. Similarly, one cannot
expect that a pure state p, of the field algebra A” = B(H)—which supplies
a maximal specification of the state of the field throughout spacetime—will
have a restriction to a local algebra p,| 40y that is itself pure. In fact,
we shall see later that the Reeh-Schlieder theorem entails that the vacuum
state’s restriction to any local algebra is always highly mixed.

There are two topologies on the state space of a von Neumann algebra
R that we shall need to invoke.

One is the metric topology induced by the norm on linear functionals.
The norm of a state p on R is defined by

ol = sup{ [p(Z)| : 2 = Z" € R, || Z]| <1}, (3.3)

If two states, p; and ps, are close to each other in norm, then they dictate
close expectation values uniformly for all observables. In particular, if both
p1 and po are vector states, i.e., they are induced by vectors x1,x2 € H such
that p1 = pg,|r and p2 = pg,|r, then ||z1 — z2|| — 0 implies ||p1 — p2f| —
0.5 More generally, whenever the trace norm distance between two density
operators goes to zero, the norm distance between the states they induce on
R goes to zero. Note also that since every state on B(H) is given by a density

5There are also non-countably additive or ‘singular’ states on R (KR 1997, 723), but
whenever we use the term ‘state’ we shall mean countably additive state.

Tt is important not to conflate the terms ‘vector state’ and ‘pure state’, unless of
course R = B(H) itself.
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operator, which in turn can be decomposed as an infinite convex combination
of one dimensional projections (with the infinite sum understood as trace
norm convergence), it follows that every state on R C B(H) is the norm limit
of convex combinations of vector states of R (cf. KR 1997, Thm. 7.1.12).
The other topology we shall invoke is the weak™ topology: a net of states
{pi} on R weak™ converges to a state p just in case p;(Z) — p(Z) for all
Z € R. This convergence need not be uniform on all elements of R, and
is therefore weaker than the notion of approximation embodied by norm
convergence. As it happens, any state on the whole of B(H) that is the
weak™ limit of a set of states is also their norm limit. However, this is only
true for type I von Neumann algebras (Connes & Stgrmer 1978, Cor. 9).
Next, we turn to defining entanglement in a field. Fix a state p on
B(H), and two mutually commuting subalgebras R4, Rp C B(H). To de-
fine what it means for p to be entangled across the algebras, we need only
consider the restriction p|r ,, to the von Neumann algebra they generate,
i.e., Rap = (RAURR)", and of course we need a definition that also applies
when p|g ,, is mixed. A state w on R4p is called a product state just in case
there are states wq of R4 and wp of Rp such that w(XY) = wa(X)wp(Y)
for all X € R4, Y € Rp. Clearly, product states, or convex combinations
of product states, possess only classical correlations. Moreover, if one can
approrimate a state with convex combinations of product states, its cor-
relations do not significantly depart from those characteristic of a classical
statistical theory. Therefore, we define p to be entangled across (R4, Rp)
just in case p|r,, is not a weak™ limit of convex combinations of prod-
uct states of Rap (see chapter 2, page 14). Notice that we chose weak™
convergence rather than convergence in norm, hence we obtain a strong
notion of entanglement. In the case H = Ha ® Hp, Ra = B(Ha) ® I,
and Rp = I ® B(Hp), the definition obviously coincides with the usual
notion of entanglement for a pure state (convex combinations and approxi-
mations being irrelevant in that case), and also coincides with the definition
of entanglement (usually called ‘nonseparability’) for a mixed density oper-
ator that is standard in quantum information theory (Werner 1989; Clifton,
Halvorson, & Kent 2000). Further evidence that the definition captures
an essentially nonclassical feature of correlations is given by the fact that
R ap will possess an entangled state in the sense defined above if and only if
both R4 and Rp are nonabelian (Bacciagaluppi 1993, Thm. 7; Summers &
Werner 1995, Lemma 2.1). Returning to AQFT, it is therefore reasonable to
say that a global state of the field p on A” = B(H) is entangled across a pair
of spacelike-separated regions (O4,Op) just in case p|4,,, p’s restriction to
Aap = [A(0O4)UA(OpR)]", falls outside the weak* closure of the convex hull
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of Aap’s product states.

3.2.1 Operations, local operations, and entanglement

Our next task is to review the mathematical representation of operations,
highlight some subtleties in their physical interpretation, and then discuss
what is meant by local operations on a system. We then end this section by
showing that local operations performed in either of two spacelike-separated
regions (O4,0p) cannot create entanglement in a state across the regions.

The most general transformation of the state of a quantum system with
Hilbert space H is described by an operation on B(H), defined to be a
positive, weak® continuous, linear map 7 : B(H) — B(H) satisfying 0 <
T(I) < I (Haag & Kastler 1964; Davies 1976; Kraus 1983; Busch et al.
1995; Werner 1987). (The weak™* topology on a von Neumann algebra R is
defined in complete analogy to the weak™ topology on its state space, viz.,
{Z,} € R weak™ converges to Z € R just in case p(Z,) — p(Z) for all
states p of R.) Any such T induces a map p — p’ from the state space of
B(H) into itself or 0, where, for all Z € B(H),

otherwise.

The number p(T'(I)) is the probability that an ensemble in state p will
respond ‘Yes’ to the question represented by the positive operator T'(I). An
operation 7' is called selective if T'(I) < I, and nonselective if T'(I) = I. The
final state after a selective operation on an ensemble of identically prepared
systems is obtained by ignoring those members of the ensemble that fail
to respond ‘Yes’ to T'(I). Thus a selective operation involves performing a
physical operation on an ensemble followed by a purely conceptual operation
in which one makes a selection of a subensemble based on the outcome of
the physical operation (assigning ‘state’ 0 to the remainder). Nonselective
operations, by contrast, always elicit a ‘Yes’ response from any state, hence
the final state is not obtained by selection but purely as a result of the
physical interaction between object system and the device that effects the
operation. (We shall shortly discuss some actual physical examples to make
this general description of operations concrete.)

An operation T, which quantum information theorists call a superopera-
tor (acting, as it does, on operators to produce operators), “can describe any
combination of unitary operations, interactions with an ancillary quantum
system or with the environment, quantum measurement, classical communi-
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cation, and subsequent quantum operations conditioned on measurement re-
sults” (Bennett et al. 1999). Interestingly, a superoperator itself can always
be represented in terms of operators, as a consequence of the Kraus repre-
sentation theorem (Kraus 1983, 42): for any operation T : B(H) — B(H),
there exists a (not necessarily unique) countable collection of Kraus opera-
tors {K;} C B(H) such that

T()=Y K;()K; with0<> K/K;<I, (3:5)

where both sums, if infinite, are to be understood in terms of weak* con-
vergence. It is not difficult to show that the sum ), K; K must also weak™
converge, hence we can let T* denote the operation conjugate to 1" whose
Kraus operators are { K}. It then follows (using the linearity and cyclicity
of the trace) that if a state p is represented by a density operator D on
H, p” will be represented by the density operator 7%(D). If the mapping
p — pL, or equivalently, D — T*(D), maps pure states to pure states, then
the operation T is called a pure operation, and this corresponds to it being
representable by a single Kraus operator.

More generally, the Kraus representation shows that a general operation
is always equivalent to mixing the results of separating an initial ensemble
into subensembles to which one applies pure (possibly selective) operations,
represented by the individual Kraus operators. To see this, let T' be an
arbitrary operation performed on a state p, where p? # 0, and suppose T is
represented by Kraus operators {/;}. Let p’i denote the result of applying
to p the pure operation given by the mapping T;(-) = K7(-)K;, and (for
convenience) define \; = p(T;(I))/p(T(I)). Then, at least when there are
finitely many Kraus operators, it is easy to see that T itself maps p to the
convex combination p? = > Xip¥i. In the infinite case, this sum converges
not just weak™ but in norm, and it is a useful exercise in the topologies we
have introduced to see why. Letting p. denote the partial sum Yoy NipHi,
we need to establish that

T [sup{|p7(2) - p2(2)|: 2 = 2" € B(H), |1Z]| <1}] =0.  (3.6)

For any Z € B(H), we have

0"(2) = pn(2)] = p(T(I))_1’ Y (K ZK)|. (3.7)

1=n-+1
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However, p(K7(-)K;), being a positive linear functional, has a norm that
may be computed by its action on the identity (KR 1997, Thm. 4.3.2).
Therefore, |p(K?ZK;)| < || Z||p(K] K;), and we obtain

0"(2) = pi(2)] < pT)NZI Y plE;K). (3.8)
i=n+1

However, since ), K} K; weak™ converges, this last summation is the tail
set of a convergent series. Therefore, when ||Z]| < 1, the right-hand side of
(3.8) goes to zero independently of Z.

To get a concrete idea of how operations work physically, and to high-
light two important interpretational pitfalls, let us again consider our toy
universe, with ‘H = Ci ® (C2B and x an entangled state. Recall that Alice
disentangled x by measuring an observable of A with eigenprojections Px.
Her measurement corresponds to applying the nonselective operation T with
Kraus operators K1 = P ® [ and Ko = P_ ® I, resulting in the final state
T*(P,) =T(P;) = D', as given in (3.1). If Alice were to further ‘apply’ the
pure selective operation T’ represented by the single Kraus operator Py ® I,
the final state of her ensemble, as is apparent from (3.2), would be the prod-
uct state D" = P, ® P+. But, as we have emphasized, this corresponds to
a conceptual operation in which Alice just throws away all members of the
original ensemble that yielded measurement outcome —1.

On the other hand, it is essential not to lose sight of the issue that
troubled Einstein. Whatever outcome Alice selects for, she will then be in a
position to assert that certain B observables—those that have either b or
b, as an eigenvector, depending on the outcome she favors—have a sharp
value in the ensemble she is left with. But prior to Alice performing the
first operation T', such an assertion would have contradicted the orthodox
interpretation of the entangled superposition x. If, contra Bohr, one were to
view this change in B’s state as a real physical change brought about by one
of the operations Alice performs, surely the innocuous conceptual operation
T’ could not be the culprit—it must have been T which forced B to ‘choose’
between the alternatives bf. Unfortunately, this clear distinction between
the physical operation T' and conceptual operation 7" is not reflected well
in the formalism of operations. For we could equally well have represented
Alice’s final product state D" = P, ® P+, not as the result of successively
applying the operations T' and 7", but as the outcome of applying the single
composite operation T’ o T, which is just the mapping 7’. And this T’
now needs to be understood, not purely as a conceptual operation, but as
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also involving a physical operation, with possibly real nonlocal effects on B,
depending on one’s view of the EPR paradox.”

There is a second pitfall that concerns interpreting the result of mizing
subensembles, as opposed to singling out a particular subensemble. Consider
an alternative method available to Alice for disentangling a state x. For
concreteness, let us suppose that x is the singlet state 1/v2(aT ®b™ —a~ ®
b"). Alice applies the nonselective operation with Kraus representation

T()= 30 ® N)oa® D) + 5D DT D), (3.9)

where o, is the spin observable with eigenstates a*. Since ¢, ® I maps z

to the triplet state 1/v/2(at ® b~ +a~ ® bT), T* (= T) will map P, to an

equal mixture of the singlet and triplet, which admits the following convex

decomposition into product states
1

D = §Pa+®b* + %Pa_(@b*' (310)
Has Alice truly disentangled A from B? Technically, Yes. Yet all Alice has
done, physically, is to separate the initial A ensemble into two subensembles
in equal proportion, left the second subensemble alone while performing a
(pure, nonselective) unitary operation o, ® I on the first that maps all its
A + B pairs to the triplet state, and then remixed the ensembles. Thus,
notwithstanding the above decomposition of the final density matrix D’,
Alice knows quite well that she is in possession of an ensemble of A systems
each of which is entangled either via the singlet or triplet state with the
corresponding B systems. This will of course be recognized as one aspect
of the problem with the ignorance interpretation of mixtures. We have two
different ways to decompose D'—as an equal mixture of the singlet and
triplet or of two product states—but which is the correct way to understand
how the ensemble is actually constituted? The definition of entanglement is
just not sensitive to the answer.® Nevertheless, we are inclined to think the
destruction of the singlet’s entanglement that Alice achieves by applying the
operation in (3.9) is an artifact of her mixing process, in which she is repre-

"In particular, keep in mind that you are taking the first step on the road to conceding
the incompleteness of quantum theory if you attribute the change in the state of B brought
about by 7" in this case to a mere change in Alice’s knowledge about B’s state.

8Tt is exactly this insensitivity that is at the heart of the recent dispute over whether
NMR quantum computing is correctly understood as implementing genuine quantum com-
puting that cannot be simulated classically (Braunstein et al. 1999; Laflamme 1998).
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sented as simply forgetting about the history of the A systems. And this is
the view we shall take when we consider similar possibilities for destroying
entanglement between field systems in AQFT.

In the two examples considered above, Alice applies operations whose
Kraus operators lie in the subalgebra B(H4) ® I associated with system
A. In the case of a nonselective operation, this is clearly sufficient for her
operation not to have any effect on the expectations of the observables of
system B. However, it is also necessary. The point is quite general.

Let us define a nonselective operation T to be (pace Einstein!) local
to the subsystem represented by a von Neumann subalgebra R C B(H)
just in case p’'|g: = p|rs for all states p. Thus, we require that T leave
the expectations of observables outside of R, as well as those in its center
RNR’, unchanged. Since distinct states of R’ cannot agree on all expectation
values, this means T must act like the identity operation on R’. Now fix an
arbitrary element Y € R’, and suppose T is represented by Kraus operators
{K;}. A straightforward calculation reveals that

S VK[V K]=T(Y?) -T(Y)Y =YT(Y) + YT(I)Y. (3.11)

)

Since T'(I) = I, and T leaves the elements of R’ fixed, the right-hand side of
(3.11) reduces to zero. Thus each of the terms in the sum on the left-hand
side, which are positive operators, must individually be zero. Since Y was
an arbitrary element of R’, it follows that {K;} C (R') = R. So we see that
nonselective operations local to R must be represented by Kraus operators
taken from the subalgebra R.

As for selective operations, we have already seen that they can ‘change’
the global statistics of a state p outside the subalgebra R, particularly when
p is entangled. However, a natural extension of the definition of local op-
eration on R to a cover the case when T is selective is to require that
T(Y) = T()Y for all Y € R'. This implies p? (Y) = p(T(I1)Y)/p(T(I)),
and so guarantees that 7' will leave the statistics of any observable in R’ the
same modulo whatever correlations that observable might have had in the
initial state with the Yes/No question represented by the positive operator
T(I). Further motivation is provided by the fact this definition is equiv-
alent to requiring that T factor across the algebras (R,R’), in the sense
that T(XY) = T(X)Y for all X € R, Y € R’ (Werner 1987, Lemma). If
there exist product states across (R,R’) (an assumption we shall later see
does not usually hold when R is a local algebra in AQFT), this guarantees
that any local selective operation on R, when the global state is an entirely



3.2 AQFT, entanglement, and local operations 33

uncorrelated product state, will leave the statistics of that state on R’ un-
changed. Finally, observe that T(Y) = T(I)Y for all Y € R’ implies that
the right-hand side of (3.11) again reduces to zero. Thus it follows (as be-
fore) that selective local operations on R must also be represented by Kraus
operators taken from the subalgebra R.

Applying these considerations to field theory, any local operation on the
field system within a region O, whether or not the operation is selective, is
represented by a family of Kraus operators taken from 4(O). In particular,
each individual element of A(O) represents a pure operation that can be
performed within O (cf. Haag & Kastler 1964, 850). We now need to argue
that local operations performed by two experimenters in spacelike-separated
regions cannot create entanglement in a state across the regions where it
had none before. This point, well-known by quantum information theorists
working in nonrelativistic quantum theory, in fact applies quite generally to
any two commuting von Neumann algebras R4 and Rp.

Suppose that a state p is not entangled across (R4, Rp), local operations
T4 and T are applied to p, and the result is nonzero (i.e., some members of
the initial ensemble are not discarded). Since the Kraus operators of these
operations commute, it is easy to check that (p?4)78 = (p?B)T4 50 it does
not matter in which order we take the operations. It is sufficient to show
that p’4 will again be unentangled, for then we can just repeat the same
argument to obtain that neither can (p’4)78 be entangled. Next, recall
that a general operation T4 will just produce a mixture over the results of
applying a countable collection of pure operations to p; more precisely, the
result will be the norm, and hence weak*, limit of finite convex combinations
of the results of applying pure operations to p. If the states that result from
p under those pure operations are themselves not entangled, p’4 itself could
not be either, because the set of unentangled states is by definition convex
and weak™ closed. Without loss of generality, then, we may assume that the
local operation T4 is pure and, hence, given by T4(-) = K*(-)K, for some
single Kraus operator K € R 4. As before, we shall denote the resulting
state p74 by pX (= p(K* - K)/p(K*K)).

Next, suppose that w is any product state on R4p with restrictions to
R4 and Rp given by w4 and wp, and such that w # 0. Then, for any
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X eRA Y eERp,

sy = W(Ij(g?)[() (3.12)
N W (3.13)
N m“B(Y):wf(X)wB(Y)- (3.14)

It follows that K maps product states of Rap to product states (or to
zero). Suppose, instead, that w is a convex combination of states on R 4p,
ie.,w=>" Nw;. Then, setting \X = w;(K*K)/w(K*K), it is easy to see
that w® = Yo )\iK wZK , hence K preserves convex combinations of states
on Rap as well. It is also not difficult to see that the mapping w — w is
weak*® continuous at any point where w # 0 (cf. section 3 of chapter 2).

Returning to our original state p, our hypothesis is that it is not entan-
gled. Thus, there is a net of states {w,} on R ap, each of which is a convex
combination of product states, such that w, — p|r,, in the weak* topology.
It follows from the above considerations that wX — pf|z ., where each of
the states {wX} is again a convex combination of product states. Hence, by
definition, p’|z ,, is not entangled either.

In summary, we have shown:

If Rao and Rp are any two commuting von Neumann algebras,
and p is any unentangled state across (R, Rp), then operations
on p, local to either or both of A and B, cannot produce an
entangled state.

3.3 The operational implications of the Reeh-Schlieder
theorem

Again, let R C B(H) be any von Neumann algebra. A vector x € H is called
cyclic for R if the norm closure of the set {Az : A € R} is the whole of H.
In AQFT, the Reeh-Schlieder (RS) theorem connects this formal property of
cyclicity to the physical property of a field state having bounded energy.® A
pure global state x of the field has bounded energy just in case E([0,r])z = x
for some r < oo, where E is the spectral measure for the global Hamiltonian

9 More generally, the connection is between cyclicity and field states that are ‘analytic’
in the energy.
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of the field. In other words, the probability in state x that the field’s energy
is confined to the bounded interval [0, 7] is unity. In particular, the vacuum
Q) is an eigenstate of the Hamiltonian with eigenvalue 0, and hence trivially
has bounded energy. The RS theorem implies that

If © has bounded energy, then x is cyclic for any local algebra

A(O).

Our first order of business is to explain Streater and Wightman’s comment
that the RS theorem entails “it is difficult to isolate a system described by
fields from outside effects” (2000, 139).

A vector x is called separating for a von Neumann algebra R if Az =0
implies A = 0 whenever A € R. It is an elementary result of von Neumann
algebra theory that z is cyclic for R if and only if z is separating for R’
(KR 1997, Cor. 5.5.12). To illustrate with a simple example, take H =
Ha® Hp. If dimH 4 > dimHp, then there is a vector x € H that has
Schmidt decomposition Y, c;a; ® b; where |¢;|*> # 0 for i = 1,...,dim Hp.
If we act on such an x by an operator in the subalgebra I @ B(Hp), of form
I ® B, then (I ® B)x = 0 only if B itself maps all the basis vectors {b;} to
zero, i.e., I ® B = 0. Thus such vectors are separating for I ® B(Hp), and
therefore cyclic for B(H4) ® I. Conversely, it is easy to convince oneself
that B(H4) ® I possesses a cyclic vector—equivalently, I @ B(Hp) has a
separating vector—only if dim’H 4 > dim Hp. So, to take another example,
each of the A and B subalgebras have a cyclic and a separating vector just
in case H4 and Hp have the same dimension (cf. the proof of Clifton et al.
1998, Thm. 4).

Consider, now, a local algebra A(O) with O’ # (), and a field state x with
bounded energy. The RS theorem tells us that z is cyclic for A(O’), and
therefore, separating for A(O’)’. But by microcausality, A(O) C A(O"),
hence x must be separating for the subalgebra A(O) as well. Thus it is an
immediate corollary to the RS theorem that

If x has bounded energy, then x is separating for any local algebra

A(O) with O" # 0.

It is this corollary that prompted Streater and Wightman’s remark. But
what has it got to do with thinking of the field system A(O) as isolated?
For a start, we can now show that the local restriction p.|40) of a state
with bounded energy is always a highly ‘noisy’ mixed state. Recall that a
state w on a von Neumann algebra R is said to be a component of another
state p if there is a third state 7 such that p = Aw+ (1 — A)7 with A € (0,1)
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(van Fraassen 1991, 161). We are going to show that p.|40) has a norm
dense set of components in the state space of A(O).

Once again, the point is quite general. Let R be any von Neumann
algebra, x be separating for R, and let w be an arbitrary state of R. We
must find a sequence {w,} of states of R such that each w,, is a component
of pz|r and ||w, — w|| — 0. Since R has a separating vector, it follows that
every state of R is a vector state (KR 1997, Thm. 7.2.3).!° In particular,
there is a nonzero vector y € H such that w = w,. Since x is separating
for R, x is cyclic for R’, therefore we may choose a sequence of operators
{A,} C R so that A,z — y. Since ||Apz —y|| — 0, |lwa,e — wyl| — 0 (see
page 26). We claim now that each wy,,, is a component of p,|r. Indeed, for
any positive element B*B € R, we have:

(Apz, B*BApz) = (z,A,A,B*Bx) = (Bzx, A, A,Bx) (3.15)

< A3 A(Bx, Br) = | AdP(z, B*Bx). (3.16)
Thus,
wa,z(B*B) = < p(B*B).  (3.17)
‘ [ Anz|? [ An|?
If we now take A = ||A,z||?/||An||* € (0,1), and consider the linear func-

tional 7 on R given by 7 = (1—\)"!(pz|r — Awa, ), then (3.17) implies that
T is a state (in particular, positive), and we see that py|r = Awa, .+ (1—=A\)7
as required.!t

So bounded energy states are, locally, highly mixed. And such states are
far from special—they lie norm dense in the pure state space of B(H). To
see this, recall that it is part of the spectral theorem for the global Hamil-
tonian that E([0,n]) converges strongly to the identity as n — oo. Thus
we may approximate any vector y € H by the sequence of bounded energy
states {E([0,n])y/||E([0,n])y||}5%,. Since there are so many bounded en-
ergy states of the field, that are locally so ‘noisy’, Streater and Wightman’s
comment is entirely warranted. But somewhat more can be said. As we saw

10That this should be so is not as surprising as it sounds. Again, if H = Ha ® Hp, and
dim Ha > dim Hp, then as we have seen, the B subalgebra possesses a separating vector.
But it is also easy to see, in this case, that every state on I @ B(H ) is the reduced density
operator obtained from a pure state on B(H) determined by a vector in H.

" This result also holds more generally for states p of R that are faithful, i.e., p(Z) = 0
entails Z = 0 for any positive Z € R; see the proof of Theorem 2.1 of (Summers & Werner
1988).
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with our toy example in section 3.1, when a local subsystem of a global sys-
tem in a pure state is itself in a mixed state, this is a sign of that subsystem’s
entanglement with its environment. And there is entanglement lurking in
bounded energy states too. But, first, we want to take a closer look at the
operational implications of local cyclicity.

If a vector x is cyclic for R, then for any y € H, there is a sequence
A, € R such that A,x — y. Thus for any € > 0 there is an A € R such
that ||paz — pyl| < e. However, pa, is just the state one gets by applying
the pure operation given by the Kraus operator K = A/||A|| € R to py. It
follows that if « is cyclic for R, one can get arbitrarily close in norm to any
other pure state of B(H) by applying an appropriate pure local operation
in R to p,. In particular, pure operations on the vacuum ) within a local
region O, no matter how small, can prepare essentially any global state of
the field. As Haag emphasizes, to do this the operation must “judiciously
exploit the small but nonvanishing long distance correlations which exist in
the vacuum” (1992, 102). This, as Redhead (1995a) has argued by analogy
to the singlet state, is made possible by the fact that the vacuum is highly
entangled (cf. Clifton et al. 1998).

3.3.1 Physical versus conceptual operations

The first puzzle we need to sort out is that it looks as though entirely physical
operations in O can change the global state, in particular the vacuum 2, to
any desired state!!?

Redhead’s analysis of the cyclicity of the singlet state z = 1/v/2(at ®
b~ —a~ ®bT) for the subalgebra B(C%)®1 is designed to remove this puzzle
(ibid, 128).13 Redhead writes:

... we want to distinguish clearly two senses of the term “opera-
tion”. Firstly there are physical operations such as making mea-
surements, selecting subensembles according to the outcome of
measurements, and mixing ensembles with probabilistic weights,
and secondly there are the mathematical operations of producing
superpositions of states by taking linear combinations of pure

12For example, Segal and Goodman (1965) have called this “bizarre” and “physically
quite surprising”, sentiments echoed recently by Fleming who calls it “amazing!” (2000)
and Fleming and Butterfield who think it is “hard to square with naive, or even educated,
intuitions about localization!” (1999, 161).

13Note that in this simple 2 x 2-dimensional case, Redhead could equally well have
chosen any entangled state, since they are all separating for I ® B((CZB).
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states produced by appropriate selective measurement proce-
dures. These superpositions are of course quite different from
the mixed states whose preparation we have listed as a physical
operation. (1995a, 128-129)

Note that, in stark contrast to our discussion in the previous section, Red-
head counts selecting subensembles and mixing as physical operations; it is
only the operation of superposition that warrants the adjective ‘mathemati-
cal’. When he explains the cyclicity of the singlet state, Redhead first notes
(ibid, 129) that the four basis states

at®b,a ®b,a @b, at®b, (3.18)

are easily obtained by the physical operations of applying projections and
unitary transformations to the singlet state, and exploiting the fact that the
singlet strictly correlates o, with ;. He goes on:

But any state for the joint system is some linear combination
of these four states, so by the mathematical operation of linear
combination, we can see how to generate an arbitrary state in
H1®Hs from physical operations performed on particle one. But
all the operations we have described can be represented in the
algebra of operators on H; (extended to H; ® Hz). (ibid, 129)

Now, while Redhead’s explanation of why it is mathematically possible for
x to be cyclic is perfectly correct, he actually misses the mark when it comes
to the physical interpretation of cyclicity. The point is that superposition
of states is a red-herring. Certainly a superposition of the states in (3.18)
could not be prepared by physical operations confined to the A system.
But, as Redhead himself notes in the final sentence above, one can get the
same effect as superposing those states by acting on z with an operator
of form A ® I in the subalgebra B(C%) ® I—an operator that is itself a
‘superposition’ of other operators in that algebra. What Redhead neglects
to point out is that the action of this operator on x does have a local physical
interpretation: as we have seen, it is a Kraus operator that represents the
outcome of a generalized positive operator-valued measurement on the A
system. The key to the puzzle is, rather, that this positive operator-valued
measurement will generally have to be selective. For one certainly could
never, with nonselective operations on A alone, get as close as one likes to
any state vector in C4 ® C% (otherwise all state vectors would induce the
same state on I ® B(C%)!).
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We conclude that the correct way to view the physical content of cyclicity
is that changes in the global state are partly due to an experimenter’s ability
to perform a generalized measurement on A, and partly due (pace Redhead)
to the purely conceptual operation of selecting a subensemble based on the
outcome of the experimenter’s measurement together with the consequent
‘change’ in the state of B via the EPR correlations between A and B.'

One encounters the same interpretational pitfall concerning the cyclicity
of the vacuum in relation to localized states in AQFT. A global state of the
field is said to be localized in O if its expectations on the algebra A(O’)
agree with vacuum expectation values (Haag 1992, 102). Thus localized
states are ‘excitations’ of the vacuum confined to O. In particular, U) is
a localized state whenever U is a unitary operator taken from A(O) (since
unitary operations are nonselective). But every element of a C*-algebra
is a finite linear combination of unitary operators (KR 1997, Thm. 4.1.7).
Since (2 is cyclic for A(O), this means we must be able to approximate any
global state by linear superpositions of vectors describing states localized in
O—even approximate states that are localized in regions spacelike separated
from O! Haag, rightly cautious, calls this a “(superficial) paradox” (1992,
254; parenthesis his), but he neglects to put his finger on its resolution:
while unitary operations are nonselective, a local operation in A(O) given
by a Kraus operator that is a linear combination of local unitary operators
will generally be selective.'®

The (common) point of the previous two paragraphs is perhaps best
summarized as follows. Both Redhead and Haag would agree that unitary
Kraus operators in A(O) give rise to purely physical operations in the local
region O. But there are many Kraus operators in .4(O) that do not represent
purely physical operations in O insofar as they are selective. Since every
Kraus operator is a linear superposition of unitary operators, it follows that
“superposition of local operations” does not preserve (pure) physicality (so

14 n fairness to Redhead, we would like to add that in his first book (1989, 58) he in-
cludes an exceptionally clear discussion of the difference between nonselective and selective
measurements. In particular, while we have dubbed the latter ‘conceptual’ operations, he
uses the term ‘mental’, without implying anything mystical is involved. As he puts it,
while a nonselective operation can have a physical component—Ilike the physical action of
throwing some subensemble of particles into a box for further examination—it is the deci-
sion to focus on a particular subensemble to the exclusion of the rest that is not dictated
by the physics.

15Haag does make the interesting point that only a proper subset of the state space
of a field can be approximated if we restrict ourselves to local operations that involve a
physically reasonable expenditure of energy. But we do not share the view of Schroer
(1999) that this point by itself reconciles the RS theorem with ‘common sense’.
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to speak). Redhead is right that the key to diffusing the paradox is in
noting that superpositions are involved—but it is essential to understand
these superpositions as occurring locally in .4(O), not in the Hilbert space.

3.3.2 Cyclicity and entanglement

Our next order of business is to supply the rigorous argument behind Red-
head’s intuition about the connection between cyclicity and entanglement.
The point, again, is quite general (cf. chapter 2):

For any two commuting nonabelian von Neumann algebras R
and Rp, and any state vector x cyclic for Ra (or Rp), psz is
entangled across the algebras.

For suppose, in order to extract a contradiction, that p, is mot entangled.
Then as we have seen, operations on p, that are local to R4 cannot turn
that state into an entangled state across (R4, Rp). Yet, by the cyclicity of
x, we know that we can apply pure operations to p,, that are local to R 4 (or
Rp), and approximate in norm (and hence weak* approximate) any other
vector state of Rap. It follows that no vector state of Rap is entangled
across (R4, Rp), and the same goes for all its mixed states (which lie in the
the norm closed convex hull of the vector states). But this means that R sp
would possess no entangled states at all—in flat contradiction with the fact
that neither R4 nor Rp is abelian (see page 27).

Returning to the context of AQFT, if we now consider any two spacelike
separated field systems, A(O4) and A(Op), then the argument we just gave
establishes that the dense set of field states bounded in the energy will all be
entangled across the regions (O4,0p).'® However, by itself this result does
not imply that Alice cannot destroy a bounded energy state x’s entanglement
across (O4,0p) by performing local operations in O4. In fact, Borchers
(1965, Cor. 7) has shown that any state of the field induced by a vector
of form Az, for any nontrivial A € A(O,), never has bounded energy.!”
So it might seem that all Alice needs to do is perform any pure operation

5Note that the fact that .A(O4) and A(Op) are nonabelian is itself a consequence of
the RS theorem. For if, say, A(Oa) were abelian, then since by the RS theorem that
algebra possesses a cyclic vector, it must be a maximal abelian subalgebra of B(H) (KR
1997, Cor. 7.2.16). The same conclusion would have to follow for any subregion OAaCOa
whose closure is a proper subset of O4. And this, by isotony, would lead to the absurd
conclusion that A(Oa) = A(O4), which is readily shown to be inconsistent with the
axioms of AQFT (Horuzhy 1988, Lemma 1.3.10).

'"Nor will the state be ‘analytic’ in the energy (see note 9).
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within O4 and the resulting state, because it is no longer subject to the RS
theorem, need no longer be entangled across (O4,0p).

However, the RS theorem gives only a sufficient, not a necessary, condi-
tion for a state x of the field to be cyclic for A(O4). And notwithstanding
that no pure operation Alice performs can preserve boundedness in the en-
ergy, almost all the pure operations she could perform will preserve the
state’s cyclicity! The reason is, once again, quite general.

Again let R4 and Rp be two commuting nonabelian von Neumann alge-
bras, suppose z is cyclic for R 4, and consider the state induced by the vector
Ax where A € Ra. Now every element in a von Neumann algebra is the
strong limit of invertible elements in the algebra (Dixmier & Marechal 1971,
Prop. 1). Therefore, there is a sequence of invertible operators {fln} CRa
such that A,z — Az, ie., 1Pz, . — pazll — 0. Notice, however, that since

each An is invertible, each vector Anx is again cyclic for R 4, because we
can ‘cycle back’ to z by applying to A,z the inverse operator A Le Ry,
and from there we know, by hypothesis, that we can cycle with elements of
R 4 arbitrarily close to any other vector in H. It follows that, even though
Alice may think she has applied the pure operation given by some Kraus op-
erator A/||A|| to x, she could well have actually applied an invertible Kraus
operation given by one of the operators A, /|4, || in a strong neighborhood
of A/||A|l. And if she actually did this, then she certainly would not disen-
tangle x, because she would not have succeeded in destroying the cyclicity
of the field state for her local algebra.

We could, of course, give Alice the freedom to employ more general
mixing operations in O4. But as we saw in the last section, it is far from
clear whether a mixing operation should count as a successful disentangle-
ment when all the states that are mixed by her operation are themselves
entangled—or at least not known by Alice to be disentangled (given her
practical inability to specify exactly which Kraus operations go into the
pure operations of her mixing process).

Besides this, there is a more fundamental practical limitation facing Al-
ice, even if we allow her any local operation she chooses. If, as we have
seen, we can approximate the result of acting on x with any given operator
A in von Neumann algebra R by acting on z with an invertible operator
that preserves z’s cyclicity, then the set of all such ‘invertible actions’ on x
must itself produce a dense set of vector states, given that {Azx : A € R}
is dense. It follows that if a von Neumann algebra possesses even just one
cyclic vector, it must possess a dense set of them (Dixmier & Marechal 1971,
Lemma 4; cf. Clifton et al. 1998).
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Now consider, again, the general situation of two commuting nonabelian
algebras R4 and Rp, where either algebra possesses a cyclic vector, and
hence a dense set of such. If, in addition, the algebra Rap = (R4 URp)"
possesses a separating vector, then all states of that algebra are vector
states, a norm dense set of which are therefore entangled across (R4, Rp).
And since the entangled states of R 4p are open in the weak™ topology, they
must be open in the (stronger) norm topology too—so we are dealing with
a truly generic set of states. Thus, it follows—quite independently of the
RS theorem—that

Generic Result: If R4 and Rp are commuting nonabelian von
Neumann algebras either of which possesses a cyclic vector, and
R ap possesses a separating vector, then the generic state of Rap
is entangled across (Ra, Rp).

The role that the RS theorem plays is to guarantee that the antecedent
conditions of this Generic Result are satisfied whenever we consider spacelike-
separated regions (and corresponding algebras) satisfying (04 U Og)’ # 0.
This is a very weak requirement, which is satisfied, for example, when we
assume both regions are bounded in spacetime. In that case, in order to be
certain that her local operation in O4 (pure or mixed) produced a disen-
tangled state, Alice would need the extraordinary ability to distinguish the
state of A4p which results from her operation from the generic set of states
of Aap that are entangled!

Finally, while we noted in our introduction the irony that limitations on
disentanglement arise precisely when one considers relativistic quantum the-
ory, the practical limitations we have just identified—as opposed to the in-
trinsic limits on disentanglement which are the subject of the next section—
are not characteristic of AQFT alone. In particular, the existence of locally
cyclic states does not depend on field theory. As we have seen, both the A
and B subalgebras of B(H4) ® B(Hp) possess a cyclic vector just in case
dimH4 = dimHp. Indeed, operator algebraists so often find themselves
dealing with von Neumann algebras that, together with their commutants,
possess a cyclic vector, that such algebras are said by them to be in ‘stan-
dard form’. So we should not think that local cyclicity is somehow peculiar
to the states of local quantum fields.

Neither is it the case that our Generic Result above finds its only ap-
plication in quantum field theory. For example, consider the infinite-by-
infinite state space Ha ® Hp of any two nonrelativistic particles, ignoring
their spin degrees of freedom. Take the tensor product with a third aux-
iliary infinite-dimensional Hilbert space H4 ® Hp ® Hc. Then obviously
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oo = dimHe > dim(H4 ® Hp) = oo, whence the C subalgebra possesses
a cyclic vector, which is therefore separating for the A + B algebra. On
the same dimensional grounds, both the A and B subalgebras possess cyclic
vectors of their own. So our Generic Result applies immediately yielding
the conclusion that a typical state of A + B is entangled.

