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Abstract

In [Sch05a], it is argued that Boltzmann’s intuition, that the psychological
arrow of time is necessarily aligned with the thermodynamic arrow, is correct.
Schulman gives an explicit physical mechanism for this connection, based on
the brain being representable as a computer, together with certain thermo-
dynamic properties of computational processes. [Haw94] presents similar, if
briefer, arguments.

The purpose of this paper is to critically examine the support for the link
between thermodynamics and an arrow of time for computers. The principal
arguments put forward by Schulman and Hawking will be shown to fail. It will
be shown that any computational process that can take place in an entropy
increasing universe, can equally take place in an entropy decreasing universe.

This conclusion does not automatically imply a psychological arrow can
run counter to the thermodynamic arrow. Some alternative possible explana-
tions for the alignment of the two arrows will be briefly discussed.
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1 Introduction

In part of his response to Zermelo’s reversibility objections to statistical mechanics,
Boltzmann[Bol95] suggested it was possible (indeed, inevitable) to have extended
regions of space, and time, that were entropy decreasing, but that living beings
within those regions would be unable to perceive the difference:

For the universe, the two directions of time are indistinguishable, just as
in space there is no up and down. However, just as at a particular place
on the earth’s surface we call “down” the direction toward the center of
the earth, so will a living being in a particular time interval of such a
single world distinguish the direction of time toward the less probable
state from the opposite direction (the former toward the past, the latter
toward the future)

Authors such as[Rei71, Hor87] have developed this idea while others[Skl93, Ear06,
Mau02] are critical.

As noted in [Skl85][Chapter 12], the perception of ‘up’ and ‘down’ can be directly
traced to particular physical processes in different creatures (and specifically in the
case of humans, the effect of the gravitational field on the fluid of the inner ear).
While it may seem implausible that there could be an equivalent organ, which
monitors the local entropy gradient, and informs the brain in which direction time
is flowing, there remains the possibility that there is still something about the general
functioning of the brain that can only take place in the direction of entropy increase.

In a recent paper Schulman[Sch05a] claims to identify such a function from the
general thermodynamic properties of computations, as physical processes. He gives
a detailed comparison of the components of a computer with the features of the
psychological arrow to show

the extent to which a computer . . . can be said to possess a psychological
arrow. My contention is that the parallels are sufficiently strong as to
leave little room for an independant psychological arrow.
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He then appeals to Landauer’s Principle[Lan61] to show that the intrinsic arrow
of computational processes must be aligned with the thermodynamic arrow. As a
result a computer is

without an independant arrow of time, retaining the past/future distinc-
tion by virtue of its being part of a mechanistic world with a thermody-
namic arrow in a particular direction.

Similar suggestions to Schulman’s can be found in [Haw94]

when a computer records something in memory, the total entropy in-
creases. Thus computers remember things in the direction of time in
which entropy increases. In a universe in which entropy is decreasing in
time, computer memories will work backward.

It is argued in this paper that neither Hawking nor Schulman’s arguments hold. The
structure is as follows. First (Section 2) we will state how we will treat the thermo-
dynamic arrow of time, and what we mean when we refer to an ‘entropy increasing
universe’ and an ‘entropy decreasing universe’. Then (Section 3) we consider what
it takes for a physical process to embody a computation and the effect of a time
reversal of this physical process. The processes that result from this temporal rever-
sal are not equivalent to the processes that can represent a computation. We then
show the key result that equivalent operations to the time reversed processes can be
constructed, so the time reverse of those equivalent operations is a computation in a
time reversed universe (Section 3.4) that is equivalent to the original computation.
This demonstrates the physical possibility of such processes in entropy decreasing
universes, and gives us a model to further study the possibilities of computation
under such circumstances.

In Section 3.5, we examine the derivation of Landauer’s Principle in an entropy
decreasing universe. We find that the physical assumptions required for an entropy
decreasing universe result in a reversal of the inequality that occurs in the usual
statements of Landauer’s Principle. Rather than necessitating entropy increases,
when taking place in an entropy decreasing universe logical operations necessitate
entropy decreases. In retrospect this will seem rather obvious.

Finally (Section 4) we consider the question of whether systems which gather,
process and utilise information, are simply more likely to arise in entropy decreasing
or entropy increasing universes. We examine this from the point of view of volume
of state space arguments, to see if there is, all else being equal, any reason to
expect that entropy decreasing universes are inherently hostile to the gathering and
retention of information. We find that, perhaps surprisingly, they are not. We
conclude that, on the basis of statistical mechanical arguments alone, we have no
grounds for linking any computational arrow of time to the thermodynamic arrow
of time.

Given the clear manner in which our own information processing seems aligned
to the thermodynamic arrow, this may seem puzzling. We will briefly consider some
possible explanations of this link, but which would require more complex arguments
to justify. A surprising conclusion might be that, if the psychological arrow of time
is necessarily aligned with the thermodynamic arrow, then it cannot be logically
supervenient upon computational states. Alternatively, if the psychological arrow of
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time is logically supervenient upon information processing, then it must be logically
independant of the thermodynamic arrow.

2 The Thermodynamic Arrow

First it is necessary to make clear what is meant by an entropy increasing universe
and an entropy decreasing universe.

The state space of the universe is formed from the product of the state spaces
of a large number of smaller systems Ω =

∏
i⊗Ωi and a measure, µ, on regions

of the state space. It will be usually only be necessary to consider grouping the
subsystems into a small number of distinct, larger subsystems, j, with most of the
small subsystems grouped into a single ‘environment’, E:

Ωj =
∏

i∈j

⊗Ωi (1)

ΩE =
∏

i∈E

⊗Ωi (2)

Ω = ΩE

∏

j

⊗Ωj (3)

The dynamics are described by an invertible, measure preserving flow φ(t) on the
state space. For any region ∆ ⊆ Ω then µ(φ(t)(∆)) = µ(∆), and there exists a map
φ−(t) such that φ−(t) ◦ φ(t)(∆) = φ(t) ◦ φ−(t)(∆) = ∆.

2.1 Entropy increasing universe

An entropy increasing universe has a microstate that starts in a very small and
special region ∆0 ⊆ Ω. It is assumed that the dynamics of the flow on the state
space is such that, over time, this region spreads out over the state space. As the
measure is preserved, this can only happen by the region developing a very elongated
and filamentary structure. As part of the special nature of the initial region, it will
be assumed that the fine detail of this elongated and filamentary structure can be
ignored for any future evolution of the system.

The initial region is a direct product of regions over the subsystems:

∆0 =
∏

i

⊗∆i

After the system has evolved, it will not, in general be the case that the evolved
region φ(t)(∆0) is a direct product of regions over the subsystems.

