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Abstract  

The Einstein-Rupp experiments were proposed in 1926 by Albert Einstein to study the wave versus particle 

nature of light. Einstein presented a theoretical analysis of these experiments to the Berlin Academy together 

with results of Emil Rupp, who claimed to have successfully carried them out. However, as the preceding 

paper has shown, this success was the result of scientific fraud. This paper will argue, after exploring their 

interpretation, that the experiments were a relevant part of the background to such celebrated contributions to 

quantum mechanics as Born’s statistical interpretation of the wave function and Heisenberg’s uncertainty 

principle. Yet, the Einstein-Rupp experiments have hardly received attention in the history of quantum 

mechanics literature. In part, this is a consequence of self-censorship in the physics community, enforced in 

the wake of the Rupp affair. Self-censorship among historians of physics may however also have played a 

role.  

 
In the spring of 1926, Albert Einstein proposed to Emil Rupp to do two experiments that were to probe the wave 

versus particle nature of light: the so-called ‘Wire Grid Experiment’ and the ‘Rotated Mirror Experiment’ 

(Spiegeldrehversuch). In both experiments, the interference properties of light emitted by canal ray sources were to 

be explored to reveal if light was emitted in a process that was extended in time, as was to be expected on the basis of 

its classical description as a wave, or whether it was emitted instantaneously. The foregoing paper took up these 

experiments in detail, including strong evidence that Rupp’s results were in fact fraudulent.* The present paper raises 

two related questions: First, how did Einstein accommodate the conflicting notions of wave and particle in the context 
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of the experiments? Second, how might these experiments have influenced contemporary developments? In both 

respects, even without taking up all possible ramifications, the episodes discussed here suggest that the Einstein-Rupp 

experiments played a relevant, perhaps even positive role in the construction of quantum mechanics.  

 
Interpretation: Einstein on waves, particles, and ghost fields 

Einstein’s interest in the canal ray experiments went back to his desire to test wave and particle pictures of light; to 

see “how much of either is correct.”1 As the preceding paper shows, he initially expected a clear confirmation of the 

particulate, instantaneous emission picture in the canal ray experiments. On the other hand, despite that Einstein’s 

theoretical prejudices heavily determined his interactions with Rupp, once he realized that the latter had already 

“unknowingly”2 
confirmed the classical wave picture, he gradually reshaped his views. Indeed, Einstein soon began 

to expect further confirmations of the wave picture and later claimed that Rupp’s experiments had given the classical 

result. 

One important role of the Einstein-Rupp experiments is thus easily identified: they maintained a wave-picture of 

light at a crucial moment during the genesis of the quantum theory3—just as experiments by in particular Arthur 

Compton had confirmed its particulate aspects.4 
Einstein of course had already early on pointed out that light 

exhibited both wave and particle properties, for instance in his study of the energy fluctuations in black body 

radiation.5 
Given these contexts, and Einstein’s initial expectations and gradual turn-around, one should expect that 

he had a dual wave-particle picture of light when the canal ray experiments were under discussion in the spring of 

1926. But what could the details of that dual picture have looked like?  

Here we must turn to Einstein’s ideas on the “ghost field” description of light: a probabilistic and dual 

interpretation of light attributed to Einstein6 
but never explicitly published by him as such. As John Stachel has also 

suggested, to get a sense of these ideas we must go back to 19217 when traces of this interpretation appear in 

Einstein’s correspondence. In particular, Hendrik Antoon Lorentz wrote to Einstein in November of 1921—in the 

context of Einstein’s proposed, but flawed, canal ray experiment of that year—and outlined in his letter a probabilistic 

interpretation of the light wave that he attributed to Einstein. According to Lorentz’s reconstruction of Einstein’s 

thoughts, the latter held that:  

In light emission, two things are emitted. There is namely: 1. An interference radiation, that occurs 
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according to the normal laws of optics, but still carries no energy. One can for example imagine that this 

radiation exists in normal electromagnetic waves but with vanishingly small amplitudes. As a 

consequence they cannot themselves be observed; they only serve to prepare the way for the radiation of 

energy. It is like a dead pattern, that is first brought to life by the energy radiation. 2. The energy 

radiation. This consists of indivisible quanta of magnitude hν . Their path is prescribed by the 

(vanishingly small) energy flux in the interference radiation, and they can never reach places where this 

flux is zero (dark interference bands).  