Nor should we think of local cyclicity or the applicability of our Generic
Result as peculiar to standard local quantum field theory. After noting that
the local cyclicity of the vacuum in AQFT was a “great, counterintuitive,
surprise” when it was first proved, Fleming (2000, 4) proposes, instead, to
build up local algebras associated with bounded open spatial sets within
hyperplanes from raising and lowering operators associated with nonlocal
Newton-Wigner position eigenstates—a proposal that goes back at least
as far as Segal (1964). Fleming then observes, as did Segal (1964, 143),
that the resulting vacuum state is not entangled, nor cyclic for any such
local algebra. Nevertheless, as Segal points out, each Segal-Fleming local
algebra will be isomorphic to the algebra B(H) of all bounded operators
on an infinite-dimensional Hilbert space H, and algebras associated with
spacelike-separated regions in the same hyperplane commute. It follows that
if we take any two spacelike-separated bounded open regions O4 and Op
lying in the same hyperplane, then [A(O4)UA(Opg)]” is naturally isomorphic
to B(Ha) ® B(Hp) (Horuzhy 1988, Lemma 1.3.28), and the result of the
previous paragraph applies. So Fleming’s ‘victory’ over the RS theorem of
standard local quantum field theory rings hollow. Even though the Newton-
Wigner vacuum is not itself entangled or locally cyclic across the regions
(Oa,0p), it is indistinguishable from globally pure states of the Newton-
Wigner field that are!'8

On the other hand, generic entanglement is certainly not to be ex-
pected in every quantum-theoretic context. For example, if we ignore ex-
ternal degrees of freedom, and just consider the spins of two particles with
joint state space Ha ® Hp, where both spaces are nontrivial and finite-
dimensional, then the Generic Result no longer applies. Taking the prod-
uct with a third auxiliary Hilbert space Ho does not work, because in or-
der for the A + B subalgebra to have a separating vector we would need
dim Ho > dim H 4 dim Hp, but for either the A or B subalgebras to possess
a cyclic vector we would also need that either dim H 4 > dim Hp dim Hg or
dim Hg > dim H 4 dim Ho—Dboth of which contradict the fact H4 and Hp

18For further critical discussion of the Segal-Fleming approach to quantum fields, see
chapter 4.
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are nontrivial and finite-dimensional.!®

The point is that while the conditions for generic entanglement may
or may not obtain in any quantum-theoretical context—depending on the
observables and dimensions of the state spaces involved—the beauty of the
RS theorem is that it allows us to deduce that generic entanglement between
bounded open spacetime regions must obtain just by making some very
general and natural assumptions about what should count as a physically
reasonable relativistic quantum field theory.

3.4 Type III von Neumann algebras and intrinsic
entanglement

Though it is not known to follow from the general axioms of AQFT (cf. Kadi-
son 1963), all known concrete models of the axioms are such that the local
algebras associated with bounded open regions in M are type III factors
(Horuzhy 1988, 29, 35; Haag 1992, Sec. V.6). We start by reviewing what
precisely is meant by the designation ‘type III factor’.

A von Neumann algebra R is a factor just in case its center R N R’
consists only of multiples of the identity. It is easy to verify that this is
equivalent to (R UR')” = B(H). Thus, R induces a ‘factorization’ of the
total Hilbert space algebra B(H) into two subalgebras which together gen-
erate that algebra.

To understand what ‘type III’ means, a few further definitions need to
be absorbed. A partial isometry V is an operator on a Hilbert space H
that maps some closed subspace C' C ‘H isometrically onto another closed
subspace C’ C H, and maps C* to zero. (Think of V as a ‘hybrid’ uni-
tary /projection operator.) Given the set of projections in a von Neumann al-
gebra R, we can define the following equivalence relation on this set: P ~ @)
just in case there is a partial isometry V' € R that maps the range of P onto
the range of Q.2° For example, any two infinite-dimensional projections in
B(H) are equivalent (when H is separable), including projections one of
whose range is properly contained in the other (cf. KR 1997, Cor. 6.3.5).
A nongzero projection P € R is called abelian if the von Neumann algebra
PRP acting on the subspace PH (with identity P) is abelian. One can

19T fact, it can be shown that the spins of any pair of particles are not generically
entangled, unless of course we ignore their mixed spin states; see (Clifton & Halvorson
2000) for further discussion.

20Tt is important to notice that this definition of equivalence is relative to the particular
von Neumann algebra R that the projections are considered to be members of.
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show that the abelian projections in a factor R are exactly the atoms in its
projection lattice (KR 1997, Prop. 6.4.2). For example, the atoms of the
projection lattice of B(H) are all its one-dimensional projections, and they
are all (trivially) abelian, whereas it is clear that higher-dimensional projec-
tions are not. Finally, a projection P € R is called infinite (relative to R)
when it is equivalent to another projection @ € R such that @ < P, i.e., Q
projects onto a proper subspace of the range of P. One can also show that
any abelian projection in a von Neumann algebra is finite, i.e., not infinite
(KR 1997, Prop. 6.4.2).

A von Neumann factor R is said to be type I just in case it possesses
an abelian projection. For example, B(H) for any Hilbert space H is type
I; and, indeed, every type I factor is isomorphic to B(H) for some Hilbert
space H (KR 1997, Thm. 6.6.1). On the other hand, a factor is type III
if all its nonzero projections are infinite and equivalent. In particular, this
entails that the algebra itself is not abelian, nor could it even possess an
abelian projection—which would have to be finite. And since a type III
factor contains no abelian projections, its projection lattice has no atoms.
Another fact about type III algebras (acting on a separable Hilbert space) is
that they always possess a vector that is both cyclic and separating (Sakai
1971, Cor. 2.9.28). Therefore we know that type III algebras will always
possess a dense set of cyclic vectors, and that all their states will be vector
states. Notwithstanding this, type III algebras possess no pure states, as a
consequence of the fact that they lack atoms.

To get some feeling for why this is the case—and for the general con-
nection between the failure of the projection lattice of an algebra to possess
atoms and its failure to possess pure states—Ilet R be any non-atomic von
Neumann algebra possessing a separating vector (so all of its states are
vector states), and let p, be any state of R. We shall need two further
definitions. The support projection S, of p, in R is defined to be the meet
of all projections P € R such that p;(P) = 1. (So S; is the smallest pro-
jection in R that p, ‘makes true’.) The left-ideal I, of p, in R is defined
to be the set of all A € R such that p;(A*A) = 0. Now since S, is not an
atom, there is some nonzero P € R such that P < S,. Choose any vector
y in the range of P (noting it follows that S, < P). We shall first show
that 7, is a proper subset of Z,. So let A € Z,. Clearly this is equivalent
to saying that Az = 0, or that x lies in the range of N(A), the projection
onto the null-space of A. N(A) itself lies R (KR 1997, Lemma 5.1.5 and
Prop. 2.5.13), thus, p;(N(A)) = 1, and accordingly S, < N(A). But since
Sy < P < S, we also have py(N(A)) = 1. Thus, y too lies in the range
of N(A), i.e., Ay = 0, and therefore A € Z,. To see that the inclusion
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T, C T, is proper, note that since (y, Syy) = 1, (y, [I — S,]?y) = 0, and thus
I — S, € Z,. However, certainly I — S, ¢ Z,, for the contrary would entail
that (z,Syz) = 1, in other words, S, < Sy, < P < S, which is a contra-
diction. We can now see, finally, that p, is not pure. For, a pure state of
a von Neumann algebra R determines a maximal left-ideal in R (KR 1997,
Thm. 10.2.10), whereas we have just shown (under the assumption that R
is non-atomic) that Z, C Z,,.

The fact that every state of a type III algebra R is mixed throws an
entirely new wrench into the works of the ignorance interpretation of mix-
tures.?’ Not only is there no preferred way to pick out components of a
mixture, but the components of states of R are always mixed states. Thus,
it is impossible to understand the physical preparation of such a mixture in
terms of mixing pure states—the states of R are always irreducibly or what
we shall call intrinsically mixed. Note, however, that while the states of type
III factors fit this description, so do the states of certain abelian von Neu-
mann algebras. For example, the ‘multiplication’ algebra M C B(L2(R))
of all bounded functions of the position operator for a single particle lacks
atomic projections because position has no eigenvectors. Moreover, all the
states of M are vector states, because any state vector that corresponds to
a wavefunction whose support is the whole of R is separating for M. Thus
the previous paragraph’s argument applies equally well to M.

Of course no properly quantum system has an abelian algebra of observ-
ables, and, as we have already noted, systems with abelian algebras are never
entangled with other systems (Bacciagaluppi 1993, Thm. 3). This makes the
failure of a type III factor R to have pure states importantly different from
that failure in the case of an abelian algebra. Because R is nonabelian, and
taking the commutant preserves type (KR 1997, Thm. 9.1.3) so that R’ will
also be nonabelian, one suspects that any pure state of (RUR')” = B(H)—
which must restrict to an intrinsically mixed state on both subalgebras R
and R'—has to be intrinsically entangled across (R, R’). And that intuition
is exactly right. Indeed, one can show that there are not even any product
states across (R, R') (Summers 1990, 213). And, of course, if there are no
unentangled states across (R, R’), then the infamous distinction, some have
argued is important to preserve, between so-called ‘improper’ mixtures that
arise by restricting an entangled state to a subsystem, and ‘proper’ mixtures
that do not, becomes irrelevant.

Even more interesting is the fact that in all known models of AQFT, the

21To our knowledge, van Aken (1985) is the only philosopher of quantum theory to have
noticed this.
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local algebras are ‘type III;’ (cf. Haag 1992, 267). It would take us too far
afield to explain the standard sub-classification of factors presupposed by the
subscript ‘1’. We wish only to draw attention to an equivalent characteriza-
tion of type I1I; algebras established by Connes and Stgrmer (1978, Cor. 6):
A factor R acting standardly on a (separable) Hilbert space is type III; just
in case for any two states p,w of B(H), and any € > 0, there are unitary
operators U € R, U’ € R’ such that ||p —wVY’|| < e. Notice that this result
immediately implies that there are no unentangled states across (R, R’); for,
if some w were not entangled, it would be impossible to act on this state with
local unitary operations in R and R’ and get arbitrarily close to the states
that are entangled across (R, R'). Furthermore—and this is the interesting
fact—the Connes-Stgrmer characterization immediately implies the impos-
sibility of distinguishing in any reasonable way between the different degrees
of entanglement that states might have across (R, R’). For it is a standard
assumption in quantum information theory that all reasonable measures of
entanglement must be invariant under unitary operations on the separate
entangled systems (cf. Vedral, Plenio, Rippin, & Knight 1997), and presum-
ably such a measure should assign close degrees of entanglement to states
that are close to each other in norm. In light of the Connes-Stgrmer charac-
terization, however, imposition of both these requirements forces triviality
on any proposed measure of entanglement across (R, R’).2?

The above considerations have particularly strong physical implications
when we consider local algebras associated with diamond regions in M, i.e.,
regions given by the intersection of the timelike future of a given spacetime
point p with the timelike past of another point in p’s future. When  C M
is a diamond, it can be shown in many models of AQFT, including for
noninteracting fields, that A({’) = A(¢) (Haag 1992, Sec. I11.4.2). Thus
every global state of the field is intrinsically entangled across (A($), A7),
and it is never possible to think of the field system in a diamond region <
as disentangled from its spacelike complement. Though he does not use
the language of entanglement, this is precisely the reason for Haag’s remark
that field systems are always open. In particular, Alice would have no hope
whatsoever of using local operations in ) to disentangle that region’s state

220f course, the standard von Neumann entropy measure we discussed in Section 1
is norm continuous, and, because of the unitary invariance of the trace, this measure is
invariant under unitary operations on the component systems. But in the case of a type
IIT factor R, that measure, as we should expect, is not available. Indeed, the state of a
system described by R cannot be represented by any density operator in R because R
cannot contain compact operators, like density operators, whose spectral projections are
all finite!
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from that of the rest of the world.

Suppose, however, that Alice has only the more limited goal of disen-
tangling a state of the field across some isolated pair of strictly spacelike-
separated regions (O4,Op), i.e., regions which remain spacelike separated
when either is displaced by an arbitrarily small amount. It is also known that
in many models of AQFT the local algebras possess the split property: for
any bounded open O C M, and any larger region O whose interior contains
the closure of O, there is a type I factor A such that A(O) c N' C A(O)
(Buchholz 1974; Werner 1987). This implies that the von Neumann alge-
bra generated by a pair of algebras for strictly spacelike-separated regions
is isomorphic to their tensor product and, as a consequence, that there are
product states across (A(O4), A(Op)) (cf. Summers 1990, 239-240). Since,
therefore, not every state of A 4p is entangled, we might hope that whatever
the global field state is, Alice could at least in principle perform an oper-
ation in O4 on that state that disentangles it across (O4,0p). However,
we are now going use the fact that A4(O4) lacks abelian projections to show
that a norm dense set of entangled states of A4p cannot be disentangled by
any pure local operation performed in A(Oy4).

Let p, be any one of the norm dense set of entangled states of Aap
induced by a vector € H cyclic for A(Op), and let K € A(O4) be an
arbitrary Kraus operator. (Observe that pX # 0 because x is separating for
A(Opg)—which includes A(O4)—and K*K € A(O,) is positive.) Suppose
for reductio ad absurdum that wX is not entangled. Let Ky, with y € H, be
any nonzero vector in the range of K. Then, since x is cyclic for A(Op), we
have, for some sequence {B;} C A(Op), Ky = K(lim B;z) = lim(B;Kx),
which entails ||(wZ)Bi/lIBil — w, || — 0. Since wX is not entangled across
(A(O4), A(Op)), and the local pure operations on A(Opg) given by the
Kraus operators B;/||B;|| cannot create entanglement, we see that wg, is
the norm (hence weak*) limit of a sequence of unentangled states and, as
such, is not itself entangled either. Since y was arbitrary, it follows that
every nonzero vector in the range of K induces an unentangled state across
(A(O4), A(Op)). Obviously, the same conclusion follows for any nonzero
vector in the range of R(K)—the projection onto the range of K—since the
range of the latter lies dense in that of the former.

Next, consider the von Neumann algebra

Cap = [R(K)A(O2)R(K) UR(K)A(Op)R(K)  (3.19)

acting on the Hilbert space R(K)H. Since K € A(O4), R(K) € A(O4) (KR
1997, 309), and thus the subalgebra R(K).A(O4)R(K) cannot be abelian—
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on pain of contradicting the fact that A(O4) has no abelian projections.
And neither is R(K)A(Op)R(K) abelian. For since A(Op) itself is non-
abelian, there are Y1,Ys € A(Op) such that [Y7,Y2] # 0. And because our
regions (O4,0p) are strictly spacelike-separated, they have the Schlieder
property: 0 # A € A(O4),0 # B € A(Op) implies AB # 0 (Summers 1990,
Thm. 6.7). Therefore,

[RIK)Y1R(K), R(K)Y2R(K)] = [Y1, Y] R(K) # 0. (3.20)

So we see that neither algebra occurring in C 4 p is abelian; yet they commute,
and so there must be at least one entangled state across those algebras (see
page 27). But this conflicts with the conclusion of the preceding paragraph!
For the vector states of C4p are precisely those induced by the vectors in the
range of R(K), and we concluded above that these all induce unentangled
states across (A(O4), A(Op)). Therefore, by restriction, they all induce
unentangled states across the algebra C4p. But if none of Cap’s vector
states are entangled, it can possess no entangled states at all.

The above argument still goes through under the weaker assumption
that Alice applies any mixed projective operation, i.e., any operation T
corresponding to a standard von Neumann measurement associated with a
mutually orthogonal set {P;} € A(O4) of projection operators. For suppose,
again for reductio ad absurdum, that pI = >, A\;pl% is not entangled across
the regions. Then, since entanglement cannot be created by a further appli-
cation to pl of the local projective operation given by (say) T1(-) = P1(-) Py,
it follows that (pI)Tt = (pl1°T) = pf' must again be unentangled, and
the above reasoning to a contradiction goes through mutatis mutandis with
K = P;. This is to be contrasted to the nonrelativistic case we considered
in section 3.1, where Alice was able to disentangle an arbitrary state of
B(H4) ® B(Hp) by a nonselective projective operation on A. And a mo-
ment’s reflection will reveal that that was possible precisely because of the
availability of abelian projections in the algebra of her subsystem A.

We have not, of course, shown that the above argument covers arbi-
trary mixing operations Alice might perform in O4; in particular, positive
operator-valued mixings, where the Kraus operators {K;} of a local opera-
tion T in O 4 do not have mutually orthogonal ranges. However, although it
would be interesting to know how far the result could be pushed, we have al-
ready expressed our reservations about whether arbitrary mixing operations
should count as disentangling when none of the pure operations of which
they are composed could possibly produce disentanglement on their own.

In summary:
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There are many regions of spacetime within which no local oper-
ations can be performed that will disentangle that region’s state
from that of its spacelike complement, and within which no pure
or projective operation on any one of a norm dense set of states
can yield disentanglement from the state of any other strictly
spacelike-separated region.

Clearly the advantage of the formalism of AQFT is that it allows us to see
clearly just how much more deeply entrenched entanglement is in relativistic
quantum theory. At the very least, this should serve as a strong note of
caution to those who would quickly assert that quantum nonlocality cannot
peacefully exist with relativity!

3.4.1 Neutralizing the methodological worry

What then becomes of Einsteinian worries about the possibility of doing
science in such a highly entangled world? As we shall now explain, for all
practical purposes the split property of local algebras neutralizes Einstein’s
main methodological worry.23

Let us suppose Alice wants to prepare some state p on A(Oy4) for sub-
sequent testing. By the split property, there is a type I factor N satisfying
A(O4) C N C A(Oy) for any super-region O4 that contains the closure of
O4. Since p is a vector state (when we assume (04) # ), its vector repre-
sentative defines a state on N that extends p and is, therefore, represented
by some density operator D, in the type I algebra N'. Now D, is a convex
combination Y, A\; P; of mutually orthogonal atomic projections in N satis-
fying >, P; = I with >, \; = 1. But each such projection is equivalent, in
the type III algebra .A(O~ A), to the identity operator. Thus, for each i, there
is a partial isometry V; € A(OA) satisfying V;V.* = P, and V;*V; =1

Next, consider the nonselective operation T on A(OA) given by Kraus
operators K; = v/\;V;. We claim that T'(X) = p(X)I for all X € A(O4).
Indeed, because each P, is abelian in NV O A(O4), the operator P, X P; acting
on P;H can only be some multiple, ¢;, of the identity operator P; on P/H,
and taking the trace of both sides of the equation

immediately reveals that ¢; = Tr(FP;X ). Moreover, acting on the left of (3.21)

ZThe following arguments are essentially just an amplification of the reasoning in
Werner (1987) and Summers (1990, Thm. 3.13).
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with V;* and on the right with V;, we obtain V*XV; = Tr(P;X)I, which
yields the desired conclusion when multiplied by A; and summed over 1.

Finally, since T'(X) = p(X)I for all X € A(O,), obviously w’ = p for all
initial states w of A(O4). Thus, once we allow Alice to perform an operation
like T' that is approzimately local to A(O4) (choosing O4 to approximate
04 as close as we like), she has the freedom to prepare any state of A(O4)
that she pleases!

Notice that, ironically, testing the theory is actually easier here than
in nonrelativistic quantum theory. For we were able to exploit above the
type III character of A(O4) to show that Alice can always prepare her
desired state on A(Oy4) nonselectively, i.e., without ever having to sacrifice
any members of her ensemble! Also observe that the result of her preparing
operation T, because it is local to A(O 4), will always produce a product
state across (O4,0p) when Op C (O4)’. That is, for any initial state w
across the regions, and all X € A(O4) and Y € A(Op), we have

W (XY) = w(T(X)Y) = w(p(X)Y) = p(X)w(Y). (3.22)

x So as soon as we allow Alice to perform approximately local operations
on her field system, she can isolate it from entanglement with other strictly
spacelike-separated field systems, while simultaneously preparing its state
as she likes and with relative ease. God is subtle, but not malicious.
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Chapter 4

Reeh-Schlieder defeats
Newton-Wigner: On
alternative localization
schemes in relativistic
quantum field theory

4.1 Introduction

Relativistic quantum theory presents us with a set of peculiar interpre-
tive difficulties over and above the traditional ones of elementary quantum
mechanics. For example, while the notion of a “localized object” has a
transparent mathematical counterpart in elementary quantum mechanics,
it appears that not every aspect of our common-sense notion of localization
can be maintained in the context of relativistic quantum theory (cf. Mala-
ment 1996). Many of the thorny issues involving localization in relativistic
quantum field theory have a common formal root in the so-called “Reeh-
Schlieder theorem.” Thus, it is of particular philosophical interest that I.
E. Segal (1964) and, more recently, G. Fleming (2000) have shown that it
is possible—at least on a purely formal level—to avoid the Reeh-Schlieder
theorem, and thereby its counterintuitive consequences, by means of a judi-
cious reworking of the standard association between observables and regions

53
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of space.!

I am not convinced, however, that Segal and Fleming’s “Newton-Wigner”
localization scheme offers any satisfying resolution for the “problem” of lo-
calization in relativistic quantum field theory. In particular, the Newton-
Wigner localization scheme is itself subject to variants of the Reeh-Schlieder
theorem which are no less counterintuitive than the original version of the
theorem. Furthermore, under the only defensible interpretation of the Newton-
Wigner localization scheme, its empirical predictions come into direct con-
flict with special relativity.

The context of the Reeh-Schlieder theorem is the axiomatic (or alge-
braic) approach to quantum field theory. This approach singles out a family
of postulates that apply quite generally to “physically reasonable” quantum
field models, and these postulates are used as a starting point for further
structural investigations. One might expect, then, that Segal and Fleming
would attempt to undercut the Reeh-Schlieder theorem by questioning one
of the assumptions it makes concerning which models are “physically rea-
sonable.” However, Segal and Fleming do not discuss the Reeh-Schlieder
theorem at this level of generality; rather, their discussion of the Reeh-
Schlieder theorem is restricted to a concrete field model, viz., the free Bose
field.

I begin then in section 4.2 with a brief review of the global structure
of the free Bose field model. In section 4.3, I present the standard recipe
for assigning observables to regions in space, and I explicate the counterin-
tuitive consequences—stemming from the Reeh-Schlieder theorem—of this
standard localization scheme. In section 4.4, I present the Newton-Wigner
localization scheme and show how it “avoids” the counterintuitive conse-
quences of the Reeh-Schlieder theorem. Finally, in sections 4.5 and 4.6, 1
argue that Reeh-Schlieder has the final word against the Newton-Wigner
localization scheme.

4.2 The free Bose field

In this section, I briefly review the mathematical formalism for the quantum
theory of the free Bose field. Although my presentation differs from Flem-
ing’s (2000) in being more abstract and in its emphasis on mathematical
rigor, I take it that all parties agree concerning the global structures of the

!Saunders (1992) provides an extensive discussion of Segal’s approach, although with
different points of emphasis than the current presentation.
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free field model (at least in the absence of measurement interactions). That
is, we agree on our answers to the following four questions:

1. What is the state space?
2. What are the observables (i.e., physical quantities)?

3. When no measurements are being made, how does the system evolve
in time? In other words, what is the (free) Hamiltonian?

4. What is the ground (i.e., vacuum) state?

Disputes arise only at the level of the local structure of the free field model;
e.g., which states are “localized” in this region of space? In this section, I
spell out the answers to questions 1-4. In section 4.3, I take up questions
concerning localization.

Recall that in its heuristic formulation, the free scalar quantum field
is described by an “operator-valued field” ® on Minkowski spacetime that
solves the Klein-Gordon equation

2

%t‘f +m2d = V20, (4.1)
and that satisfies the appropriate (equal-time) canonical commutation rela-
tions. As is well-known, however, there are mathematical difficulties with
understanding ® as an operator-valued function. A more rigorous approach
takes ® as an “operator-valued distribution.” That is, for each smooth,
real-valued test-function f on Minkowski spacetime, ®(f) can be defined as
an operator on some Hilbert space.

For my purposes here, it will be more convenient to turn to another
(mathematically equivalent) representation of the field ®. Let C§°(R3) de-
note the vector space of smooth, compactly supported functions from R3
into R, and let

S = C°(R?) @ C5°(R?). (4.2)

Recall now that a scalar-valued solution ¢ of the Klein-Gordon equation is
uniquely determined by its Cauchy data (i.e., its values, and the values of its
first derivative) at any fixed time. Thus, there is a one-to-one correspondence
between elements of S and (a certain subset of) the space of solutions of the

Klein-Gordon equation. Moreover, the conserved four-vector current ¢ 9, 9
gives rise to a symplectic form ¢ on S:

o(ug @ uy,vgDuy) = / (upvy — u1vp) d3x. (4.3)
R3
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We let D, denote the natural (inertial) symplectic flow on S; i.e., Dy maps
the time-zero Cauchy data of ¢ to the time-t Cauchy data of ¢. The triple
(S, 0, D) contains the essential information specifying the classical theory
of the scalar field of mass m.

A representation of the Weyl form of the canonical commutation rela-
tions (CCRs) is a mapping f — W (f) of S into unitary operators acting on
some Hilbert space K such that W (0) = I and

W ()W (g) = e "TOW(f + g). (4.4)

I will now sketch the construction of the unique (up to unitary equivalence)
“Minkowski vacuum representation” of the CCRs. This construction pro-
ceeds in two steps. In first quantization, we “Hilbertize” the classical phase
space S, and we “unitarize” the classical dynamical group D;. More pre-
cisely, suppose that H is a Hilbert space, and that U, is a weakly continuous
one-parameter group of unitary operators acting on H. Suppose also that
the infinitesimal generator A of U, is a positive operator; i.e., (f, Af) >0
for all f in the domain of A. If there is a one-to-one real-linear mapping K
of S into H such that

1. K(S)+iK(S) is dense in H,
2. 2Im(K f, Kg) = o(f,9),
3. U,K = KD,

then we say that the triple (K, H, U;) is a one-particle structure over (S, o, Dy).
Constructing a one-particle structure over (S, o, D;) is a mathematically rig-
orous version of “choosing the subspace of positive frequency solutions” of
the space of complex solutions to the Klein-Gordon equation.

If there is a one-particle structure over (S, o, D;), then it is unique up
to unitary equivalence (Kay, 1979). That is, suppose that (K,H,U;) and
(L, H,Ut) are one-particle structures over (S, o, D). Then, L o K1 extends
uniquely to a unitary mapping V from H onto H.

g K

H

L V

H

It is also not difficult to see that V' intertwines the unitary groups on the
respective Hilbert spaces, i.e., VU; = U;V. This uniqueness result can be
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interpreted as showing that the choice of time evolution in the classical phase
space suffices to determine uniquely the (first) quantization of the classical
system.

I will construct two (unitarily equivalent) versions of the one-particle
structure over (S, 0, D;). First, we may complete S relative to the unique
Hilbert space norm in which time-evolution (given by D,) is an isometry.
Specifically, let H denote the linear operator (—V?2 + m?)'/2 on Cs°(R3),2
and define a real inner-product p on S by

m(ug ®ur,vo ®v1) = (1/2) ((uo, Hvo) + (us, H_lvl)) (4.5)

= (1/2) (/Rd uo(Hvo)d?’x—i—/Rg ul(H_lvl)d3X(>1..6)

Now let ‘H,, denote the completion of S relative to the inner-product w3
Define an operator .J on H, by setting

J(uo ® uy) = —H 'uy @ Huy, (4.7)

on the dense subset S of H,,. Clearly J? = —1I,1ie., Jis a “complex struc-
ture” on H,. Thus, H, becomes a complex vector space when we define
scalar multiplication by (a + ib)f = af + J(bf), and is a complex Hilbert
space relative to the inner-product

(fs9)un = wulf,9) +in(Jf, g) (4.8)
= pu(f,9)+(i/2)o(f, g). (4.9)

Finally, it can be shown that [J, D;] = 0, so that D; extends uniquely to a
weakly continuous one-parameter group of unitary operators (denoted again
by D;) on the complex Hilbert space H,,. Therefore, (¢, H,, D), with ¢ the
identity mapping, is a one-particle structure over (S, o, Dy).

It may not be immediately obvious—especially to those accustomed to
non-relativistic quantum mechanics—how to tie the physics of localization
to the mathematical structure of the Hilbert space H,. (For example, which

2The mathematically rigorous definition of H is as follows: Define the operator A =
—V? +m? on C§°(R®). Then, A is essentially self-adjoint, and the self-adjoint closure A
of A is a positive operator with spectrum in [m?, co). Using the functional calculus for

unbounded operators, we may define H = 21/2, and it follows that the spectrum of H is
contained in [m, 00).

SIf £%(R®) denotes the completion of C§°(R?) relative to the inner product (-, H*!.),
then H, = LT(R?) @& L™ (R?).
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vectors in H,, are localized in a given spatial region?) The Newton-Wigner
one-particle structure brings us back to familiar territory by using the space
Ly(R?) as the concrete representation of the one-particle space. In particu-
lar, define the mapping K : S — Lo(R3) by

K(upg ®uy) = 27 2(H Y ?ug +iH ™V ?uy). (4.10)

It is then straightforward to check that the complex-linear span of K(S) is
dense in Ly(R?), and that K preserves (modulo a factor of 2) the symplectic
form o. Moreover, it can be shown that K intertwines D; with the one
parameter unitary group U; = e~ on Ly(R?). Therefore, (K, Lo(R?), U;)
is a one-particle structure over (S, o, Dy).

Since (¢, H,, Dt) and (K, Ly(R3),U;) are one-particle structures over
(S,0,Dy), it follows that (K o:~!) = K extends uniquely to a unitary
operator V from H,, onto La(R?):

S—Lt +H,
KN_ |V

Ly(R3)
Thus, the one-particle spaces (H,,, Dt) and (L2(R3), U;) are mathematically,
and hence physically, equivalent. On the other hand, the two spaces certainly
suggest different notions of localization.

4.2.1 Second quantization

Once we have a one-particle space (H, U;) in hand, the movement to a quan-
tum field theory (i.e., “second quantization”) is mathematically straightfor-
ward and uniquely determined.* In particular, let F(H) denote the “Fock
space” over H. That is,

FH)=CoHoH*oH}® -, (4.11)
where H"™ is the n-fold symmetric tensor product of H. As usual we let

0=10000 - (4.12)

4For a more detailed exposition, see Bratteli & Robinson 1996, Section 5.2.
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denote the vacuum vector in F(H). For each f € H, we define the creation
a™(f) and annihilation a(f) operators on F(H) as usual, and we let ®(f)
denote the self-adjoint closure of the unbounded operator

272 (a(f) + a™ (f)). (4.13)

If we let W(f) = exp{i®(f)}, then the W(f) satisfy the Weyl form of the

canonical commutation relations:
W(HW(g) = e MMIDEW(f +g), (4.14)
and vacuum expectation values are given explicitly by

(QW()Q) = exp (= f]7/4) - (4.15)

The dynamical group on F(H) is given by the “second quantization” I'(U;) =
e®dl(H) of the dynamical group U; = e on H, and the vacuum vector
is the unique eigenvector of the Hamiltonian dI'(H) with eigenvalue 0.

4.3 Local algebras and the Reeh-Schlieder theo-
rem

To this point we have only discussed the global structure of the free Bose
field model. The physical observables for the free Bose field are given by
the self-adjoint operators on Fock space F(H). We equip this model with
a local structure when we define a correspondence between regions in space
and “subalgebras” of observables. This labelling may be done for various
purposes, but the traditional motivation was to indicate those observables
that can (in theory) be measured in that region of space.

Now, each real-linear subspace E of the one-particle space H gives rise
naturally to a subalgebra of operators, viz., the algebra generated by the
Weyl operators {W(f) : f € E}. Thus, a localization scheme needs only to
determine which real-linear subspace of H should be taken as corresponding
to a region G in physical space. It is on this point that the Newton- Wigner
localization scheme disagrees with the standard localization scheme. In the
remainder of this section, I discuss the standard localization scheme and its
consequences.

The standard localization scheme assigns to the spatial region G the
subset S(G) C H,, of Cauchy data localized in G. That is, if C*°(G) denotes
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the subspace of C§°(IR?) of functions with support in G, then
S(G) = C™(G) & C™(G), (4.16)

is a real-linear subspace of H,,. (Note that S(G) is not closed nor, as we shall
soon see, complex-linear.) Thus, in the Newton-Wigner representation, the
classical localization scheme assigns G to the real-linear subspace V (S(G))
of Ly(R?). When no confusion can result, I will suppress reference to the
unitary operator V' and simply use S(G) to denote the pertinent subspace
in either concrete version of the one-particle space.

Note that the correspondence G — S(G) is monotone; i.e., if G; C Ga
then S(G1) C S(G3). Moreover, if G; NGy = (), then S(G1) and S(G3) are
“symplectically orthogonal.” That is, if f € S(G1) and g € S(G2), then
Im(f,g) = 0. Indeed, if up ® u1 € S(G1) and vo & v1 € S(G2), then

o(ug ® uy,vg®vy) = /S(uovl —uyvg) d¥x = 0, (4.17)
R
since the u; and v; have disjoint regions of support.

Now, we say that a Weyl operator W (f) acting on F(H) is classically
localized in G just in case f € S(G). (“Classically” here refers simply to the
fact that our notion of localization is derived from the local structure of the
classical phase space S.) Let B(F(H)) denote the algebra of bounded opera-~
tors on F(H). We then define the subalgebra R(G) C B(F(H)) of operators
classically localized in G to be the “von Neumann algebra” generated by the
Weyl operators classically localized in G. That is, R(G) consists of arbi-
trary linear combinations and “weak limits” of Weyl operators classically
localized in G.5

If R C B(F(H)), we let R’ denote all operators in B(F(H)) that com-
mute with every operator in R. If R contains I and is closed under taking
adjoints, then von Neumann’s “double commutant theorem” entails that
(R') is the von Neumann algebra generated by R. Thus, we have

R(G) ={W(f): f e S(@)}". (4.18)

In order also to associate unbounded operators with local regions, we say
that an unbounded operator A is affiliated with the local algebra R(G) just
in case U7LAU = A for any unitary operator U € R(G)'. It then follows

®Since f — W(f) is weakly continuous, R(G) contains W (f) for all f in the closure
of S(G).
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that ®(f) is affiliated with R(G) just in case W(f) € R(G).

The correspondence G — R(G) clearly satisfies isotony. That is, if
G1 C Gy then R(G1) € R(G2). Moreover, the local algebras also satisfy
fixed-time microcausality. That is, if G1NGg = @) then all operators in R(G1)
commute with all operators in R(G2). (This follows directly from Eq. (4.14)
and the fact that S(G1) and S(G2) are symplectically orthogonal.)

4.3.1 Anti-locality and the Reeh-Schlieder theorem

Let R be some subalgebra of B(F(H)). We say that a vector ¢ € F(H)
is cyclic for R just in case [Ry| = F(H), where [Rv] denotes the closed
linear span of {Avy : A € R}. Of course, every vector in F(H), including the
vacuum vector €2, is cyclic for the global algebra B(F(H)) of all bounded
operators on F(H). The Reeh-Schlieder theorem, however, tells us that the
vacuum vector €2 is cyclic for any local algebra R(G).

The first version of the Reeh-Schlieder theorem I will present is a re-
stricted version of the theorem—due to Segal and Goodman—applicable
only to the free Bose field model. The key concept in this version of the
theorem is the notion of an “anti-local” operator.

Definition. An operator A on Ly(R3) is said to be anti-local just in case:
For any f € Lo(R3) and for any open subset G of R3, supp(f) NG =0 and
supp(Af) NG =0 only if f =0.

Thus, in particular, an anti-local operator maps any wavefunction with sup-
port inside a bounded region to a wavefunction with infinite “tails.”

The following lemma may be the most important lemma for understand-
ing the local structure of the free Bose field model:

Lemma (Segal and Goodman 1965). The operator H = (—V? +m?)1/2
is anti-local.

This lemma has the important consequence that for any non-empty open
subset G of R3, the complez-linear span of S(G) is dense in H (cf. Segal
and Goodman 1965, Corollary 1). However, for any real-linear subspace E
of H, € is cyclic for the algebra generated by {W(f) : f € E} if and only if
the complex-linear span of F is dense in H (cf. Petz 1990, Proposition 7.7).
Thus, the anti-locality of H entails that € is cyclic for every local algebra.

Reeh-Schlieder Theorem. Let G be any nonempty open subset of R3.
Then, Q is cyclic for R(G).
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What is the significance of this cyclicity result? Segal (1964, 140) claims
that the theorem is “striking,” since it entails that, “...the entire state vec-
tor space of the field could be obtained from measurements in an arbitrarily
small region of space-time!” He then goes on to claim that the result is,
“quite at variance with the spirit of relativistic causality” (143). Fleming
also sees the cyclicity result as counterintuitive, apparently because it does
not square well with our understanding of relativistic causality. For exam-
ple (cf. Fleming 2000, 499), the Reeh-Schlieder theorem entails that for any
state 1 € F(H), and for any predetermined €, there is an operator A € R(G)
such that ||AQ — 9| < e. In particular, ¢ may be a state that differs from
the vacuum only in some region G’ that is disjoint (and hence spacelike
separated) from G. If, then, A is interpreted as an “operation” that can be
performed in the region G, it follows that operations performed in G can
result in arbitrary changes of the state in the region G’. This, then, is taken
by Fleming to show that, “the local fields allow the possibility of arbitrary
space-like distant effects from arbitrary localized actions” (Fleming 2000,
513).

Fleming’s use of “actions” and “effects” seems to construe a local operation—
represented by an operator A € R(G)—as a purely physical disturbance of
the system; i.e., the operation here is a cause with an effect at spacelike
separation. If this were the only way to think of local operations, then I
would grant that the Reeh-Schlieder theorem is counterintuitive, and in-
deed very contrary to the spirit of relativisitic causality. However, once one
makes the crucial distinction between selective and nonselective local oper-
ations, local cyclicity does not obviously conflict with relativistic causality
(see chapter 3, section 2). Rather than dwell on that here, however, I will
proceed to spell out some of the further “counterintuitive” consequences of
the Reeh-Schlieder theorem.