We will assume that the state space Ωi of each subsystem, i, is divided into
distinct subregions ωi,j, such that ∪jωi,j = Ωi. The integer xi identifies a subregion
ωi,xi

so that the array of integers x = (x1, . . . , xj, . . .) can be used to represent a
direct product of subregions

ωx =
∏

j

⊗ωi,xi
(4)

The sets
{
∆i,xi

}
and

{
∆E

}
are sets of all the regions that satisfy:

∆i,xi
⊆ ωi,xi

(5)

∆E ⊆ ΩE (6)
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for which there exits a set of x such that

φ(t)(∆0) ⊆ ∪x∆x ⊗∆E (7)

∆x =
∏

i

⊗∆i,xi
(8)

The coarse graining of φ(t)(∆0) will be defined as the smallest superset of φ(t)(∆0),
that can still be expressed as a union of direct products of subregions of the ωi,j and
a direct product of that union with a subregion of the environment. This implies
the subregions ∆i,xi

∈
{
∆i,xi

}
and ∆E ∈

{
∆E

}
where ∀∆i,xi

, ∆E

∪x∆x ⊗∆E ⊆ ∪x∆x ⊗∆E (9)

∆x =
∏

j

⊗∆i,xi
(10)

In an entropy increasing universe, we assume that the microscopic correlations
that develop due to φ(t) play no role in the future evolution of the system. In effect,
this means that we may make the coarse grained replacement

φ(t)(∆0) → ∪x∆x ⊗∆E (11)

for all future evolution of the system.
The requirement that the initial state ∆0 is such that it produces all these results,

for all realistic maps φ(t), will be referred to as the initial boundary condition, and
the resulting evolution as being in an entropy increasing universe. For the purposes
of this paper it will be assumed that these conditions can be met.

When looking at the interactions of localised systems at times long after the
initial boundary condition, but long before complete thermalisation (which occurs
at some future time tth), this is represented by:

1. No initial microscopic correlations between macroscopic subsystems;

2. Thermal states are represented by Gibbs distributions at the start of any
interaction.

3. Microscopic correlations develop between the subsystems;

4. The sum of the Gibbs entropies of the marginal distributions of the macro-
scopic subsystems, increases;

5. The microscopic correlations become, for all practical purposes, inaccessible
and may be coarse grained away;

2.2 Time reversal and symmetry

For clarity, we now state explicitly what we will mean by time reversal and time
symmetries.

For the time reversal of the dynamics, we first need the notion of the time reversal
of the state space. This is not unproblematic (see [Alb01][Chapter 1], for example)
but for the purposes of this article let us assume that there is no disagreement over
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the time reverse of a state in our state space. The time reversal of the state space is
a map ∆T = T (∆) ⊂ Ω such that µ(∆T ) = µ(∆) and ∆ = T ◦T (∆). For subsystems
T (

∏
i⊗∆i) =

∏
i⊗T (∆i) and for subspaces T (∪n∆n) = ∪nT (∆n). We also note if

A ⊂ B then AT ⊂ BT and for all state spaces Ω we consider here ΩT = Ω.
The time reversal of the dynamics about the time t = t0, corresponding to

t → t0 − t, will be defined as the map

φ
(t)
Tt0

(∆) = T ◦ φ(2t0−t) ◦ φ−(2t0) ◦ T (∆) (12)

Two special cases may be more familiar. Firstly, for t0 = 0 we have

φ
(t)
T0(∆) = T ◦ φ(−t) ◦ T (∆)

Secondly, for a transformation φ(2t0), which takes place over the time period 0 < t <
2t0, then a reversal at t = t0 has the transformation

φ
(2t0)
Tt0

(∆) = T ◦ φ−(2t0) ◦ T (∆)

It is important to note one cannot use the coarse grained description ∪x∆x⊗∆E,
defined in the previous section, for the time reversed dynamics. This coarse graining
is valid, in the original dynamics, only for later times so is valid only for earlier times
in the time reversed dynamics.

We now define time reversal invariance and time translation invariance of the
dynamics, although unless explicitly stated, we will not be assuming any of these
invariances hold. We explicitly state them so that it may be clear where we have
not needed to assume them.

The dynamics are time reversal invariant at t0 iff

φ
(t)
Tt0

(∆) = φ(t)(∆) (13)

Weak time translation invariance is defined as

∀t > 0, s > 0 φ(t) ◦ φ(s)(∆) = φ(t+s)(∆) (14)

and strong time translation invariance as

∀t, s φ(t) ◦ φ(s)(∆) = φ(t+s)(∆) (15)

Strong time translation invariance implies1 φ−(t) = φ(−t), and this in turn implies
φ

(t)
Tt0

(∆) = T ◦ φ(−t) ◦ T (∆) for all t0.
If a dynamics is time reversal invariant at all times, it is necessarily strong time

translation invariant:
(
∀t0 φ

(t)
Tt0

(∆) = φ(t)(∆)
)
⇒

(
∀t, s φ(t) ◦ φ(s)(∆) = φ(t+s)(∆)

)
(16)

If a dynamics is strong time translation invariant and time reversal invariant at
a single time, then it is necessarily time reversal invariant at all times.
((
∀t, s φ(t) ◦ φ(s)(∆) = φ(t+s)(∆)

)
&

(
∃t0|φ(t)

Tt0
(∆) = φ(t)(∆)

))
⇒

(
∀t0 φ

(t)
Tt0

(∆) = φ(t)(∆)
)

(17)

1As stated previously, φ(t) is invertible.
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2.3 Entropy decreasing universe

In an entropy decreasing universe, we postulate the existence of a future boundary
condition, that at some future time τ , the state of the universe will be in the region
of state space ∆T

0 . The most general means of doing this is to find the time reversal

of the dynamics at τ/2, φ
(t)
Tτ/2, impose ∆0 as the initial boundary condition on this

dynamics, then perform a second time reversal at τ/2, on the evolution of ∆0. If
the dynamics are time reversal invariant at τ/2, then of course this simplifies to

φ
(t)
Tτ/2 = φ(t).

We now find that the coarse graining works in reverse. Over the course of the
evolution of the system, fine grained structure, of an elongated and filamentary
kind, appears. This fine grained structure played no role in the evolution of the
system prior to its appearance. However, its appearance allows the region of state
space to evolve into smaller regions that its initial, coarse grained, appearance would
have indicated. In thermodynamic terms, this can be characterised by a universal
tendency for heat to spontaneously flow out of the environment and cause masses
to be raised through gravitational potentials.