In an individual act of radiation the full interference radiation arises, but only a single quantum is 

radiated, which therefore can only reach one place on a screen placed in the radiation. However, this 

elementary act is repeated innumerably many times, with as good as identical interference radiation (the 

same pattern). The different quanta now distribute themselves statistically over the pattern, in the sense 

that the average number of them at each point of the screen is proportional to the intensity of the 

interference radiation reaching that point. In this way the observed interference phenomena arise, 

corresponding to the classical results.8

Lorentz continued by outlining a suggestive idea of his own:  

[W]e do now not need to conclude that, in the case that an interference phenomenon with a phase 

difference of N (for example ) wavelengths is observed, the quantum has to stretch itself in the 

direction of propagation over N wavelengths. It can very well be quite small. When in an elementary 

emission event (with an energy quantum) a train of N waves (interference radiation) is emitted, one can 

raise the question where in that train the single quantum is; up front or in the back, or [it] could take up 

roughly all positions in between, and when often repeated also really does.  One could conclude 

something about this from observations of the visibility of interference fringes at various path 

differences. Namely, the following is to be taken into consideration: Let us assume that a screen S is hit 

by the two wave trains 1 and 2 (that originated at the same emission event), with front and rear 

wavefronts a and b, or c and d respectively [see figure 1]. A light quantum can only make the  

610
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Figure 1: Copied after Lorentz’s figure in his letter to Einstein of 13 November 1921, EA 16 544. 

interference visible if, at the very moment that it lights up the screen, on the latter there is already 

interference in the interference field. That is, if both rays of the interference field overlap. If the screen is 

reached by 2 somewhat later than by 1, then the light quanta that are very much to the front in 1 or to 

the back in 2 can not produce any sharp fringes, etc.9

This idea of Lorentz essentially resurfaced in Einstein’s Wire Grid Experiment, where the cutting up into the “two 

wave trains 1 and 2” of the interference field would occur because of the grid. If in the Wire Grid Experiment a 

variability in the visibility of the interference with the path difference would be observed, it could easily be 

understood in terms of Lorentz’s interpretation—based on Einstein’s ghost field—given above: the production of the 

interference field would take an extended lapse of time and its fringe pattern would give a probability distribution 

according to which the individual quanta would arrange themselves on the screen. In the minima of the visibility of 

fringes, the cut up wave trains of the interference field do not overlap and no pattern can form. If no minima in the 

visibility were observed—as Einstein initially expected—then one could conclude that the interference field might 

somehow be instantaneously emitted or transmitted through the grid. However, it should be pointed out that Einstein, 

in the case of such an outcome, originally only expressed the expectation that the “sine-like character of the wave 

field” would not be “conditioned by the emitting atom or electron,” but by “conditions imposed by specific laws of 

the space-time continuum.” 10 He did not further elaborate on these presumed laws, and neither on how they would 

condition the wave field, but only stated that in the case of a negative outcome of the Wire Grid Experiment one 

could conclude that interference had nothing to do with any periodicity of the radiating atom. Rupp’s results of course 
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contradicted such conclusions.  

The above congruence between Lorentz’s idea and the Grid Experiment strongly suggests that some form of the 

ghost field interpretation was on Einstein’s mind when he proposed the experiment in 1926. One can also easily see 

how it would apply to the Spiegeldrehversuch, though there is again no concrete evidence that Einstein in fact did so. 

Unfortunately, it is difficult to reconstruct his full interpretation on the basis of the documentary evidence.  

However, the inferences that Einstein drew in 1926 on the basis of Rupp’s claims do point in this direction, as far 

as they can be reconstructed from his correspondence with the latter. After Rupp had submitted his manuscript, 

Einstein reviewed it and came across a statement that he disagreed with—apparently, Rupp believed that one could 

conclude from his experiments that the atom gradually passes from an excited to a non-excited state. Einstein urged 

Rupp to change this passage and expressed that in his view:  

One must distinguish between the production of the interference field (A) and the energy emission (B). 

The event-like nature of (B) is certain. Your experiments have proven that (A) is a process that is 

extended in time. Whether (A) takes place while the atom is in its excited state, that is, contains the full 

hν , is indeed not certain.11

Rupp did not reply timely and Einstein decided to make the changes himself.
 