1. Let G; and Gy be disjoint subsets of R3. Suppose that W(f) is
classically localized in Gy and W(g) is classically localized in G3. Then,
Im(f,g) = 0 and therefore W(f)W(g) = W(f + g). Thus,

QW(HW(9)Q) = exp(—|f+gl*/4) (4.19)
= (QW(H - (LW (g)Q) - e RelH9)/2 - (4.20)

However, S(G1) and S(G2) are not orthogonal relative to the real part of
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the inner product (-,-). Indeed, if f = ug ® u; and g = vy ® vy, then

Re(f,9) = (uo, Hvo) + (u1, H 'vy) (4.21)
- /uO(HUO)d?’er/ uy (H Yoy dx. (4.22)
R3 R3

But since H and H~! are anti-local, the two integrals in (4.22) will not
generally vanish. Therefore, the vacuum state is not a product state across
R(Gl) and R(Gg).

It should be noted, however, that the above argument does not entail
that the vacuum state is “entangled”—since it could still be a mizture of
product states across R(G1) and R(G2). However, it can be shown directly
from the cyclicity of the vacuum vector 2 that the vacuum state is not
even a mixture of product states across R(G1) and R(G2) (see chapter
2). Moreover, the vacuum predicts a maximal violation of Bell’s inequality
relative to the algebras R(G) and R(G'), where G’ = R3\G (Summers
& Werner 1985). (Bell correlation, however, is not entailed by cyclicity;
see Clifton, Halvorson, & Kent 2000.)

2. The cyclicity of the vacuum combined with (equal-time) microcausal-
ity entails that the vacuum vector is separating for any local algebra R(G),
where G’ has non-empty interior. That is, for any operator A € R(G), if
AQ = 0 then A = 0. In particular, for any local event—represented by
projection operator P € R(G)—the probability that event will occur in the
vacuum state is nonzero. Thus, the vacuum is “seething with activity” at
the local level.

Since the vacuum is entangled across R(G) and R(G’), it follows that
the vacuum is a mixed state when restricted to the local algebra R(G). In
fact, when we restrict the vacuum to R(G), it is mazimally mized in the
sense that the vacuum may be written as a mixture with any one of a dense
set of states of R(G) (see chapter 3, page 36). Intuitively speaking, then,
the vacuum state provides minimal information about local states of affairs.
This is quite similar to the singlet state, which restricts to the maximally
mixed state (1/2)] on either one-particle subsystem (cf. Redhead 1995a).

3. For any annihilation operator a(f), we have a(f)Q = 0. Thus,
a(f) cannot be affiliated with the local algebra R(G). Since the family of
operators affiliated with R(G) is closed under taking adjoints, it also follows
that no creation operators are affiliated with R(G).

The concreteness of the model we are dealing with allows a more direct
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understanding of why, mathematically speaking, local algebras do not con-
tain creation and annihilation operators. Inverting the relation in (4.13),
and using the fact that f + a™(f) is linear and f +— a(f) is anti-linear, it
follows that

at(f) = 27V2(@(f) - i®(if)), (4.23)
a(f) = 27V2(@(f) +i®(if)). (4.24)

Thus, an algebra generated by the operators {W(f) : f € E}, will contain
the creation and annihilation operators {a*(f),a(f) : f € E} only if E is
a complex-linear subspace of H. This is not the case for a local algebra
R(G) where E = S(G) is a real-linear subspace of H. In fact, referring to
the concrete one-particle space H,, allows us to see clearly that S(G) is not
invariant under the complex structure J. If ug ® u; € S(G), then

J(up @ uy) = —H71U1 @ Huyg. (4.25)

But since H and H~! are anti-local, it is not the case that Huy € C*°(G) or
—H 'u; € C*®(G). Thus, Jf € S(G) when f € S(G). What is more, since
the complex span of S(G) is dense in H,,, if S(G) were a complex subspace,
then it would follow that R(G) = B(F(H)).

Number operators also annihilate the vacuum. Since the vacuum is sep-
arating for local algebras, no number operator is affiliated with any local
algebra. Thus, an observer in the region G cannot count the number of
particles in G!

How should we understand the inability of local observers to count the
number of particles in their vicinity? According to Redhead (1995b), a
heuristic calculation shows that the local number density operator Ng does
not commute with the density operator Ng: (where G’ is the complement
of G). Thus, he claims that

...1t is usual in axiomatic formulations of quantum field theory
to impose a microcausality condition on physically significant
local observables, viz that the associated operators should com-
mute at space-like separation. The conclusion of this line of
argument is that number densities are not physical observables,
and hence we do not have to bother about trying to interpret
them. (Redhead 1995b, 81)

While Redhead’s conclusion is correct, it is instructive to note that his rea-
soning cannot be reproduced in a mathematically rigorous fashion. That
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is, there are no local number density operators—in particular, neither Ng
nor Ng/ exist—and so it cannot be literally true that Ng and Ng- fail to
cominute.

In order to see this, consider first the (single wavefunction) number oper-
ator Ny = a™(f)a(f), where fis “classically localized” in G, i.e., f € S(G).
Since f +— at(f) is linear, and f +— a(f) is anti-linear, it follows that
Ny = Nguy) for all t € R. That is, a single wavefunction number operator
Ny is invariant under phase tranformations of f. However, classical localiza-
tion of a wavefunction is not invariant under phase transformations. Thus,
it is not possible to formulate a well-defined notion of classical localization
for a single wavefunction number operator.

How, though, do we define a number density operator Ng? Heuristically,
one sets

Ng = /G N (x)d3x, (4.26)

where N (x) = a*(x)a(x). Since, however, N(x) is not a well-defined math-
ematical object, Eq. (4.26) is a purely formal expression. Thus, we replace
N(x) with the single wavefunction number operator N and we set,

Ng=>» Ny, (4.27)
7

where {f;} is a basis of the real-linear subspace S(G) of H.% Using the fact
that Ny = N;y for each f, it follows then that Ng = Ng), where Nq is the
number operator for the closed complex-linear span [S(G)] of S(G) in H;
and the anti-locality of H entails that [S(G)] = H. Therefore, the operator
we defined in Eq. (4.27) turns out to be the total number operator N.

4. The Reeh-Schlieder theorem also has implications for the internal
structure of the local algebra R(G). In particular, the local algebra R(G)
is what is called a “type III” von Neumann algebra (Araki 1964). (The
algebra B(F(H)) of all bounded operators on F(H) is called a type I von
Neumann algebra.) From a physical point of view, this is significant since
type III algebras contain only infinite-dimensional projections—which en-
tails that there are strict limits on our ability to “isolate” a local system
from outside influences (see section 3.4). Type III algebras also have no

5 Actually, this infinite sum is also a formal expression, since it sums unbounded oper-
ators. A technically correct definition would define Ng as an upper bound of quadratic
forms (see Bratteli & Robinson 1996).
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pure (normal) states.

4.4 Newton-Wigner localization

In the previous section, we saw that the standard localization scheme G —
R(G) has a number of “counterintuitive” features, all of which follow from
the Reeh-Schlieder theorem. These counterintuitive features prompted Segal
(1964) and Fleming (2000) to suggest a reworking of the correspondence
between spatial regions and subalgebras of observables. In this section, I
give a mathematically rigorous rendering of the Segal-Fleming proposal, and
I show how it avoids both the Reeh-Schlieder theorem and its consequences.
(Here I deal only with Fleming’s first proposal, prior to his generalization
to “covariant fields.”)

Recall that a localization scheme defines a correspondence between re-
gions in space and real-linear subspaces of the one-particle space H. The
Newton-Wigner localization scheme defines this correspondence in precisely
the way it is done in elementary quantum mechanics: A region G in R? cor-
responds to the subspace Lo(G) C Lo(R?) of wavefunctions with probability
amplitude vanishing (almost everywhere) outside of G. We may then use
the unitary mapping V' between H, and Ly(R?) to identify the subspace
V~1Ly(G) of Newton-Wigner localized wavefunctions in H,. Hereafter, I
will suppress reference to V! and use L2(G) to denote the pertinent sub-
space in either concrete version of the one-particle space.

Note that the correspondence G +— Lao(G) is monotone; i.e., if G; C Go
then Ly(Gh) C Lo(Ga). Moreover, if G; N Go = 0, then La(G1) and La(G2)
are fully orthogonal—a key difference between NW localization and classical
localization.

Now, we say that a Weyl operator W (f) acting on F(H) is NW-localized
in G just in case f € Lo(G). We then define the algebra Ryw (G) of NW-
localized operators on F(H) as the von Neumann algebra generated by the
Weyl operators NW-localized in GG. That is,

Raw(G) ={W(f): f € L2(G)}". (4.28)

Clearly, the correspondence G — Ryw (G) satisfies isotony. Moreover, since
G1 NGy = ) entails that Lo(G1) and Ly(Ge) are orthogonal subspaces of H,
the correspondence G — Ryw (G) satisfies fixed-time microcausality. Thus,
at least in this fixed-time formulation, the NW localization scheme appears
to have all the advantages of the classical localization scheme. I will now
proceed to spell out some features of the NW localization scheme that may
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make it seem more attractive than the standard localization scheme.
If G is an open subset of R? and G/ = R3\G, then

Ly(R?) = Ly(GUG') = Ly(G) @ Lo(G'). (4.29)

Accordingly, if we let Fg = F(L2(G)) and Fgr = F(L2(G')) then it follows
that

FH) = FeoFg. (4.30)

(Here the equality sign is intended to denote that there is a natural iso-
morphism between F(H) and Fg ® Fgr.) Moreover, the vacuum vector
Q € F(H) is the product Qg ® Qg+ of the respective vacuum vectors in Fg
and Fg/. By definition, ®(f) is affiliated with Ryw (G) when f € Lo(QG).
Since L2(G) is a complex-linear subspace of H, it follows that ®(if) is also
affiliated with Ryw (G), and hence that a™(f), a(f), and Ny are all affiliated
with Ryw (G). If we let U denote the unitary operator that maps Fg ® Fg-
naturally onto F(H), then it is not difficult to see that

U tat (f)U = af(f) @ 1, (4.31)

where ag(f) is the creation operator on Fg. Thus, we also have U~ la(f)U =
ac(f) ® I, and since the creation and annihilation operators {ag( f):fe€
Ly(G)} form an irreducible set of operators on Fg, it follows that

Raw(G) = B(Fg)®1, (4.32)
Raw(G") = I®B(Fg). (4.33)

(Again, equality here means there is a natural isomorphism.)

It follows then that acting on Q = Qr®Qg+ with elements from R yw (G)
results only in vectors of the form ¢ ® Qg for some ¢ € Fg. Thus, the
vacuum is not cyclic for the local algebra Ryw (G).

1. It is obvious from the preceding that the vacuum is a product state
across Ryw (G) and its complement Ryw (G’). This also follows directly
from the fact that Lo(G) and Lo(G') are fully orthogonal subspaces of H.
Indeed, let W(f) € Ryw(G) and W(g) € Ryw (G'). Then since || f+g||* =
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I£IIZ + [lgl|?, it follows that

QWAHW(N = (QW(f+9)Q) (4.34)
= exp(—[lf +9g]?/4) (4.35)
= (W)Y - (2, W(9)). (4.36)

2. Restricting the vacuum state Q to R yw (G) is equivalent to restricting
the product state Qg ® Qg to B(Fg) ® I. Thus, the restriction of € to
Raw(G) is pure, and the global vacuum provides a “maximally specific”
description of local states of affairs.

3. If {f;} is an orthonormal basis of L2(G), then the number operator
Ng = Y, Ny, is affiliated with Ryw (G). Moreover, the number operator
Ng- is affiliated with R yw (G'), and by microcausality we have [Ng, Ng/] =
0. We may also see this by employing the correspondence between F(H)
and Fg ® Fgr. The Fock space Fg has its own total number operator
Nf(;. Similarly, Fq+ has its own total number operator NG/. Obviously
then, ]\NfG ® I is affiliated with B(Fg) ® I, and I ® NG/ is affiliated with
I @ B(Fgr). Just as obviously, Ng @ I commutes with I ® Ng-.

4. As can be seen from Eq. (4.32), the local algebra Ryw (G) is a type I
von Neumann algebra. According to Segal (1964, 140), this is precisely the
structure of local algebras that is “suggested by considerations of causality
and empirical accessibility.”

4.5 The full strength of Reeh-Schlieder

The results of the previous two sections speak for themselves: The Newton-
Wigner localization scheme results in a mathematical structure that ap-
pears to be much more in accord with our a priori physical intuitions than
the structure obtained from the standard localization scheme. In this sec-
tion, however, I show that the NW localization scheme “avoids” the Reeh-
Schlieder theorem in only a trivial sense, and I show that the NW localization
scheme has its own counterintuitive features without parallel in the standard
localization scheme.

First, while the NW-local algebras avoid cyclicity of the vacuum vector,
they still have a dense set of cyclic vectors.”

"Cf. Fleming’s claim that, “...it is remarkable that any state can have enough struc-
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Theorem 4.1. Ryw (G) has a dense set of cyclic vectors in F(H).

Proof. Since the Hilbert spaces F¢ and F¢+ have the same (infinite) dimen-
sion, it follows from Theorem 4 of (Clifton et al. 1998) that Ryw(G) =
B(F¢) ® I has a dense set of cyclic vectors in F(H) = Fg @ Fg-. O

Thus, if the worry about the Reeh-Schlieder theorem is about cyclicity
in general, adopting the NW localization scheme does nothing to alleviate
this worry.

Perhaps, however, the worry about the Reeh-Schlieder theorem is specif-
ically a worry about cyclicity of the vacuum state. (One wonders, though,
why this would be worse than cyclicity of any other state.) Even so, I argue
now that the NW localization scheme does not avoid the “vacuum-specific”
consequences of the full Reeh-Schlieder theorem.

Let I be an arbitrary Hilbert space, representing the state space of some
quantum field theory. (For example, K = F(H) in the case of the free Bose
field.) Suppose also that there is a representation a +— U(a) of the space-
time translation group in the group of unitary operators on K. Given such
a representation, there is a “four operator” P on K such that U(a) = P,
We say that the representation a — U(a) satisfies the spectrum condition
just in case the spectrum of P is contained in the forward light cone. From
a physical point of view, the spectrum condition corresponds to the assump-
tion that (a) all physical effects propagate at velocities at most the speed
of light, and (b) energy is positive. Note, consequently, that the spectrum
condition is a purely global condition, and so is not likely to be a source of
dispute between proponents of differing localization schemes.

A net of local observable algebras is an assignment O — A(O) of open
regions in Minkowski spacetime to von Neumann subalgebras of B(KC). (Note
that this definition is not immediately pertinent to the localization schemes
presented in sections 4.3 and 4.4, since they gave an assignment of algebras
to open regions in space at a fixed time.) The full Reeh-Schlieder theorem
will apply to this net if it satisfies the following postulates:

1. Isotony: If O1 C Oy, then A(O1) C A(O3).
2. Translation Covariance: U(a) "t A(O)U(a) = A(O + a).

ture within an arbitrarily small region, O, to enable even the mathematical reconstituting
of essentially the whole state space” (Fleming 2000, 499).
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3. Weak Additivity: For any open O C M, the set

L A0 +a)

acM
of operators is irreducible (i.e., leaves no subspace of K invariant).

In this general setting, a vacuum vector €2 can be taken to be any vector
invariant under all spacetime translations U (a).

Full Reeh-Schlieder Theorem. Suppose that {A(O)} is a net of local
observable algebras satisfying postulates 1-3. Then, for any open region O
in Minkowski spacetime, Q2 is cyclic for A(O).

Note that the Reeh-Schlieder theorem does not require the postulate of
microcausality (i.e., if A € A(O;1) and B € A(O2), where O; and O3 are
spacelike separated, then [A, B] = 0).%

For the standard localization scheme, there is a straightforward con-
nection between the full Reeh-Schlieder theorem and the fixed-time version
given in section 4.3. In particular, there is an alternative method for de-
scribing the standard localization scheme that involves appeal to spacetime
regions rather than space regions at a fixed time (see Horuzhy 1988, Chap-
ter 4). It then follows that R(G) = A(Og), where O¢ is the “domain of
dependence” of the spatial region G. Thus, the fixed-time version of the
Reeh-Schlieder theorem may be thought of as corollary of the full Reeh-
Schlieder theorem in connection with the fact that R(G) = A(O¢).

Segal and Fleming avoid the fully general version of the Reeh-Schlieder
theorem only by remaining silent about how we ought to assign algebras of
observables to open regions of spacetime.? Since, however, the typical quan-
tum field theory cannot be expected to admit a fixed-time (3+1) formulation
(cf. Haag 1992, 59), it is not at all clear that they have truly avoided the
Reeh-Schlieder theorem in any interesting sense. It would certainly be in-
teresting to see which, if any, of the full Reeh-Schlieder theorem’s three
premises would be rejected by a more general NW localization scheme.

However, we need not speculate about the possibility that the full Reeh-
Schlieder theorem will apply to some generalization of NW localization

8To see that microcausality is logically independent from postulates 1-3, take the trivial
localization scheme: A(O) = B(K), for each O.

Tt is essential for the proof of the full Reeh-Schlieder theorem that the region O has
some “temporal extension”: The theorem uses the fact that if A € A(O1) where O1 C O,
then U(a) ' AU(a) € A(O) for sufficiently small a in four independent directions.
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scheme: The Reeh-Schlieder theorem already has “counterintuitive” conse-
quences for the fixed-time NW localization scheme. In particular, although
the vacuum € is not cyclic under operations NW-localized in some spatial
region G at a single time, ) is cyclic under operators NW-localized in G
within an arbitrary short time interval. Before I give the precise version of
this result, I should clarify some matters concerning the relationship between
the dynamics of the field and local algebras.

In the standard localization scheme, the dynamics of local algebras may
be thought of two ways. On the one hand, we may think of the assignment
G — R(G) as telling us, once and for all, which observables are associated
with the region G, in which case the state of R(G) (i.e., the reduced state of
the entire field) changes via the unitary evolution U (¢) (Schrédinger picture).
On the other hand, we may think of the state of the field as fixed, in which
case the algebra R(G) evolves over time to the algebra U(t) 'R(G)U(t)
(Heisenberg picture). Thus, U(t)"'R(G)U(t) gives those operators clas-
sically localized in G at time t. The Schriédinger picture is particularly
intuitive in this case, since it mimics the dynamics of a classical field where
quantities associated with points in space change their values over time.

Now, neither Segal nor Fleming explain how we should think of the
dynamics of the NW-local algebras. Presumably, however, we are to think
of the dynamics of the NW-local algebras in precisely the same way as we
think of the dynamics of the standard local algebras.!® In particular, we
may suppose that the state of the field is, at all times, the vacuum state €2,
and that U(t)"'Ryw (G)U(t) gives those operators NW-localized in G at
time t.

Now for any A C R let

SA ={U@t)TAU(t) : A € Ryw(G), t € A}. (4.37)

That is, Sa consists of those operators NW-localized in G at some time
teA.

Theorem 4.2. For any interval (a,b) around 0, §2 is cyclic for Sq ).

Sketch of proof: Let [S(q)] denote the closed linear span of {AQ : A €

107t is conceivable that Segal or Fleming have some different idea concerning the re-
lationship between NW-local algebras at different times. For example, perhaps even in
the Schrédinger picture, the map G — Ryw (G) should be thought of as time-dependent.
Although this is surely a formal possibility, it is exceedingly difficult to understand what
it might mean, physically, to have a time-dependent association of physical magnitudes
with regions in space.
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S(a)}- Since the infinitesimal generator dI'(H) of the group U (t) is positive,
Kadison’s “little Reeh-Schlieder theorem” (1970) entails that [S, ;)] =
[Sr€Y]. However, [SrQ] = F(H); i.e., Q is cyclic under operators NW-
localized in G over all times (Segal 1964, 143). Therefore, Q is cyclic for
S(at)- 0

In Fleming’s language, then, the NW-local fields “allow the possibility of
arbitrary space-like distant effects” from actions localized in an arbitrarily
small region of space over an arbitrarily short period of time. Is this any
less “counterintuitive” than the instantaneous version of the Reeh-Schlieder
theorem for the standard localization scheme?!!

Finally, we are in a position to see explicitly a “counterintuitive” feature
of the NW localization scheme that is not shared by the standard localization
scheme: NW-local operators fail to commute at spacelike separation. For
this, choose mutually disjoint regions G; and Gy in R?, and choose an inter-
val (a,b) around 0 so that Oy 1= U¢(q,)(G1 +1) and Oz := Use () (G2 +1)
are spacelike separated. Let Anw (O;) be the von Neumann algebra gener-
ated by

U U@ "Raw (GU(®). (4.38)
te(a,b)

Then it follows from Theorem 2 that the vacuum is cyclic for A (O2).
However, since Anw (0O1) 2 Ryw(G) contains annihilation operators and
number operators, it follows that Anw (01) and Ayw (O2) do not satisfy
microcausality. (Microcausality, in conjunction with cyclicity of the vacuum
vector, would entail that the vacuum vector is separating.) More specifi-
cally, while the algebras U (t)"'Raw (G1)U(t) and U(t)""Ryw (G2)U(t) do
satisfy microcausality for any fixed ¢, microcausality does not generally hold
for the algebras U (t) 'Ryw (G1)U(t) and U(s) ' Ryw (G2)U(s) when t # s
(despite the fact that G1 4+t and G2 + s are spacelike separated).

It would be naive at this stage to claim that failure of generalized micro-
causality provides a simple reductio on the NW localization scheme. As I will
argue in the next section, however, the failure of generalized microcausality
for the NW-local algebras leaves little room for making any physical sense
of the NW localization scheme.

1One may, however, reject the interpretation of elements of Ryw (G) as operations
that can be performed in G. I return to this point in the next section.
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4.6 Local properties and local measurements

Mathematically speaking, there is no limit to the number of ways we could
associate operators with subsets of a spacetime manifold. But when does
such an association have physical significance, or a natural physical inter-
pretation? In other words, when does a mathematical relation, such as
A € R(G), correspond to some physical relation of “localization” between
the corresponding observable and region of space?” The standard localiza-
tion scheme was originally introduced with the explicit intention that the
mathematical relation A € R(G) should denote that the observable repre-
sented by A is measurable in the region of space denoted by G. On the
other hand, advocates of the NW localization scheme have not been uni-
formly clear concerning its intended physical significance. In this section, I
will argue that advocates of the NW localization scheme are impaled on the
horns of a dilemma: Either A € Ryw (G) entails that A is measurable in G,
in which case the NW localization scheme predicts act-outcome correlations
at spacelike separation, or the NW localization scheme is a formal recipe
without physical significance.

Note first that if A € Ryw (G) entails that A is measurable in G, then
the NW localization scheme is empirically inequivalent to the standard local-
ization scheme. [For example, the vacuum displays Bell correlations relative
to the algebras R(G) and R(G'), while the vacuum is a product state across
Ryw (G) and Ryw (G').] Segal is clear that he is willing to accept this con-
sequence, and indeed, he believes the NW localization scheme gives a more
accurate account of what is locally measurable. He says,

From an operational viewpoint it is these variables [i.e., ®(f)
with f € La(G)] ...that appear as the localized field variables,
and the ring Ryw (G). .. appears as the appropriate ring of local
field observables, rather than the ring R(G).... (Segal 1964,
142; notation adapted)

However, if A and B are two observables that do not commute, then a stan-
dard von Neumann measurement of A can alter the statistics for measure-
ment outcomes of B. As a result, the failure of generalized microcausality
(i.e., commutation at spacelike separation) for NW local algebras entails the
possibility of act-outcome correlations at spacelike separation.'? Thus, when

12 Although T lack direct historical evidence, it appears that Segal eventually abandoned
the NW localization scheme due to the conflict with relativistic causality (cf. Baez, Segal,
& Zhou 1992, 173).
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equipped with the local measurability interpretation, the NW localization
scheme appears to be inconsistent with special relativity.

Although Fleming argues for the “physical significance” of the NW lo-
calization scheme, he does not put it forward as a replacement for, or com-
petitor to, the standard localization scheme:

How shall we choose between these perspectives? We need not
choose and we should not. Rather, wisdom lies in exploring the
implications and the subtler details of the interpretation of both
perspectives. (Fleming 2000, 513)

Since the two localization schemes are empirically inequivalent, when both
are interpreted in terms of local measurability, Fleming must eschew the
claim that elements of NW local algebras are locally measurable. Indeed,
Fleming notes elsewhere that

...one naturally assumes that one can interpret the association
of an operator with a spacetime region as implying that one can
measure it by performing operations confined to that region,

but he goes on to “question [this] interpretive assumption” (Fleming & But-
terfield 1999, 158-159). How then does Fleming interpret the association of
an observable with a region in space? That is, what does he mean by saying
that an observable is localized in a region of space?

In his explanation of NW-localization, Fleming refers to the NW position
operator (which, in the case of the free Bose field, is identical to the center
of energy position operator). He argues that,

...HD [hyperplane dependent| position operators, such as the
general CE [center of energy] and the general NW position oper-
ators, are more closely related than the local field coordinate to
assessments of where, on hyperplanes and in space-time, objects,
systems, their localizable properties and phenomena are located.
(Fleming 2000, 514)

However, the NW position operator is not contained in any NW local alge-
bra, and there is no natural correspondence between the spectral projections
of the NW position operator and the NW local algebras.'® Thus, even if we
were to concede that the NW position operator has “unequivocal physical

13Suppose that G1 and G2 are disjoint. Then, no pair of non-trivial projections from
Rayw (G1) and Ryw (G2) is orthogonal (cf. Egs. (4.32) and (4.33)).
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significance,” this would not appear to clarify the physical significance of
NW local algebras.

Perhaps, however, the physical significance of the NW local algebras
can be derived from their relationship to the relevant number operators. In
particular, the NW number operator Ng is affiliated with Ryw (G); and,
as a result, the projection P onto the complement of the nullspace of Ng is
contained in Ryw (G). Now, according to the advocate of NW localization,
P represents that property possessed by the system iff. there are particles
in G. Thus, it would seem reasonable to say that P represents a property
that is localized in G, and, by extension, that any projection operator in
Raw (G) represents a property that is localized in G.

Despite the shift in emphasis to “properties,” this interpretation of the
NW localization scheme does not differ from the interpretation of the stan-
dard localization scheme. Indeed, the standard localization scheme also
says that elements of R(G) correspond to properties that are localized in G.
The only difference between the two cases is that the standard localization
scheme defines the relation “is localized in” in terms of the (more funda-
mental) relation “is measurable in,” whereas Fleming appears to take the
localization relation to be primitive.

However, if localization is a primitive relation, it is not obvious why we
should think it coincides with the assignments made by the NW localization
scheme. In particular, let 3 be some spacelike hypersurface in Minkowski
spacetime, and let h be a symmetry of .. Let U(h) denote the unitary trans-
formation of F(H) induced by h, and let Ryw (G) = U(h) " '"Ryw (G)U(h).
Then Ryw(G) and Ryw(G) are identical in their formal properties, and
thus have, prima facie, an equal claim as descriptions of which properties
are localized in G. Thus, it is incumbent upon Fleming to describe some
relevant difference between the two algebras.

To clarify this point further, consider the analogous situation of a spa-
tially extended, classical system (cf. Fleming 2000, 507). Let C' denote the
center of energy of the system. Then, in each state of the system (i.e., at
each time) C' may be identified with some point z in the hypersurface ¥. For
each x € X, let P(z) =1 if C =z, and let P(x) = 0 otherwise. Then, P(x)
represents that property possessed by the system iff. the center of energy
is . Thus, we might wish to infer that P(x) represents a property that is
localized at x. Suppose, however, that we are given some symmetry h of
¥. Let P(z) = 1if C = h™'(z), and let P(x) = 0 otherwise. Then, P(z)
represents that property possessed by the system iff. the quantity C' = h(C)
takes the value x. Applying the same reasoning we used to conclude that
P(x) is localized at z, it follows that P(x) = P(h~!(z)) is localized at .
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Since h~!(x) could be any point of ¥, the argument for the claim that P(z)
is localized at x is clearly invalid.

In fact, it is only in cases where we have locally measurable quantities
that we can resolve the arbitrariness introduced by the possibility of shifting
quantities from point to point (or from region to region). For example, let X
denote the position observable of a classical point particle. Let P(z) denote
that property possessed by the system iff. X = z, and let P(z) denote
that property possessed by the system iff. X = h=Y(z). Then P(z), but
not P(x), is measurable at x. Thus, there is a significant difference between
these two ways of associating quantities with points. On the other hand,
in the center of energy example, neither P(z) nor P(z) is measurable at .
Thus, there are no relevant grounds for favoring one of the two associations
between quantities and points.

To sum up: In the absence of some other criterion for distinguishing NW
local algebras, we must conclude that either the NW localization scheme is
arbitrary, or A € Ryw (G) entails that A is measurable in G. However, if
A € Ryw(G) entails that A is measurable in G, then the NW localization
scheme predicts the possibility of act-outcome correlations at spacelike sepa-
ration. Therefore, the NW localization scheme is either incurably arbitrary,
or is inconsistent with special relativity.

4.7 Conclusion

Introduction of the NW localization scheme into quantum field theory was
an ingenious move. By means of one deft transformation, it appears to
thwart the Reeh-Schlieder theorem and to restore the “intuitive” picture
of localization from non-relativistic quantum mechanics. However, there
are many reasons to doubt that Newton-Wigner has truly spared us of the
counterintuitive consequences of the Reeh-Schlieder theorem. First, NW-
local algebras still have a dense set of cyclic vectors. Second, since general
quantum field theories cannot be expected to admit a fixed-time formulation,
it is not clear that the NW localization scheme has any interesting level of
generality. Third, NW-local operations on the vacuum over an arbitrarily
short period of time do generate the state space of the entire field. And,
finally, the failure of generalized microcausality for the NW local algebras
entails the possibility of act-outcome correlations at spacelike separation.
After showing that the Reeh-Schlieder theorem fails for NW-local al-
gebras, Fleming (2000, 505) states that, “Now it is clear why it would be
worthwhile to see the NW fields as covariant structures.” While there may
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be very good reasons for seeing the NW fields as covariant structures, avoid-
ing the Reeh-Schlieder theorem is not one of them.



Chapter 5

No place for particles in
relativistic quantum
theories?

5.1 Introduction

It is a widespread belief, at least within the physics community, that there
is no particle mechanics that is simultaneously relativistic and quantum-
theoretic; and, thus, that the only relativistic quantum theory is a field the-
ory. This belief has received much support in recent years in the form of rig-
orous “no-go theorems” by Malament (1996) and Hegerfeldt (1998a, 1998b).
In particular, Hegerfeldt shows that in a generic quantum theory (relativistic
or non-relativistic), if there are states with localized particles, and if there
is a lower bound on the system’s energy, then superluminal spreading of the
wavefunction must occur. Similarly, Malament shows the inconsistency of
a few intuitive desiderata for a relativistic, quantum-mechanical theory of
(localizable) particles. Thus, it appears that there is a fundamental con-
flict between the demands of relativistic causality and the requirements of
a theory of localizable particles.

What is the philosophical lesson of this apparent conflict between rela-
tivistic causality and localizability? Omne the one hand, if we believe that
the assumptions of Malament’s theorem must hold for any theory that is
descriptive of our world, then it follows that our world cannot be correctly
described by a particle theory. On the other hand, if we believe that our
world can be correctly described by a particle theory, then one (or more)
of Malament’s assumptions must be false. Malament clearly endorses the
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first response; that is, he argues that his theorem entails that there is no
relativistic quantum mechanics of localizable particles (insofar as any rela-
tivistic theory precludes act-outcome correlations at spacelike separation).
Others, however, have argued that the assumptions of Malament’s theorem
need not hold for any relativistic, quantum-mechanical theory (cf. Fleming
& Butterfield 1999), or that we cannot judge the truth of the assumptions
until we resolve the interpretive issues of elementary quantum mechanics
(cf. Barrett 2001).

Although we do not think that these arguments against Malament’s as-
sumptions succeed, there are other reasons to doubt that Malament’s the-
orem is sufficient to support a sound argument against the possibility of a
relativistic quantum mechanics of localizable particles. First, Malament’s
theorem depends on a specific assumption about the structure of Minkowski
spacetime—a “no preferred reference frame” assumption—that could be seen
as having less than full empirical warrant. Second, Malament’s theorem es-
tablishes only that there is no relativistic quantum mechanics in which par-
ticles can be completely localized in spatial regions with sharp boundaries;
it leaves open the possibility that there might be a relativistic quantum me-
chanics of “unsharply” localized particles. In this paper, we present two new
no-go theorems which, together, suffice to close these loopholes in the argu-
ment against relativistic quantum mechanics. First, we present a new no-go
theorem that generalizes some of the aspects of Malament’s and Hegerfeldt’s
theorems, and which does not depend on the “no preferred frame” assump-
tion (Theorem 5.1). Second, we derive a generalized version of Malament’s
theorem that shows that there is no relativistic quantum mechanics of “un-
sharply” localized particles (Theorem 5.2).

However, it would be a mistake to think that these result show—or,
are intended to show—that a field ontology, rather than a particle ontol-
ogy, is appropriate for relativistic quantum theories. While these results
show that there are no position observables that satisfy certain relativistic
constraints, quantum field theories—both relativistic and non-relativistic—
already reject the notion of position observables in favor of “localized” field
observables. Thus, no-go results against relativistic position operators have
nothing to say about the possibility that relativistic quantum field theory
might permit a “particle interpretation,” in which localized particles are
supervenient on the underlying localized field observables. To exclude this
latter possibility, we formulate (in section 5.6) a necessary condition for a
generic quantum theory to permit a particle interpretation, and we then
show that this condition fails in any relativistic theory (Theorem 5.3).

Since our world is presumably both relativistic and quantum-theoretic,
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these results show that there are no localizable particles. However, in sec-
tion 5.7 we shall argue that relativistic quantum field theory itself warrants
an approximate use of “particle talk” that is sufficient to save the phenom-
ena.

5.2 Malament’s theorem

Malament’s theorem shows the inconsistency of a few intuitive desiderata
for a relativistic quantum mechanics of (localizable) particles. It strength-
ens previous results (e.g., Schlieder 1971) by showing that the assumption
of “no superluminal wavepacket spreading” can be replaced by the weaker
assumption of “microcausality,” and by making it clear that Lorentz invari-
ance is not needed to derive a conflict between relativistic causality and
localizability.

In order to present Malament’s result, we assume that our background
spacetime M is an affine space, with a foliation S into spatial hyperplanes.
(For ease, we can think of an affine space as a vector space, so long as we do
not assign any physical significance to the origin.) This will permit us to con-
sider a wide range of relativistic (e.g., Minkowski) as well as non-relativistic
(e.g., Galilean) spacetimes. The pure states of our quantum-mechanical sys-
tem are given by rays in some Hilbert space H. We assume that there is a
mapping A — Ea of bounded subsets of hyperplanes in M into projections
on H. We think of EA as representing the proposition that the particle is
localized in A; or, from a more operational point of view, EaA represents
the proposition that a position measurement is certain to find the particle
within A. We also assume that there is a strongly continuous representation
a — U(a) of the translation group of M in the unitary operators on H. Here
strong continuity means that for any unit vector ¢ € H, (¢, U(a)y) — 1 as
a — 0; and it is equivalent (via Stone’s theorem) to the assumption that
there are energy and momentum observables for the particle. If all of the
preceding conditions hold, we say that the triple (H, A — Ea,a+— U(a)) is
a localization system over M.

The following conditions should hold for any localization system—either
relativistic or non-relativistic—that describes a single particle.

Localizability: If A and A’ are disjoint subsets of a single hyperplane, then
EAFEA =0.

Translation covariance: For any A and for any translation a of M,
U(a)EaU(a)* = Fata.
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Energy bounded below: For any timelike translation a of M, the generator
H(a) of the one-parameter group {U(ta) : t € R} has a spectrum
bounded from below.

We recall briefly the motivation for each of these conditions. “Localizabil-
ity” says that the particle cannot be detected in two disjoint spatial sets at a
given time. “Translation covariance” gives us a connection between the sym-
metries of the spacetime M and the symmetries of the quantum-mechanical
system. In particular, if we displace the particle by a spatial translation
a, then the original wavefunction ¢ will transform to some wavefunction
1a. Since the statistics for the displaced detection experiment should be
identical to the original statistics, we have (¢, EA®) = (¥a, EAtata). By
Wigner’s theorem, however, the symmetry is implemented by some unitary
operator U(a). Thus, U(a)i = ¥a, and U(a)EAU(a)* = Eata. In the case
of time translations, the covariance condition entails that the particle has
unitary dynamics. (This might seem to beg the question against a collapse
interpretation of quantum mechanics; we dispell this worry at the end of
this section.) Finally, the “energy bounded below” condition asserts that,
relative to any free-falling observer, the particle has a lowest possible energy
state. If it were to fail, we could extract an arbitrarily large amount of
energy from the particle as it drops down through lower and lower states of
energy.

We now turn to the “specifically relativistic” assumptions needed for
Malament’s theorem. The special theory of relativity entails that there is a
finite upper bound on the speed at which (detectable) physical disturbances
can propagate through space. Thus, if A and A’ are distant regions of space,
then there is a positive lower bound on the amount of time it should take for
a particle localized in A to travel to A’. We can formulate this requirement
precisely by saying that for any timelike translation a, there is an ¢ > 0 such
that, for every state v, if (¢, Ea®) = 1 then (¢, Earyat) = 0 whenever
0 <t < e. This is equivalent to the following assumption.

Strong causality: If A and A’ are disjoint subsets of a single hyperplane,
and if the distance between A and A’ is nonzero, then for any timelike
translation a, there is an € > 0 such that EaEaA/yia = 0 whenever
0<t<e

(Note that strong causality entails localizability.) Although strong causal-
ity is a reasonable condition for relativistic theories, Malament’s theorem
requires only the following weaker assumption (which he himself calls “lo-
cality”).
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Microcausality: If A and A’ are disjoint subsets of a single hyperplane, and
if the distance between A and A’ is nonzero, then for any timelike
translation a, there is an € > 0 such that [Fa, Earita] = 0 whenever
0<t<e.