When looking at the interactions of localised systems at times long before the
future boundary condition, t = τ , but long after the universe has come out of
complete thermalisation, t = τ − tth, this will be represented by the reversed set of
conditions:

1. A high degree of initial microscopic correlations between macroscopic subsys-
tems.

2. Microscopic correlations disappear over the course of the interaction;

3. The sum of the Gibbs entropies of the marginal distributions of the macro-
scopic subsystems, is decreasing;

4. The microscopic correlations which disappear, played no role in the earlier
evolution of the system. In the future evolution of the system, new microscopic
correlations come into play;

5. Thermal states are represented by Gibbs distributions at the end of any inter-
action.

2.4 Time symmetric boundary conditions

Schulman[Sch97] has considered the problem of universes with two time boundary
conditions. Although the possibility of such a universe remains questionable[Zeh05,
Sch05b], it will be useful to consider such a situation here. In these conditions there
is a requirement both that the universe begins in the special initial region of state
space ∆0, and at a remote future time τ ends in the special final region of state
space ∆T

0 .
A simple time reversal is not sufficient to deal with this. The possible trajectories

of the system are those that pass through φ(τ)(∆0) ∩ T (∆0) at t = τ . Equivalent

conditions are ∆0 ∩ φ−(τ) ◦ T (∆0) at t = 0 or φ(τ/2)(∆0)∩ T ◦ φ
(τ/2)
Tτ/2(∆0) at t = τ/2.
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Schulman argues that, provided the time span τ/2 is much greater than the
complete thermalisation time tth, then during the epoch 0 < t < tth the universe
will be indistinguishable from an entropy increasing universe, and during the epoch
τ − tth < t < τ the universe will be indistinguishable from an entropy decreasing
one.

3 The Computation Arrow

A physical computation is a physical embodiment of a combination of logical opera-
tions. A logical operation is, conventionally, a mathematical operation which takes
a finite number of distinct input states and maps them to a finite number of output
states. Conventionally, the input logical state uniquely determines the output log-
ical state, but there may be many input states corresponding to the same output
state. If this is the case, the operation is called logical irreversible[Lan61].

We shall call a device logically irreversible if the output of a device does
not uniquely define the inputs.

If each β output state has only one possible α input state, then the operation is
logically reversible.

The basic operations we need to consider are the NOT operation and the RESET
TO ZERO (RTZ) operations (see Tables 1 and 2)2. The RTZ operation is perhaps
less familiar than logical operations such as AND, OR. Nevertheless, all standard
logical operations can be built from suitable combinations of these two operations,
and they are the most widely studied logical operations from the point of view of
thermodynamics.

NOT
IN OUT

0 1
1 0

Table 1: Logical NOT

RTZ
IN OUT

0 0
1 0

Table 2: Reset to Zero

IDN
IN OUT

0 0
1 1

Table 3: Logical Identity

The physical embodiment of a logical operation is a physical process, that starts
with the system in one of a finite number of distinct regions of state space and
evolves the system into one of a finite number of distinct regions of state space. The
distinct regions of state space represent the input and output logical states. The
same regions can (and often will) represent both an input and an output state. The
process embodies the logical operation precisely when states in the region of state
space corresponding to an input logical state always end in the region of state space
corresponding to the output logical state that results from the action of the logical
operation upon that input logical state.

To understand this, we will take a state space Ω = ΩS⊗ΩE, which is the product
of the logical processing system ΩS and environment ΩE state spaces. In an entropy
increasing universe, we assume the environment is initially in some region E0 ⊂ ΩE

2For completeness we include the identity or DO NOTHING operation, IDN, in Table 3.
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and there are no correlations with the system. Each logical state α is represented
by a region of the state space of the system {Aα ⊂ ΩS}, such that Aα ∩ Aβ = ∅
for α 6= β. It is usually the case, and we will assume it here, that the input and
output states of a logical operation are time reversal invariant subspaces: AT

α = Aα

and AT
β = Aβ.

If the logical operation L maps logical states α
L→ β, then the dynamic map

φ
(tL)
L , acting over the duration tL, embodies that operation if, and only if, ∀α L→ β

φ
(tL)
L (Aα ⊗ E0) ⊆ Aβ ⊗ ΩE (18)

At the end of the physical operation, the system and environment will be located
in the region:

∆tL = φ
(tL)
L (∆0) = ∪αφ

(tL)
L (Aα ⊗ E0) ⊆ ∪βAβ ⊗ ΩE (19)

In an entropy increasing universe, we assume that microscopic correlations between
the system and the environment play no future role. If we are not considering time
reversals, therefore, for future evolutions of the system we can replace ∆tL with

∆′
tL

= ∪βAβ ⊗ EtL (20)

where ∀E ′ ⊆ ΩE such that ∆tL ⊆ ∪βAβ ⊗ E ′, then

∆tL ⊆ ∪βAβ ⊗ EtL ⊆ ∪βAβ ⊗ E ′ (21)

3.1 Temporal reversal

The temporal reversal of the physical operation, at time 1
2
tL, involves the system and

environment starting in the region of state space ∆T
tL

, and the evolution φ
(t)
TL(∆) =

T ◦ φ
(tL−t)
L ◦ φ

−(tL)
L ◦ T (∆).

Note that
T ◦ φ

(tL)
L (Aα ⊗ E0) ⊆ Aβ ⊗ ΩE (22)

and
φ

(tL)
TL

(
T ◦ φ

(tL)
L (Aα ⊗ E0)

)
= Aα ⊗ ET

0 ⊆ Aα ⊗ ΩE (23)

φ
(tL)
TL has acted as a map from the system being in one of the regions of state space

corresponding to a logical state β to being in a region of state space corresponding
to a logical state α. However, in logically irreversible operations, there may be more
that one α which was mapped to β by the operation L. It does not follow that there
exists some α for which

φ
(tL)
TL ((Aβ ⊗ ΩE) ∩∆t) ⊆ Aα ⊗ ΩE (24)

In general, time reversing a logically reversible operation does result in another
logically reversible operation. Time reversing a logically irreversible operation re-
sults in a physical process which does not appear to resemble a logical operation at
all.
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3.2 Indeterministic operations

To better understand the consequences of the time reversal of logically irreversible
operations, we need to widen the class of operations we are considering, to include
indeterministic3 operations[Mar05]:

We shall call a device logically indeterministic if the input to a device
does not uniquely define the outputs.

The time reversal of the logically reversible IDN and the NOT operations result
in the IDN and NOT operations, respectively. Time reversal of logically irreversible
RTZ, however, results in the indeterministic operation Unset From Zero (UFZ)
in Table 4. Note that the operation UFZ does fulfil the requirement of logical
reversibility, above. For completeness, we also add the indeterministic, irreversible
operation Randomise (RND) in Table 5.

UFZ
IN OUT

0 0
0 1

Table 4: Unset From Zero

RND
IN OUT

0 0
0 1
1 0
1 1

Table 5: Randomise

A computation is not simply a sequence of operations. It is an ordered sequence
of particular logical operations. If a Universal Turing Machine is constructed out
of a collection of physical processes implementing a particular set of logically de-
terministic operations, the time reversal of those physical processes certainly does
not produce the same set of operations. If the Universal Turing Machine was con-
structed using deterministic, logically irreversible operations, the time reversal would
not include any logically irreversible operations but would include indeterministic
operations. This would not be a Universal Turing Machine.