In his next letter, he again emphasized 

that “it is today really rather certain that the undulatory and the energy properties must be clearly separated, as only 

the latter have an instantaneous character.”12 

The separation of the “interference field” and the energy properties of light are in full agreement with the 

probabilistic ghost field interpretation as encountered in Lorentz’s letter of 1921. Yet, there is no mention of a 

probability distribution; on the basis of these sources alone one can assert no more than that Einstein made the plain 

observation that an interference field is emitted along with the light quanta, and that the emission of the interference 

field takes an extended lapse of time. In his Academy publication however, Einstein would not even go that far and 

did not mention the interference field; he only concluded that the classical extended-in-time predictions were correct 

(although he did hint in a footnote that “one is not allowed to conclude that the quantum process of emission, that in 

terms of energy is completely determined by location, time, direction and energy [sic], is also geometrically 
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determined by these quantities.”)13

Einstein’s reserved attitude regarding the details of his understanding of light’s duality is perhaps best illustrated, 

finally, in his lecture at Berlin University of 23 February 1927.14 
In this seminar on “theory and experiment on the 

question of the origin of light,” he again left the question open. After first outlining the dilemma—wave or particle—

he spoke of “detailed experiments, carried out by Dr. Rupp”
 
that had confirmed that emission is a process that takes 

an extended period of time. Einstein here did emphasize the need to sharply separate between the “energy” and 

“geometric” properties of light, but he did not discuss a probabilistic ghost field interpretation. Instead, he concluded 

that “what nature asks of us, is not a quantum theory or wave theory, but nature asks of us a synthesis of both views 

that so far has exceeded the intellectual powers of physicists.” 

 
Possible ramifications: Born and Heisenberg 

Historians of physics have already pointed to the close relation between Einstein’s ghost field interpretation, as 

contained in Lorentz’s 1921 letter, and the Born interpretation of the wave function ψ .15 In his 1954 Nobel lecture, 

Born spoke of the key developments that had led him to his result. He in particular stated that:  

[A]n idea of Einstein gave me the lead. He had tried to make the duality of particles—light quanta or 

photons—and waves comprehensible by interpreting the square of the optical wave amplitudes as 

probability density for the occurrence of photons. This concept could at once be carried over to the ψ -

function: 2| |ψ ought to represent the probability density for electrons (or other particles).16

Einstein’s influence is evident in Born’s original publications too: “[...] I tie in with a remark by Einstein on the 

relation between wave field and light quanta; he said more or less that the waves are only there to show the way to the 

corpuscular light quanta, and he spoke in this sense of a ‘ghost field.’ This determines the probability that a light 

quantum, the carrier of energy and momentum, takes a particular direction; the field itself does not contain any 

energy or momentum.”17 
Born further suggested to carry this idea over from the electromagnetic field to the 

Schrödinger wave field, and interpret this as a “ghost field” too.
 
He then went on to formulate his interpretation in the 

context of an electron scattering off an atom.  

The two papers in which Born made this step were submitted on 25 June and 21 July, 1926,
 
just when Einstein  
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Figure 2: Atom A that emits light passes behind a slit. The light is diffracted at an angle α  with the normal.  

was concluding his collaboration with Rupp and the latter had begun drawing up his Academy paper.18 
Born and 

Einstein frequently interacted, so it is very well possible that they discussed the Einstein-Rupp experiments in the 

spring of 1926.19 
Even if Born and Einstein had not actually discussed the experiments, Einstein’s March 1926 

publication in Naturwissenschaften20 
already prominently drew attention to the Wire Grid Experiment. Clearly, these 

coincidences do not warrant one to state as a fact that Born had the Einstein-Rupp experiments on his mind when he 

formulated his interpretation—however, they do make it plausible that the experiments may have played a role.  

Werner Heisenberg’s 1929 Chicago lectures21 
illustrate the important role of the Einstein-Rupp experiments even 

more directly. Heisenberg used the Wire Grid Experiment to show how one might suspect a contradiction between 

the wave and particle picture in the case of an atom moving with velocity v past a slit of width d. Namely, an emitted 

light wave would be cut up by the slit and therefore have a spread in its frequency of the order of ~ /v dνΔ . 