If EA can be measured within A, microcausality is equivalent to the as-
sumption that a measurement within A cannot influence the statistics of
measurements performed in regions that are spacelike to A (see Malament
1996, 5). Conversely, a failure of microcausality would entail the possibility
of act-outcome correlations at spacelike separation. Note that both strong
and weak causality make sense for non-relativistic spacetimes (as well as
for relativistic spacetimes); though, of course, we should not expect either
causality condition to hold in the non-relativistic case.

Theorem (Malament). Let (H,A — Ea,a — U(a)) be a localization
system over Minkowski spacetime that satisfies:

1. Localizability
2. Translation covariance
3. Energy bounded below
4. Microcausality

Then Eax =0 for all A.

Thus, in every state, there is no chance that the particle will be detected
in any local region of space. As Malament claims, this serves as a reductio
ad absurdum of any relativistic quantum mechanics of a single (localizable)
particle.

5.2.1 Malament’s critics

Several authors have claimed that Malament’s theorem is not sufficient to
rule out a relativistic quantum mechanics of localizable particles. In partic-
ular, these authors argue that it is not reasonable to expect the conditions of
Malament’s theorem to hold for any relativistic, quantum-mechanical theory
of particles. For example, Dickson (1997) argues that a ‘quantum’ theory
does not need a position operator (equivalently, a system of localizing pro-
jections) in order to treat position as a physical quantity; Barrett (2001)
argues that time-translation covariance is suspect; and Fleming and Butter-
field (1999) argue that the microcausality assumption is not warranted by
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special relativity. We now show, however, that none of these arguments is
decisive against the assumptions of Malament’s theorem.

Dickson (1997, 214) cites the Bohmian interpretation of the Dirac equa-
tion as a counterexample to the claim that any ‘quantum’ theory must rep-
resent position by an operator. In order to see what Dickson might mean
by this, recall that the Dirac equation admits both positive and negative
energy solutions. If H denotes the Hilbert space of all (both positive and
negative energy) solutions, then we may define the ‘standard position op-
erator’ @ by setting Qi (x) = x - 1(x) (Thaller 1992, 7). If, however, we
restrict to the Hilbert space Hpos C H of positive energy solutions, then the
probability density given by the Dirac wavefunction does not correspond to
a self-adjoint position operator (Thaller 1992, 32). According to Holland
(1993, 502), this lack of a position operator on Hpes precludes a Bohmian
interpretation of ¢ (x) as a probability amplitude for finding the particle in
an elementary volume d3x around x.

Since the Bohmian interpretation of the Dirac equation uses all states
(both positive and negative energy), and the corresponding position observ-
able @, it is not clear what Dickson means by saying that the Bohmian
interpretation of the Dirac equation dispenses with a position observable.
Moreover, since the energy is not bounded below in H, this would not in any
case give us a counterexample to Malament’s theorem. However, Dickson
could have developed his argument by appealing to the positive energy sub-
space Hpos. In this case, we can talk about positions despite the fact that
we do not have a position observable in the usual sense. In particular, we
shall show in section 5.5 that, for talk about positions, it suffices to have a
family of “unsharp” localization observables. (And, yet, we shall show that
relativistic quantum theories do not permit even this attenuated notion of
localization.)

Barrett (2001) argues that the significance of Malament’s theorem cannot
be assessed until we have solved the measurement problem:

If we might have to violate the apparently weak and obvious
assumptions that go into proving Malament’s theorem in order
to get a satisfactory solution to the measurement problem, then
all bets are off concerning the applicability of the theorem to the
detectible entities that inhabit our world. (Barrett 2001, 16)

In particular, a solution to the measurement problem may require that we
abandon unitary dynamics. But if we abandon unitary dynamics, then the
translation covariance condition does not hold, and we need not accept the
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conclusion that there is no relativistic quantum mechanics of (localizable)
particles.

Unfortunately, it is not clear that we could avoid the upshot of Mala-
ment’s theorem by moving to a collapse theory. Existing (non-relativistic)
collapse theories take the empirical predictions of quantum theory seriously.
That is, the “statistical algorithm” of quantum mechanics is assumed to be
at least approximately correct; and collapse is introduced only to ensure that
we obtain determinate properties at the end of a measurement. However, in
the present case, Malament’s theorem shows that the statistical algorithm
of any quantum theory predicts that if there are local particle detections,
then act-outcome correlations are possible at spacelike separation. Thus, if
a collapse theory is to stay close to these predictions, it too would face a
conflict between localizability and relativistic causality.

Perhaps, then, Barrett is suggesting that the price of accomodating lo-
calizable particles might be a complete abandonment of unitary dynamics,
even at the level of a single particle. In other words, we may be forced to
adopt a collapse theory without having any underlying (unitary) quantum
theory. But even if this is correct, it wouldn’t count against Malament’s
theorem, which was intended to show that there is no relativistic quan-
tum theory of localizable particles. Furthermore, noting that Malament’s
theorem requires unitary dynamics is one thing; it would be quite another
thing to provide a model in which there are localizable particles—at the
price of non-unitary dynamics—but which is also capable of reproducing
the well-confirmed quantum interference effects at the micro-level. Until we
have such a model, pinning our hopes for localizable particles on a failure
of unitary dynamics is little more than wishful thinking.

Like Barrett, Fleming (Fleming & Butterfield 1999, 158ff) disagrees with
the reasonableness of Malament’s assumptions. Unlike Barrett, however,
Fleming provides a concrete model in which there are localizable particles
(viz., using the Newton-Wigner position operator as a localizing observ-
able) and in which Malament’s microcausality assumption fails. Nonethe-
less, Fleming argues that this failure of microcausality is perfectly consistent
with relativistic causality.

According to Fleming, the property “localized in A” (represented by
EA) need not be detectable within A. As a result, [Fa, Fas] # 0 does not
entail that it is possible to send a signal from A to A’. However, by claiming
that local beables need not be local observables, Fleming undercuts the pri-
mary utility of the notion of localization, which is to indicate those physical
quantities that are operationally accessible in a given region of spacetime.
Indeed, it is not clear what motivation there could be—aside from indicating
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what is locally measurable—for assigning observables to spatial regions. If
EA is not measurable in A, then why should we say that “Ea is localized
in A”? Why not say instead that “Fa is localized in A”” (where A" # A)?
Does either statement have any empirical consequences and, if so, how do
their empirical consequences differ? Until these questions are answered, we
maintain that local beables are always local observables; and a failure of
microcausality would entail the possibility of act-outcome correlations at
spacelike separation. Therefore, the microcausality assumption is an essen-
tial feature of any relativistic quantum theory with “localized” observables.
(For a more detailed argument along these lines, see section 4.6.)

Thus, the arguments against the four (explicit) assumptions of Mala-
ment’s theorem are unsuccessful; these assumptions are perfectly reasonable,
and we should expect them to hold for any relativistic, quantum-mechanical
theory. However, there is another difficulty with the argument against any
relativistic quantum mechanics of (localizable) particles: Malament’s theo-
rem makes tacit use of specific features of Minkowski spacetime which—some
might claim—have less than perfect empirical support. First, the following
example shows that Malament’s theorem fails if there is a preferred reference
frame.

Example 1. Let M = R! @ R? be full Newtonian spacetime (with a distin-
guished timelike direction a). To any set of the form {(¢,z) : z € A}, with
t € R, and A a bounded open subset of R3, we assign the spectral projection
E of the position operator for a particle in three dimensions. Let H(a) =0
so that U(ta) = €0 = I for all t+ € R. Since the energy in every state is
zero, the energy condition is trivially satisfied.

Note, however, that if the background spacetime is not regarded as hav-
ing a distinguished timelike direction, then this example violates the energy
condition. Indeed, the generator of an arbitrary timelike translation has the
form

H(b) =Db-P =0b0+bP +b2P +b3P3 = b1P1—|—b2P2+b3P3, (51)

where b = (bg, by, b2,b3) € R* is a timelike vector, and P; are the three
orthogonal components of the total momentum. But since each P; has spec-
trum R, the spectrum of H(b) is not bounded from below when b is not a
scalar multiple of a. O

Malament’s theorem does not require the full structure of Minkowski
spacetime (e.g., the Lorentz group). Rather, it suffices to assume that the
affine space M satisfies the following condition.
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No absolute velocity: Let a be a spacelike translation of M. Then there is a
pair (b, c) of timelike translations of M such that a=b — c.

Despite the fact that “no absolute velocity” is a feature of all post-Galilean
spacetimes, there are some who claim that the existence of a (undetectable)
preferred reference frame is perfectly consistent with the empirical evidence
on which relativistic theories are based (cf. Bell 1987, Chap. 9). What is
more, the existence of a preferred frame is an absolutely essential feature
of a number of “realistic” interpretations of quantum theory (cf. Maudlin
1994, Chap. 7). Thus, this tacit assumption of Malament’s theorem has the
potential to be a major source of contention for those wishing to maintain
that there can be a relativistic quantum mechanics of localizable particles.

There is a further worry about the generality of Malament’s theorem: It
is not clear whether the result can be expected to hold for arbitrary relativis-
tic spacetimes, or whether it is an artifact of peculiar features of Minkowski
spacetime (e.g., that space is infinite). To see this, suppose that M is an
arbitrary globally hyperbolic manifold. (That is, M is a manifold that per-
mits at least one foliation S into spacelike hypersurfaces). Although M will
not typically have a translation group, we suppose that M has a transitive
Lie group G of diffeomorphisms. (Just as a manifold is locally isomorphic to
R™, a Lie group is locally isomorphic to a group of translations.) We require
that G has a representation g — U(g) in the unitary operators on H; and,
the translation covariance condition now says that Eya) = U(g)EaU(g)*
for all g € G.

The following example shows that Malament’s theorem fails even for the
very simple case where M is a two-dimensional cylinder.

Ezxample 2. Let M = R @ S!, where S! is the one-dimensional unit circle,
and let G denote the Lie group of timelike translations and rotations of M.
It is not difficult to construct a unitary representation of GG that satisfies the
energy bounded below condition. (We can use the Hilbert space of square-
integrable functions from S' into C, and the procedure for constructing the
unitary representation is directly analogous to the case of a single particle
moving on a line.) Fix a spacelike hypersurface 3, and let yu denote the
normalized rotation-invariant measure on Y. For each open subset A of
Y, let Ean = I if u(A) > 2/3, and let Ea = 0 if pu(A) < 2/3. Then
localizability holds, since for any pair (A, A’) of disjoint open subsets of X,
either u(A) < 2/3 or u(A’) < 2/3. O

Nonetheless, Examples 1 and 2 hardly serve as physically interesting
counterexamples to a strengthened version of Malament’s theorem. In par-
ticular, in Example 1 the energy is identically zero, and therefore the prob-
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ability for finding the particle in a given region of space remains constant
over time. In Example 2, the particle is localized in every region of space
with volume greater than 2/3, and the particle is never localized in a region
of space with volume less than 2/3. In the following two sections, then, we
will formulate explicit conditions to rule out such pathologies, and we will
use these conditions to derive a strengthened version of Malament’s theorem
that applies to generic spacetimes.

5.3 Hegerfeldt’s theorem

Hegerfeldt’s (1998a, 1998b) recent results on localization apply to arbitrary
(globally hyperbolic) spacetimes, and they do not make use of the “no ab-
solute velocity” condition. Thus, we will suppose henceforth that M is a
globally hyperbolic spacetime, and we will fix a foliation S of M, as well as
a unique isomorphism between any two hypersurfaces in this foliation. If
Y € S, we will write X + t for the hypersurface that results from “moving
> forward in time by ¢ units”; and if A is a subset of X, we will use A +¢
to denote the corresponding subset of 3 +¢. We assume that there is a rep-
resentation ¢ — U, of the time-translation group R in the unitary operators
on H, and we will say that the localization system (H,A — Ea,t — Uy)
satisfies time-translation covariance just in case Uy EAU_y = Eay¢ for all A
and all t € R.
Hegerfeldt’s result is based on the following root lemma.

Lemma 5.1 (Hegerfeldt). Suppose that Uy = ¢ where H is a self-
adjoint operator with spectrum bounded from below. Let A be a positive
operator (e.g., a projection operator). Then for any state ¢, either

(Upp, AUw) # 0, for almost all ¢ € R,

or
(Uph, AUw) =0,  forall teR.

Hegerfeldt claims that this lemma has the following consequence for local-
ization:

If there exist particle states which are strictly localized in some
finite region at ¢ = 0 and later move towards infinity, then fi-
nite propagation speed cannot hold for localization of particles.
(Hegerfeldt 1998a, 243)
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Hegerfeldt’s argument for this conclusion is as follows:

Now, if the particle or system is strictly localized in A at t =0
it is, a fortiori, also strictly localized in any larger region A’ con-
taining A. If the boundaries of A’ and A have a finite distance
and if finite propagation speed holds then the probability to find
the system in A’ must also be 1 for sufficiently small times, e.g.
0 <t < e. But then [Lemma 5.1], with A = I — Ea/, states
that the system stays in A’ for all times. Now, we can make
A’ smaller and let it approach A. Thus we conclude that if a
particle or system is at time ¢ = 0 strictly localized in a region
A, then finite propagation speed implies that it stays in A for
all times and therefore prohibits motion to infinity. (Hegerfeldt
1998a, 242-243; notation adapted, but italics in original)

Let us attempt now to put this argument into a more precise form.

First, Hegerfeldt claims that the following is a consequence of “finite
propagation speed”: If A C A/, and if the boundaries of A and A’ have
a finite distance, then a state initially localized in A will continue to be
localized in A’ for some finite amount of time. We can capture this precisely
by means of the following condition.

No instantaneous wavepacket spreading (NIWS): If A C A’ and the bound-
aries of A and A’ have a finite distance, then there is an € > 0 such
that Ea < Earq whenever 0 <t <ee.

(Note that NIWS plus localizability entails strong causality.) In the argu-
ment, Hegerfeldt also assumes that if a particle is localized in every one of a
family of sets that “approaches” A, then it is localized in A. We can capture
this assumption in the following condition.

Monotonicity: If {A,, : n € N} is a downward nested family of subsets of X
such that (), A, = A, then A\, Ea, = Ea.

Using this assumption, Hegerfeldt argues that if NIWS holds, and if a par-
ticle is initially localized in some finite region A, then it will remain in A
for all subsequent times. In other words, if Eav = v, then EAU) = Uy
for all t > 0. We can now translate this into the following rigorous no-go
theorem.

Theorem (Hegerfeldt). Suppose that the localization system (H,A —
En,t — Uy) satisfies:
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1. Monotonicity

2. Time-translation covariance

3. Energy bounded below

4. No instantaneous wavepacket spreading
Then Uy EAU_y = EA for all A C Y and all t € R.

Thus, conditions 1-4 can be satisfied only if the particle has trivial dy-
namics. If M is an affine space, and if we add “no absolute velocity” as
a fifth condition in this theorem, then we get the stronger conclusion that
Ea = 0 for all bounded A (see Lemma 5.2, section 5.9). Thus, there is an
obvious similarity between Hegerfeldt’s and Malament’s theorems. However,
NIWS is a stronger causality assumption than microcausality. In fact, while
NIWS plus localizability entails strong causality (and hence microcausality),
the following example shows that NIWS is not entailed by the conjunction
of strong causality, monotonicity, time-translation covariance, and energy

bounded below.

Ezample 3. Let Q, P denote the standard position and momentum operators
on H = Ly(R), and let H = P?/2m for some m > 0. Let A ECA2 denote
the spectral measure for ). Fix some bounded subset Ay of R, and let
En = Eg ® Ego (a projection operator on H @ H) for all Borel subsets
A of R. Thus, A — EA is a (non-normalized) projection-valued measure.
Let Uy = I ® eitH, and let Eary = Uy FAU_ for all t € R. It is clear that
monotonicity, time-translation covariance, and energy bounded below hold.
To see that strong causality holds, let A and A’ be disjoint subsets of a
single hyperplane ¥. Then,

BEAUEAU-y = ERER, @ ER ER ., = 00 ERER ., =0,  (5.2)
for all t € R. On the other hand, Uy FAU_; # Fa for any nonempty A and

for any t # 0. Thus, it follows from Hegerfeldt’s theorem that NIWS fails.
O

Thus, we could not recapture the full strength of Malament’s theorem
simply by adding “no absolute velocity” to the conditions of Hegerfeldt’s
theorem.
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5.4 A new Hegerfeldt-Malament type theorem

Example 3 shows that Hegerfeldt’s theorem fails if NIWS is replaced by
strong causality (or by microcausality). On the other hand, Example 3 is
hardly a physically interesting counterexample to a strengthened version of
Hegerfeldt’s theorem. In particular, if 3 is a fixed spatial hypersurface, and
if {A, : n € N} is a covering of ¥ by bounded sets (i.e., |J,, An = X), then
V., Ea, =1® Ep, #1® 1. Thus, it is not certain that the particle will be
detected somewhere or other in space. In fact, if {A,, : n € N} is a covering
of ¥ and {II,, : n € N} is a covering of ¥ + ¢, then

\ Ea, = I®Ex, # I® Engre = \/ Eu,. (5.3)
neN neN

Thus, the total probability for finding the particle somewhere or other in
space can change over time.

It would be completely reasonable to require that \/,, Ea, = I whenever
{A,, : n € N} is a covering of ¥. This would be the case, for example, if the
mapping A — FEa (restricted to subsets of 3) were the spectral measure of
some position operator. However, we propose that—at the very least—any
physically interesting model should satisfy the following weaker condition.

Probability conservation: If {A,, : n € N} is a covering of ¥, and {II,, : n €
N} is a covering of ¥ + ¢, then \/, Ea, =V,, Em,,-

Probability conservation guarantees that there is a well-defined total prob-
ability for finding the particle somewhere or other in space, and this prob-
ability remains constant over time. In particular, if both {A, : n € N}
and {II, : n € N} consist of pairwise disjoint sets, then the localizability
condition entails that \/,, Ea, = >, Ea, and \/, Er, = >, En,. In this
case, probability conservation is equivalent to

> Prob¥(Ea,) = > Prob¥(En,), (5.4)
neN neN

for any state 1. Note, finally, that probability conservation is neutral with
respect to relativistic and non-relativistic models.!

LProbability conservation would fail if a particle could escape to infinity in a finite
amount of time (cf. Earman 1986, 33). However, a particle can escape to infinity only
if there is an infinite potential well, and this would violate the energy condition. Thus,
given the energy condition, probability conservation should also hold for non-relativistic
particle theories.
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Theorem 5.1. Suppose that the localization system (H,A — Ea,t — Uy)
satisfies:

1. Localizability
Probability conservation
Time-translation covariance

Energy bounded below

AT

Microcausality
Then Uy EAU_y = EA for all A and all t € R.

If M is an affine space, and if we add “no absolute velocity” as a sixth
condition in this theorem, then it follows that Fa = 0 for all A (see
Lemma 5.2). Thus, modulo the probability conservation condition, The-
orem 5.1 recaptures the full strength of Malament’s theorem. Moreover, we
can now trace the difficulties with localization to microcausality alone: there
are localizable particles only if it is possible to have act-outcome correlations
at spacelike separation.

We now give examples to show that each condition in Theorem 5.1 is
indispensable; that is, no four of the conditions suffices to entail the conclu-
sion. (Example 1 shows that conditions 1-5 can be simultaneously satisfied.)
Suppose for simplicity that M is two-dimensional. (All examples work in
the four-dimensional case as well.) Let @, P be the standard position and
momentum operators on Lo(R), and let H = P?/2m. Let ¥ be a spatial
hypersurface in M, and suppose that a coordinatization of ¥ has been fixed,
so that there is a natural association between each bounded open subset A
of ¥ and a corresponding spectral projection Fa of Q.

(14243+4) (a) Consider the standard localization system for a single non-
relativistic particle. That is, let X be a fixed spatial hyperplane, and
let A — Ea (with domain the Borel subsets of ¥) be the spectral
measure for Q. For ¥ + ¢, set Eanyy = Ui EAU_;, where U; = e,
(b) The Newton-Wigner approach to relativistic QM uses the standard
localization system for a non-relativistic particle, only replacing the
non-relativistic Hamiltonian P?/2m with the relativistic Hamiltonian
(P2 +m?I)'/2, whose spectrum is also bounded from below.

(14243+5) (a) For a mathematically simple (but physically uninteresting)
example, take the first example above and replace the Hamiltonian
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P?2/2m with P. In this case, microcausality trivially holds, since
U EAU_y is just a shifted spectral projection of Q. (b) For a physically
interesting example, consider the relativistic quantum theory of a sin-
gle spin-1/2 electron (see section 5.2.1). Due to the negative energy
solutions of the Dirac equation, the spectrum of the Hamiltonian is
not bounded from below.

(14244+5) Consider the the standard localization system for a non-relativistic
particle, but set Fat; = Fa for all t € R. Thus, we escape the con-
clusion of trivial dynamics, but only by disconnecting the (nontrivial)
unitary dynamics from the (trivial) association of projections with
spatial regions.

(14+3+4+45) (a) Let Ap be some bounded open subset of X, and let Ea,
be the corresponding spectral projection of Q. When A # Ay, let
Ea =0. Let Uy = e and let Enyy = UyEAU_; for all A. This ex-
ample is physically uninteresting, since the particle cannot be localized
in any region besides Ay, including proper supersets of Ag. (b) See
Example 3.

(24+3+445) Let Ag be some bounded open subset of ¥, and let Ea, be the
corresponding spectral projection of Q. When A # Ay, let Fa = I.
Let Uy = € and let Ea,y = Uy EAU_; for all A. Thus, the particle
is always localized in every region other than Ag, and is sometimes
localized in Ag as well.

5.5 Are there unsharply localizable particles?

We have argued that attempts to undermine the four explicit assumptions
of Malament’s theorem are unsuccessful. We have also now shown that the
tacit assumption of “no absolute velocity” is not necessary to derive Mala-
ment’s conclusion. And, yet, there is one more loophole in the argument
against a relativistic quantum mechanics of localizable particles. In par-
ticular, the basic assumption of a family {Fa} of localizing projections is
unnecessary; it is possible to have a quantum-mechanical particle theory in
the absence of localizing projections. What is more, one might object to the
use of localizing projections on the grounds that they represent an unphys-
ical idealization—viz., that a “particle” can be completely contained in a
finite region of space with a sharp boundary, when in fact it would require
an infinite amount of energy to prepare a particle in such a state. Thus,



5.5 Are there unsharply localizable particles? 93

there remains a possibility that relativistic causality can be reconciled with
“unsharp” localizability.

To see how we can define “particle talk” without having projection op-
erators, consider the relativistic theory of a single spin-1/2 electron (where
we now restrict to the subspace Hpos of positive energy solutions of the
Dirac equation). In order to treat the ‘x’ of the Dirac wavefunction as an
observable, we need only to define a probability amplitude and density for
the particle to be found at x; and these can be obtained from the Dirac
wavefunction itself. That is, for a subset A of X, we set

Prob¥(x € A) = /A b (x)[2dx . (5.5)

Now let A — FEa be the spectral measure for the standard position op-
erator on the Hilbert space H (which includes both positive and negative
energy solutions). That is, Ex multiplies a wavefunction by the character-
istic function of A. Let F' denote the orthogonal projection of H onto Hpes.
Then,

/A () 2dx = (6, ) = (0, FEAY), (5.6)

for any ¢ € Hpos. Thus, we can apply the standard recipe to the operator
FEn (defined on Hyes) to compute the probability that the particle will be
found within A. However, FFEA does mot define a projection operator on
Hpos- (In fact, it can be shown that F'/EA does not have any eigenvectors
with eigenvalue 1.) Thus, we do not need a family of projection operators
in order to define probabilities for localization.

Now, in general, to define the probability that a particle will be found in
A, we need only assume that there is an operator Aa such that (i, Aatp) €
[0,1] for any unit vector . Such operators are called effects, and include
the projection operators as a proper subclass. Thus, we say that the triple
(H,A — Aa,a — U(a)) is an unsharp localization system over M just in
case A — Aa is a mapping from subsets of hyperplanes in M to effects on
H, and a +— U(a) is a continuous representation of the translation group of
M in unitary operators on ‘H. (We assume for the present that M is again
an affine space.)

Most of the conditions from the previous sections can be applied, with
minor changes, to unsharp localization systems. In particular, since the
energy bounded below condition refers only to the unitary representation,
it can be carried over intact; and translation covariance also generalizes
straightforwardly. However, we will need to take more care with micro-
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causality and with localizability.

If E and F are projection operators, [E, F| = 0 just in case for any state,
the statistics of a measurement of F' are not affected by a non-selective mea-
surement of E and vice versa (cf. Malament 1996, 5). This fact, along with
the assumption that Fa is measurable in A, motivates the microcausality
assumption. For the case of an association of arbitrary effects with spatial
regions, Busch (1999, Proposition 2) has shown that [Aa, Aa/] = 0 just in
case for any state, the statistics for a measurement of Ax are not affected by
a non-selective measurement of Aa: and vice versa. Thus, we may carry over
the microcausality assumption intact, again seen as enforcing a prohibition
against act-outcome correlations at spacelike separation.

The localizability condition is motivated by the idea that a particle can-
not be simultaneously localized (with certainty) in two disjoint regions of
space. In other words, if A and A’ are disjoint subsets of a single hyper-
plane, then (1), Eat) = 1 entails that (¢, Eastp) = 0. It is not difficult to see
that this last condition is equivalent to the assumption that Ea + Ear < I.
That is,

(¢, (Ea + Ean) < (¥, 1¢), (5.7)

for any state 1. Now, it is an accidental feature of projection operators (as
opposed to arbitrary effects) that Fa + Far < I is equivalent to Ea Ear = 0.
Thus, the appropriate generalization of localizability to unsharp localization
systems is the following condition.

Localizability: If A and A’ are disjoint subsets of a single hyperplane, then

That is, the probability for finding the particle in A, plus the probability
for finding the particle in some disjoint region A’, never totals more than 1.
It would, in fact, be reasonable to require a slightly stronger condition, viz.,
the probability of finding a particle in A plus the probability of finding a
particle in A’ equals the probability of finding a particle in A U A’. If this
is true for all states v, we have:

Additivity: If A and A’ are disjoint subsets of a single hyperplane, then
An+ Apn = Anoar

With just these mild constraints, Busch (1999) was able to derive the
following no-go result.

Theorem (Busch). Suppose that the unsharp localization system (H, A —
Ap,a— Ul(a)) satisfies localizability, translation covariance, energy bounded
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below, microcausality, and no absolute velocity. Then, for all A, Ax has no
etgenvector with eigenvalue 1.

Thus, it is not possible for a particle to be localized with certainty in
any bounded region A. Busch’s theorem, however, leaves it open question
whether there are (nontrivial) “strongly unsharp” localization systems that
satisfy microcausality. The following result shows that there are not.

Theorem 5.2. Suppose that the unsharp localization system (H, A — Aa,a +—
U(a)) satisfies:

1. Additivity
Translation covariance
Energy bounded below

Microcausality

AR

No absolute velocity
Then Aax =0 for all A.

Theorem 5.2 shows that invoking the notion of unsharp localization does
nothing to resolve the tension between relativistic causality and localizabil-
ity. For example, we can now show that the (positive energy) Dirac theory—
in which there are localizable particles—violates relativistic causality. In-
deed, it is clear that the conclusion of Theorem 5.2 fails.? On the other
hand, additivity, translation covariance, energy bounded below, and no ab-
solute velocity hold. Thus, microcausality fails, and the (positive energy)
Dirac theory permits superluminal signalling.

Unfortunately, Theorem 5.2 does not generalize to arbitrary globally
hyperbolic spacetimes, as the following example shows.

Ezxample 4. Let M be the cylinder spacetime from Example 2. Let G denote
the group of timelike translations and rotations of M, and let g — U(g) be
a positive energy representation of GG in the unitary operators on a Hilbert
space ‘H. For any ¥ € &, let u denote the normalized rotation-invariant
measure on Y, and let Axn = u(A)I. Then, conditions 1-5 of Theorem 5.2
are satisfied, but the conclusion of the theorem is false. O

*For any unit vector 1) € Hpos, there is a bounded set A such that fA |w|2dx # 0.
Thus, An ;é 0.
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The previous counterexample can be excluded if we require there to be
a fixed positive constant d such that, for each A, there is a state @ with
(¢, Aavp) > 6. In fact, with this condition added, Theorem 5.2 holds for
any globally hyperbolic spacetime. (The proof is an easy modification of the
proof we give in Section 5.9.) However, it is not clear what physical mo-
tivation there could be for requiring this further condition. Note also that
Example 4 has trivial dynamics; i.e., U AAU_; = Aa for all A. We conjec-
ture that every counterexample to a generalized version of Theorem 5.2 will
have trivial dynamics.

Theorem 5.2 strongly supports the conclusion that there is no relativis-
tic quantum mechanics of a single (localizable) particle; and that the only
consistent combination of special relativity and quantum mechanics is in the
context of quantum field theory. However, neither Theorem 5.1 nor Theo-
rem 5.2 says anything about the ontology of relativistic quantum field theory
itself; they leave open the possibility that relativistic quantum field theory
might permit an ontology of localizable particles. To eliminate this latter
possibility, we will now proceed to present a more general result which shows
that there are no localizable particles in any relativistic quantum theory.

5.6 Are there localizable particles in RQFT?

The localizability assumption is motivated by the idea that a “particle”
cannot be detected in two disjoint spatial regions at once. However, in the
case of a many-particle system, it is certainly possible for there to be particles
in disjoint spatial regions. Thus, the localizability condition does not apply
to many-particle systems; and Theorems 5.1 and 5.2 cannot be used to rule
out a relativistic quantum mechanics of n > 1 localizable particles.

Still, one might argue that we could use Fa to represent the proposition
that a measurement is certain to find that all n particles lie within A, in
which case localizability should hold. Note, however, that when we alter
the interpretation of the localization operators {Ea}, we must alter our
interpretation of the conclusion. In particular, the conclusion now shows
only that it is not possible for all n particles to be localized in a bounded
region of space. This leaves open the possibility that there are localizable
particles, but that they are governed by some sort of “exclusion principle”
that prohibits them all from clustering in a bounded spacetime region.

Furthermore, Theorems 5.1 and 5.2 only show that it is impossible to de-
fine position operators that obey appropriate relativistic constraints. But it
does not immediately follow from this that we lack any notion of localization
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in relativistic quantum theories. Indeed,

...a position operator is inconsistent with relativity. This com-
pels us to find another way of modeling localization of events.
In field theory, we model localization by making the observables
dependent on position in spacetime. (Ticiatti 1999, 11)

However, it is not a peculiar feature of relativistic quantum field theory that
it lacks a position operator: Any quantum field theory (either relativistic or
non-relativistic) will model localization by making the observables depen-
dent on position in spacetime. Moreover, in the case of non-relativistic QFT,
these “localized” observables suffice to provide us with a concept of localiz-
able particles. In particular, for each spatial region A, there is a “number
operator” Na whose eigenvalues give the number of particles within the re-
gion A. Thus, we have no difficultly in talking about the particle content in
a given region of space despite the absence of any position operator.

Abstractly, a number operator N on H is any operator with eigenvalues
contained in {0,1,2,...}. In order to describe the number of particles lo-
cally, we require an association A — Na of subsets of spatial hyperplanes
in M to number operators on H, where Na represents the number of par-
ticles in the spatial region A. If a — U(a) is a unitary representation of
the translation group, we say that the triple (H,A — Na,a — U(a)) is a
system of local number operators over M. Note that a localization system
(H,A — Ea,a U(a)) is a special case of a system of local number opera-
tors where the eigenvalues of each Na are restricted to {0,1}. Furthermore,
if we loosen our assumption that number operators have a discrete spectrum,
and instead require only that they have spectrum contained in [0, c0), then
we can also include unsharp localization systems within the general cate-
gory of systems of local number operators. Thus, a system of local number
operators is the minimal requirement for a concept of localizable particles
in any quantum theory.

In addition to the natural analogues of the energy bounded below con-
dition, translation covariance, and microcausality, we will be interested in
the following two requirements on a system of local number operators:>

3Due to the unboundedness of number operators, we would need to take some care in
giving technically correct versions of the following conditions. In particular, the additivity
condition should technically include the clause that Na and Nas have a common dense
domain, and the operator Naya+ should be thought of as the self-adjoint closure of Na +
Nas. In the number conservation condition, the sum N = " Na, can be made rigorous
by exploiting the correspondence between self-adjoint operators and “quadratic forms” on



5.6 Are there localizable particles in RQFT? 98

Additivity: If A and A’ are disjoint subsets of a single hyperplane, then
Na + Na» = Nauvar-

Number conservation: If {A, : n € N} is a disjoint covering of ¥, then the
sum ) Na, converges to a densely defined, self-adjoint operator N
on H (independent of the chosen covering), and U(a)NU(a)* = N for
any timelike translation a of M.

Additivity asserts that, when A and A’ are disjoint, the expectation value
(in any state 1) for the number of particles in A U A’ is the sum of the
expectations for the number of particles in A and the number of particles in
A’. In the pure case, it asserts that the number of particles in AU A’ is the
sum of the number of particles in A and the number of particles in A’. The
“number conservation” condition tells us that there is a well-defined total
number of particles (at a given time), and that the total number of particles
does not change over time. This condition holds for any non-interacting
model of QFT.

It is a well-known consequence of the Reeh-Schlieder theorem that rel-
ativistic quantum field theories do not admit systems of local number op-
erators (cf. Redhead 1995b). We will now derive the same conclusion from
strictly weaker assumptions. In particular, we show that microcausality
is the only specifically relativistic assumption needed for this result. The
relativistic spectrum condition—which requires that the spectrum of the
four-momentum lie in the forward light cone, and which is used in the proof
of the Reeh-Schlieder theorem—plays no role in our proof.*

Theorem 5.3. Suppose that the system (H,A — Na,a +— U(a)) of local
number operators satisfies:

1. Additivity
2. Translation covariance
3. Energy bounded below

4. Number conservation

‘H. In particular, we can think of N as deriving from the upper bound of quadratic forms
corresponding to finite sums.

4Microcausality is not only sufficient, but also necessary for the proof that there are no
local number operators. The Reeh-Schlieder theorem entails the cyclicity of the vacuum
state. But the cyclicity of the vacuum state alone does not entail that there are no local
number operators; we must also assume microcausality (cf. Requardt 1982 and section 4.5
of this dissertation).
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5. Microcausality
6. No absolute velocity
Then Na =0 for all A.

Thus, in every state, there are no particles in any local region. This
serves as a reductio ad absurdum for any notion of localizable particles in a
relativistic quantum theory.

Unfortunately, Theorem 5.3 is not the strongest result we could hope for,
since “number conservation” can only be expected to hold in the (trivial)
case of non-interacting fields. However, we would need a more general ap-
proach in order to deal with interacting relativistic quantum fields, because
(due to Haag’s theorem; cf. Streater & Wightman 2000, 163) their dynamics
are not unitarily implementable on a fixed Hilbert space. On the other hand
it would be wrong to think of this as indicating a limitation on the gener-
ality of our conclusion: Haag’s theorem also entails that interacting models
of RQFT have no number operators—either global or local.® Still, it would
be interesting to recover this conclusion (perhaps working in a more general
algebraic setting) without using the full strength of Haag’s assumptions.

5.7 Particle talk without particle ontology

The results of the previous sections show that, insofar as we can expect any
relativistic quantum theory theory to satisfy a few basic conditions, these
theories do not admit (localizable) particles into their ontology. We also
considered and rejected several arguments which attempt to show that one
(or more) of these conditions can be jettisoned without doing violence to
the theory of relativity or to quantum mechanics. Thus, we have yet to find
a good reason to reject one of the premises on which our argument against
localizable particles is based. However, Segal (1964) and Barrett (2001)
claim that we have independent grounds for rejecting the conclusion; that
is, we have good reasons for believing that there are localizable particles.
The argument for localizable particles appears to be very simple: Our
experience shows us that objects (particles) occupy finite regions of space.
But the reply to this argument is just as simple: These experiences are

SIf a total number operator exists in a representation of the canonical commutation
relations, then that representation is quasi-equivalent to a free-field (Fock) representation
(Chaiken 1968). However, Haag’s theorem entails that in relativistic theories, representa-
tions with nontrivial interactions are not quasi-equivalent to a free-field representation.
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illusory! Although no object is strictly localized in a bounded region of
space, an object can be well-enough localized to give the appearance to us
(finite observers) that it is strictly localized. In fact, relativistic quantum
field theory itself shows how the “illusion” of localizable particles can arise,
and how talk about localizable particles can be a useful fiction.

In order to assess the possibility of “approximately localized” objects
in relativistic quantum field theory, we shall now pursue the investigation
in the framework of algebraic quantum field theory.® Here, one assumes
that there is a correspondence O — R(O) between bounded open subsets
of M and subalgebras of observables on some Hilbert space H. Observables
in R(O) are considered to be “localized” (i.e., measurable) in O. Thus, if
O and O’ are spacelike separated, we require that [A, B] = 0 for any A €
R(O) and B € R(O'). Furthermore, we assume that there is a continuous
representation a — U(a) of the translation group of M in unitary operators
on H, and that there is a unique “vacuum” state 2 € H such that U(a)Q = 2
for all a. This latter condition entails that the vacuum appears the same to
all observers, and that it is the unique state of lowest energy.