Logically irreversible operations may be simulated by logically reversible opera-
tions, but under time reversal this still does not recover the original computation.
The logically reversible simulation of the RTZ operation is given in Table 6, and its
time reversal in Table 7.

IN OUT

0 0 0 0
1 1 1 0

Table 6: Simulating RTZ

IN OUT

0 0 0 0
1 0 1 1

Table 7: Simulating UFZ

3While indeterministic operations can be well defined, and can be embodied by physi-
cal processes, it has been argued that indeterministic operations do not count as logical
operations[SLGP07], although indeterministic operations are required for computational complex-
ity classes such as BPP , and so form a part of computational logic. As this point is not important
for the discussion here, we will reserve ‘logical operation’ for logically deterministic operations in
this paper, and refer to logically indeterministic operations as simply ‘indeterministic operations’.
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The time reversal is not a reversible simulation of RTZ, it is a determinis-
tic simulation of UFZ. Although, in this case, both simulations can be achieved
by the same logical operation (the CNOT gate), the particular operation that is
being simulated changes. A sequence of operations simulating irreversible opera-
tions becomes a sequence of operations simulating indeterministic operations. If the
Universal Turing Machine was constructed using deterministic, logically reversible
operations, simulating logically irreversible operations, the time reversal would not
include any simulations of logically irreversible operations but would include sim-
ulations of indeterministic operations. This would still not be a Universal Turing
Machine. The time reversal of a Universal Turing Machine is not a Universal Turing
Machine. So it would appear that a computation, as a physical process, may have
an arrow of time.

3.3 Logical reversal

We will now define the logical reversal of an operation, L, as the operation, RL,
which has the same mapping on the logical states, as the time reversal of a physical
implementation of that operation.

We do this by defining the proportion (according to a measure µ) of initial states

1. that start in logical state α

WL(α) =
µ ((Aα ⊗ ΩE) ∩∆0)

µ (∆0)

2. that end in logical state β given they started in α;

WL(β|α) =
µ

(
(Aβ ⊗ ΩE) ∩ φ

(tL)
L (Aα ⊗ ΩE) ∩∆tL

)

µ ((Aα ⊗ ΩE) ∩∆0)

3. that start in logical state α and end in logical state β;

WL(α, β) =
µ

(
(Aβ ⊗ ΩE) ∩ φ

(tL)
L (Aα ⊗ ΩE) ∩∆tL

)

µ (∆0)

4. that end in logical state β;

WL(β) =
µ ((Aβ ⊗ ΩE) ∩∆tL)

µ (∆0)

5. and that started in logical state α, given that they ended in logical state β

WL(α|β) =
µ

(
(Aβ ⊗ ΩE) ∩ φ

(tL)
L (Aα ⊗ ΩE) ∩∆tL

)

µ ((Aβ ⊗ ΩE) ∩∆tL)

For logically deterministic operations

WL(α|β) ∈ {0, 1}
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while for logically reversible operations

WL(β|α) ∈ {0, 1}
We do not include input or output states with measure zero, so WL(α) 6= 0 and
WL(β) 6= 0. If WL(α|β) = 0 for the measure µ, it will be zero for all other mea-
sures, absolutely continuous with µ, that are preserved by the dynamics. Equivalent
statements also hold true for WL(α|β) = 1, WL(β|α) = 0 and WL(β|α) = 1.

When we consider the temporal reversal TL of the physical process, we get states
starting in logical states β, and ending in logical states α, with proportions

WTL(β) =
µ ((Aβ ⊗ ΩE) ∩∆tL)

µ (∆tL)

WTL(α|β) =
µ

(
φ

(tL)
TL (Aβ ⊗ ΩE) ∩ (Aα ⊗ ΩE) ∩∆0

)

µ ((Aβ ⊗ ΩE) ∩∆tL)

WTL(α, β) =
µ

(
φ

(tL)
TL (Aβ ⊗ ΩE) ∩ (Aα ⊗ ΩE) ∩∆0

)

µ (∆tL)

WTL(α) =
µ ((Aα ⊗ ΩE) ∩∆0)

µ (∆tL)

WTL(β|α) =
µ

(
φ

(tL)
TL (Aβ ⊗ ΩE) ∩ (Aα ⊗ ΩE) ∩∆0

)

µ ((Aα ⊗ ΩE) ∩∆0)

It is straightforward to show that as

WTL(β) = WL(β)

then
WTL(α) = WL(α)

and
WTL(β|α) = WL(β|α)

It is also clear, by definition, that the temporal reversal of TL is just L:

TTL ≡ L

We will now define the reversal operation RL, of L, as a map from the logical
states β to the logical states α,

{β} RL→ {α}
in the same time direction as L, with a dynamic map φ

(tL)
RL such that WRL(α|β) =

WL(α|β):

WRL(β) =
µ ((Aβ ⊗ ΩE) ∩ Λ0)

µ (Λ0)

WRL(α|β) =
µ

(
φ

(tL)
RL (Aβ ⊗ ΩE) ∩ (Aα ⊗ ΩE) ∩ ΛtL

)

µ ((Aβ ⊗ ΩE) ∩ Λ0)

WRL(α, β) =
µ

(
φ

(tL)
RL (Aβ ⊗ ΩE) ∩ (Aα ⊗ ΩE) ∩ ΛtL

)

µ (Λ0)
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WRL(α) =
µ ((Aα ⊗ ΩE) ∩ ΛtL)

µ (Λ0)

WRL(β|α) =
µ

(
φ

(tL)
RL (Aβ ⊗ ΩE) ∩ (Aα ⊗ ΩE) ∩ ΛtL

)

µ ((Aα ⊗ ΩE) ∩ ΛtL)

where the system is initial in the region Λ0 = ∪βAβ ⊗ E0 and ends in the region

ΛtL = φ
(tL)
RL (Λ0). Again, it is straightforward that

WRL(β) = WL(β)

leads to
WRL(α) = WL(α)

and
WRL(β|α) = WL(β|α)

By definition
RRL ≡ L

There is a straightforward method for constructing φRL:

1. Partition each β region into (α, β) subregions, Aβ = ∪αA(α|β), with A(α|β) ∩
A(α′|β) = ∅ , α 6= α′ such that

µ (α, β)

µ (β)
= WL(α|β)

2. The evolution of the system must prevent transitions between the subregions

φ(A(α|β)) ∩ φ(A(α′|β′)) = ∅ ∀α 6= α′, β 6= β′

3. Define regions A′
α by joining the α subregions together, from different β regions

A′
α = ∪βA(α|β)

and remove barriers to transitions between subregions with the same α value.