However, according to the light quantum theory, the emitted light is strictly monochromatic with its energy given by 

.hν There is no contradiction however, if one takes into account the fact that the quanta undergo diffraction at the 

slit, an idea that Heisenberg credited to Bohr. Quanta emitted at an angleα with the normal also reach a point on that 

normal behind the slit, with α of the order of sin ~ / dα λ  (see figure 2). These quanta have undergone a Doppler 

shift: ~ sin
v
c

ν αΔ × ν× . From this then again followed ~ /v dνΔ . The particle picture is thus consistent with the 

wave picture and Heisenberg concluded that in this experiment “strict validity of the energy law for particles is in 

agreement with the demands of classical optics.”22

Traces of the alluded to discussion between Heisenberg and Bohr on the Einstein-Rupp experiments can be found 
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in the Einstein Archive. Shortly before the appearance of Heisenberg’s article that contained the uncertainty 

relations,23 
Bohr wrote a letter to Einstein in which he advertised Heisenberg’s results; he did so in the context of 

Einstein and Rupp’s Grid Experiment (“I would like to add some comments that connect to the problem that you have 

recently discussed in the Proceedings of the Berlin Academy.”)24 
After first arguing that the concept of a finite wave 

train was in good agreement with the uncertainty principle for quanta,25 
Bohr discussed essentially the same 

argument as Heisenberg would later present in his Chicago lectures. He added to Einstein that “as you hinted at in 

your footnote
 
any ‘light quantum description’ can never explicitly account for the geometrical relations of the 

‘radiation trajectory.’”26 
With Heisenberg’s new results, energy conservation of particles and wave optics could be 

brought into agreement in the Wire Grid Experiment, as “the two sides of the problem never surface at the same time 

according to the nature of the description.”27 
Heisenberg in his paper on the uncertainty relations stated that his ideas 

originated partly in “Einstein’s discussions on the relation between wave field and light quanta.”28 
He may not have 

been thinking of Einstein’s ghost fields here—as the wave-particle complementarity hinted at by Bohr is of course a 

different concept than a ghost field interpretation, since in the latter the particles and waves are present 

simultaneously—yet the context of the Einstein-Rupp experiments appears to be relevant again.  

As before, the sources do not spell out in full detail what influence Einstein’s theoretical paper and Rupp’s 

experimental publication exerted on discussions between Heisenberg and Bohr. It seems however safe to conclude 

that these experiments were involved in communicating the uncertainty relations, and that they likely had a part in 

Bohr and Heisenberg’s development of key conceptual elements of the quantum theory.  

 
Afterwards 

Bohr did not mention the Einstein-Rupp experiments in his 1949 review of his exchanges with Einstein on the 

foundations of quantum theory.29 
Indeed, despite their obvious place in Einstein’s oeuvre and despite their 

widespread contemporary reception, the experiments are hardly discussed in the Einstein literature.30 Similarly and 

perhaps surprisingly, this is likely the first occasion that the Einstein-Rupp experiments have been pointed out as 

relevant context for Born’s references to Einstein. In a Science paper, Abraham Pais, the noted Einstein biographer, 

also emphasized the role of Einstein’s thoughts on the “ghost field” as an inspiration for Born.
 
Yet, he did not 

mention the Einstein-Rupp experiments in his account of Born’s creative moment, nor did he take them up in his 
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Einstein biography.31 
Scholarship on Heisenberg has also not yet addressed the point.32  

It seems as if the German Physical Society’s decision not to allow citations to Rupp’s fraudulent work
 
has tacitly 

been observed in the historical literature. One hardly finds any mention of Rupp—let alone of the fraud that he 

committed in the canal ray experiments—in historical studies of either quantum theory or of Einstein.33 
This may be 

due to a genuine failure to notice Rupp’s role, precisely since references to his work became scarce, or perhaps to a 

desire to maintain an untainted image of Einstein or a tidy account of the transition from classical to quantum theory. 

Yet, although Rupp committed fraud, it appears that this did not directly hamper the progression to quantum 

mechanics. He claimed to have confirmed Einstein’s theoretical intuition and this (revised) intuition in the end turned 

out to be in line with the fully developed quantum theory. In that theory, the Copenhagen doctrine of 

complementarity entails that the experimental environment dictates the conceptual interpretation of the experiment.
 
In 

the case of the Einstein-Rupp experiments, that implies that one should expect a confirmation of the wave picture for 

radiation, just as Einstein in the end predicted and Rupp claimed to have observed. 
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