In this context, a particle detector can be represented by an effect C' such
that (©2,CQ) = 0. That is, C should register no particles in the vacuum
state. However, the Reeh-Schlieder theorem entails that no positive local
observable can have zero expectation value in the vacuum state. Thus, we
again see that (strictly speaking) it is impossible to detect particles by means
of local measurements; instead, we will have to think of particle detections
as “approximately local” measurements.

If we think of an observable as representing a measurement procedure
(or, more precisely, an equivalence class of measurement procedures), then
the norm distance ||C — C’|| between two observables gives a quantitative
measure of the physical similarity between the corresponding procedures.
(In particular, if ||[C — C’|| < 4, then the expectation values of C' and C’
never differ by more than §.)7 Moreover, in the case of real-world measure-
ments, the existence of measurement errors and environmental noise make
it impossible for us to determine precisely which measurement procedure
we have performed. Thus, practically speaking, we can at best determine
a neighborhood of observables corresponding to a concrete measurement

SFor general information on algebraic quantum field theory, see (Haag 1992) and (Buch-
holz 2000). For specific information on particle detectors and “almost local” observables,
see Chapter 6 of (Haag 1992) and Section 4 of (Buchholz 2000).

"Recall that ||C — C’|| = sup{||[(C — C)Y|| : ¢ € H, ||| = 1}. Tt follows then from the
Cauchy-Schwarz inequality that |(1, (C — C")¢)| < ||C — C’|| for any unit vector .
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procedure.

In the case of present interest, what we actually measure is always a
local observable—i.e., an element of R(O), where O is bounded. However,
given a fixed error bound ¢, if an observable C is within norm distance §
from some local observable C' € R(O), then a measurement of C’ will be
practically indistinguishable from a measurement of C'. Thus, if we let

Rs(0) = {C: 3C" € R(O) such that |C — || < 6}, (5.8)

denote the family of observables “almost localized” in O, then ‘FAPP’ (i.e.,
‘for all practical purposes’) we can locally measure any observable from
Rs(0). That is, measurement of an element from R5(O) can be simulated
to a high degree of accuracy by local measurement of an element from R(O).
However, for any local region O, and for any § > 0, R5(O) does contain
(nontrivial) effects that annihilate the vacuum.® Thus, particle detections
can always be simulated by purely local measurements; and the appearance
of (fairly-well) localized objects can be explained without the supposition
that there are localizable particles in the strict sense.

However, it may not be easy to pacify Segal and Barrett with a FAPP so-
lution to the problem of localization. Both appear to think that the absence
of localizable particles (in the strict sense) is not simply contrary to our
manifest experience, but would undermine the very possibility of objective
empirical science. For example, Segal claims that,

...it is an elementary fact, without which experimentation of
the usual sort would not be possible, that particles are indeed
localized in space at a given time. (Segal 1964, 145; my italics)

Furthermore, “particles would not be observable without their localization
in space at a particular time” (1964, 139). In other words, experimentation
involves observations of particles, and these observations can occur only if
particles are localized in space. Unfortunately, Segal does not give any ar-
gument for these claims. It seems to us, however, that the moral we should
draw from the no-go theorems is that Segal’s account of observation is false.
In particular, it is not (strictly speaking) true that we observe particles.
Rather, there are ‘observation events’, and these observation events are con-
sistent (to a good degree of accuracy) with the supposition that they are
brought about by (localizable) particles.

8Suppose that A € R(O), and let A(x) = U(x)AU(x)*. If f is a test function on M
whose Fourier transform is supported in the complement of the forward light cone, then
L = [ f(x)A(x)dx is almost localized in O and (Q, LQ) = 0 (cf. Buchholz 2000, 7).



5.8 Conclusion 102

Like Segal, Barrett (2001) claims that we will have trouble explaining
how empirical science can work if there are no localizable particles. In par-
ticular, Barrett claims that empirical science requires that we be able to keep
an account of our measurement results so that we can compare these results
with the predictions of our theories. Furthermore, we identify measurement
records by means of their location in space. Thus, if there were no localized
objects, then there would be no identifiable measurement records, and “...1it
would be difficult to account for the possibility of empirical science at all”
(Barrett 2001, 3).

However, it’s not clear what the difficulty here is supposed to be. On the
one hand, we have seen that relativistic quantum field theory does predict
that the appearances will be FAPP consistent with the supposition that
there are localized objects. So, for example, we could distinguish two record
tokens at a given time if there were two disjoint regions O and O’ and
particle detector observables C' € R5(0) and C’ € R5(0O’) (approximated by
observables strictly localized in O and O respectively) such that (¢, Cy) ~ 1
and (¢, C"Y) ~ 1. Now, it may be that Barrett is also worried about how,
given a field ontology, we could assign any sort of trans-temporal identity
to our record tokens. But this problem, however important philosophically,
is distinct from the problem of localization. Indeed, it also arises in the
context of non-relativistic quantum field theory, where there is no problem
with describing localizable particles. Finally, Barrett might object that once
we supply a quantum-theoretical model of a particle detector itself, then the
superposition principle will prevent the field and detector from getting into
a state where there is a fact of the matter as to whether, “a particle has been
detected in the region O.” But this is simply a restatement of the standard
quantum measurement problem that infects all quantum theories—and we
have made no pretense of solving that here.

5.8 Conclusion

Malament claims that his theorem justifies the belief that,

...in the attempt to reconcile quantum mechanics with relativity
theory. .. one is driven to a field theory; all talk about “particles”
has to be understood, at least in principle, as talk about the
properties of, and interactions among, quantized fields. (Mala-
ment 1996, 1)

We have argued that the first claim is correct—quantum mechanics and
relativity can be reconciled only in the context of quantum field theory.
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In order, however, to close a couple of loopholes in Malament’s argument
for this conclusion, we provided two further results (Theorems 5.1 and 5.2)
which show that the conclusion continues to hold for generic spacetimes, as
well as for “unsharp” localization observables. We then went on to show
that relativistic quantum field theory also does not permit an ontology of
localizable particles; and so, strictly speaking, our talk about localizable
particles is a fiction. Nonetheless, relativistic quantum field theory does
permit talk about particles—albeit, if we understand this talk as really being
about the properties of, and interactions among, quantized fields. Indeed,
modulo the standard quantum measurement problem, relativistic quantum
field theory has no trouble explaining the appearance of macroscopically
well-localized objects, and shows that our talk of particles, though a facon
de parler, has a legitimate role to play in empirically testing the theory.

5.9 Appendix: Proofs of theorems

Theorem (Hegerfeldt). Suppose that the localization system (H,A —
En,t — Uy) satisfies monotonicity, time-translation covariance, energy bounded
below, and NIWS. Then Ui EAU_y = Ea for all A CY and all t € R.

Proof. The formal proof corresponds directly to Hegerfeldt’s informal proof.
Thus, let A be a subset of some spatial hypersurface . If Ean = 0 then
obviously Uy EAU_; = Ea for all t € R. So, suppose that Ea # 0, and let ¢
be a unit vector such that Eatw) = 1. Since X is a manifold, and since A # ¥
there is a family {A, : n € N} of subsets of ¥ such that, for each n € N,
the distance between the boundaries of A, and A is nonzero, and such
that ), A, = A. Fix n € N. By NIWS and time-translation covariance,
there is an €, > 0 such that Ea, Uip = Uyp whenever 0 < ¢t < ¢,. That
is, (U, Ea,Up) = 1 whenever 0 < ¢ < ¢€,. Since energy is bounded
from below, we may apply Lemma 5.1 with A = I — Ex, to conclude that
(U, Ea, Upp) = 1 for all t € R. That is, Ea, Uy = U for all t € R.
Since this holds for all n € N, and since (by monotonicity) Ea = A, Ea,.,
it follows that EAUp = Uy for all t € R. Thus, U, EAU_; = Ea for all
teR. O

Lemma 5.2. Suppose that the localization system (H,A — Ea,a+— U(a))
satisfies localizability, time-translation covariance, and no absolute velocity.
Let A be a bounded spatial set. If U(a)EAU(a)* = Ea for all timelike
translations a of M, then Ea = 0.
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Proof. By no absolute velocity, there is a pair (a, b) of timelike translations
such that A 4+ (a—b) is in ¥ and is disjoint from A. By time-translation
covariance, we have,

Earap) = U(@)U(b)*EAU(b)U(a)* = Ea. (5.9)

Thus, localizability entails that Ea is orthogonal to itself, and so En =
0. O

Lemma 5.3. Let {A, : n =0,1,2,...} be a covering of 3, and let E =
Voo En, . If probability conservation and time-translation covariance hold,
then UuEU_; = E for all t € R.

Proof. Since {A,,+t: n € N} is a covering of ¥ +t, probability conservation
entails that \/,, Ea,++ = E. Thus,

oo oo
UEU_, = Ut[ \/ Ea, ] Uy =\ [UtEAnU_t} (5.10)
n=0 n=0
o0
= \/ BEa,pt = E, (5.11)
n=0
where the third equality follows from time-translation covariance. O

In order to prove the next result, we will need to invoke the following
lemma from Borchers (1967).

Lemma (Borchers). Let Uy = ¢ where H is a self-adjoint operator with

spectrum bounded from below. Let E and F be projection operators such that
EF =0. If there is an € > 0 such that

[E,U,FU_{] =0, 0<t<e,
then EU,FU_y =0 for all t € R.

Lemma 5.4. Let U; = "' where H is a self-adjoint operator with spectrum
bounded from below. Let {E, : n = 0,1,2,...} be a family of projection
operators such that EqE, = 0 for alln > 1, and let E = \/;" En. If
U:EU_y = FE for allt € R, and if for each n > 1 there is an €, > 0 such
that

[Eo, UtEnU_t] = O, 0<t< €n, (512)

then Uy EqU_y = Eq for all t € R.
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Proof. If Ey = 0 then the conclusion obviously holds. Suppose then that
Ey # 0, and let ¢ be a unit vector in the range of Ey. Fixn > 1. Using (5.12)
and Borchers’ lemma, it follows that EgU; E,U_; = 0 for all t € R. Then,

|EU_ | = (U—t), BEyU_0) = (3, U EU_y3)) (5.13)
= <E0¢7UtEnU—t¢> = <¢7EOUtEnU—t¢> = 07(514)

forallt € R. Thus, E,U_4¢p = 0for alln > 1, and consequently, [\/, < En]U_1¢) =
0. Since Eg = E — [\/,;»1 Ex], and since (by assumption) EU_; = U_E, it
follows that B

EoU_tp = EU_p =U_Eyp =U_), (5.15)

for all t € R. O

Theorem 5.1. Suppose that the localization system (H,A — Ea,t — Uy)
satisfies localizability, probability conservation, time-translation covariance,
energy bounded below, and microcausality. Then Uy EAU_; = Ea for all A
and all t € R.

Proof. Let A be an open subset of .. If A = X then probability conservation
and time-translation covariance entail that Ean = Eaqy = U EAU_; for all
t € R. If A # 3 then, since ¥ is a manifold, there is a covering {A,, : n € N}
of ¥\ A such that the distance between A,, and A is nonzero for all n. Let
Eg = Ep, and let E, = Ep, for n > 1. Then 1 entails that FyE,, = 0 when
n > 1. If we let E = \/7”, E, then probability conservation entails that
UEU_; = E for all t € R (see Lemma 5.3). By time-translation covariance
and microcausality, for each n > 1 there is an €, > 0 such that

[Eo,UE U_] =0, 0<t< e (5.16)

Since the energy is bounded from below, Lemma 5.4 entails that U; EgU_; =
Ey for all t € R. That is, U,EAU_; = Ea for all t € R. ]

Theorem 5.2. Suppose that the unsharp localization system (H,A —
Ap,a — U(a)) satisfies additivity, translation covariance, energy bounded
below, microcausality, and no absolute velocity. Then Axn =0 for all A.

Proof. We prove by induction that ||Aa| < (2/3)™, for each m € N, and for

each bounded A. For this, let FA denote the spectral measure for Aa.
(Base case: m = 1) Let En = Fa(2/3,1). We verify that (H,A —

Ean,a — U(a)) satisfies the conditions of Malament’s theorem. Clearly,
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no absolute velocity and energy bounded below hold. Moreover, since uni-
tary transformations preserve spectral decompositions, translation covari-
ance holds; and since spectral projections of compatible operators are also
compatible, microcausality holds. To see that localizability holds, let A and
A’ be disjoint bounded subsets of a single hyperplane. Then microcausality
entails that [Aa, Aa/] = 0, and therefore EaEas is a projection operator.
Suppose for reductio ad absurdum that ¢ is a unit vector in the range of
EAEn. By additivity, Aauar = AA + Aar, and we therefore obtain the
contradiction:

1 > (¥, Aavart) = (b, Aav) + (b, Aarh) = 2/3+2/3. (5.17)

Thus, EaAFEar = 0, and Malament’s theorem entails that Ea = 0 for all A.
Therefore, Ax = AAFa(0,2/3) has spectrum lying in [0,2/3], and [|Aa|| <
2/3 for all bounded A.

(Inductive step) Suppose that [|[Aa| < (2/3)™! for all bounded A. Let
Ex = Fa((2/3)™,(2/3)™71). In order to see that Malament’s theorem
applies to (H,A +— Ea,a — U(a)), we need only check that localizability
holds. For this, suppose that A and A’ are disjoint subsets of a single
hyperplane. By microcausality, [Aa, Ax/] = 0, and therefore EAFEa: is a
projection operator. Suppose for reductio ad absurdum that v is a unit
vector in the range of EanFas. Since A U A’ is bounded, the induction
hypothesis entails that [[Aauas|| < (2/3)™ L. By additivity, Aauar = Aa +
Aps, and therefore we obtain the contradiction:

(2/3)"71 > (¥, Aavart) = (0, Aa) + (¥, Aart) > (2/3)™ + (2/3)™ .

(5.18)
Thus, EaAFEar = 0, and Malament’s theorem entails that Ea = 0 for all A.
Therefore, ||Aall < (2/3)™ for all bounded A. O

Theorem 5.3. Suppose that the system (H,A — Na,a — U(a)) of local
number operators satisfies additivity, translation covariance, energy bounded

below, number conservation, microcausality, and no absolute velocity. Then,
Na =0 for all bounded A.

Proof. Let N be the unique total number operator obtained from taking the
sum ) . Na, where {A, : n € N} is a disjoint covering of ¥. Note that for
any A C X, we can choose a covering containing A, and hence, N = Na+ A,
where A is a positive operator. By microcausality, [Na, A] = 0, and therefore
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[Na, N] = [Na, Na + A] = 0. Furthermore, for any vector ¢ in the domain
of N, <wa NA¢> < <wa N¢>

Let E be the spectral measure for N, and let E,, = E(0,n). Then, NE,
is a bounded operator with norm at most n. Since [E,,, Na] = 0, it follows
that

<1/}7NAEn¢> = <En¢a NAEn¢> < (En¢, NEMP) < n, (519)

for any unit vector . Thus, | NaE,| < n. Since | J;2; E,(H) is dense in
H, and since E,(H) is in the domain of Na (for all n), it follows that if
NaE, = 0, for all n, then Nao = 0. We now concentrate on proving the
antecedent.

For each A, let Ax = (1/n)NaE,. We show that the structure (H, A —
Apa,a — Uf(a)) satisfies the conditions of Theorem 5.2. Clearly, energy
bounded below and no absolute velocity hold. It is also straightforward to
verify that additivity and microcausality hold. To check translation covari-
ance, we compute:

U(a)ApU(a)" = U(a)NaE,U(a)* (5.20)

= U(a)NaU(a)*U(a)E,U(a)* (5.21)

= U(a)NAU(a)*En = NA+aEn = AA+a~ (5.22)

The third equality follows from number conservation, and the fourth equality

follows from translation covariance. Thus, NaE, = Ax = 0 for all A. Since
this holds for all n € N, Nao = 0 for all A. O
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Chapter 6

Inequivalent representations
of the canonical
commutation relations in
quantum field theory

6.1 Introduction

Philosophical reflection on quantum field theory has tended to focus on how
it revises our conception of what a particle is. For instance, though there is a
self-adjoint operator in the theory representing the total number of particles
of a field, the standard “Fock space” formalism does not individuate particles
from one another. Thus, Teller (1995, Chapter 2) suggests that we speak of
quanta that can be “aggregated”, instead of (enumerable) particles—which
implies that they can be distinguished and labelled. Moreover, because the
theory does contain a total number of quanta observable (which, therefore,
has eigenstates corresponding to different values of this number), a field
state can be a nontrivial superposition of number eigenstates that fails to
predict any particular number of quanta with certainty. Teller (1995, 105—
106) counsels that we think of these superpositions as not actually containing
any quanta, but only propensities to display various numbers of quanta when
the field interacts with a “particle detector”.

The particle concept seems so thoroughly denuded by quantum field
theory that is hard to see how it could possibly underwrite the particulate
nature of laboratory experience. Those for whom fields are the fundamental
objects of the theory are especially aware of this explanatory burden:

109
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...quantum field theory is the quantum theory of a field, not a
theory of “particles”. However, when we consider the manner in
which a quantum field interacts with other systems to which it is
coupled, an interpretation of the states in [Fock space| in terms
of “particles” naturally arises. It is, of course, essential that
this be the case if quantum field theory is to describe observed
phenomena, since “particle-like” behavior is commonly observed.

(Wald 1994, 46-47)

These remarks occur in the context of Wald’s discussion of yet another threat
to the “reality” of quanta.

The threat arises from the possibility of inequivalent representations of
the algebra of observables of a field in terms of operators on a Hilbert space.
Inequivalent representations are required in a variety of situations; for ex-
ample, interacting field theories in which the scattering matrix does not
exist (“Haag’s theorem”), free fields whose dynamics cannot be unitarily
implemented (Arageorgis et al. 2001), and states in quantum statistical me-
chanics corresponding to different temperatures (Emch 1972). The catch is
that each representation carries with it a distinct notion of “particle”. Our
main goal in this chapter and the next is to clarify the subtle relationship
between inequivalent representations of a field theory and their associated
particle concepts.

Most of our discussion will apply to any case in which inequivalent rep-
resentations of a field are available. However, we have a particular interest
in the case of the Minkowski versus Rindler representations of a free Bo-
son field. What makes this case intriguing is that it involves two radically
different descriptions of the particle content of the field in the very same
spacetime region. The questions we aim to answer are:

e Are the Minkowski and Rindler descriptions nevertheless, in some
sense, physically equivalent?

e Or, are they incompatible, even theoretically incommensurable?

e Can they be thought of as complementary descriptions in the same
way that the concepts of position and momentum are?

e Or, can at most one description, the “inertial” story in terms Minkowski
quanta, be the correct one?

Few discussions of Minkowski versus Rindler quanta broaching these
questions can be found in the philosophical literature, and what discus-
sion there is has not been sufficiently grounded in a rigorous mathematical
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treatment to deliver cogent answers (as we shall see). We do not intend to
survey the vast physics literature about Minkowski versus Rindler quanta,
nor all physical aspects of the problem. Yet a proper appreciation of what
is at stake, and of which answers to the above questions are sustainable, re-
quires that we lay out the basics of the relevant formalism. We have striven
for a self-contained treatment, in the hopes of opening up the discussion
to philosophers of physics already familiar with elementary non-relativistic
quantum theory. (We are inclined to agree with Torretti’s recent diagno-
sis that most philosophers of physics tend to neglect quantum field theory
because they are “sickened by untidy math” (1999, 397).)

We begin in section 6.2 with a general introduction to the problem of
quantizing a classical field theory. This is followed by a detailed discussion
of the conceptual relationship between inequivalent representations in which
we reach conclusions at variance with some of the extant literature. In
section 6.3, we explain how the state of motion of an observer is taken into
account when constructing a Fock space representation of a field.

6.2 Inequivalent field quantizations

In section 6.2.1 we discuss the Weyl algebra, which in the case of infinitely
many degrees of freedom circumscribes the basic kinematical structure of a
free Boson field. After introducing in section 6.2.2 some important concepts
concerning representations of the Weyl algebra in terms of operators on
Hilbert space, we shall be in a position to draw firm conclusions about the
conceptual relation between inequivalent representations in section 6.2.3.

6.2.1 The Weyl algebra

Consider how one constructs the quantum-mechanical analogue of a clas-
sical system with a finite number of degrees of freedom, described by a
2n-dimensional phase space S. Each point of S is determined by a pair of
vectors @,b € R whose components {a;} and {b;} encode all the position
and momentum components of the system

2(@) =Y ajz;,  pb) = bjp;. (6.1)
j=1 Jj=1
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To quantize the system, we impose the canonical commutation relations
(CCRs)

-, -, -, -,

[z(@), z(@)] = [p(b),p()] =0, [x(a@),p(b)] =i(@-b)I, (6.2)

and, then, seek a representation of these relations in terms of operators on a
Hilbert space H. In the standard Schrodinger representation, ‘H is the space
of square-integrable wavefunctions Lo(R™), (@) becomes the operator that
multiplies a wavefunction ¢ (x1,...,z,) by 3°7_; a;z;, and p(b) is the partial

n .0
7=1 b] axj .

Note the action of z(a@) is not defined on an element ¢ € La(R™) unless
x(@)1) is again square-integrable, and p(g) is not defined on v unless it is
suitably differentiable. This is not simply a peculiarity of the Schrédinger
representation. Regardless of the Hilbert space on which they act, two
self-adjoint operators whose commutator is a nonzero scalar multiple of the
identity, as in (6.2), cannot both be everywhere defined (KR 1997, Remark
3.2.9). To avoid the technical inconvenience of dealing with domains of
definition, it is standard to reformulate the representation problem in terms
of unitary operators which are bounded, and hence everywhere defined.

Introducing the two n-parameter families of unitary operators

differential operator —i )

— =,

U@) =e™@, v(E)=e?®  gbeR" (6.3)

it can be shown, at least formally, that the CCRs are equivalent to

=, -,

U@u@)=U@+a), VOVE)=VE+Y), (6.4)

U(@)Vv(b) = v (o)U(a), (6.5)
called the Weyl form of the CCRs. This equivalence holds rigorously in the
Schrodinger representation, however there are “irregular” representations
in which it fails (see Segal 1967, Sec. 1; Emch 1972, 228; Summers 2001).
Thus, one reconstrues the goal as that of finding a representation of the
Weyl form of the CCRs in terms of two concrete families of unitary operators
{U(@),V(b) : @b € R"} acting on a Hilbert space H that can be related,
via (6.3), to canonical position and momentum operators on H satisfying
the CCRs. We shall return to this latter “regularity” requirement later in
this section.

Though the position and momentum degrees of freedom have so far been
treated on a different footing, we can simplify things further by introducing
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the composite Weyl operators
W(a,b) := @2y U(@),  abeR" (6.6)

Combining this definition with Eqns. (6.4) and (6.5) yields the multiplica-
tion rule

W (@, byW (@, b') = e @@ 2w (g + & b+ 1), (6.7)

where

o((@,b), (@, b)) = (@ -b)— (@ b). (6.8)

Observe that o(-,-) is a symplectic form (i.e., an anti-symmetric, bilinear
functional) on S. (Note, also, that o is nondegenerate; i.e., if for any f € S,
o(f,g) =0forall g € S, then f =0.) We set

—. e =,

W(@,b)* := e @20 (—@)V (~b) = W(—a,—b). (6.9)
Clearly, then, any representation of the Weyl operators W (a, l_;) on a Hilbert
space H gives rise to a representation of the Weyl form of the CCRs, and
vice-versa.

Now, more generally, we allow our classical phase space S to be a vector
space of arbitrary dimension; e.g., S may be an infinite-dimensional space
constructed out of solutions to some relativistic wave equation. We assume
S comes equipped with a (nondegenerate) symplectic form o, and we say
that a family {Wr(f) : f € S} of unitary operators acting on some Hilbert
space H, satisfies the Weyl relations just in case (cf. (6.7), (6.9))

Wr(f)Wi(g) = e CED2W_(f + g), f.ge s, (6.10)

Wa(f)" = Wz(=f), fes. (6.11)

We may go on to form arbitrary linear combinations of the Weyl operators,
and thus obtain (at least some of) the self-adjoint operators that will serve
as observables of the system.

Let F be the complex linear span of the set of Weyl operators {Wr(f) :
f € S} acting on H,. (It follows from (6.10) that F is closed under taking
operator products.) We say that a bounded operator A on H, is uniformly
approximated by operators in F just in case for every ¢ > 0, there is an
operator A € F such that

(A — A)z| <, for all unit vectors x € H. (6.12)
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If we let A, denote the set of all bounded operators on H, that can be
uniformly approximated by elements in F, then A, is the C*-algebra gen-
erated by the Weyl operators {W,(f) : f € S}. In particular, A, is a
C*-subalgebra of the algebra B(H) of all bounded operators on H,, which
is itself uniformly closed and closed under taking adjoints A — A*.

Suppose now that {Wr(f) : f € S} and {Wy(f) : f € S} are two
systems of Weyl operators representing the same classical system but acting,
respectively, on two different Hilbert spaces H, and Hg. Let A;, Ay denote
the corresponding C*-algebras. A bijective mapping « : A; — Ay is called a
x-1somorphism just in case « is linear, multiplicative, and commutes with the
adjoint operation. We then have the following uniqueness result for the C*-
algebra generated by Weyl operators (see Bratteli & Robinson (henceforth,
BR) 1996, Thm. 5.2.8).

Proposition 6.1. There is a x-isomorphism o from Ay onto Ag such that
a(Wx(f)) = Wy(f) forall feS.

This Proposition establishes that the C*-algebra constructed from any rep-
resentation of the Weyl relations is, in fact, a unique object, independent of
the representation in which we chose to construct it. We shall denote this
abstract algebra, called the Weyl algebra over (S, o), by A[S, o] (and, when
no confusion can result, simply say “Weyl algebra” and write A for A[S, o]).
So our problem boils down to choosing a representation (w,Hr) of A[S, 0]
given by a mapping 7 : A[S, o] — B(H ) preserving all algebraic relations.
Note, also, that since the image w(A[S,o]) will always be an isomorphic
copy of A[S, o], m will always be one-to-one, and hence provide a faithful
representation of A[S, o].

With the representation-independent character of A[S, o], why should
we care any longer to choose a representation? After all, there is no techni-
cal obstacle to proceeding abstractly. We can take the self-adjoint elements
of A[S, o] to be the quantum-mechanical observables of our system. A lin-
ear functional w on A[S, 0] is called a state just in case w is positive (i.e.,
w(A*A) > 0) and normalized (i.e., w(I) = 1). As usual, a state w is said
to be pure (and mized otherwise) just in case it is not a nontrivial convex
combination of other states of 4. The dynamics of the system can be rep-
resented by a one-parameter group a; of automorphisms of A (i.e., each «ay
is just a map of A onto itself that preserves all algebraic relations). Hence,
if we have some initial state wg, the final state will be given by wy = wg o 4.
We can even supply definitions for the probability in the state w; that a
self-adjoint element A € A takes a value lying in some Borel subset of its
spectrum (Wald 1994, 79-80), and for transition probabilities between, and
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superpositions of, pure states of A (Roberts & Roepstorff 1969). At no
stage, it seems, need we ever introduce a Hilbert space as an essential ele-
ment of the formalism. In fact, Haag and Kastler (1964, 852) and Robinson
(1966, 488) maintain that the choice of a representation is largely a matter
of analytical convenience without physical implications.

Nonetheless, the abstract Weyl algebra does not contain unbounded op-
erators, many of which are naturally taken as corresponding to important
physical quantities. For instance, the total energy of the system, the canon-
ically conjugate position and momentum observables—which in field theory
play the role of the local field observables—and the total number of particles
are all represented by unbounded operators. Also, we shall see later that
not even any bounded function of the total number of particles (apart from
zero and the identity) lies in the Weyl algebra. Surprisingly, Irving Segal
(one of the founders of the mathematically rigorous approach to quantum
field theory) has written that this:

... has the simple if quite rough and somewhat oversimplified
interpretation that the total number of “bare” particles is devoid
of physical meaning. (Segal 1963, 56; see also Segal 1959, 12)

We shall return to this issue of physical meaning shortly. First, let us see
how a representation can be used to expand the observables of a system
beyond the abstract Weyl algebra.

Let F be a family of bounded operators acting on a representation space
H.. We say that a bounded operator A on H, can be weakly approximated
by elements of F just in case for any vector x € H, and any € > 0, there is
some A € F such that

|z, Az) — (z, Az)| < e. (6.13)

(Note the important quantifier change between the definitions of uniform
and weak approximation, and that weak approximation has no abstract
representation-independent counterpart.) Consider the family 7(A)~ of
bounded operators that can be weakly approximated by elements of 7(.A),
i.e.,, m(A)~ is the weak closure of m(A4). By von Neumann’s double com-
mutant theorem, 7(A)~ = m(A)”, where the prime operation on a family
of operators (here applied twice) denotes the set of all bounded operators
on H, commuting with each member of that family. w(A)” is called the
von Neumann algebra generated by 7(A). Clearly m(A) C 7(A)”, however
we can hardly expect that 7(A) = 7(A)” when H, is infinite-dimensional
(which it must be, since there is no finite-dimensional representation of the
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Weyl algebra for even a single degree of freedom). Nor should we gener-
ally expect that 7w(A)” = B(H,), though this does hold in “irreducible”
representations, as we explain in the next subsection.

We may now expand our observables to include all self-adjoint operators
in m(A)”. And, although 7(.A)” still contains only bounded operators, it is
easy to associate (potentially physically significant) unbounded observables
with this algebra as well. We say that a (possibly unbounded) self-adjoint
operator A on H is affiliated with 7(A)” just in case all A’s spectral pro-
jections lie in 7(A)”. Of course, we could have adopted the same definition
for self-adjoint operators “affiliated to” m(.A) itself, but C*-algebras do not
generally contain nontrivial projections (or, if they do, will not generally
contain even the spectral projections of their self-adjoint members).

As an example, suppose we now demand to have a (so-called) regular
representation 7, in which, for each fixed f € S, the mapping R > ¢t —
m(W(tf)) is weakly continuous. Then Stone’s theorem will guarantee the
existence of unbounded self-adjoint operators {®(f) : f € S} on H, sat-
isfying 7(W(tf)) = e®*®) and it can be shown that all these operators
are affiliated to 7(A[S,o])” (KR 1997, Ex. 5.7.53(ii)). In this way, we can
recover as observables our original canonically conjugate positions and mo-
menta (cf. Eqn. (6.3)), which the Weyl relations ensure will satisfy the
original unbounded form of the CCRs.

It is important to recognize, however, that by enlarging the set of observ-
ables to include those affiliated to w(A[S,c])”, we have now left ourselves
open to arbitrariness. In contrast to Proposition 6.1, we now have:

Proposition 6.2. If S is infinite-dimensional, then there are reqular rep-
resentations m,¢ of A[S,o| for which there is no x-isomorphism « from

w(A[S,c])" onto ¢(A[S, o])" such that a(m(W (f))) = ¢(W(f)) forall f € S.

This occurs when the representations are “disjoint,” which we discuss in the
next subsection.

Proposition 6.2 is what motivates Segal to argue that observables affili-
ated to the weak closure m(.A[S, o])” in a representation of the Weyl algebra
are “somewhat unphysical” and “have only analytical significance” (1963,
11-14, 134).! Segal is explicit that by “physical” he means “empirically

! Actually, Segal consistently finds it convenient to work with a strictly larger algebra
than our (minimal) Weyl algebra, sometimes called the mode finite or tame Weyl algebra.
However, both Proposition 1 (see Baez et al. 1992, Thm. 5.1) and Proposition 2 continue
to hold for the tame Weyl algebra (also cf. Segal 1967, 128-129).
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measurable in principle” (1963, 11). We should not be confused by the
fact that he often calls observables that fail this test “conceptual” (sug-
gesting they are more than mere analytical crutches). For in (Baez et al.
1992, 145), Segal gives as an example the bounded self-adjoint operator
cos(P) + (Q* +1)7! on La(R) “for which no known ‘Gedanken experiment’
will actually directly determine the spectrum, and so [it] represents an ob-
servable in a purely conceptual sense.” Thus, the most obvious reading of
Segal’s position is that he subscribes to an operationalist view about the
physical significance of theoretical quantities. Indeed, since good reasons
can be given for the impossibility of exact (“sharp”) measurements of ob-
servables in the von Neumann algebra generated by a C*-algebra (see Wald
1994, 79ff; Halvorson 2001a), operationalism explains Segal’s dismissal of
the physical (as opposed to analytical) significance of observables not in the
Weyl algebra per se. (And it is worth recalling that Bridgman himself was
similarly unphased by having to relegate much of the mathematical struc-
ture of a physical theory to “a ghostly domain with no physical relevance”
(1936, 116).)

Of course, insofar as operationalism is philosophically defensible at all,
it does not compel assent. And, in this instance, Segal’s operationalism has
not dissuaded others from taking the more liberal view advocated by Wald:

...one should not view [the Weyl algebra] as encompassing all
observables of the theory; rather, one should view [it] as en-
compassing a “minimal” collection of observables, which is suf-
ficiently large to enable the theory to be formulated. One may
later wish to enlarge [the algebra] and/or further restrict the
notion of “state” in order to accommodate the existence of ad-
ditional observables. (Wald 1994, 75)

The conservative and liberal views entail quite different commitments about
the physical equivalence of representations—or so we shall argue.

6.2.2 Equivalence and disjointness of representations

It is essential that precise mathematical definitions of equivalence be clearly
distinguished from the, often dubious, arguments that have been offered
for their conceptual significance. We confine this section to discussing the
definitions.

Since our ultimate goal is to discuss the Minkowski and Rindler quan-
tizations of the Weyl algebra, we only need to consider the case where one
of the two representations at issue, say m, is “irreducible” and the other, ¢,
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is “factorial”. A representation 7 of A is called irreducible just in case no
non-trivial subspace of the Hilbert space H, is invariant under the action
of all operators in 7(A). It is not difficult to see that this is equivalent to
m(A)" = B(Hr) (using the fact that a subspace is left invariant by 7(.A) just
in case the projection onto that subspace commutes with all operators in
m(A)). A representation ¢ of A is called factorial just in case the von Neu-
mann algebra ¢(.A)” is a factor, i.e., it has trivial center (the only operators
in ¢(A)” that commute with all other operators in ¢(A)” are multiples of
the identity). Since B(H;) is a factor, m is irreducible only if it is factorial.
Thus, the Schrodinger representation of the Weyl algebra is both irreducible
and factorial.

The strongest form of equivalence between representations is unitary
equivalence: ¢ and 7 are said to be unitarily equivalent just in case there is
a unitary operator U mapping H, onto Hy, and such that

Up(A) Ut =7(A) VAe A (6.14)

There are two other weaker definitions of equivalence.

Given a family ; of irreducible representations of the Weyl algebra on
Hilbert spaces H;, we can construct another (reducible) representation ¢ of
the Weyl algebra on the direct sum Hilbert space ), &H;, by setting

$(A) =) om(d), AcA (6.15)

If each representation (m;, H;) is unitarily equivalent to some fixed represen-
tation (m,H), we say that ¢ = > @m; is a multiple of the representation 7.
Furthermore, we say that two representations of the Weyl algebra, ¢ (fac-
torial) and 7 (irreducible), are quasi-equivalent just in case ¢ is a multiple
of 7. It should be obvious from this characterization that quasi-equivalence
weakens unitary equivalence. Another way to see this is to use the fact (KR
1997, Def. 10.3.1, Cor. 10.3.4) that quasi-equivalence of ¢ and 7 is equiva-
lent to the existence of a *-isomorphism « from ¢(A)” onto 7(A)” such that
a(p(A)) =m(A) for all A € A. Unitary equivalence is then just the special
case where the x-isomorphism « can be implemented by a unitary operator.

If ¢ is not even quasi-equivalent to 7, then we say that ¢ and 7 are dis-
joint representations of A.2 Note, then, that if both 7 and ¢ are irreducible,

In general, disjointness is not defined as the negation of quasi-equivalence, but by
the more cumbersome formulation: T'wo representations m, ¢ are disjoint just in case 7
has no “subrepresentation” quasi-equivalent to ¢, and ¢ has no subrepresentation quasi-
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they are either unitarily equivalent or disjoint.
We can now state the following pivotal result (von Neumann 1931).

Stone-von Neumann Uniqueness Theorem. When S is finite-dimensional,
every reqular representation of A[S, o] is quasi-equivalent to the Schriodinger
representation.

This theorem is usually interpreted as saying that there is a unique quantum
theory corresponding to a classical theory with finitely-many degrees of free-
dom. (But see section 7.5, where we question this interpretation of the the-
orem.) The theorem fails in field theory—where S is infinite-dimensional—
opening the door to disjoint representations and Proposition 6.2.

There is another way to think of the relations between representations,
in terms of states. Recall the abstract definition of a state of a C*-algebra,
as simply a positive normalized linear functional on the algebra. Since,
for any representation 7, 7w(.A) is isomorphic to A, 7w induces a one-to-one
correspondence between the abstract states of A and the abstract states of
m(A). Note now that some of the abstract states on 7(A) are the garden-
variety density operator states that we are familiar with from elementary
quantum mechanics. In particular, define wp on 7(A) by picking a density
operator D on H, and setting

wp(A) == Te(DA), A€ n(A). (6.16)

In general, however, there are abstract states of w(A) that are not given by
density operators via Eqn. (6.16).> We say then that an abstract state w
of m(A) is normal just in case it is given (via Eqn. (6.16)) by some density
operator D on H,. We let §(m) denote the subset of the abstract state
space of A consisting of those states that correspond to normal states in the
representation 7, and we call §(7) the folium of the representation 7. That
is, w € §(m) just in case there is a density operator D on H, such that

w(A) = Tr(Dr(4)), Aec A (6.17)

equivalent to m. Since we are only interested, however, in the special case where 7 is
irreducible (and hence has no non-trivial subrepresentations) and ¢ is “factorial” (and
hence is quasi-equivalent to each of its subrepresentations), the cumbersome formulation
reduces to our definition.