4. Evolve the distinct α regions to their final location in state space:

Aα = φ(A′
α)

Further refinements are necessary for thermodynamic optimisation. Explicit phys-
ical processes by which the operations UFZ and RND can be constructed and
optimised are given in [Mar05] and for generic operations in [Mar07].
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3.4 Computational reversal

We will now consider sequences of operations, in a normal entropy increasing uni-
verse. We will not specify the particular set of operations. Our objective is not
to consider the properties of a particular sequence of logical operations, or even of
any sequence of logical operations intended for a particular purpose. We wish to
consider the properties of any process that can be defined exclusively in terms of
logical operations acting upon sets of logical states.

In this general situation, we start with a set of logical states {α0}. This is
acted on by some logical operation L0, and mapped to the output states {α1}.
As we are in an entropy increasing universe, we may assume that any microscopic
correlations that have developed between the information processing apparatus and
the environment play no role in the future evolution of the system. The logical
operation L1 then maps the states {α1} to the states {α2}, and so on.

This leads to the sequence S1{Li}:

{α0} L1→ {α1} L2→ . . .
Li→ {αi} Li+1→ . . .

Lf→ {αf}
In the entropy decreasing universe that results from a time reversal at a point

in the distant future, the sequence becomes S2{TLi}:

{αf} TLf→ {αf−1} TLf−1→ . . .
TLi+1→ {αi} TLi→ . . .

TL1→ {α0}
As noted before, the sequence of operations S2{TLi}, involving the time reversed
TL operations, will not, in general, resemble the same computational process as
S1{Li}.

Now construct a physical system, in the original entropy increasing universe,
with initial logical states {αf}, a measure µ such that the physical representation of
the states have weights WRLf

(αf ) = WLf
(αf ), and the reversal operations {RLi},

such that WRLi
(αi−1|αi) = WLi

(αi−1|αi). This leads to the sequence S3{RLi}:

{αf} RLf→ {αf−1} RLf−1→ . . .
RLi+1→ {αi} RLi→ . . .

RL1→ {α0}
The time reversal of the universe containing the sequence S3{RLi}, gives the

sequence S4{TRLi}:

{α0} TRL1→ {α1} TRL2→ . . .
TRLi→ {αi} TRLi+1→ . . .

TRLf→ {αf}
However, in follows from the definitions above, that TRLi ≡ RTLi ≡ Li, so
S4{TRLi} is

{α0} L1→ {α1} L2→ . . .
Li→ {αi} Li+1→ . . .

Lf→ {αf}
Sequence S4{TRLi} is exactly the same set of logical operations as S1{Li}, per-
formed in the same order, and on the same set of logical states. S4{TRLi} takes
place in an entropy decreasing universe.

For any computational process consisting of a sequence of logical operations on
a set of logical states, in an entropy increasing universe, the same computational
process is possible in an entropy decreasing universe. Although we were able to
conclude in Section 3.2, above, that computational processes may have an intrinsic
arrow, it does not appear to be the case that this arrow must be aligned with the
thermodynamic arrow.
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3.5 Landauer’s Principle

Landauer’s Principle is used as the basis for almost all conclusions regarding the
thermodynamic properties of physical computation, yet the conclusion of the previ-
ous section seems to run counter to many widespread statements of this Principle:

To erase a bit of information in an environment at temperature T re-
quires dissipation of energy ≥ kT ln 2. [Cav90, Cav93]

in erasing one bit . . . of information one dissipates, on average, at least
kBT ln (2) of energy into the environment. [Pie00]

a logically irreversible operation must be implemented by a physically
irreversible device, which dissipates heat into the environment [Bub01]

erasure of one bit of information increases the entropy of the environment
by at least k ln 2 [LR03][pg 27]

any logically irreversible manipulation of data . . . must be accompanied
by a corresponding entropy increase in the non-information bearing de-
grees of freedom of the information processing apparatus or its environ-
ment. Conversely, it is generally accepted that any logically reversible
transformation of information can in principle be accomplished by an
appropriate physical mechanism operating in a thermodynamically re-
versible fashion. [Ben03]

Computations are accompanied by dissipation . . . Landauer has shown
that computation requires irreversible processes and heat generation.[Sch05a]

It is Landauer’s Principle on which Schulman basis the alignment of the thermody-
namic and the computational arrows of time.

If Landauer’s Principle is truly regarded as “the basic principle of the thermody-
namics of information processing”[Ben03], how does this reconcile with the argument
of the previous Section, that exactly the same information processing operations can
take place in an entropy decreasing, as an entropy increasing universe? Does the
computer act as a kind of Maxwell’s Demon, dissipating heat against overall the
anti-entropic direction?

The answer is, straightforwardly, no. As has been noted many times before[EN99,
Mar02, Nor05], Landauer’s Principle is not really a principle. It is a theorem, of sta-
tistical mechanics, derived[Pie00, Tur06, SLGP07, Mar07] on the assumption that
the computation is taking place in an entropy increasing universe. All justifica-
tions of Landauer’s Principle, from [Lan61] onwards, make this assumption. We
will briefly review the derivation of Landauer’s Principle in an entropy increasing
universe, to see how the derivation turns out in an entropy decreasing universe.

3.5.1 Entropy increase

The states of the physical system embodying logical state α will be represented by
density matrix ρα, and β by ρβ. We assume4 that the input logical states {α} and

4This is normal practice in the thermodynamics of computation. In [Mar07] this assumption,
called uniform computing, is relaxed. The essential conclusions of this Section are not affected.
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output logical states {β} are represented by states of physical systems with the same
entropy S and mean energies U , so that ∀α, β:

S = −kTr [ρα ln [ρα]] = −kTr [ρβ ln [ρβ]] (25)

U = Tr [HSρα] = Tr [HSρβ] (26)

The input logical states occur with probability Pα, and the logical operation is
defined by the probabilities P (β|α).

In an entropy increasing universe, we make the following assumptions:

1. The evolution of the system and environment is described by Hamiltonian
dynamics, composed of internal energies of the system HS and environment
HE, together with an interaction potential VSE:

H = HS ⊗ IE + IS ⊗HE + VSE

2. The environment is initially in a Gibbs canonical state, at some temperature T ,
and there are no initial correlations between the system and the environment.

ρE(T ) =
e−HE/kT

Tr [e−HE/kT ]
(27)

ρ0 =
∑
α

P (α)ρα ⊗ ρE(T ) (28)

3. The interaction energy between system and environment is negligible both
before

Tr [VSEρ0] ≈ 0

and after
Tr

[
VSEe−ıHtρ0e

ıHt
]
≈ 0

the interaction.

For the Hamiltonian H to embody the logical operation:

TrE

[
e−ıHtρα ⊗ ρE(T )eıHt

]
=

∑

β

P (β|α)ρβ

It is a well known calculation[Gib02, Tol38, Par89, Pie00, Mar07] to show, using:

ρI =
∑
α

P (α)ρα

ρt = e−ıHtρ0e
ıHt

P (β) =
∑
α

P (β|α)P (α)

ρF = TrE [ρt] =
∑

β

P (β)ρβ

ρ′E = TrS [ρt]

that two inequalities follow:

Tr [ρI ln [ρI ]] + Tr [ρE(T ) ln [ρE(T )]] ≥ Tr [ρF ln [ρF ]] + Tr [ρ′E ln [ρ′E]] (29)

Tr
[
ρ′E

(
ln [ρ′E] +

HE

kT

)]
≥ Tr

[
ρE(T )

(
ln [ρE(T )] +

HE

kT

)]
(30)
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which combine to give

∑
α

P (α) ln P (α)−∑

β

P (β) ln P (β) ≥ Tr [HEρE(T )]

kT
− Tr [HEρ′E]

kT
(31)

This yields the standard form of Landauer’s Principle, in an entropy increasing
universe:

∆Q ≥ −∆HkT ln(2)

where ∆Q is the expectation value for the heat generated in an environment at
temperature T and ∆H is the change in Shannon information over the course of the
operation

∆H =
∑
α

P (α) log2 P (α)−∑

β

P (β) log2 P (β)

For logically deterministic, reversible computations, it is always the case that
∆H = 0. These operations do not need to generate heat. On the other hand, for
logically deterministic, irreversible operations ∆H < 0 and so the heat generated
in the environment is always positive. This is the basis of the claim that logically
irreversible operations must be entropy increasing5.

3.5.2 Entropy decrease

In an entropy decreasing universe, we would still make the assumptions that the
input logical states {α} and output logical states {β} are represented by physical
systems with the same entropy and mean energies. The logical state α is represented
by the density matrix ρα, and β by ρβ, as before. The input logical states occur with
probability Pα, and the logical operation is defined by the probabilities P (β|α).

We continue to assume:

1. The evolution of the system and environment is described by Hamiltonian
dynamics.

H ′ = H ′
S ⊗ IE + IS ⊗H ′

E + V ′
SE

2. The interaction energy between system and environment is negligible both
before

Tr [V ′
SEρ0] ≈ 0

and after
Tr

[
V ′

SEe−ıH′tρ0e
ıH′t

]
≈ 0

the interaction.

but the imposition of a future boundary condition must require the local conditions
to be:

3. After the operation the environment is in a Gibbs canonical state, at some
temperature T , and there are no final microscopic correlations between the
system and the environment.

5In [Mar02, Mar05, Mar07] it is argued that even this heat generation is not necessarily ther-
modynamically irreversible.
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Now, for the Hamiltonian H ′ to fulfil these conditions and embody the logical op-
eration it is necessary that

TrE

[
eıH′tρβ ⊗ ρE(T )e−ıH′t

]
=

∑
α

P (β|α)P (α)∑
α′ P (β|α′)P (α′)

ρα

and
ρt =

∑

β,α

P (β|α)P (α)ρβ ⊗ ρE(T )

Using:

ρ0 = eıH′tρte
−ıH′t

ρI = TrE [ρ0] =
∑
α

P (α)ρα

ρ′E = TrS [ρ0]

P (β) =
∑
α

P (β|α)P (α)

ρF = TrE [ρt] =
∑

β

P (β)ρβ

the two inequalities become

Tr [ρF ln [ρF ]] + Tr [ρE(T ) ln [ρE(T )]] ≥ Tr [ρI ln [ρI ]] + Tr [ρ′E ln [ρ′E]]

Tr

[
ρ′E

(
ln [ρ′E] +

H ′
E

kT

)]
≥ Tr

[
ρE(T )

(
ln [ρE(T )] +

H ′
E

kT

)]

which combine to give

−∑
α

P (α) ln P (α) +
∑

β

P (β) ln P (β) ≥ Tr [H ′
EρE(T )]

kT
− Tr [H ′

Eρ′E]

kT

Paying careful attention to the fact that ρE(T ) is now the final state of the
environment the statistical mechanical calculation leads to:

∆Q ≤ −∆HkT ln(2)

where ∆Q is the expectation value for the heat generated in an environment.
For logically deterministic, irreversible operations ∆H < 0 and so the heat

generated in the environment is less than the positive number −∆HkT ln(2). For
logically deterministic, reversible computations, ∆H = 0 as before, but this now just
means the heat generation must be less than zero. In an entropy decreasing universe,
the derivation of Landauer’s Principle yields a maximum heat generation. If less
than the maximum heat is generated, then there will have been an uncompensated
decrease in the entropy of the universe.

This is, of course, exactly what we should have expected! In entropy decreas-
ing universes, the physical processes which embody computations are, generically,
entropy decreasing processes. There is no contradiction between the statistical me-
chanical basis of Landauer’s Principle, and the conclusions of Section 3.4.

18



4 The Correlation Arrow

It has been argued in the previous Sections that, although a computer may possess
a computational arrow, it’s functioning as a physical process does not imply the
alignment of that arrow with the thermodynamic arrow. The argument was based
upon all the same computational operations that can take place in an entropy in-
creasing universe being physically possible in an entropy decreasing universe. This
still leaves open the possibility that it is much more likely for systems to develop
which process information in the same direction as entropy increase, than systems
which process information in the direction of entropy decrease.

Turning to this question, the arguments will seem less concrete than in the
previous sections. This is a consequence of the need to consider if cosmological
boundary conditions, over the lifetime of the universe, on the state of the whole
universe, may have influences on the localised behaviour of systems, operating over
short timescales, at a time in between, and very far from, either initial or final
state of the universe. It is unclear how secure the chain of reasoning involved in
understanding such influences can be (see [Ear06], for example, for a sceptical view).

How might such an argument be constructed? Hawking[Haw94] suggests:

If one imposes a final boundary condition . . . one can show that the corre-
lation between the computer memory and the surroundings is greater at
early times than at late times. In other words, the computer remembers
the future, but not the past.

The acquisition of information requires an increase in the correlation between the
computer and its surroundings. A future boundary condition, as interpreted in
Section 2.3, requires correlations to decrease in time. To explore this requires a
move beyond the consideration of a computer as an information processor. We
must take into account the nature of the information that the system processes. It
is a system that acquires new information about it’s surroundings and interacts with
its surroundings conditional upon the information it has acquired. Such behaviour
has been characterised as an Information Gathering and Utilising System, or IGUS.

4.1 Information Gathering and Utilising Systems

The behaviour of an IGUS may be described as:

1. There is a correlation between the macroscopic states of the internal states of
an IGUS with macroscopic states of its surroundings.

2. These macroscopic correlations occurred through an interaction of the system
with the surroundings, in the past. At an earlier point in time the macroscopic
correlations did not exist. The existing correlations are screened off by an
earlier interaction.