3 Gleason’s theorem does not rule out these states because it is not part of the definition
of an abstract state that it be countably additive over mutually orthogonal projections.
Indeed, such additivity does not even make sense abstractly, because an infinite sum of
orthogonal projections can never converge uniformly, only weakly (in a representation).
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We then have the following equivalences (KR 1997, Prop. 10.3.13):

7 and ¢ are quasi-equivalent <= §(7) = F(¢),
7 and ¢ are disjoint <= F(m) NF(¢p) = 0.

In other words, m and ¢ are quasi-equivalent just in case they share the same
normal states; and 7 and ¢ are disjoint just in case they have no normal
states in common.

In fact, if 7 is disjoint from ¢, then all normal states in the representation
7w are “orthogonal” to all normal states in the representation ¢. We may
think of this situation intuitively as follows. Define a third representation
of Aon Hy @ Hy by setting

Y(A)=m(A) @ d(A), AcA (6.18)

Then, every normal state of the representation 7 is orthogonal to every
normal state of the representation ¢.* This makes sense of the oft-repeated
phrase (see e.g. Gerlach 1989) that “The Rindler vacuum is orthogonal to
all states in the Minkowski vacuum representation”.

While not every abstract state of A will be in the folium of a given
representation, there is always some representation of A in which the state
is normal, as a consequence of the following (see KR 1997, Thms. 4.5.2 and
10.2.3).

Gelfand-Naimark-Segal Theorem. Any abstract state w of a C*-algebra
A gives rise to a unique (up to unitary equivalence) representation (m,,, Hy)
of A and vector Q, € H,, such that

w(A) = (Q, 1, (A)Q), A€ A, (6.19)

and such that the set {m,(A)Q, : A € A} is dense in H,,. Moreover, w,, is
wrreducible just in case w s pure.

The triple (7, Hw, ) is called the GNS representation of A induced by
the state w, and €, is called a cyclic vector for the representation. We shall
see in the next main section how the Minkowski and Rindler vacuum states
of A induce disjoint GNS representations.

There is a third notion of equivalence of representations, still weaker
than quasi-equivalence. Let 7 be a representation of A, and let F(7) be the

4This intuitive picture may be justified by making use of the “universal representation”
of A (KR 1997, Thm. 10.3.5).
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folium of . We say that an abstract state w of A can be weak* approximated
by states in §(7) just in case for each € > 0, and for each finite collection
{A;:i=1,...,n} of operators in A, there is a state w’ € F(m) such that

|w(A;) — W' (A)] <, i=1,...,n. (6.20)

Two representations 7, ¢ are then said to be weakly equivalent just in case
all states in §F(7) may be weak™ approximated by states in F(¢) and vice
versa. In other words, the weak™ closure of F(7) contains §(¢) and vice
versa. We then have the following fundamental result (Fell 1960).

Fell’s Theorem. Let w be a faithful representation of a C*-algebra A.
Then, every abstract state of A is weak* approximated by states in F(w).

In particular, then, it follows that all representations of A[S, o] are weakly
equivalent.

In summary, we have the following implications for any two representa-
tions 7, ¢:

Unitarily equivalent = Quasi-equivalent = Weakly equivalent.

If 7 and ¢ are both irreducible, then the first arrow is reversible.

6.2.3 Physical equivalence of representations

Do disjoint representations yield physically inequivalent theories? It depends
on what one takes to be the physical content of a theory, and what one means
by “equivalent theories”—subjects about which philosophers of science have
had plenty to say.

Recall that Reichenbach (1938) deemed two theories “the same” just in
case they are empirically equivalent, i.e., they are confirmed equally under all
possible evidence. Obviously this criterion, were we to adopt it here, would
beg the question against those who (while agreeing that, strictly speaking,
only self-adjoint elements of the Weyl algebra can actually be measured)
attribute physical significance to “global” quantities only definable in a rep-
resentation, like the total number of particles.

A stronger notion of equivalence, formulated by Glymour (1971) (who
proposed it only as a necessary condition), is that two theories are equivalent
only if they are “intertranslatable”. This is often cashed out in logical terms
as the possibility of defining the primitives of one theory in terms of those
of the other so that the theorems of the first appear as logical consequences
of those of the second, and vice-versa. Prima facie, this criterion is ill-suited
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to the present context, because the different “theories” are not presented
to us as syntactic structures or formalized logical systems, but rather two
competing algebras of observables whose states represent physical predic-
tions. In addition, intertranslatability per se has nothing to say about what
portions of the mathematical formalism of the two physical theories being
compared ought to be intertranslatable, and what should be regarded as
“surplus mathematical structure” not required to be translated.

Nevertheless, we believe the intertranslatability thesis can be naturally
expressed in the present context and rendered neutral as between the con-
servative and liberal approaches to physical observables discussed earlier.
Think of the Weyl operators {¢(W (f)) : f € S} and {m(W(f)): f € S} as
the primitives of our two “theories”, in analogy with the way the natural
numbers can be regarded as the primitives of a “theory” of real numbers.
Just as we may define rational numbers as ratios of natural numbers, and
then construct real numbers as the limits of Cauchy sequences of rationals,
we construct the Weyl algebras ¢(A) and m(A) by taking linear combina-
tions of the Weyl operators and then closing in the uniform topology. We
then close in the weak topology of the two representations to obtain the
von Neumann algebras ¢(A)” and m(A)”. Whether the observables affili-
ated with this second closure have physical significance is controversial, as is
whether we should be conservative and take only normal states in the given
representation to be physical, or be more liberal and admit a broader class
of algebraic states. The analogue of the “theorems” of the theory are then
statements about the expectation values dictated by the physical states for
the self-adjoint elements in the physically relevant algebra of the theory.

We therefore propose the following formal rendering of Glymour’s inter-
translatability thesis adapted to the present context: Representations ¢ and
7 are physically equivalent only if there exists a bijective mapping « from
the physical observables of the representation ¢ to the physical observables
of the representation 7, and another bijective mapping § from the physical
states of the representation ¢ to the physical states of the representation ,
such that

a(e(W(f))) ==W(f), VfeS5, (6.21)

(“primitives”)

Bw)(a(A)) =w(A), V states w, V observables A. (6.22)

(“theorems”)
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Of course, the notion of equivalence we obtain depends on how we construe
the domain of the universal quantifiers in (6.22). According to a conser-
vative rendering of observables, only the self-adjoint elements of the Weyl
algebra 7(.A) are genuine physical observables of the representation 7. (More
generally, an unbounded self-adjoint operator on H, is a physical observ-
able only if all of its bounded functions lie in 7(A4).) On the other hand,
a liberal rendering of observables considers all self-adjoint operators in the
weak closure m(A)~ of m(A) as genuine physical observables. (More gener-
ally, those unbounded self-adjoint operators whose bounded functions lie in
7m(A)~, i.e., all such operators affiliated with 7(A)~, should be considered
genuine physical observables.) A conservative with respect to states claims
that only the density operator states (i.e., normal states) of the algebra
m(A) are genuine physical states. On the other hand, a liberal with respect
to states claims that all algebraic states of 7(.A) should be thought of as
genuine physical states. We thereby obtain four distinct necessary condi-
tions for physical equivalence, according to whether one is conservative or
liberal about observables, and conservative or liberal about states.’?

Arageorgis (1995, 302) and Arageorgis et al. (2001, 3) also take the
correct notion of physical equivalence in this context to be intertranslata-
bility. On the basis of informal discussions (with rather less supporting
argument than one would have liked), they claim that physical equivalence
of representations requires that they be unitarily equivalent. (They do not
discuss quasi-equivalence.) We disagree with this conclusion, but there is
still substantial overlap between us. For instance, with our precise neces-
sary condition for physical equivalence above, we may establish the following
elementary result.

Proposition 6.3. Under the conservative approach to states, ¢ and w are
physically equivalent representations of A only if they are quasi-equivalent.

With somewhat more work, the following result may also be established.”

5The distinction between the conservative and liberal positions about observables could
be further ramified by taking into account the distinction—which is suppressed throughout
this chapter—between local and global observables. In particular, if all (and only) locally
measurable observables have genuine physical status, then physical equivalence of 7 and ¢
would require a bijection o between local observables in w(.A[S, o])™ and local observables
in ¢(A[S,0])”. Similarly, the distinction between the conservative and liberal positions
about states could be further ramified by taking into account the distinction between
normal states and “locally normal” states.

6Qur proof in the appendix makes rigorous Arageorgis’ brief (and insufficient) reference
to Wigner’s symmetry representation theorem in his (1995, 302, footnote).
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Proposition 6.4. Under the liberal approach to observables, ¢ and 7 are
physically equivalent representations of A only if they are quasi-equivalent.

The above results leave only the position of the “conservative about
observables/liberal about states” undecided. However, we claim, pace Ara-
georgis et al., that a proponent of this position can satisfy conditions (6.21),
(6.22) without committing himself to quasi-equivalence of the representa-
tions. Since he is conservative about observables, Proposition 6.1 already
guarantees the existence of a bijective mapping a—in fact, a x-isomorphism
from the whole of ¢(.A) to the whole of w(.A)—satisfying (6.21). And if he is
liberal about states, the state mapping 8 need not map any normal state of
¢(A) into a normal state of 7(A), bypassing the argument for Proposition
6.3. Indeed, since the liberal takes all algebraic states of ¢(.A) and 7(A)
to be physically significant, for any algebraic state w of ¢(A), the bijec-
tive mapping 3 that sends w to the state w o a~! on m(A) trivially satisfies
condition (6.22) even when ¢ and 7 are disjoint.

Though we have argued that Segal was conservative about observables,
we are not claiming he was liberal about states. In fact, Segal consistently
maintained that only the “regular states” of the Weyl algebra have physical
relevance (1961, 7; 1967, 120, 132). A state w of A[S, o] is called regular
just in case the map f — w(W(f)) is continuous on all finite-dimensional
subspaces of S; or, equivalently, just in case the GNS representation of
A[S, o] determined by w is regular (Segal 1967, 134). However, note that,
unlike normality of a state, regularity is representation-independent. Taking
the set of all regular states of the Weyl algebra to be physical is therefore still
liberal enough to permit satisfaction of condition (6.22). For the mapping
0 of the previous paragraph trivially preserves regularity, insofar as both w
and w o o~ ! induce the same abstract regular state of A[S, o].

Our verdict, then, is that Segal, for one, is not committed to saying that
physically equivalent representations are quasi-equivalent. And this explains
why he sees fit to define physical equivalence of representations in such a way
that Proposition 6.1 secures the physical equivalence of all representations
(see Segal 1961, Defn. 1(c)). (Indeed, Segal regards Proposition 6.1 as the
appropriate generalization of the Stone-von Neumann uniqueness theorem
to infinite-dimensional S.) One might still ask what the point of passing
to a concrete Hilbert space representation of A[S, o] is if one is going to
allow as physically possible regular states not in the folium of the chosen
representation. The point, we take it, is that if we are interested in drawing
out the predictions of some particular regular state, such as the Minkowski
vacuum or the Rindler vacuum, then passing to a particular representation
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will put at our disposal all the standard analytical techniques of Hilbert
space quantum mechanics to facilitate calculations in that particular state.”

Haag and Kastler (1964, 852) and Robinson (1966, 488) have argued
that by itself the weak equivalence of all representations of the Weyl alge-
bra entails their physical equivalence.® Their argument starts from the fact
that, by measuring the expectations of a finite number of observables {4;}
in the Weyl algebra, each to a finite degree of accuracy ¢, we can determine
the state of the system only to within a weak* neighborhood. But by Fell’s
density theorem, states from the folium of any representation lie in this
neighborhood. So we can never determine in practice which representation
is the physically “correct” one and they all, in some (as yet, unarticulated!)
sense, carry the same physical content. And as a corollary, choosing a rep-
resentation is simply a matter of convention.

Clearly the necessary conditions for physical equivalence we have pro-
posed constitute very different notions of equivalence than weak equivalence,
so we are not disposed to agree with this argument. Evidently it presupposes
that only the observables in the Weyl algebra itself are physically significant,
which we have granted could be grounded in operationalism. However, there
is an additional layer of operationalism that the argument must presuppose:
scepticism about the physical meaning of postulating an absolutely precise
state for the system. If we follow this scepticism to its logical conclusion, we
should instead think of physical states of the Weyl algebra as represented by
weak™® neighborhoods of algebraic states. What it would then mean to fal-
sify a state, so understood, is that some finite number of expectation values
measured to within finite accuracy are found to be incompatible with all the
algebraic states in some proposed weak™ neighborhood. Unfortunately, no
particular “state” in this sense can ever be fully empirically adequate, for
any hypothesized state (= weak™ neighborhood) will be subject to constant
revision as the accuracy and number of our experiments increase. We agree
with Summers (2001) that this would do irreparable damage to the predic-
tive power of the theory—damage that can only be avoided by maintaining

"In support of not limiting the physical states of the Weyl algebra to any one repre-
sentation’s folium, one can also cite the cases of non-unitarily implementable dynamics
discussed by Arageorgis et al. (2001) in which dynamical evolution occurs between regular
states that induce disjoint GNS representations. In such cases, it would hardly be coherent
to maintain that regular states dynamically accessible to one another are not physically
co-possible.

8Indeed, the term “physical equivalence” is often used synonomously with weak equiv-
alence; for example, by Emch (1972, 108), who, however, issues the warning that “we
should be seriously wary of semantic extrapolations” from this usage. Indeed!
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that there is a correct algebraic state.

We do not, however, agree with Summers’ presumption (tacitly endorsed
by Arageorgis et al. 2001) that we not only need the correct algebraic state,
but “...the correct state in the correct representation” (2001, 13; italics
ours). This added remark of Summers’ is directed against the convention-
alist corollary to Fell’s theorem. Yet we see nothing in the point about
predictive power that privileges any particular representation, not even the
GNS representation of the predicted state. We might well have good rea-
son to deliberately choose a representation in which the precise algebraic
state predicted is not normal. (For example, Kay (1985) does exactly this,
by “constructing” the Minkowski vacuum as a thermal state in the Rindler
quantization.) The role Fell’s theorem plays is then, at best, methodolog-
ical. All it guarantees is that when we calculate with density operators in
our chosen represention, we can always get a reasonably good indication of
the predictions of whatever precise algebraic state we have postulated for
the system.

6.2.4 The liberal stance on observables

So much for the conservative stance on observables. An interpreter of quan-
tum field theory is not likely to find it attractive, if only because none of
the observables that have any chance of underwriting the particle concept
lie in the Weyl algebra. But suppose, as interpreters, we adopt the liberal
approach to observables. Does the physical inequivalence of disjoint rep-
resentations entail their incompatibility, or even incommensurability? By
this, we do not mean to conjure up Kuhnian thoughts about incommen-
surable “paradigms”, whose proponents share no methods to resolve their
disputes. Rather, we are pointing to the (more Feyerabendian?) possibility
of an unanalyzable shift in meaning between disjoint representations as a
consequence of the fact that the concepts (observables and/or states) of one
representation are not wholly definable or translatable in terms of those of
the other.

One might think of neutralizing this threat by viewing disjoint repre-
sentations as sub-theories or models of a more general theory built upon
the Weyl algebra. Consider the analogy of two different classical systems,
modelled, say, by phase spaces of different dimension. Though not physi-
cally equivalent, these models hardly define incommensurable theories in-
sofar as they share the characteristic kinematical and dynamical features
that warrant the term “classical.” Surely the same could be said of disjoint
representations of the Weyl algebra?
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There is, however, a crucial disanalogy that needs to be taken into ac-
count. In the case of the Minkowski and Rindler representations, physicists
freely switch between them to describe the quantum state of the very same
“system”—in this case, the quantum field in a fixed region of spacetime
(see, e.g., Unruh & Wald 1984; Wald 1994, Sec. 5.1). And, as we shall see
later, the weak closures of these representations provide physically inequiv-
alent descriptions of the particle content in the region. So it is tempting
to view this switching back and forth between disjoint representations as
conceptually incoherent (Arageorgis 1995, 268), and to see the particle con-
cepts associated to the representations as not just different, but outright
incommensurable (Arageorgis et al. 2001).

We shall argue that this view, tempting as it is, goes too far. For suppose
we do take the view that the observables affiliated to the von Neumann
algebras generated by two disjoint representations ¢ and 7 simply represent
different physical aspects of the same physical system. If we are also liberal
about states (not restricting ourselves to any one representation’s folium),
then it is natural to ask what implications a state w of our system, that
happens to be in the folium of ¢, has for the observables in 7(A)”. In many
cases, it is possible to extract a definite answer.

In particular, any abstract state w of A gives rise to a state on 7(A),
which may be extended to a state on the weak closure 7(A)~ (KR 1997,
Thm. 4.3.13). The only catch is that unless w € F(m), this extension will
not be unique. For, only normal states of 7(.A) possess sufficiently nice conti-
nuity properties to ensure that their values on 7(.A) uniquely fix their values
on the weak closure 7(A)~ (see KR 1997, Thm. 7.1.12). Howewver, it may
happen that all extensions of w agree on the expectation value they assign to
a particular observable affiliated to 7(A)~. This is the strategy we shall use
to make sense of assertions such as “The Minkowski vacuum in a (Rindler)
spacetime wedge is full of Rindler quanta” (cf., e.g., DeWitt 1979a). The
very fact that such assertions can be made sense of at all takes the steam
out of claims that disjoint representations are necessarily incommensurable.
Indeed, we shall ultimately argue that this shows disjoint representations
should not be treated as competing “theories” in the first place. Rather,
they are better viewed as supplying physically different, “complementary”
perspectives on the same quantum system from within a broader theoretical
framework that does not privilege a particular representation.
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6.3 Constructing representations

We now explain how to construct “Fock representations” of the CCRs. In
sections 6.3.1 and 6.3.2 we show how this construction depends on one’s
choice of preferred timelike motion in Minkowski spacetime. In section 6.4,
we show that alternative choices of preferred timelike motion can result in
unitarily inequivalent—indeed, disjoint—representations.

6.3.1 First quantization (“Splitting the frequencies”)

The first step in the quantization scheme consists in turning the classical
phase space (S,0) into a quantum-mechanical “one particle space”—i.e., a
Hilbert space. The non-uniqueness of the quantization scheme comes in at
this very first step.

Depending on our choice of preferred timelike motion, we will have a
one-parameter group 73 of linear mappings from S onto S representing the
evolution of the classical system in time. The flow ¢ — T} should also
preserve the symplectic form. A bijective real-linear mapping 7 : S +— S is
called a symplectomorphism just in case T preserves the symplectic form;
ie,o(Tf,Tg)=0o(f,g) forall f,geS.

We say that J is a complez structure for (S, o) just in case

1. J is a symplectomorphism,
2. J2=—1I,
3. o(f,Jf) >0, 0#£feb.

Relative to a complex structure J, we can extend the scalar multiplication
on S to complex numbers; viz., define multiplication by a + ib by setting
(a+1ib)f :=af +bJf € S. We can also define an inner product (-,-); on
the resulting complex vector space by setting

(f,9)g :=0o(f, Jg) +io(f,9), frges. (6.23)

We let Sy denote the Hilbert space that results when we equip (5, 0) with
the extended scalar multiplication and inner product (-,-); and then take
the completion in the usual way.

A symplectomorphism T is (by assumption) a real-linear operator on
S. However, it does not automatically follow that T is a complex-linear
operator on Sy, since T(if) = i(Tf) may fail. If, however, T' commutes
with J, then T will be a complex-linear operator on Sy, and it is easy to
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see that (T'f,Tqg); = (f,g)s for all f,g € Sy, so T would in fact be unitary.
Accordingly, we say that a group T; of symplectomorphisms on (S,0) is
unitarizable relative to J just in case [J, T3] = 0 for all ¢t € R.

If T; is unitarizable and ¢ — 7T} is weakly continuous, so that we have
T; = e (by Stone’s theorem), we say that T} has positive energy just in
case H is a positive operator. In general, we say that (H,U;) is a quantum
one particle system just in case H is a Hilbert space and U; is a weakly
continuous one-parameter unitary group on H with positive energy. Kay
(1979) proved:

Theorem (Kay). Let T; be a one-parameter group of symplectomorphisms
of (S,0). If there is a complex structure J on (S,0) such that (Sy,Tt) is a
quantum one particle system, then J is unique.

Physically, the time translation group 71; determines a natural decomposi-
tion (or “splitting”) of the solutions of the relativistic wave equation we are
quantizing into those that oscillate with purely positive and with purely neg-
ative frequency with respect to the motion. This has the effect of uniquely
fixing a choice of J, and the Hilbert space Sy then provides a representation
of the positive frequency solutions alone.’

We shall see in the next section how the representation space of a ‘Fock’
representation of the Weyl algebra is constructed directly from the Hilbert
space Sy. Thus, as we claimed, the nonuniqueness of the resulting represen-
tation stems entirely from the arbitrary choice of the time translation group
T; in Minkowski spacetime and the complex structure J on S it determines.

6.3.2 Second quantization (Fock space)

Once we have used some time translation group 7; to fix the Hilbert space
Sy, the “second quantization” procedure yields a unique representation
(m, Hy) of the Weyl algebra A[S, o].

Let ‘H™ denote the n-fold symmetric tensor product of S; with itself.
That is, using S% to denote S; ® --- ® Sy (n times), H" = P (S%}) where
P, is the projection onto the symmetric subspace. Then we define a Hilbert
space

FS)H)=CoH'oH*oH} D, (6.24)

9For more physical details, see Fulling (1972, Secs. VIIL.3,4) and Wald (1994, 41-42,
63, 111).
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called the bosonic Fock space over Sj. Let
Q:=12000a---, (6.25)

denote the privileged “Fock vacuum” state in F(Sy).

Now, we define creation and annihilation operators on F(S;) in the
usual way. For any fixed f € S, we first consider the unique bounded linear
extensions of the mappings a(f) : ST ' — S% and a,(f) : S7 — 87!
defined by the following actions on product vectors

an(f)(fL1@ @ fu1)=f@i® @ fu, (6.26)

an(f) (1@ @ fo) =(f,fi)s ® @ fa (6.27)

We then define the unbounded creation and annihilation operators on F(Sy)
by
a*(f) = ai(f) ® V2Pra3(f) © V3Pyas(f) @ - (6.28)

alf) = 0@ a1 (f) ® V2as(f) ®V3as(f) & --- . (6.29)

(Note that the mapping f — a*(f) is linear while f +— a(f) is anti-linear.)

As the definitions and notation suggest, a*(f) and a(f) are each other’s
adjoint, a*(f) is the creation operator for a particle with wavefunction f, and
a(f) the corresponding annihilation operator. The unbounded self-adjoint
operator N(f) = a*(f)a(f) represents the number of particles in the field
with wavefunction f (unbounded, because we are describing bosons to which
no exclusion principle applies). Summing N(f) over any J-orthonormal
basis of wavefunctions in Sy, we obtain the total number operator N on
F(Sy), which has the form

N=001®203® --. (6.30)
Next, we define the self-adjoint “field operators”

O(f) =272 (f) +alf), feS (6.31)

(In heuristic discussions of free quantum field theory, these are normally
encountered as “operator-valued solutions” ®(x) to a relativistic field equa-
tion at some fixed time. However, if we want to associate a properly defined
self-adjoint field operator with the spatial point x, we must consider a neigh-
borhood of x, and an operator of form ®(f), where the “test-function” f € S
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has support in the neighborhood.!?) Defining the unitary operators
m(W(tf)) := exp(it®(f)), teR, fes, (6.32)

it can then be verified (though it is not trivial) that the w(W(f)) satisfy the
Weyl form of the CCRs. In fact, the mapping W(f) — w(W(f)) gives an
irreducible regular representation m of A[S, o] on F(Sy).

We also have

Qa(W(f))Q =e BHsA - feg. (6.33)

(We use angle brackets to distinguish the inner product of F(S;) from that
of §;.) The vacuum vector Q € F(S;) defines an abstract regular state wy
of A[S, o] via wy(A) := (Q,7(A)Q) for all A € A[S,0]. Since the action
of m(A[S,c]) on F(Sy) is irreducible, {mr(A)Q : A € A[S, o]} is dense in
F(Sy) (else its closure would be a non-trivial subspace invariant under all
operators in w(A[S, o])). Thus, the Fock representation of A[S, o] on F(S)
is unitarily equivalent to the GNS representation of A[S, o] determined by
the pure state wj.

In sum, a complex structure J on (S, o) gives rise to an abstract vacuum
state wy on A[S, o] whose GNS representation (7, Hw,, ;) is just the
standard Fock vacuum representation (7, F(Sy),2). Note also that invert-
ing Eqn. (6.31) yields

a*(f) 27 12(®(f) —i®(if)), (6.34)
a(f) = 27V2(®(f) +i®(if)). (6.35)

Thus, we could just as well have arrived at the Fock representation of A[S, o]
“abstractly” by starting with the pure regular state wy on A[S, o] as our
proposed vacuum, exploiting its regularity to guarantee the existence of field
operators {®(f) : f € S} acting on H,,,, and then using Eqns. (6.34) to
define a*(f) and a(f) (and, from thence, the number operators N(f) and
N).

There is a natural way to construct operators on F(Sy) out of operators
on the one-particle space Sy, using the second quantization map I' and its
“derivative” dI'. Unlike the representation map , the operators on F(Sy) in
the range of I' and dI" do not “come from” A[S, o], but rather B(S;). Since

%The picture of a quantum field as an operator-valued field—or, as Teller (1995, Ch. 5)
aptly puts it, a field of “determinables”—unfortunately, has no mathematically rigorous
foundation.
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the latter depends on how S was complexified, we cannot expect second
quantized observables to be representation-independent.

To define dT', first let H be a self-adjoint (possibly unbounded) operator
on §y. We define H,, on ‘H" by setting Hy = 0 and

Hy(Pr(fi® @ fa)) = Py (Zﬁ@fz@---@Hﬁ@---@fn), (6.36)

i=1

for all f; in the domain of H, and then extending by continuity. It then
follows that &,>0H), is an “essentially selfadjoint” operator on F(Sy) (see
BR 1996, 8). We let

dT(H) := €P H,, (6.37)

denote the resulting (closed) self-adjoint operator. The simplest example
occurs when we take H = I, in which case it is easy to see that d'(H) =
N. However, the total number operator N is not affiliated with the Weyl
algebra.!!

Proposition 6.5. Let (m, F(H)) be a Fock representation of A[S,o]. If
S is infinite-dimensional, then w(A[S,0]) contains no non-trivial bounded
functions of the total number operator on F(H).

In particular, 7w(A[S,o]) does not contain any of the spectral projections
of N. Thus, while the conservative about observables is free to refer to
the abstract state wy of A[S, 0] as a “vacuum” state, he cannot use that
language to underwrite the claim that wy is a state of “no particles”!
To define I, let U be a unitary operator on Sy. Then U,, = PL(U®---®
U) is a unitary operator on H". We define the unitary operator I'(U) on
F(81) by
L(U) := P U, (6.38)

n>0

If Uy = e is a weakly continuous unitary group on Sy, then I'(U;) is a
weakly continuous group on F(S;), and we have

L(Uy) = e ), (6.39)

In particular, the one-particle evolution T} = e that was used to fix J

" Our proof in the appendix reconstructs the argument briefly sketched by Segal (1959,
12).
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lifts to a field evolution given by I'(T}), where dI'(H) represents the energy
of the field and has the vacuum (2 as a ground state.
The maps 7 and I' satisfy the following relation:

T(WU)) =TU)=(W(f)rO), (6.40)

for any unitary operator U on S;. Taking the phase transformation U = eI,
it follows that

(W (e f)) = e Na(W(f))e?, t eR. (6.41)
Using Eqn. (6.33), it also follows that
(LO)Q,m(W(f)LU)Y) = (Q,m(W (U [)Q) = (2, x(W(f)Q). (6.42)

Thus, Q and T'(U)$2 determine the same state of w(A[S, o])~. If 7(A[S,0])” =
B(F(Sy)), then T'(U)Q2 = ¢ for some complex number ¢ of unit modulus.
In particular, the vacuum is invariant under the group I'(7}), and is therefore
time-translation invariant.

6.4 Disjointness of the Minkowski and Rindler rep-
resentations

We omit the details of the construction of the classical phase space (5, 0),
since they are largely irrelevant to our concerns. The only information we
need is that the space S may be taken (roughly) to be solutions to some
relativistic wave equation, such as the Klein-Gordon equation. More partic-
ularly, S may be taken to consist of pairs of smooth, compactly supported
functions on R3: one function specifies the values of the field at each point
in space at some initial time (say ¢ = 0), and the other function is the time-
derivative of the field (evaluated at t = 0). If we then choose a “timelike
flow” in Minkowski spacetime, we will get a corresponding flow in the solu-
tion space S; and, in particular, this flow will be given by a one-parameter
group T} of symplectomorphisms on (S, o).

First, consider the group 7; of symplectomorphisms of (S, o) induced by
the standard inertial timelike flow. (See Figure 6.1, which suppresses two
spatial dimensions. Note that it is irrelevant which inertial frame’s flow
we pick, since they all determine the same representation of A[S, o] up to
unitary equivalence; see Wald 1994, 106.) It is well-known that there is a
complex structure M on (S, o) such that (Sys,T3) is a quantum one-particle
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t

left wedge / right wedge
t=s5=0

Rindler

Minkowski
Figure 6.1: Minkowski and Rindler Motions.

system (see Kay 1985; Horuzhy 1988, Ch. 4). We call the associated pure
regular state wys of A[S, o] the Minkowski vacuum state. As we have seen, it
gives rise via the GNS construction to a unique Fock vacuum representation
Tw,, on the Hilbert space H,,, = F(Snr)-

Next, consider the group of Lorentz boosts about a given center point
O in spacetime. This also gives rise to a one-parameter group 75 of sym-
plectomorphisms of (S,0) (cf. Figure 6.1). Let S(<) be the subspace of S
consisting of Cauchy data with support in the right Rindler wedge (1 > 0);
i.e., at s =0, both the field and its first derivative vanish when x; < 0. Let
Ag = A[S(<), 0] be the Weyl algebra over the symplectic space (S(<),0).
Then, T leaves S(<) invariant, and hence gives rise to a one-parameter group
of symplectomorphisms of (S(<), o). Kay (1985) has shown rigorously that
there is indeed a complex structure R on (S(<), o) such that (S(<)g,Ts) is
a quantum one particle system. We call the resulting state w of A4 the
(right) Rindler vacuum state. It gives rise to a unique GNS-Fock represen-
tation T of Aqon Hyg = F (S(<)r) and, hence, a quantum field theory
for the spacetime consisting of the right wedge alone.

The Minkowski vacuum state wys of A[S, o] also determines, by restric-
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tion, a state wj; of Aq (i.e., wy; := war|a,). Thus, we may apply the GNS
construction to obtain the Minkowski representation (s ,Hus, ) of Aq. It
can be shown that wj;, unlike w¥, is a highly mixed state (cf. section 3.3).
Therefore, m,¢ is reducible.

To obtain a concrete picture of this representation, note that (again, as
a consequence of the Reeh-Schlieder theorem) Q,,, is a cyclic vector for the
subalgebra 7, (Aq) acting on the “global” Fock space F(Sys). Thus, by the
uniqueness of the GNS representation (s , Hys ), it is unitarily equivalent
to the representation (7, |.4,, F(Sa)). It can be shown that m,,,, (Aq)" is
a factor (Horuzhy 1988, Thm 3.3.4). Thus, while reducible, g, 18 still
factorial.

Under the liberal approach to observables, the representations Tws, (fac-
torial) and Tws, (irreducible) provide physically inequivalent descriptions of
the physics in the right wedge.!?

Proposition 6.6. The Minkowski and Rindler representations of A4 are
disjoint.

Now let > denote the left Rindler wedge, and define the subspace S(>)
of S as S(«) was defined above. (Of course, by symmetry, Proposition
6.6 holds for A, as well.) Let Ax := A[S(>) & S(<), 0] denote the Weyl
algebra over the symplectic space (S(>) @ S(<),0). Then A = Ay @ A,
and W5t := wyy| ., is pure (Kay 1985, Defn., Thm. 1.3(iii)).!3 Thus, the
GNS representation induced by w5 is irreducible, and (again invoking the
uniqueness of the GNS representation) it is equivalent to (7, |4, F(Sn))
(since Q,,,, € F(Snm) is a cyclic vector for the subalgebra 7, (Asx) as well).

The tensor product of the pure left and right Rindler vacua w% := wj ®

121f only locally measurable observables have genuine physical significance (see note 5),
then the Minkowski and Rindler representations are physically equivalent. Indeed, since
both wj; and wj are “of Hadamard form,” it follows that m,¢ and 7,q are “locally
quasi-equivalent” (cf. Verch 1994, Theorem 3.9). That is, for each algebra .A(O) of lo-
cal observables in Ag, 7rW§4| A(0) is quasi-equivalent to T, lacoy- Clearly, this fact only
strengthens our case against the claim that the Minkowski and Rindler representations
correspond to incommensurable theories of the quantum field.

13The restriction of was to Apg is a pure “quasifree” state. Thus, there is a complex
structure M’ on S(>) & S(<) such that

wm (W(f)) = exp(—o(f, M'f)/4) = exp(—a(f, M f)/4), (6.43)

for all f € S() @ S(«) (Petz 1990, Prop. 3.9). It is not difficult to see then that
M|s@eyes« = M’ and therefore that M leaves S(>) @ S(<) invariant. Hereafter, we
will use M to denote the complex structure on S as well as its restriction to S(>) @ S(<).
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wi, is of course also a pure state of Apo. 1 Tt induces a GNS representation of
the latter on the Hilbert space H,z given by F(Sg) = F(S(>)r)@F (S()r)-
It is not difficult to show that w% and wjj, both now irreducible, are also
disjoint.!®

Proposition 6.7. The Minkowski and Rindler representations of Ay are
disjoint.

In the next chapter we shall discuss the conceptually problematic im-
plications that the M-vacuum states w%; and wj, have for the presence of
R-quanta in the double and right wedge spacetime regions. However, we note
here an important difference between Rindler and Minkowski observers.

The total number of R-quanta, according to a Rindler observer confined
to the left (resp., right) wedge, is represented by the number operator N,
(resp., Ng) on F(S(>)r) (resp., F(S(<)r)). However, because of the space-
like separation of the wedges, no single Rindler observer has access, even
in principle, to the expectation value of the “overall” total Rindler number
operator N = N, ® I + I ® N, acting on F(S(>)g) ® F(S(<)R).

The reverse is true for a Minkowski observer. While she has access, at
least in principle, to the total number of M-quanta operator Nj; acting on
F(Sm), Nas is a purely global observable that does not split into the sum of
two separate number operators associated with the left and right wedges (as
a general consequence of the Reeh-Schlieder theorem—see Redhead 1995b).
In fact, since the Minkowski complex structure M is an “anti-local” operator
(Segal & Goodman, 1965), it fails to leave either of the subspaces S(>) or
S(<) invariant, and it follows that no M-quanta number operator is affiliated
with s, (Ag)".16 Thus, even a liberal about observables must say that a
Minkowski observer with access only to the right wedge does not have the
capability of counting M-quanta.

So, while it might be sensible to ask for the probability in state wj,
that a Rindler observer detects particles in the right wedge, it is not sen-
sible to ask, conversely, for the probability in state wy, that a Minkowski
observer will detect particles in the right wedge. Note also that since N,y is

MMore precisely, w$ arises from a complex structure R4 on S(<), W% arises from a
complex structure R, on S(>), and w% arises from the complex structure Ry, @ Rq of
S(>) @ S(<). When no confusion can result, we will use R to denote the complex structure
on S(>) ® S(«) and its restriction to S(«).

15WWe give proofs of Propositions 6.6 and 6.7 in the appendix. For another proof, em-
ploying quite different methods, see the appendix of (Beyer 1991).

16See chapter 4 for further details and a critical analysis of different approaches to the
problem of particle localization in quantum field theory.
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a purely global observable (i.e., there is no sense to be made of “the num-
ber of Minkowski quanta in a bounded spatial or spacetime region”), what
a Minkowski observer might locally detect with a “particle detector” (over
an extended, but finite, interval of time) can at best give an approximate
indication of the global Minkowski particle content of the field.

6.5 Appendix: Proofs of theorems

Proposition 6.3. Under the conservative approach to states, ¢ (factorial)
and w (irreducible) are physically equivalent representations of A only if they
are quasi-equivalent.

Proof. Let w be a normal state of ¢(A). Then, by hypothesis, f(w) is a
normal state of w(A). Define a state p on A by

p(A) = w(p(A4)), Ae A (6.44)
Since w is normal, p € §(¢). Define a state p’ on A by
J(4) = Blw)(n(4)), AeA (6.45)

Since ((w) is normal, p’ € §F(m). Now, conditions (6.21) and (6.22) entail
that

w(p(A)) = Bw)(a(s(A4))) = B(w)(m(A)), (6.46)
for any A = W(f) € A, and thus p(W(f)) = p/(W(f)) for any f € S.
However, a state of the Weyl algebra is uniquely determined (via linearity
and uniform continuity) by its action on the generators {W(f) : f € S}.
Thus, p = p' and since p € §F(¢) N F(w), it follows that ¢ and 7 are quasi-
equivalent. O

Proposition 6.4. Under the liberal approach to observables, ¢ (factorial)
and 7 (irreducible) are physically equivalent representations of A only if they
are quasi-equivalent.