3. New macroscopic correlations develop over time through conditional interac-
tions. These can change the macroscopic internal states of the system con-
ditional upon the states of the surroundings, or change the states of the sur-
roundings, conditional upon the internal states of the system.
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4. Any macroscopic correlations between the current state of the system and
future states of its surroundings, are screened off by the existing correlations
and interactions between system and environment that take place between the
present and the future time.

The argument of Hawking is that such behaviour is compatible with an initial bound-
ary condition, but incompatible with a future boundary condition.

We can examine this in two equivalent ways. The first is to consider an IGUS
in an entropy increasing and in an entropy decreasing universe. The second way is
to consider the time reversal of these two scenarios. This will give a information
processing system which is the logical reversal of an IGUS, in an entropy decreasing
and in an entropy increasing universe, respectively. We refer to the logical reversal
of an IGUS as an RIGUS. The statement that an entropy decreasing universe is
incompatible with the operation of an IGUS is equivalent to the statement that an
entropy increasing universe is incompatible with an RIGUS.

The question needing answering is whether an entropy increasing universe prefers
systems resembling an IGUS over systems resembling an RIGUS. If so the same
argument should support the existence of an RIGUS compared to an IGUS in an
entropy decreasing universe.

The behaviour of an RIGUS will appear as:

1. There is a correlation between the macroscopic states of the internal states of
an RIGUS with macroscopic states of its surroundings.

2. These macroscopic correlations will disappear through a conditional interac-
tion of the system with the surroundings, at some point in future. At a later
point in time the macroscopic correlations will not exist.

3. There decrease in macroscopic correlations over time is through conditional
interactions with the surroundings. These can change the macroscopic internal
states of the system conditional upon the states of the surroundings, or change
the states of the surroundings, conditional upon the internal states of the
system.

4. Any macroscopic correlations between the current state of the system and
past states of its surroundings is screened off by the existing correlations and
interactions between the past time and the present.

Fortunately we do not need to construct explicit models for an IGUS or an RIGUS.
All we need to know is that either system must be constructed out of the kind of
operations described in the previous sections.

It is now necessary to draw a distinction between the environmental degrees
of freedom of a heat bath, and the macroscopic states of the surroundings that a
computer might be correlated with. The set {Ai} refer to the internal logical states
of the IGUS. The macroscopically distinct regions of the surroundings are {Bi}.
We represent the inaccessible regions of the environment by a separate subsystem
ΩE, which has no macroscopically distinguishable subregions. The overall state of
the universe at time t is represented by ∆t.
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4.2 Growth in correlations

Acquisition of knowledge is represented in the following terms. At a time t1 the
computer is in the blank state represented by A0, while the surroundings are in one
of the regions Bi. The region of state space is

∆i,t1 = Bi ⊗ A0 ⊗ Et1 (32)

and the overall possible region is

Θt1 = ∪iBi ⊗ A0 ⊗ Et1 (33)

The acquisition of information requires an evolution between t1 and t2 for which:

∆i,t2 = φ(t2) ◦ φ−(t1)(∆i,t1) ⊆ Bi ⊗ Ai ⊗ ΩE (34)

In an entropy increasing universe, we replace this by the coarse graining Bi ⊗ Ai ⊗
Ei,t2 ⊇ ∆i,t2 , for which

Bi ⊗ Ai ⊗ Ei,t2 ⊆ Bi ⊗ Ai ⊗ Ei,t2 (35)

for all E ′
i,t2

such that:

∆t2 ⊆ Bi ⊗ Ai ⊗ Ei,t2 ⊆ Bi ⊗ Ai ⊗ ΩE (36)

The overall region is

Θt2 = ∪iφ
(t2) ◦ φ−(t1)(Bi ⊗ A0 ⊗ Et1) (37)

which has a coarse graining ∪iBi ⊗ Ai ⊗ Et2 ⊇ Θt2 , such that

∪iBi ⊗ Ai ⊗ Et2 ⊆ Bi ⊗ Ai ⊗ Et2 (38)

for all Et2 such that:

Θt2 ⊆ ∪iBi ⊗ Ai ⊗ Et2 ⊆ ∪iBi ⊗ Ai ⊗ ΩE (39)

Now let us consider the reverse procedure, that would indicate the existence of
an RIGUS. Start in ∆′

i,t1
= Bi ⊗ Ai ⊗ E ′

t1
and perform the evolution

∆′
i,t2

= φ′(t2) ◦ φ′−(t1)(∆′
i,t1

) ⊆ Bi ⊗ A0 ⊗ ΩE (40)

This leads to the coarse graining

∆′
i,t2
⊆ Bi ⊗ A0 ⊗ E ′

i,t2
(41)

and the overall region
Θ′

t1
= ∪iBi ⊗ Ai ⊗ E ′

t1
(42)

evolves into
Θ′

t2
= ∪iφ

(t2) ◦ φ−(t1)(Bi ⊗ Ai ⊗ E ′
t1
) (43)

which has a coarse graining ∪iBi ⊗ A0 ⊗ E ′
t2
⊇ Θ′

t2
, such that

∪iBi ⊗ A0 ⊗ E ′
t2
⊆ Bi ⊗ Ai ⊗ E

′
t2

(44)

for all E
′
t2

such that:

Θ′
t2
⊆ ∪iBi ⊗ Ai ⊗ E

′
t2
⊆ ∪iBi ⊗ Ai ⊗ ΩE (45)
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4.2.1 Measures on marginals

We now ask whether the requirement that an RIGUS starts in a correlated state,
and removes those correlations, is less compatible with an entropy increasing uni-
verse than an IGUS. We will assume that µ(E ′

t1
) = µ(Et1) and that the internal

states of the IGUS and RIGUS have equivalent measures: µ(A0) = µ(Ai).
First consider the measure of the initial states:

µ(Θt1) = µ(Θ′
t1
) (46)

An immediate consequence is that volume of state space arguments will not be able
to show preference for an IGUS over an RIGUS on the basis of one or the other
being simply more likely to occur.