Proof. By hypothesis, the bijective mapping « must map the self-adjoint
part of ¢(A)” onto that of 7(A)”. Extend « to all of ¢(A)” by defining

a(X) := a(Re(X)) + ia(Im(X)), X € p(A)". (6.47)

Clearly, then, « preserves adjoints.
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Recall that a family of states Sy on a C*-algebra is called full just in
case Sp is convex, and for any A € A, p(A) > 0 for all p € Sy only if
A > 0. By hypothesis, there is a bijective mapping (§ from the “physical”
states of ¢(A)” onto the “physical” states of m(A)”. According to both
the conservative and liberal construals of physical states, the set of physical
states includes normal states. Since the normal states are full, the domain
and range of § contain full sets of states of the respective C*-algebras.

By condition (6.22) and the fact that the domain and range of § are
full sets of states, « arises from a symmetry between the C*-algebras ¢(A)”
and 7(A)” in the sense of Roberts & Roepstorff (1969, Sec. 3).17 Their
Propositions 3.1 and 6.3 then apply to guarantee that a must be linear
and preserve Jordan structure (i.e., anti-commutator brackets). Thus « is a
Jordan x-isomorphism.

Now both ¢(A)” and m(A)"” = B(H,) are von Neumann algebras, and
the latter has a trivial commutant. Thus Exercise 10.5.26 of (KR 1997) ap-
plies, and « is either a x-isomorphism or a *-anti-isomorphism, that reverses
the order of products. However, such reversal is ruled out, otherwise we
would have, using the Weyl relations (6.10),

( (W (g)) = e VD 2a(p(W(f +g)), (648

= a(p(W(9)a(¢(W(f))) = e LI 2a(p(W(f +g))), (6.49
= 7(W(9)n(W(f)) =e "I 2r(W(f +g)), (6.50
(

)
)
)
— VIR R(W(f +g)) = e POPr(W(f +g)), 6.51)
for all f,g € S. This entails that the value of o on any pair of vectors is
always is a multiple of 2 which, since ¢ is bilinear, cannot happen unless
o = 0 identically (and hence S = {0}). It follows that « is in fact a *-
isomorphism. And, by condition (6.21), & must map ¢(A) to 7(A) for all
A € A. Thus ¢ is quasi-equivalent to . ]

Proposition 6.5. Let (m,F(H)) be a Fock representation of A[S,c]. If
S is infinite-dimensional, then w(A[S,o]) contains no non-trivial bounded
functions of the total number operator on F(H).

Proof. For clarity, we suppress reference to the representation map «. Sup-
pose that F' : N — C is a bounded function. We show that if (V) € A[S, o],
then F(n) = F(n+1) for all n € N.

17 Actually, they consider only symmetries of a C*-algebra onto itself, but their results
remain valid for our case.
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The Weyl operators on F(H) and their generators satisfy the commuta-
tion relation (BR 1996, Prop. 5.2.4):

W(g)®(f)W(g)" = @(f) —Im(g, f)I. (6.52)
Using the equation a*(f) = 27/2(®(f) — i®(if)), we find
W(g)a" (W (9)" = a*(f) + 27 i, NI, (6.53)

and from this, [W(g),a*(f)] = 2~ Y2i(g, f)W(g). Now let 1) € F(H) be in
the domain of a*(f). Then a straightforward calculation shows that

(0 (/)6 W (g)a* (£)6) = 27 2i(g, 1) (a* (£, W (@)) +(al F)a* (£, W (g)0).
(6.54)
Let {fx} be an infinite orthonormal basis for H, and let ¢ € F(H)
be the vector whose n-th component is Py(f; ® --- ® f,) and whose other
components are zero. Now, for any k > n, we have a(fy)a*(fr) = (n+1)%.
Thus, Eqn. (6.54) gives

(a*(fr), W (g)a*(fr)¥) = 27 %i(g, fi) (a* (i), W (g)9)+(n+1)(3, EV(g))w.
6.55
Hence,

tim (@ (fo)i, W(g)a” (f)v) = (n+ D) (. W(g)v).  (6:56)

Since A[S, 0] is generated by {W(g) : ¢ € H}, Eqn. (6.56) holds when
W (g) is replaced with any element in A[S,o]. On the other hand, v is an
eigenvector with eigenvalue n for N while a*(f;)1 is an eigenvector with
eigenvalue n + 1 for N. Thus, (1, F(N)y) = F(n)|¢||? while

(@ (f)e, F(N)a*(fr)Y) = F(n+1)|la*(fo)]? (6.57)
(n+ 1D F(n+1)||v|? (6.58)

for all & > n. Thus, the assumption that F(N) is in A[S, o] (and hence
satisfies (6.56)) entails that F'(n + 1) = F(n). O

Proposition 6.6. The Minkowski and Rindler representations of A4 are
disjoint.

Proof. By Theorem 3.3.4 of (Horuzhy 1988), 7, (A4)” is a type III von
Neumann algebra, and therefore contains no atomic projections. Since s
is irreducible and g3, factorial, either s, and 7,9 are disjoint, or they
are quasi-equivalent. However, since m,3(Aq)” = B(F(S(9)r)), the weak
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closure of the Rindler representation clearly contains atomic projections.
Moreover, *-isomorphisms preserve the ordering of projection operators.
Thus there can be no *-isomorphism of 7a (Aq)” onto m,s (Aq)”, and the
Minkowski and Rindler representations of Ay are disjoint. O

Proposition 6.7. The Minkowski and Rindler representations of Asq are
disjoint.

Proof. Again, we use the fact that ms (Aq)” (= mug, (Aq)”) does not con-
tain atomic projections, whereas m,zs (Aq) (= 7w, (Aq)// ) does. Suppose,
for reductio ad absurdum, that and T4 are quasi-equivalent. Since
the states wh; and W are pure, the representations m.e and Tubs are irre-
ducible and therefore unitarily equivalent. Thus, there is a weakly contmuous

*-isomorphism « from e (Asx)” onto e (AN)” such that a(mpe(A)) =
T (A) for each A € .A,X] In particular, o maps 7 (Aq) onto e (Aqg);
and since a is weakly continuous, it maps s b (Ag)” onto Tt = (Aq)”. Con-
sequently, mz<(Aq)"” contains an atomic prOJectlon in contradiction with
the fact that mx (Aq)” is a type III von Neumann algebra. O



Chapter 7

Minkowski versus Rindler
quanta

Sagredo: Do we not see here another example of that all-pervading
principle of complementarity which excludes the simultaneous applicability
of concepts to the real objects of our world? Is it not so that, rather than
being frustrated by this limitation of our conceptual grasp of the reality, we
see in this unification of opposites the deepest and most satisfactory result
of the dialectical process in our struggle for understanding?

— Josef Jauch, Are Quanta Real? A Galilean Dialogue (1973)

7.1 Introduction

We have seen that a Rindler observer will construct “his quantum field
theory” of the right wedge spacetime region differently from a Minkowski
observer. He will use the complex structure R picked out uniquely by the
boost group about the origin, and build up a representation of A4 on the
Fock space F(S(<)r). However, suppose that the state of A4 is the state
wy, of no particles (globally) according to a Minkowski observer. What,
if anything, will our Rindler observer say about the particle content in the
right wedge? And does this question even make sense?

We will argue that this question does make sense, notwithstanding the
disjointness of the Minkowski and Rindler representations. And the answer
is surprising: Not only does a Rindler observer have a nonzero chance of
detecting the presence of R-quanta, but if a Rindler observer were to measure
the total number of R-quanta in the right wedge, he would always find (as we
show in section 7.3) that the probability of an infinite total number is one!

141
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We begin in section 7.2 by discussing the paradox of observer-dependence
of particles to which such results lead. In particular, we criticize Teller’s
(1995, 1996) resolution of this paradox. Later, in section 7.4, we will also
criticize the arguments of Arageorgis (1995) and Arageorgis et al. (2001) for
the incommensurability of inequivalent particle concepts, and argue, instead,
for their complementarity (in support of Teller).

7.2 The paradox of the observer-dependence of
particles

Not surprisingly, physicists initially found a Rindler observer’s ability to
detect particles in the Minkowski vacuum paradoxical (see Riiger 1989, 571;
Teller 1995, 110). After all, particles are the sorts of things that are either
there or not there, so how could their presence depend on an observer’s state
of motion?

One way to resist this paradox is to reject from the outset the physi-
cality of the Rindler representation, thereby withholding bona fide particle
status from Rindler quanta. For instance, one could be bothered by the
fact the Rindler representation cannot be globally defined over the whole
of Minkowski spacetime, or that the one-particle Rindler Hamiltonian lacks
a mass gap, allowing an arbitrarily large number of R-quanta to have a
fixed finite amount of energy (“infrared divergence”). Arageorgis (1995,
Ch. 6) gives a thorough discussion of these and other “pathologies” of the
Rindler representation.! In consequence, he argues that the phenomenology
associated with a Rindler observer’s “particle detections” in the Minkowski
vacuum ought to be explained entirely in terms of observables affiliated to
the Minkowski representation (such as garden-variety Minkowski vacuum
fluctuations of the local field observables).

This is not the usual response to the paradox of observer-dependence.
Riiger (1989) has characterized the majority of physicists’ responses in terms
of the field approach and the detector approach. Proponents of the field ap-
proach emphasize the need to forfeit particle talk at the fundamental level,
and to focus the discussion on measurement of local field quantities. Those
of the detector approach emphasize the need to relativize particle talk to
the behavior of concrete detectors following specified world-lines. Despite
their differing emphases, and the technical difficulties in unifying these pro-

1See also, more recently, Belinskif 1997, Fedotov, Mur, Narozhny, Belinskii, & Karnakov
1999, and Nikoli¢ 2000.
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grams (well-documented by Arageorgis 1995), neither eschews the Rindler
representation as unphysical, presumably because of its deep connections
with quantum statistical mechanics and blackhole thermodynamics (Sciama
et al. 1981). Moreover, pathological or not, it remains of philosophical
interest to examine the consequences of taking the Rindler representation
seriously—just as the possibility of time travel in general relativity admitted
by certain “pathological” solutions to Einstein’s field equations is of interest.
And it is remarkable that there should be any region of Minkowski spacetime
that admits two physically inequivalent quantum field descriptions.

Teller (1995, 1996) has recently offered his own resolution of the paradox.
We reproduce below the relevant portions of his discussion in (Teller 1995,
111). However, note that he does not distinguish between left and right
Rindler observers, |0; M) refers, in our notation, to the Minkowski vacuum
vector Q,,, € F(Su), and |1,0,0,...)5r (respectively, |1,0,0,...)g) is a
one-particle state 0 f 00 0& --- € F(Sy) (respectively, € F(Sgr)).

... Rindler raising and lowering operators are expressible as su-
perpositions of the Minkowski raising and lowering operators,
and states with a definite number of Minkowski quanta are super-
positions of states with different numbers of Rindler quanta. In
particular, |0; M) is a superposition of Rindler quanta states, in-
cluding states for arbitrarily large numbers of Rindler quanta. In
other words, |0; M) has an exact value of zero for the Minkowski
number operator, and is simultaneously highly indefinite for the
Rindler number operator.

...In |0; M) there is no definite number of Rindler quanta. There
is only a propensity for detection of one or another number of
Rindler quanta by an accelerating detector. A state in which a
quantity has no exact value is one in which no values for that
quantity are definitely, and so actually, exemplified. Thus in
|0; M) no Rindler quanta actually occur, so the status of |0; M)
as a state completely devoid of quanta is not impugned.

To be sure, this interpretive state of affairs is surprising. To
spell it out one step further, in [1,0,0,...)5s there is one actual
Minkowski quantum, no actual Rindler quanta, and all sorts of
propensities for manifestation of Rindler quanta, among other
things. In |1,0,0,...)g the same comment applies with the role
of Minkowski and Rindler reversed. It turns out that there are
various kinds of quanta, and a state in which one kind of quanta
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actually occurs is a state in which there are only propensities
for complementary kinds of quanta. Surprising, but perfectly
consistent and coherent.

Teller’s point is that R-quanta only exist (so to speak) potentially in the
M-vacuum, not actually. Thus it is still an invariant observer-independent
fact that there are no actual quanta in the field, and the paradox evapo-
rates. Similarly for Minkowski states of one or more particles as seen by
Rindler observers. There is the same definite number of actual quanta for
all observers. Thus, since actual particles are the “real stuff”, the real stuff
is invariant!

Notice, however, that there is something self-defeating in Teller’s final
concession, urged by advocates of the field and detector approaches, that
different kinds of quanta need to be distinguished. For if we do draw the
distinction sharply, it is no longer clear why even the actual presence of R-
quanta in the M-vacuum should bother us. Teller seems to want to have it
both ways: while there are different kinds of quanta, there is still only one
kind of actual quanta, and it better be invariant.

Does this invariance really hold? In one sense, Yes. Disjointness does
not prevent us from building Rindler creation and annihilation operators
on the Minkowski representation space F(Spr). We simply need to define
Rindler analogues, aj(f) and ar(f), of the Minkowski creation and annihi-
lation operators via Eqns. (6.34) with ®(Rf) in place of ®(if) (= ®(Mf))
(noting that f — agr(f) will now be anti-linear with respect to the Rindler
conjugation R). It is then easy to see, using (6.31), that

ar(f) = (1/2)[ar((I + MR)f) + an((I = MR)f)]. (7.1)

This linear combination would be trivial if R = +M. However, we know
R # M, and R = —M is ruled out because it is inconsistent with both
complex structures being positive definite. Consequently, (2,5 is a nontriv-
ial superposition of eigenstates of the Rindler number operator Ng(f) :=
ak(f)ar(f); for, an easy calculation, using (7.1), reveals that

Ne(f)Qusg = (1/9)[Qusg + aiy (I = MR)f)aj (I + MR)f)Quss ], (7.2)

which (the presence of the nonzero second term guarantees) is not a simply
a multiple of Q.. Thus, Teller would be correct to conclude that the
Minkowski vacuum implies dispersion in the number operator Ng(f). And
the same conclusion would follow if, instead, we considered the Minkowski
creation and annihilation operators as acting on the Rindler representation
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space F(Sgr). Since only finitely many degrees of freedom are involved, this
is guaranteed by the Stone-von Neumann theorem.

However, therein lies the rub. Npg(f) merely represents the number of
R-quanta with a specified wavefunction f. What about the total number
of R-quanta in the M-vacuum (which involves all degrees of freedom)? If
Teller cannot assure us that this too has dispersion, his case for the invari-
ance of “actual quanta” is left in tatters. In his discussion, Teller fails to
distinguish Ng(f) from the total number operator Ng, but the distinction
is crucial. It is a well-known consequence of the disjointness of Ty and
.5 that neither representation’s total number operator is definable on the
Hilbert space of the other (BR 1996, Thm. 5.2.14). Therefore, it is liter-
ally nonsense to speak of {),2 as a superposition of eigenstates of Ng!? If
Tn,Tm € F(Sg) are eigenstates of Np with eigenvalues n, m respectively,
then z, + z,, again lies in F(Sg), and so is “orthogonal” to all eigenstates
of the Minkowski number operator Nj; acting on F(Sps). And, indeed,
taking infinite sums of Rindler number eigenstates will again leave us in
the folium of the Rindler representation. As Arageorgis (1995, 303) has
also noted: “The Minkowski vacuum state is not a superposition of Rindler
quanta states, despite ‘appearances’ ”.3

Yet this point, by itself, does not tell us that Teller’s discussion cannot be
salvaged. Recall that a state p is said to be dispersion-free on a (bounded)

2In their review of Teller’s (1995) book, Huggett and Weingard (1996) question whether
Teller’s “quanta interpretation” of quantum field theory can be implemented in the context
of inequivalent representations. However, when they discuss Teller’s resolution of the
observer-dependence paradox, in terms of mere propensities to display R-quanta in the
M-vacuum, they write “This seems all well and good” (1996, 309)! Their only criticism
is the obvious one: legitimizing such propensity talk ultimately requires a solution to the
measurement problem. Teller’s response to their review is equally unsatisfactory. Though
he pays lip-service to the possibility of inequivalent representations (1998, 156-157), he
fails to notice how inequivalence undercuts his discussion of the paradox.

3 Arageorgis presumes Teller’s discussion is based upon the appearance of the fol-
lowing purely formal (i.e., non-normalizable) expression for lps as a superposition in
F(Sr) = F(S()r) @ F(S(<)r) over left (“I”) and right (“II”) Rindler modes (Wald 1994,

Eqn. 5.1.27):
II {ZGXP(—W%/G) Inir) @ |ni11>} : (7.3)
7 n=0

However, it bears mentioning that, as this expression suggests: (a) the restriction of w}j
to either A, or Ag is indeed mixed; (b) w%j can be shown rigorously to be an entangled
state of A, ® A (see chapter 2); and (c¢) the thermal properties of the “reduced density
matrix” for either wedge obtained from this formal expression can be derived rigorously
(Kay 1985). In addition, see Propositions 7.1 and 7.2 below!
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observable X just in case p(X?) = p(X)2 Suppose, now, that Y is a
possibly unbounded observable that is definable in some representation m of
A[S, o]. We can then rightly say that an algebraic state p of A[S, o] predicts
dispersion in'Y just in case, for every extension p of p to w(A[S, a])”, p is not
dispersion-free on all bounded functions of Y. We then have the following
result.

Proposition 7.1. If Ji,Jo are distinct complex structures on (S,o0), then
wy, (respectively, wy,) predicts dispersion in Ny, (respectively, Ny, ).

As a consequence, the Minkowski vacuum w5} indeed predicts dispersion in
the Rindler total number operator Ni (and in both Ny, ® I and I ® N,
invoking the symmetry between the wedges).

Teller also writes of the Minkowski vacuum as being a superposition of
eigenstates of the Rindler number operator with arbitrarily large eigenvalues.
Eschewing the language of superposition, the idea that there is no finite
number of R-quanta to which the M-vacuum assigns probability one can also
be rendered sensible. The relevant result was first obtained (heuristically)
by Fulling (1972, Appendix F; 1989, 145):

Fulling’s “Theorem”. Two Fock vacuum representations (7, F(H), ) and
(7', F(H'), ) of A[S, o] are unitarily equivalent if and only if (Q, N'Q?) < oo
(or, equivalently, (', NQ') < 00).

As stated, this “theorem” fails to make sense, because it is only in the
case where the representations are already equivalent that the primed total
number operator is definable on the unprimed representation space and an
expression like “(Q, N'Q)” is well-defined. (We say more about why this is so
in the next section.) However, there is a way to understand the expression
“(Q, N'Q) < 00” (respectively, “(Q2, N'Q) = 00”) in a rigorous, non-question-
begging way. We can take it to be the claim that all extensions p of the
abstract unprimed vacuum state of A[S, o] to B(F(H')) assign (respectively,
do not assign) N’ a finite value; i.e., for any such extension, > >7_; p(Pp)n/
converges (respectively, does not converge), where {P,s} are the spectral
projections of N’. With this understanding, the following rigorization of
Fulling’s “theorem” can then be proved.

Proposition 7.2. A pair of Fock representations m, g0 Twy, are unitarily
equivalent if and only if wy, assigns Ny, a finite value (equivalently, wy,
assigns Ny, a finite value).

It follows that w}; cannot assign probability one to any finite number of
R-quanta (and vice versa, with R and M interchanged).
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Unfortunately, neither Proposition 7.1 or 7.2 is sufficient to rescue Teller’s
“actual quanta” invariance argument, for these propositions give no further
information about the shape of the probability distribution that w7 pre-
scribes for Npg’s eigenvalues. In particular, both propositions are compatible
with there being a probability of one that at least n > 0 R-quanta obtain
in the M-vacuum, for any n € N. If that were the case, Teller would then
be forced to withdraw and concede that at least some, and perhaps many,
Rindler quanta actually occur in a state with no actual Minkowski quanta.
In the next section, we shall show that this—Teller’s worst nightmare—is in
fact the case.

7.3 Minkowski probabilities for Rindler number
operators

We now defend the claim that a Rindler observer will say that there are
actually infinitely many quanta while the field is in the Minkowski vacuum
state (or, indeed, in any other state of the Minkowski folium).# This result
applies more generally to any pair of disjoint regular representations, at least
one of which is the GNS representation of an abstract Fock vacuum state.
We shall specialize back down to the Minkowski/Rindler case later on.

Let p be a regular state of A[S, o] inducing the GNS representation
(7p, Hp), and let wy be the abstract vacuum state determined by a complex
structure J on (S,0). The case we are interested in is, of course, when
Ty, T, are disjoint. We first want to show how to define representation-
independent probabilities in the state p for any J-quanta number operator
that “counts” the number of quanta with wavefunctions in a fixed finite-
dimensional subspace F' C S;. (Parts of our exposition below follow BR
(1996, 26-30), which may be consulted for further details.)

We know that, for any f € S, there exists a self-adjoint operator ®,(f)
on H, such that

(W (tf)) = exp (it®,(f)), teR. (7.4)

4In fact, this was first proved, in effect, by Chaiken (1967). However his lengthy
analysis focussed on comparing Fock with non-Fock (so-called “strange”) representations
of the Weyl algebra, and the implications of his result for disjoint Fock representations
based on inequivalent one-particle structures seem not to have been carried down into the
textbook tradition of the subject. (The closest result we have found is Theorem 5.2.14 of
(BR 1996) which we are able to employ as a lemma to recover Chaiken’s result for disjoint
Fock representations—see section 6.5.)
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We can also define unbounded annihilation and creation operators on H,
for J-quanta by

ap(F) = 27VH@,(f) +i®,(J 1)), (75)
ap(f) = 272 @y(f) — i®y(Jf)). 7.0

Earlier, we denoted these operators by a;(f) and a’(f). However, we now
want to emphasize the representation space upon which they act; and only
the single complex structure J shall concern us in our general discussion, so
there is no possibility of confusion with others.

Next, define a “quadratic form” n,(F') : H, — R*. The domain of n,(F’)
is

D(ny(F)) := (] Dlap(f)); (7.7)
fer

where D(a,(f)) is the domain of a,(f). Now let {fy : K = 1,...,m} be
some J-orthonormal basis for F', and define

(W) = Y lap(fe) ¥l (7.8)
k=1

for any ¢ € D(n,(F)). It can be shown that the sum in (7.8) is independent
of the chosen orthonormal basis for F', and that D(n,(F)) lies dense in H,,.
Given any densely defined, positive, closed quadratic form ¢ on H,, there
exists a unique positive self-adjoint operator T' on H, such that D(t) =
D(T'/?) and

(W) = (T2, T'?y), ¢ € D(t). (7.9)

We let N,(F) denote the finite-subspace J-quanta number operator on H,
arising from the quadratic form n,(F).

We seek a representation-independent value for “Prob”(N(F) € A)”,
where A C N. So let 7 be any regular state of A[S, o], and let N, (F) be the
corresponding number operator on H,. Let A[F] be the Weyl algebra over
(F,olr), and let E,(F) denote the spectral measure for N (F') acting on
H,. Then, [E-(F)](A) (the spectral projection representing the proposition
“N;(F) € A”) is in the weak closure of m(A[F]), by the Stone-von Neu-
mann uniqueness theorem. In particular, there is a net {A;} C A[F] such
that 7, (A;) converges weakly to [E(F)](A). Now, the Stone-von Neumann
uniqueness theorem also entails that there is a density operator D, on H,
such that

p(A) = Tr(D,m(A)), A e A[F). (7.10)
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We therefore define

Prob?(N(F) € A) = lizm p(A;) (7.11)
= lign Tr(D,mr(A;)) (7.12)
= (D, [E (F)|(A). (713)

The final equality displays that this definition is independent of the chosen
approximating net {7, (A4;)}, and the penultimate equality displays that this
definition is independent of the (regular) representation 7. In particular,
since we may take 7 = p, it follows that

Prob?(N(F) € A) = (@, [E,(F)[(A)2,), (7.14)

exactly as expected.
We can also define a positive, closed quadratic form on H, corresponding
to the total J-quanta number operator by:

() = sup [, (F)(¥), (7.15)
D(n,) = {weH,:ve () Dlalh) n) <oof,  (7.16)
fes

where F denotes the collection of all finite-dimensional subspaces of S;. If
D(n,) is dense in H,, then it makes sense to say that the total J-quanta
number operator N, exists on the Hilbert space H,. In general, however,
D(n,) will not be dense, and may contain only the 0 vector. Accordingly,
we cannot use a direct analogue to Eqn. (7.13) to define the probability, in
the state p, that there are, say, n or fewer J-quanta.

However, we can still proceed as follows. Fix n € N, and suppose F' C
F’" with both F,F’ € F. Since any state with n or fewer J-quanta with
wavefunctions in F’ cannot have more than n J-quanta with wavefunctions
in the (smaller) subspace F,

Prob?(N(F) € [0,n]) > Prob?(N(F’) € [0,n]). (7.17)

Thus, whatever value we obtain for “Prob”(N € [0,n])”, it should satisfy
the inequality

Prob?(N(F) € [0,n]) > Prob?(N € [0,n]), (7.18)

for any finite-dimensional subspace F' C S;. However, the following result
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holds.

Proposition 7.3. If p is a regular state of A[S, o] disjoint from the Fock
state wy, then inf pep { Prob?(N(F) € [O,n})} =0 for every n € N.

Thus p must assign every finite number of J-quanta probability zero; i.e., p
predicts an infinite number of J-quanta with probability 1!

Let us tighten this up some more. Suppose that we are in any regular
representation (m,, H,,) in which the total J-quanta number operator N,
exists and is affiliated to 7, (A[S,o])”. (For example, we may take the Fock
representation where w = wy.) Let E,, denote the spectral measure of N, on
H,,. Considering p as a state of m,(A[S,c]), it is then reasonable to define

Prob?(N € [0,n]) := H(Eo([0,n])), (7.19)

where p is any extension of p to m,(A[S, o])”, provided the right-hand side
takes the same value for all extensions. (And, of course, it will when p €
§(m,), where (7.19) reduces to the standard definition.) Now clearly

[En(F)]([0,n]) > E,(]0,n]), FeF. (7.20)

(“If there are at most n J-quanta in total, then there are at most n J-quanta
whose wavefunctions lie in any finite-dimensional subspace of S;”.) Since
states preserve order relations between projections, every extension p must
therefore satisfy

Prob?(N(F) € [0,n]) = p([Eo(F)]([0,n])) = p(EL([0,n])).  (7.21)

Thus, if p is disjoint from w, Proposition 7.3 entails that Prob?(N € [0,n]) =
0 for all finite n.”

As an immediate consequence of this and the disjointness of the Minkowski
and Rindler representations, we have (reverting to our earlier number oper-
ator notation):

Prob“i (N € [0,n]) = 0 = Prob“s (Ny; € [0,n]), VneN,  (7.22)

Prob“i (N, € [0,n]) = 0 = Prob®™ (N, € [0,n]), Vn e N. (7.23)

The same probabilities obtain when the Minkowski vacuum is replaced with

SNotice that such a prediction could never be made by a state in the folium of =,
since density operator states are countably additive (see note 3).



7.3 Minkowski probabilities for Rindler number operators 151

any other state in the Minkowski folium.® So it could not be farther from
the truth to say that there is merely the potential for Rindler quanta in the
Minkowski vacuum, or in any other state in the folium of the Minkowski
vacuum.

One must be careful, however, with an informal statement like “The
M-vacuum contains infinitely many R-quanta with probability 1”. Since
Rindler wedges are unbounded, there is nothing unphysical, or otherwise
metaphysically incoherent, about thinking of wedges as containing an infinite
number of Rindler quanta. But we must not equate this with the quite
different empirical claim “A Rindler observer’s particle detector has the
sure-fire disposition to register the value ‘o0’ 7. There is no such value!
Rather, the empirical content of equations (7.22) and (7.23) is simply that
an idealized “two-state” measuring apparatus designed to register whether
there are more than n Rindler quanta in the Minkowski vacuum will always
return the answer ‘Yes’. This is a perfectly sensible physical disposition for
a measuring device to have. Of course, we are not pretending to have in
hand a specification of the physical details of such a device. Indeed, when
physicists model particle detectors, these are usually assumed to couple
to specific “modes” of the field, represented by finite-subspace, not total,
number operators (cf., e.g., Wald 1994, Sec. 3.3). But, as regards our
dispute with Teller, this is really beside the point, since Teller advertises his
resolution of the paradox as a way to avoid a “retreat to instrumentalism”
about the particle concept (1995, 110).

On Teller’s behalf, one might object that there are still no grounds for
saying any R-quanta obtain in the M-vacuum, since for any particular num-
ber n of R-quanta you care to name, equations (7.22) and (7.23) entail that
n is not the number of R-quanta in the M-vacuum. But remember that the
same is true for n = 0, and that, therefore, n > 1 R-quanta has probability
1! A further tack might be to deny that probability 0 for n = 0, or any other
n, entails impossibility or non-actuality of that number of R-quanta. This
would be similar to a common move made in response to the lottery para-
dox, in the hypothetical case where there are an infinite number of ticket
holders. Since someone has to win, each ticket holder must still have the

5This underscores the utter bankruptcy, from the standpoint of the liberal about ob-
servables, in taking the weak equivalence of the Minkowski and Rindler representations to
be sufficient for their physical equivalence. Yes, every Rindler state of the Weyl algebra is
a weak™ limit of Minkowski states. But the former all predict a finite number of Rindler
quanta with probability 1, while the latter all predict an infinite number with probability
1. (Wald (1994, 82-83) makes the exact same point with respect to states that do and do
not satisfy the “Hadamard” property.)
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potential to win, even though his or her probability of winning is zero. The
difficulty with this response is that in the Rindler case, we have no indepen-
dent reason to think that some particular finite number of R-quanta has to
be detected at all. Moreover, if we were to go soft on taking probability 0 to
be sufficient for “not actual”, we should equally deny that probability 1 is
sufficient for “actual”, and by Teller’s lights the paradox would go away at
a stroke (because there could never be actual Rindler or Minkowski quanta
in any field state).

We conclude that Teller’s resolution of the paradox of observer-dependence
of particles fails. And so be it, since it was ill-motivated in the first place.
We already indicated in the previous subsection that it should be enough
of a resolution to recognize that there are different kinds of quanta. We
believe the physicists of the field and detector approaches are correct to
bite the bullet hard on this, even though it means abandoning naive realism
about particles (though not, of course, about detection events). We turn,
next, to arguing that a coherent story can still be told about the relationship
between the different kinds of particle talk used by different observers.

7.4 Incommensurable or complementary?

At the beginning of this chapter, we reproduced a passage from Jauch’s
amusing Galilean dialogue on the question “Are Quanta Real?”. In that
passage, Sagredo is glorying in the prospect that complementarity may be
applicable even in classical physics; and, more generally, to solving the philo-
sophical problem of the specificity of individual events versus the generality
of scientific description. It is well-known that Bohr himself sought to ex-
tend the idea of complementarity to all different walks of life, beyond its
originally intended application in quantum theory. And even within the
confines of quantum theory, it is often the case that when the going gets
tough, tough quantum theorists cloak themselves in the mystical profundity
of complementarity, sometimes just to get philosophers off their backs.

So it seems with the following notorious comments of a well-known advo-
cate of the detector approach that have received a predictably cool reception
from philosophers:

Bohr taught us that quantum mechanics is an algorithm for com-
puting the results of measurements. Any discussion about what
is a “real, physical vacuum”, must therefore be related to the be-
havior of real, physical measuring devices, in this case particle-
number detectors. Armed with such heuristic devices, we may
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then assert the following. There are quantum states and there
are particle detectors. Quantum field theory enables us to pre-
dict probabilistically how a particular detector will respond to
that state. That is all. That is all there can ever be in physics,
because physics is about the observations and measurements that
we can make in the world. We can’t talk meaningfully about
whether such-and-such a state contains particles except in the
context of a specified particle detector measurement. To claim
(as some authors occasionally do!) that when a detector responds
(registers particles) in somebody’s cherished vacuum state that
the particles concerned are “fictitious” or “quasi-particles”, or
that the detector is being “misled” or “distorted”, is an empty
statement. (Davies 1984, 69)

We shall argue that, cleansed of Davies’ purely operationalist reading of
Bohr, complementarity does, after all, shed light on the relation between
inequivalent particle concepts in quantum field theory.

Riiger (1989) balks at this idea. He writes:

The “real problem”—how to understand how there might be
particles for one observer, but none at all for another observer
in a different state of motion—is not readily solved by an appeal
to Copenhagenism. ... Though quantum mechanics can tell us
that the properties of micro-objects (like momentum or energy)
depend in a sense on observers measuring them, the standard
interpretation of the theory still does not tell us that whether
there is a micro-object or not depends on observers. At least
the common form of this interpretation is not of immediate help
here. (Riiger 1989, 575-576)

Well, let us consider the “common form” of the Copenhagen interpreta-
tion. Whatever one’s preferred embellishment of the interpretation, it must
at least imply that observables represented by noncommuting “complemen-
tary” self-adjoint operators cannot have simultaneously determinate values
in all states. Since field quantizations are built upon an abstract non-
commutative algebra, the Weyl algebra, complementarity retains its ap-
plication to quantum field theory. In particular, in any single Fock space
representation—setting aside inequivalent representations for the moment—
there will be a total number operator and nontrivial superpositions of its
eigenstates. For these superpositions, which are eigenstates of observables
failing to commute with the number operator, it is therefore perfectly in
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line with complementarity that we say they contain no actual particles in
any substantive sense.” In addition, there are different number operators
on Fock space that count the number of quanta with wavefunctions lying
in different subspaces of the one-particle space, and they commute only if
the corresponding subspaces are compatible. So even before we consider in-
equivalent particle concepts, we must already accept that there are different
complementary “kinds” of quanta, according to what their wavefunctions
are.

Does complementarity extend to the particle concepts associated with
inequivalent Fock representations? Contra Riiger, we claim that it does. We
saw earlier that one can build finite-subspace J-quanta number operators
in any regular representation of A[S, o], provided only that J defines a
proper complex structure on S that leaves it invariant. In particular, using
the canonical commutation relation [®(f), ®(g)] = io(f,g)I, a tedious but
elementary calculation reveals that, for any f,g € S,

N3 (1) Ni(9)] = 5 {1, 0)[@(), B(0)]1 +0(f, J2g)[B(F), (ag)]

Lo (A f ) [RCA ), B(@)s + o(Iif, Tog)[R( ), B(Dg)]: } (7.24)

in any regular representation.® Thus, there are well-defined and, in general,
nontrivial commutation relations between finite-subspace number operators,
even when the associated particle concepts are inequivalent. We also saw in
Eqn. (7.2) that when Jo # Ji, no Ny, (f), for any f € Sy,, will leave the
zero-particle subspace of IV, invariant. Since it is a necessary condition that
this nondegenerate eigenspace be left invariant by any self-adjoint operator
commuting with N, , it follows that [Ny, (f), Nj,] # 0 for all f € Sj,. Thus
finite-subspace number operators for one kind of quanta are complementary
to the total number operators of inequivalent kinds of quanta.

Of course, we cannot give the same argument for complementarity be-
tween the total number operators Nj and Nj, pertaining to inequivalent
kinds of quanta, because, as we know, they cannot even be defined as op-
erators on the same Hilbert space. However, we disagree with Arageorgis

"As Riiger notes earlier (1989, 571), in ordinary non-field-theoretic quantum theory,
complementarity only undermined a naive substance-properties ontology. However, this
was only because there was no “number of quanta” observable in the theory.

8 As a check on expression (7.24), note that it is invariant under the one-particle space
phase transformations f — (cost + Jisint)f and g — (cost + Josint)g, and when J; =
Jo = J, reduces to zero just in case the rays generated by f and g are compatible subspaces
of SJ.
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(1995, 303-304) that this means Teller’s “complementarity talk” in relation
to the Minkowski and Rindler total number operators is wholly inapplicable.
We have two reasons for the disagreement.

First, since it is a necessary condition that a (possibly unbounded) self-
adjoint observable Y on H,,, commuting with N, have Qu J, A8 an eigenvec-
tor, it is also necessary that the abstract vacuum state wj, be dispersion-free
on Y. But this latter condition is purely algebraic and makes sense even
when Y does not act on H,, ;e Moreover, as Proposition 7.1 shows, this con-
dition fails when Y is the total number operator of any Fock representation
inequivalent to ;e So it is entirely natural to treat Proposition 7.1 as a
vindication of the idea that inequivalent pairs of total number operators are
complementary.

Secondly, we have seen that any state in the folium of a representation
associated with one kind of quanta assigns probability zero to any finite
number of an inequivalent kind of quanta. This has a direct analogue in the
most famous instance of complementarity: that which obtains between the
concepts of position and momentum.

Consider the unbounded position and momentum operators, @ and P (=
—i%), acting on Ly(R). Let E and F' be their respective spectral measures.
We say that a state p of B(La(R)) assigns @ a finite dispersion-free value just
in case p is dispersion-free on @) and there is a A € R such that p(E(a,b)) =
1 if and only if A € (a,b). (Similarly for P.) Then the following is a
direct consequence of the canonical commutation relation [@, P] C il (see
Halvorson & Clifton 1999, Prop. 3.7).

Proposition 7.4. If p is a state of B(L2(R)) that assigns Q (respectively,
P) a finite dispersion-free value, then p(F(a,b)) = 0 (respectively, p(E(a,b)) =
0) for any a,b € R.

This result makes rigorous the fact, suggested by Fourier analysis, that if
either of () or P has a sharp finite value in any state, the other is “maxi-
mally indeterminate”. But the same goes for pairs of inequivalent number
operators (Ny,, Ny, ): if a regular state p assigns N, a finite dispersion-free
value, then p € §(my, ) which, in turn, entails that p assigns probability
zero to any finite set of eigenvalues for Nj,. Thus, (N, Nj,) are, in a nat-
ural sense, maximally complementary, despite the fact that they have no
well-defined commutator.

One might object that our analogy is completely superficial; after all,
Q@ and P still act on the same Hilbert space, Lo(R)! In the next section,
however, we will show that the analogy between position-momentum com-
plementarity and Minkowski-Rindler complementarity is exact.
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7.5 Rethinking position-momentum complementar-
ity

According to Bohr’s notion of complementarity, a particle can have a sharp
position, and it can have a sharp momentum, but it cannot have both si-
multaneously. In section 7.5.1, I argue that it is impossible to make sense
of this idea in the “standard” Hilbert space formalism of quantum mechan-
ics; in this case, a particle can have neither a sharp position nor a sharp
momentum. In section 7.5.2, I argue that the proper way to make sense
of position-momentum complementarity is in terms of inequivalent repre-
sentations of the Weyl algebra. (I also argue that the Stone-von Neumann
uniqueness theorem is an interpretive red herring.)

7.5.1 A problem with position-momentum complementarity

Complementarity is sometimes mistakenly equated with the the uncertainty
relation
AyQ - AyP > h/2, (7.25)

where Ay,Q is the dispersion of @ in v, and A, P is the dispersion of P in ).
But the uncertainty relation says nothing about when ) and P can possess
values; at best, it only tells us that there is a reciprocal relation between
our knowledge of the value of Q and our knowledge of the value of P. To
infer from this that () and P do not simultaneously possess values would be
to lapse into positivism.

A more promising analysis of complementarity is suggested by Bub and
Clifton’s (1996) classification of modal interpretations (see also Bub 1997;
Halvorson & Clifton 1999). According to this analysis, we can think of
Bohr’s complementarity interpretation as a modal interpretation in which
the measured observable R and a state e determines a unique maximal
sublattice L£(R,e) of the lattice £ of all subspaces of the relevant Hilbert
space. L(R,e) should be thought of as containing the propositions that
have a definite truth value in the state e. In particular, L(R,e) always
contains all propositions ascribing a value to R, and e can be decomposed
into a mixture of pure states (i.e., truth valuations) of £(R,e). Thus, we
can think of e as representing our ignorance of the possessed value of R. We
would say that another observable R’ is complementary to R just in case
propositions attributing a value to R’ are never contained in L(e, R).

But there is a serious problem in the case of position and momentum.
In order to see this, recall that E(S)y = xg - ¢, for any ¢ € La(R). Since



7.5 Rethinking position-momentum complementarity 157

two functions 9 and ¢ in Lo(R) are identified when they agree except on a
measure zero set, it follows that E(S1) = E(S3) whenever (S1—S52)U(S2—S1)
has Lebesgue measure zero. This enables us to formulate a very simple
“proof” that particles never have sharp positions.

Mathematical Fact: E({\}) = 0.

Interpretive Assumption: E({\}) means “the particle is located at the
point \.”

Conclusion: 1t is always false that the particle is located at A.

What is more, the interpretive assumption entails that “being located in S1”
is literally the same property as “being located in So”, whenever S7 and Ss
agree almost everywhere. Thus, any attempt to attribute a position to the
particle would force us to revise the classical notion of location in space.

Halvorson (2001a) argues that we can solve these difficulties by rein-
terpreting elements of £ as “experimental propositions” rather than as
“property ascriptions”, and by introducing non-countably additive (i.e., non-
vector) states on L. In particular, suppose that we interpret E(S) as the
proposition: “A measurement of the position of the particle is certain to
yield a value in S.” Then, E({\}) = 0 does not entail that a particle cannot
be located at A, but only that no position measurement can be certain to
yield the value A. Moreover, there is a non-countably additive state h on £
such that h(E(S)) = 1 for all open neighborhoods S of A\. Thus, we could
think of h as representing a state in which the particle is located at A.

However, there is still no proposition in the “object language” L that
expresses the claim that the particle is located at .2 Thus, if we think that
particles really can have precise positions (or momenta), then the standard
language £ of quantum mechanics is descriptively incomplete.

7.5.2 The solution: Inequivalent representations

Let A[R?] be the Weyl algebra for a system with one degree of freedom.
Recall that a representation (m,H) of A[R?] is said to be regular just in

9The problem can be traced back to dropping the countably additivity condition. In
particular, if a pure state h on L is countably additive, then there is a unique minimal
element E € L such that A(E) = 1. In other words, E represents the proposition that
asserts that the state of affairs represented by h obtains. Therefore, by dropping the
assumption of countable additivity, we allow for there to be more states than can be
described in the language £ of the theory.
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case a — w(U(a)) and b +— 7w(V (b)) are strongly continuous. According
to the Stone-von Neumann uniqueness theorem, every regular representa-
tion of A[R?] is quasiequivalent to the “standard” representation on Lo(R).
However, I argue now that the Stone-von Neumann theorem has absolutely
no significance from an interpretational perspective. The “problem” of in-
equivalent representations arises already in elementary quantum mechanics.

The Stone-von Neumann uniqueness theorem has no interpretive signifi-
cance because the regularity assumption begs the question against position-
momentum complementarity. In particular, a representation (m, H) of A[R?]
is regular just in case the self-adjoint generators @ of {w(U(a))} and P of
{m(V (b))} exist on H. However, if complementarity is correct, then ) and
P cannot both possess sharp values. Why, then, do we need to assume that
both operators exist in one representation space? What is more, we saw in
the previous section that if both operators do exist, then neither can pos-
sess sharp values. Does this not give us a reason to rethink the regularity
assumption?

It is only by employing nonregular representations of A[R?] that we can
make sense of a particle’s having sharp position (or momentum) values.
I will now describe the “position representation” of A[R?], in which the
position observable has a full (uncountably infinite) set of eigenstates. (The
construction of the “momentum representation” proceeds along analogous
lines. See Beaume et al. 1974; Fannes et al. 1974).

Let I3(R) denote the (nonseparable) Hilbert space of square-summable
functions from R into C. That is, an element f of I3(R) is supported on a
countable subset Sy of R and || f|| := Zzesf |f(2)* < oo. The inner product
on l2(R) is given by

(o= > [f@gx). (7.26)

$ESfﬁSg

For each A € R, let @) denote the characteristic function of {A}. Thus, the
set {¢a : A € R} is an orthonormal basis for I3(R). For each a € R, define
m(U(a)) on the set {¢y: A € R} by

m(U(a))px = €y (7.27)

Since 7(U(a)) maps {p : A € R} onto an orthonormal basis for H, 7(U(a))
extends uniquely to a unitary operator on H. Similarly, define 7(V'(b)) on
{or: A €R} by

T(V(b))ox = @r—b- (7.28)

Then 7w (V (b)) extends uniquely to a unitary operator on H. Now, a straight-
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forward calculation shows that,
T(U@)m(V(®)er = e m(V(0)m(U(a))pa, (7.29)

for any a,b € R. Thus, the operators {m(U(a)) : a € R} and {n(V (b)) : b €
R} give a representation of A[R?] on I3(R). Moreover,
lim (py, 7(U(a))py) = lim e =1, (7.30)
a—0 a—0
for any A\ € R. Thus, a — 7w(U(a)) is weakly continuous, and Stone’s
theorem entails that there is a self-adjoint operator ¢ on H such that
7(U(a)) = €®Q. Tt is not difficult to see that Quy = Ap, for all X € R.
We are now in a position to see that the relationship between the position
and momentum representations is exactly the same as the relation between
Minkowski vacuum representation and the Rindler vacuum representation.

Proposition 7.5. The position and momentum representations of A[Rz]
are disjoint.

Proof. We actually prove the stronger claim that if (7, H) is a representation
in which there is a common eigenvector ¢ for {w(V(b)) : b € R}, then
a — m(U(a)) is not weakly continuous. Indeed, if ¢ is an eigenvector for the
family {m(V (b)) : b € R}, then,

¢, m(U(a))p) = {p. 7 (V(=b)U(a)V (1)) = (0, (U (a))ip),  (7.31)

for any a,b € R. But this is possible only if (o, 7(U(a))y) = 0 when a # 0.
Since (p,m(U(a))p) = 1 when a = 0, it follows that a — w(U(a)) is not
weakly continuous. O

We maintain, therefore, that there are compelling formal reasons for
thinking of Minkowski and Rindler quanta as complementary. What’s more,
when a Minkowski observer sets out to detect particles, her state of motion
determines that her detector will be sensitive to the presence of Minkowski
quanta. Similarly for a Rindler observer and his detector. This is borne
out by the analysis of Unruh and Wald (1984) in which they show how
his detector will itself “define” (in a “nonstandard” way) what solutions
of the relativistic wave equation are counted as having positive frequency,
via the way the detector couples to the field. So we may think of the
choice of an observer to follow an inertial or Rindler trajectory through
spacetime as analogous to the choice between measuring the position or
momentum of a particle. Each choice requires a distinct kind of coupling
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to the system, and both measurements cannot be executed on the field
simultaneously and with arbitrarily high precision.'® Moreover, execution
of one type of measurement precludes meaningful discourse about the values
of the observable that the observer did not choose to measure. All this is
the essence of “Copenhagenism.”

And it should not be equated with operationalism! The goal of the
detector approach to the paradox of observer-dependence was to achieve
clarity on the problem by reverting back to operational definitions of the
word “particle” with respect to the concrete behaviour of particular kinds
of detectors (cf., e.g., DeWitt 1979b, 692). But, as with early days of spe-
cial relativity and quantum theory, operationalism can serve its purpose
and then be jettisoned. Rindler quanta get their status as such not because
they are, by definition, the sort of thing that accelerated detectors detect.
This gets things backwards. Rindler detectors display Rindler quanta in the
Minkowski vacuum because they couple to Rindler observables of the field
that are distinct from, and indeed complementary to, Minkowski observ-
ables.

7.6 Against incommensurability

Arageorgis (1995) himself, together with his collaborators (Arageorgis et al.
2001), prefer to characterize inequivalent particle concepts, not as comple-
mentary, but incommensurable. At first glance, this looks like a trivial se-
mantic dispute between us. For instance Glymour, in a recent introductory
text on the philosophy of science, summarizes complementarity using the
language of incommensurability:

Changing the experiments we conduct is like changing concep-
tual schemes or paradigms: we experience a different world. Just

0Why can’t both a Minkowski and a Rindler observer set off in different spacetime
directions and simultaneously measure their respective (finite-subspace or total) number
operators? Would it not, then, be a violation of relativistic causality when the Minkowski
observer’s measurement disturbs the statistics of the Rindler observer’s measurement out-
comes? No. We must remember that the Minkowski particle concept is global, so our
Minkowski observer cannot make a precise measurement of any of her number operators
unless it is executed throughout the whole of spacetime, which would necessarily destroy
her spacelike separation from the Rindler observer. On the other hand, if she is content
with only an approximate measurement of one of her number operators in a bounded
spacetime region, it is well-known that simultaneous, nondisturbing “unsharp” measure-
ments of incompatible observables are possible. For an analysis of the case of simultaneous
measurements of unsharp position and momentum, see Busch et al. (1995).
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as no world of experience combines different conceptual schemes,
no reality we can experience (even indirectly through our exper-
iments) combines precise position and precise momentum. (Gly-
mour 1992, 128)

However, philosophers of science usually think of incommensurability as a
relation between theories in toto, not different parts of the same physical
theory. Arageorgis et al. maintain that inequivalent quantizations define
incommensurable theories.

Arageorgis (1995) makes the claim that “the degrees of freedom of the
field in the Rindler model simply cannot be described in terms of the ground
state and the elementary excitations of the degrees of freedom of the field
in the Minkowski model” (1995, 268; our italics). Yet so much of our earlier
discussion proves the contrary. Disjoint representations are commensurable,
via the abstract Weyl algebra they share. The result is that the ground state
of one Fock representation makes definite, if sometimes counterintuitive,
predictions for the “differently complexified” degrees of freedom of other
Fock representations.

Arageorgis et al. (2001) offer an argument for incommensurability—
based on Fulling’s “theorem”. They begin by discussing the case where the
primed and unprimed representations are unitarily equivalent. (Notice that
they speak of two different “theorists”, rather than two different observers.)

... while different, these particle concepts can nevertheless be
deemed to be commensurable. The two theorists are just la-
belling the particle states in different ways, since each defines
particles of a given type by mixing the creation and annihilation
operators of the other theorist. Insofar as the primed and un-
primed theorists disagree, they disagree over which of two inter-
translatable descriptions of the same physical situation to use.

The gulf of disagreement between two theorists using unitarily
inequivalent Fock space representations is much deeper. If in
this case the primed-particle theorist can speak sensibly of the
unprimed-particle theorist’s vacuum at all, he will say that its
primed-particle content is infinite (or more properly, undefined),
and the unprimed-theorist will say the same of the unprimed-
particle content of the primed vacuum. Such disagreement is
profound enough that we deem the particle concepts affiliated
with unitarily inequivalent Fock representations incommensu-
rable. (Arageorgis et al. 2001, 26)
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The logic of this argument is curious. In order to make Fulling’s “the-
orem” do the work for incommensurability that Arageorgis et al. want it
to, one must first have in hand a rigorous version of the theorem (otherwise
their argument would be built on sand). But any rigorous version, like our
Proposition 7.2, has to presuppose that there is sense to be made of using
a vector state from one Fock representation to generate a prediction for the
expectation value of the total number operator in another inequivalent rep-
resentation. Thus, one cannot even entertain the philosophical implications
of Fulling’s result if one has not first granted a certain level of commensu-
rability between inequivalent representations.

Moreover, while it may be tempting to define what one means by “in-
commensurable representations” in terms of Fulling’s characterization of
inequivalent representations, it is difficult to see the exact motivation for
such a definition. Even vector states in the folium of the unprimed “the-
orist’s” Fock representation can fail to assign his total number operator a
finite expectation value (just consider any vector not in the operator’s do-
main). Yet it would be alarmist to claim that, were the field in such a state,
the unprimed “theorist” would lose his conceptual grasp on, or his ability
to talk about, his own unprimed kind of quanta! So long as a state pre-
scribes a well-defined probability measure over the spectral projections of
the unprimed “theorist’s” total number operator—and all states in his and
the folium of any primed “theorist’s” representation will—we fail to see the
difficulty.

7.7 Conclusion

Let us return to answer the questions we raised in the introduction to chap-
ter 6.

We have argued that a conservative about physical observables is not
committed to the physical inequivalence of disjoint representations, so long
as he has no attachment to states in a particular folium being the only
physical ones. On the other hand, a liberal about physical observables,
no matter what his view on states, must say that disjoint representations
yield physically inequivalent descriptions of a field. However, we steadfastly
resisted the idea that this means an interpreter of quantum field theory must
say disjoint representations are incommensurable, or even different, theories.

Distinguishing “potential” from “actual” quanta won’t do to resolve the
paradox of observer-dependence. Rather, the paradox forces us to thor-
oughly abandon the idea that Minkowski and Rindler observers moving
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through the same field are both trying to detect the presence of particles
simpliciter. Their motions cause their detectors to couple to different in-
compatible particle observables of the field, making their perspectives on the
field necessarily complementary. Furthermore, taking this complementarity
seriously means saying that neither the Minkowski nor Rindler perspective
yields the uniquely “correct” story about the particle content of the field,
and that both are necessary to provide a complete picture.

So, “Are Rindler Quanta Real?” This is a loaded question that can be
understood in two different ways.

First, we could be asking “Are Any Quanta Real?” without regard to
inequivalent notions of quanta. Certainly particle detection events, mod-
ulo a resolution of the measurement problem, are real. But it should be
obvious by now that detection events do not generally license naive talk of
individuatable, localizable, particles that come in determinate numbers in
the absence of being detected.

A fuller response would be that quantum field theory is “fundamentally”
a theory of a field, not particles. This is a reasonable response given that: (i)
the field operators {®(f) : f € S} exist in every regular representation; (ii)
they can be used to construct creation, annihilation, and number operators;
and (iii) their expectation values evolve in significant respects like the values
of the counterpart classical field, modulo non-local Bell-type correlations.
This “field approach” response might seem to leave the ontology of the
theory somewhat opaque. The field operators, being subject to the canonical
commutation relations, do not all commute; so we cannot speak sensibly of
them all simultaneously having determinate values. However, the right way
to think of the field approach, compatible with complementary, is to see it as
viewing a quantum field as a collection of correlated “objective propensities”
to display values of the field operators in more or less localized regions of
spacetime, relative to various measurement contexts. This view makes room
for the reality of quanta, but only as a kind of epiphenomenon of the field
associated with certain functions of the field operators.

Second, we could be specifically interested in knowing whether it is sen-
sible to say that Rindler, as opposed to just Minkowski, quanta are real.
An uninteresting answer would be ‘No’—on the grounds that quantum field
theory on flat spacetime is not a serious candidate for describing our actual
universe, or that the Rindler representation is too “pathological”. But, as
philosophers, we are content to leave to the physicists the task of deciding
the question “Are Rindler Quanta Empirically Verified?”. All we have tried
to determine (to echo words of van Fraassen) is how the world could possibly
be if both the Rindler and Minkowski representations were “true”. We have
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argued that the antecedent of this counterfactual makes perfect sense, and
that it forces us to view Rindler and Minkowski quanta as complementary.
Thus, Rindler and Minkowski would be equally amenable to achieving “re-
ality status” provided the appropriate measurement context were in place.
As Wald has put it:

Rindler particles are “real” to accelerating observers! This shows
that different notions of “particle” are useful for different pur-
poses. (1994, 116)

7.8 Appendix: Proofs of theorems

Proposition 7.1. If Ji, Jy are distinct complex structures on (S,o), then
wy, (respectively, wy,) predicts dispersion in Ny, (respectively, Ny, ).

Proof. We shall prove the contrapositive. Suppose, then, that there is some
extension wy, of wy, to B(F(Sy,)) that is dispersion-free on all bounded
functions of Nj,. Then wj, is multiplicative for the product of the bounded
operator e=N72 with any other element of B(F(Sy,)) (KR 1997, Ex. 4.6.16).
Hence, by Eqn. (6.41),

wy, (W(cost +sintlof)) = @y, (e*itNJz Ty, (W f))eitNJ2> (7.32)
= @y (e ™) ws (W(f)) @ (e™N72) (7.33)
= wJ1(W(f))a (7'34)

for all f € S and ¢t € R. In particular, we may set t = 7/2, and it follows
that wy, (W (J2f)) = wy(W(f)) for all f € S. Since e™* is a one-to-one
function of x € R, it follows from (6.33) that

(fa f)Jl = (J2f7 J2f)J17 f € Sv (735)

and Js is a real-linear isometry of the Hilbert space S;,. We next show that
Ja is in fact a unitary operator on Sy, .

Since Jo is a symplectomorphism, Im(Jaf, J2g)s, = Im(f,g)s, for any
two elements f,g € S. We also have

| +9l3, = |15, +9l7, +2Re(f. 9).1,, (7.36)



7.8 Appendix: Proofs of theorems 165

[ Jof + Jagl3, = |fl5 +1J2g]3, + 2Re(Jaf, J29) 5 (7.37)
= |fI3 + |93 + 2Re(J2f, J29) 1, (7.38)

using the fact that Jy is isometric. But Jo(f + g) = Jof + Jag, since Js is
real-linear. Thus,

| Tof + T3, = | Ja(f + )3, = 1f + 93, (7.39)

using again the fact that Jo is isometric. Cancellation with Eqns. (7.36)
and (7.38) then gives Re(f,q)s, = Re(Jaf, J2g)s,. Thus, Jo preserves the
inner product between any two vectors in Sy,. All that remains to show is
that J is complex-linear. So let f € Sy,. Then,

(J2(if), J29) g = (ifs9)n = —i(f,9)n = —i(Jaf, J2g)y = (iJ2f, J29) 5
(7.40)
for all g € H. Since J, is onto, it follows that (J2(if),g)s, = (iJ2f, g), for
all g € H and therefore J(if) = iJof.
Finally, since Jo is unitary and J2 = —1I, it follows that Jo = +il = +.J;.
However, if J, = —Ji, then

_a(fa Jlf) = U(fa JQf) > 07 f € S7 (741)

since Jy is a complex structure. Since .J; is also a complex structure, it
follows that o(f, J1f) = 0forall f € Sand S = {0}. Therefore, Jo = J;. O

Proposition 7.2. A pair of Fock representations m, 5y Twy, GT€ unitarily
equivalent if and only if wy, assigns Ny, a finite value (equivalently, w,
assigns Ny, a finite value).

Proof. S may be thought of as a real Hilbert space relative to either of the
inner products p1, s defined by

#1,2('7 ) = Re('v ')Jl,z = U('a J1,2’)' (742)

We shall use Theorem 2 of (van Daele & Verbeure 1971): m, gy 0 Twy, are
unitarily equivalent if and only if the positive operator —[Ji, Jo]+ — 21 on
S is trace-class relative to uy. (Since unitary equivalence is symmetric, the
same “if and only if” holds with 1 < 2.)

As we know, we can build any number operator Ny, (f) (f € S) on
H.,, by using the complex structure Jo in Eqns. (6.34). In terms of field
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operators, the result is
Ny (f) =27H®(f)? + D(Jof)? +i[®(f), ®(J2f)))- (7.43)

Observe that Ny, (Ja2f) = Ny, (f), which had better be the case, since Nz, (f)
represents the number of Ja-quanta with wavefunction in the subspace of Sy,
generated by f. The expectation value of an arbitrary “two-point function”
in the Ji-vacuum state is given by

(s, S(F)O(f2) )

g O
= (—Z)2m wy, (W (t1f1)W(taf2)) I

82
T ot eXp(_%tth(fl’ F2)n = %t%(fl’fl)ah - itg(féu fZ)Jl)

- %(fl?fQ)Jp

invoking (6.32) in the first equality, and the Weyl relations (6.10) together
with Eqns. (6.23), (6.33) to obtain the second. Plugging Eqn. (7.44) back
into (7.43) and using (7.42) eventually yields

(s, Niy(F) ) = 2 20(f, ([0, Ty — 21)f). (7.45)

Next, recall that on the Hilbert space H,,, , Nj, = 332 N, (fi), where
{fx} € Sy, is any orthonormal basis. Let wj, be any extension of wy, to
B(H.,,). The calculation that resulted in expression (7.45) was done in
Heoyys however, only finitely many-degrees of freedom were involved. Thus
the Stone-von Neumann uniqueness theorem ensures that (7.45) gives the
value of each individual &, (N, (fx)). Since for any finite m, > ;| Ny, (fx) <
N, as positive operators, we must also have

> @ (Ny(fr) =@, (Z NJ2(fk)> < @5 (Np). (7.46)

k=1 k=1

Thus, @y, (Ny,) will be defined only if the sum

Zdj‘ll (NJQ(fk)) = Zwth (NJQ(Jka)) (747)
k=1 k=1

t1=t2=0

(7.44)
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converges. Using (7.45), this is, in turn, equivalent to

D wa(fis (<11, Bl = 2D fi) + Y pa(Jafi, (= [0, Joly — 20) T2 i) < oo
k=1

k=1

(7.48)
However, it is easy to see that {fx} is a Jo-orthonormal basis just in case
{fr, J2fr} forms an orthonormal basis in S relative to the inner product
p2. Thus, Eqn. (7.48) is none other than the statement that the operator
—[J1, 2]+ — 21 on S is trace-class relative to ue, which is equivalent to the
unitary equivalence of 7, gy Tw gy - (The same argument, of course, applies
with 1 < 2 throughout.) O

Proposition 7.3. If p is a regular state of A[S, o] disjoint from the Fock
state wy, then inf pep { Prob?(N(F) € [O,n])} =0 for every n € N.

Proof. Suppose that wy and p are disjoint; i.e., F(wys) NF(p) = 0. First,
we show that D(n,) = {0}, where n, is the quadratic form on H, which, if
densely defined, would correspond to the total J-quanta number operator.

Suppose, for reductio ad absurdum, that D(n,) contains some unit vector
. Let w be the state of A[S, o] defined by

w(A) = (), 7, (A)), A€ AS, o] (7.49)

Since w € F(p), it follows that w is a regular state of A[S, o] (since p itself
is regular), and that w ¢ §(wys). Let P be the projection onto the closed
subspace in H, generated by the set m,(A[S,0])¢. If we let Pr, denote
the subrepresentation of 7, on PH,, then (Pm,, PH,) is a representation of
A[S, o] with cyclic vector 9. By the uniqueness of the GNS representation,
it follows that (Pm,, PH,) is unitarily equivalent to (m,, H,). In particular,
since €, is the image in H,, of ¢ € PH,, D(n,,) contains a vector cyclic for
7w (A[S,0]) in H,. However, by Theorem 4.2.12 of (BR 1996), this implies
that w € §(wy), which is a contradiction. Therefore, D(n,) = {0}.
Now suppose, again for reductio ad absurdum, that

inf { Prob?(N(F) € [0, n])} £0. (7.50)

Let Ep := [E,(F)]([0,n]) and let E := A\pcp Ep. Since the family {Er} of
projections is downward directed (i.e., F' C F’ implies Er > Ep/), we have

0 # }%%“vaEFQﬁ} = (Q, BQy) = || EQ,|*. (7.51)
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Now since ErpEQ, = EQ,, it follows that
[ne(F)](EQp) < n, (7.52)

for all F' € F. Thus, EQ, € D(n,) and D(n,) # {0}, in contradiction with
the conclusion of the previous paragraph. O



Chapter 8

Summary and outlook

8.1 Summary

In this dissertation, we considered three issues at the heart of the foundations
of quantum field theory: Nonlocality, localizable particles, and inequivalent
particle concepts.

Part I investigated the issue of nonlocality in quantum field theory. Here
we saw that the generic state of any pair of spacelike separated regions
violates Bell’s inequalities, and thus predicts correlations that cannot be
explained by any local hidden variable model. This first result depends only
on the fact that local algebras of observables are infinite (more precisely, “of
infinite type”), and so it holds not only for relativistic QFT, but also for
non-relativistic QFT, as well as for a pair of particles (taking into account
their position and momentum degrees of freedom). We also saw that any
“cyclic” state is entangled across spacelike separated regions. Since the
Reeh-Schlieder theorem entails that any field state with bounded energy is
cyclic for each local algebra, this result shows that a number of physically
interesting states—including the Minkowski vacuum state—are entangled.

In chapter 3, we considered a type of nonlocality that is novel to rela-
tivistic QFT. In particular, it is impossible to perform “isolating” operations
that would remove the entanglement between any local system and its en-
vironment. From a structural point of view, this feature of RQFT can be
traced to the fact that the algebras of local observables are type I1I von Neu-
mann algebras, and so have no atomic projections. This fact can, in turn, be
traced to the microcausality assumption (see Horuzhy 1988, Prop. 1.3.13),
which is intended to enforce the restriction on no superluminal propagation.
Thus, we have a curious fact in that a locality requirement actually enforces,

169
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rather than conflicts with, a form of quantum nonlocality.

Part II investigates the concept of localizable particles in relativistic
quantum theories. In chapter 4, we considered a concrete proposal for lo-
calizing particles in relativistic QFT, viz., the Newton-Wigner localization
scheme. Structurally, the Newton-Wigner localization scheme is very at-
tractive; in fact, it is structurally identical to particle localization in non-
relativistic QFT. However, I argued that despite its structural simplicity,
there is no cogent physical interpretation of the Newton-Wigner localization
scheme. In particular, the Newton-Wigner scheme “assigns” observables to
regions in spacetime, but this assignment does not satisfy microcausality—
i.e., there are observables assigned to spacelike separated regions that are
not compatible. Thus, the advocate of the Newton-Wigner scheme is im-
paled on the horns of a dilemma: If observables assigned to a region are
measurable in that region, then superluminal signalling is possible. If ob-
servables assigned to a region are not measurable in that region, then the
assignment has no empirical consequences, and is completely arbitrary.

In chapter 5, we considered the issue of particle localization from a more
abstract perspective. Here we found that there is a fundamental conflict
between the requirements of localizability and the constraints of relativistic
causality. In particular, relativistic causality (expressed by means of the
microcausality assumption) entails that there are no localizable particles.
This claim holds no matter what sort of localizing observables we make use
of—whether they be projection operators, positive operators, or number
operators. Thus, in relativistic quantum theories, the concept of a localized
object is at best an approximation that works fairly well at the macroscopic
level.

Part III considered the issue of inequivalent particle concepts in RQFT.
Whereas in Part II the difficulty was that there is no concept of localizable
particles, the difficulty here is that there are too many particle concepts. In
particular, we can construct two observables for a quantum field, both of
which purport to be counting the total number of particles, but whose values
cannot possibly be reconciled in one coherent story about the ontology of
the field.

Each of these particle concepts corresponds to a representation of the
canonical commutation relations. Thus, in chapter 6, we considered in gen-
eral the status of inequivalent representations of the canonical commutation
relations. Here we saw that one’s position on inequivalent representations
will depend both on one’s attitude towards states that lie in different folia
of the Weyl algebra, and on one’s attitude towards “ideal” observables that
can only be weakly approximated by elements of the abstract observable
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algebra.

Finally, in chapter 7, we considered the specific case of Minkowski versus
Rindler quanta. Here I argued that the descriptions given by the Minkowski
(inertial) and Rindler (accelerated) observers should not be thought of as
deriving from incommensurable theories about the quantum field. Rather,
these apparently conflicting accounts are simply another instance of the
complementarity that is familiar from elementary quantum mechanics.

8.2 Open questions and directions for future re-
search

There are a number of open questions that were not answered in this dis-
sertation, and there are several further topics that received no attention in
this dissertation.

1. Malament’s conjecture. As we noted at the end of chapter 2, none of
the results we obtained there settles the following conjecture made by David
Malament.

Conjecture. Let O1, 03 be a pair of spacelike separated regions of Minkowski
spacetime. Then the vacuum state is Bell correlated across R(0O1), R(O2).

This conjecture is philosophically important for a number of reasons. First,
as Redhead (1995a) notes, the vacuum state in RQFT—unlike the vacuum
state in non-relativistic QFT—should not be thought of as a state in which
“nothing is happening” locally. If Malament’s conjecture could be verified,
it would further underscore the drastic difference between the ontology of
non-relativistic vacuum state and the relativistic vacuum state. Second,
the vacuum state is, by definition, the unique state that is invariant under
all Lorentz transformations. Thus, if it could be shown that the vacuum
state predicts Bell correlations for any two spacelike separated regions, then
we would have good evidence for the fact that quantum nonlocality does
not entail any sort of violation of the principles of relativity. Third, the
Minkowski vacuum contains no interaction and is the state of lowest energy.
Thus, if the vacuum state sustains nonlocal correlations at all distances, we
would have a striking example of the fact that nonlocal correlations do not
involve any transfer of energy momentum—which, it would be reasonble to
assume, is a necessary condition of causality.

2. Theory of measurement. Unlike elementary quantum mechanics,
quantum field theory does not yet have a rigorous theory of measurement.
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There is every reason to expect that, when a measurement theory is formu-
lated, QFT will also be plagued by a “measurement problem.” However, it
is not yet clear what form the problem will take, or what sorts of solutions it
might admit. Thus, one of the most important problems in the foundations
of QFT is to formulate a rigorous measurement theory. Furthermore, such
a theory should take into explicit account the fact that measurements are
local, or somehow result from localized interactions between a measuring
apparatus and the field.

Even in the absence of a rigorous theory of measurement, certain por-
tions of this dissertation favored a no-collapse interpretation of quantum
field theory. For example, in making the distinction between selective and
non-selective measurements (chapter 3), I argued that the change in statis-
tics of distant systems induced by selective measurements is not a result
of any physical disturbance; rather, the “collapse” results from the mental
operation of choosing a subensemble.

Furthermore, I argued in chapter 7 that the choice of a representation
should be thought of a analogous to the choice of a “privileged” observable—
in the sense of Bub and Clifton (1996)—for a modal interpretation of quan-
tum theory.! In particular, we can use this perspective on inequivalent
representations to elaborate a “modal” version of Bohr’s complementarity
interpretation, in which the privileged observable can vary depending on the
measurement context (cf. Bub 1997, Sec. 7.1). For example, in a position
measurement context, we would treat the pure states in the position folium
as the (modal) “value states” for the position observable. Furthermore, ac-
cording to this interpretation, the issue of inequivalent representations is
a conceptual problem for all quantum theories (except for toy models on
finite-dimensional Hilbert spaces, where all representations are equivalent),
and not just for quantum field theory.

3. Interacting quantum fields. For the most part, this dissertation has
proceeded from an abstract point of view, considering model-independent
features of generic quantum field theories. The only concrete model we have
considered is the (trivial) free Bose field (see chapters 4, 6, and 7). Thus, we
have omitted from discussion a number of the “most interesting” quantum
field theories, such as quantum electrodynamics. (Of course, some of these
interesting quantum field theories have not yet been given a mathematically

The only disanalogy is that choosing a representation is a necessary, but not suffi-
cient, condition for assigning values to observables. Each representation will be subject
to the Kochen-Specker argument, and so we would need to go on to single out, within a
representation, a sublattice of definite properties.
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rigorous formulation.) There are, however, a number of interesting concep-
tual issues that arise only in the context of interacting quantum fields.

For example, Haag’s theorem (Streater & Wightman 2000, 165) appears
to show that the standard Hilbert space approach to quantum theory is not
adequate for treating interacting quantum fields. But this raises interesting
questions both of a methodological and of a metaphysical nature.

First, Emch has claimed that Haag’s theorem shows, “the inability of
conventional field theories to describe scattering situations, using the inter-
action picture, in which the S-matrix is different than the identity” (Emch
1972, 249). Thus, Haag’s theorem poses a challenge for our understanding of
the methodology of QFT. In particular, “heuristic” QFT proceeds to make
predictions as if it were possible to use the standard Hilbert space approach
to describe interacting quantum fields, and these predictions turn out to be
quite accurate. How, then, is it possible to use an inconsistent mathematical
formalism to derive these predictions?

Second, Haag’s theorem presents us with an example of a result that is
peculiar to relativistic quantum field theories. In particular, it is possible
to construct interacting models of non-relativistic (Galilei-invariant) QFT
within the confines of a single Hilbert space representation (cf. Lévy-Leblond
1967). (This can be contrasted with the case of the Reeh-Schlieder theo-
rem which does remain valid in most reasonable models of non-relativistic
QFT (Requardt 1982), since the theorem does not actually require the full
strength of the relativistic spectrum condition.) Thus, in order to gain a
better understanding of the relationship between the concepts of quantum
theory and those of relativity, it would be desirable to isolate those features
of relativistic theories that cause difficulties for the interaction picture.

4. Fields, observables, and ontology. In Part II of this dissertation, we
gave some support for the dogma that relativistic QFT is not a theory of
(localizable) particles. This dogma about particles goes hand in hand with
another dogma—viz., that relativistic QFT is a theory of fields. However,
it is far from clear what is meant by this second dogma, and whether it can
be justified.

For example, in the case of the free Bose field, the local field observables
are given by the elements {®(f)} where f runs through the compactly sup-
ported test-functions on Minkowski spacetime. However, in general ®(f)
and ®(g) are not compatible, and so we cannot think of all elements of
{®(f)} as possessing a value in an arbitrary state.

It is possible—at least in the case of the free Bose field—to split @(f)
into two parts, the field configuration ¢(hy) and the canonically conjugate
momentum w(hys). (For the definition of the test-function hy, and other
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details, see Horuzhy 1988, 241.) In this case, we have

[p(h1), d(h2)] = 0 = [x(h), 7 (h2)], (8.1)
[¢(h1), m(ho)] = (b1, h2) .

Thus, we could think of the field configuration observables {¢(h)} as pos-
sessing simultaneously definite values (since they are pairwise compatible),
but only (as in the Bohm theory) at the expense of treating the momentum
observables {m(h)} as contextual. However, we should be just as suspicious
of the claim that the field configuration observables are the “beables” of
quantum field theory as we are of the claim that the position observable is
the “beable” of elementary quantum mechanics.

The situation becomes more complicated in the general case. In general
we have to distinguish between the net {F(O)} of local field algebras and
the net {A(O)} local observable algebras. (The free Bose field model is
peculiar in that the two nets are identical.) Since elements of the algebra
F(O) are not typically observable, the net {F(O)} is not required to satisfy
microcausality; i.e., elements of F(O) and F(O’) may fail to commute even
when O and O’ are spacelike separated. However, this entails that the typical
elements A € F(O) and B € F(O) cannot both possess a value in a given
state. But what could explain their incompatibility?

A typical response from the algebraic field theorists is that “the physical
content” of QFT is carried by the observable algebra, and that the descrip-
tion in terms of fields is mathematical “surplus structure.” For example, it
is sometimes claimed that the choice of field description is analogous to the
choice in General Relativity of a coordinate chart for the manifold. From a
philosophical perspective, however, this claim about quantum fields seems
unjustifiably instrumentalistic. It would be interesting to see whether it
is possible to make sense of this understanding of quantum fields without
lapsing into instrumentalism.

5. Causality and Lorentz invariance. According to Graham Nerlich,

Special relativity is based on the principle of Lorentz invariance,
not on causality. The limit principle (all causal and signal con-
nections are slower than light) is not a basic thesis of special
relativity. ... (Nerlich 1982)

We have seen, however, that RQFT stipulates from the outset, via the spec-
trum condition, that the limit principle holds. On the other hand, there are
models of RQFT in which Lorentz invariance is violated (e.g., in charged
sectors in quantum electrodynamics). Such features of RQFT have led the
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renowned physicist H.-J. Borchers (1985, 1991) to claim that Lorentz invari-
ance is only “approximately” true (in the sense that it would be very difficult
to design an experiment to show it false), and this as a consequence of the
more basic limit principle. It would be particularly interesting, then, to in-
vestigate Borchers’ claim from a more explicitly philosophical perspective,
and to draw out its implications for our understanding of the conceptual
foundations of special relativity.

6. Quantum statistical mechanics. The algebraic approach to quantum
theory has proved useful not only for quantum field theory but also for
quantum statistical mechanics. It would be interesting to consider, then,
whether conclusions drawn in this dissertation—in particular, concerning
the relationship between inequivalent representations—can be extended to
that case.
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