From the measure preserving nature of the evolution of the IGUS we have

µ(∆i,t1) = µ(∆i,t2) (47)

while the coarse graining gives

µ(Bi)µ(A0)µ(Et1) ≤ µ(Bi)µ(Ai)µ(Ei,t2) (48)

Similarly
µ(Θt1) = µ(Θt2) (49)

which when coarse grained gives
∑

i

µ(Bi)µ(A0)µ(Et1) ≤
∑

i

µ(Bi)µ(Ai)µ(Ei,t2) ≤
∑

i

µ(Bi)µ(Ai)µ(Et2) (50)

Using µ(A0) = µ(Ai), we get:

µ(Et1) ≤
∑

i µ(Bi)µ(Ei,t2)∑
i µ(Bi)

≤ µ(Et2) (51)

While this might indicate an increase in entropy, we can easily get similar results
for the RIGUS. The measures for the reverse interaction are

µ(∆′
i,t1

) = µ(∆′
i,t2

) (52)

while the coarse graining gives

µ(Bi)µ(Ai)µ(E ′
t1
) ≤ µ(Bi)µ(A0)µ(E ′

i,t2
) (53)

Similarly
µ(Θ′

t1
) = µ(Θ′

t2
) (54)

which when coarse grained gives
∑

i

µ(Bi)µ(Ai)µ(E ′
t1
) ≤ ∑

i

µ(Bi)µ(A0)µ(E ′
i,t2

) ≤ ∑

i

µ(Bi)µ(A0)µ(E ′
t2
) (55)

and µ(A0) = µ(Ai), gives:

µ(E ′
t1
) ≤

∑
i µ(Bi)µ(E ′

i,t2
)

∑
i µ(Bi)

≤ µ(E ′
t2
) (56)

It is clear that this RIGUS interaction is just as entropy increasing as the IGUS
interaction. The direct growth in macroscopic correlations of an IGUS is no more
indicative of entropy increase than the reduction in macroscopic correlations asso-
ciated with an RIGUS.
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4.2.2 Micro- and macro-correlations

The loss of microcorrelation with the environment is responsible for the increase in
entropy. This happens both for the macroscopically correlating interactions of an
IGUS and its reverse, RIGUS. What of the macroscopic correlations themselves?
These are the correlations which are supposed to be forbidden to develop within an
entropy decreasing universe.

While it is certainly true that the measure over the marginals increases during
information acquisition:

∑

i

µ(Bi)
∑

j

µ(Aj) ≥
∑

i

µ(Bi)µ(Ai) =
∑

i

µ(Bi)µ(A0) (57)

(where we continue to assume µ(Ai) = µ(A0)) this is a qualitatively different kind
of increase to that associated with microcorrelations. The coarse graining over the
microcorrelations, that results in entropy increase, is associated with the inaccessi-
bility of these microcorrelations. If the microscopic correlations were still accessible
(in the manner of a spin-echo experiment) no entropy increase could be said to have
occurred.

In the case of the macrocorrelations, however, it is essential that the correlations
be accessible. It is precisely because the coarse grained state is ∪iBi ⊗ Ai ⊗ Et2

and not ∪iBi ⊗ ∪jAj ⊗ Et2 , that the IGUS is said to have information about its
surroundings. It is the correlation that represents information, that enables to IGUS
to utilise that information in its interactions and future behaviour.

The transition:

∪iBi ⊗ Ai ⊗ Et2 → ∪iBi ⊗ ∪jAj ⊗ Et2 (58)

would represent a decorrelation, that would destroy the information that the IGUS
held about the state of its surroundings. So the equivalent operation to the in-
crease in entropy associated with losing microcorrelations, is not associated with an
acquisition of information, but with its loss.

Let us consider the process by which such decorrelation occurs. In an entropy
increasing universe, each thermodynamically irreversible operation increases the en-
tropy of surroundings, and the environment. Noise causes the switching of computers
internal states, or switching of the environment. An IGUS must maintain the rele-
vance of its information by protected against changes and checking the accuracy of
its information. As the environmental degrees of freedom become saturated, the ex-
istence of noise cannot be protected against and decorrelation becomes irreversible.
The computer ceases to be able to function, as the universe approaches a maximum
entropy heat death.

Now it is precisely the fact that such irreversible decorrelation does not occur (ex-
cept on very large timescales), that normally makes the information gathered useful.
The utilisation of acquired information requires the existence of stable macroscopic
correlations, so that the overall distribution cannot be replaced by the direct product
of their marginal distributions. By contrast, the increase in thermodynamic entropy
is due to the loss of microscopic correlations than means the macroscopically distinct
distribution can be replaced by the direct product of their marginal distributions.
The role played by correlations in macroscopic information and microscopic entropy
is of a quite different nature.
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4.3 No interaction, no correlation

We can examine this further by considering a simple system, with two states of the
environment Bi and two states of an IGUS, Ai. If we suppose the system goes
through the following stages:

A0⊗B0 → A0⊗(B0 ⊕B1) → (A0 ⊗B0)⊕(A1 ⊗B1) → (A0 ⊕ A1)⊗(B0 ⊕B1) (59)

Initially the system is in the low entropy, uncorrelated state. The environment
evolves into one of two possible states. The system then measures the state of the
environment, becoming correlated. Eventually decorrelation leads to heat death.

The reverse, RIGUS, would involve:

A0⊗B0 → (A0 ⊗B0)⊕(A1 ⊗B1) → A0⊗(B0 ⊕B1) → (A0 ⊕ A1)⊗(B0 ⊕B1) (60)

At first sight, this evolution seems implausible. We start with the low entropy,
uncorrelated state. Correlations spontaneously appear. The RIGUS removes these
correlations, before noise, once again, leads to a heat death.

The problem in constructing a justification for eliminating the RIGUS evolution
on entropic grounds is that:

µ(A0)µ(B0) ≤ µ(A0)µ(B0)+µ(A1)µ(B1) = µ(A0)(µ(B0)+µ(B1)) ≤ (µ(A0)+µ(A1))(µ(B0)+µ(B1))
(61)

the two intermediate states between the uncorrelated and the decorrelated states
can have the same measure.

Our intuition says that A0 ⊗ (B0 ⊕B1) will occur first rather than (A0 ⊗B0)⊕
(A1 ⊗B1). The spontaneously correlated state would require all initial states in
A0 ⊗ B0 to evolve into either A0 ⊗ B0 or A1 ⊗ B1. To achieve this it is necessary
for a correlated interaction to take place. If it is the case that at t = 0, there is
no correlation, and the two systems do not interact (or share interaction with any
combination of intermediary systems) between t = 0 and t = τ , then

φ(τ)(A0 ⊗B0) = φ(τ)(A0)⊗ φ(τ)(B0) (62)

Whatever else might be the case, such an evolution cannot possibly induce a corre-
lation.

If it seems surprising that such a conclusion can be drawn so rapidly after the
negative conclusion of the previous section, it is important to notice the different.
The entropic argument was based upon measures upon state space regions. This
argument is based upon a restriction upon allowed evolutions of the combined sys-
tem.

At first sight this might seem to provide the answer, neatly and simply. In an
entropy increasing universe, the existence of macroscopic correlation at some inter-
mediate time requires the existence of a macroscopic correlating interaction at an
earlier time. By contrast, in an entropy decreasing universe, the existence of macro-
scopic correlations at the intermediate time requires the existence of a macroscopic
decorrelating interaction in the future. This appears to bear out Hawkings’ claim
that macrocorrelations must decrease.

However, there are problems when one considers more complicated situations
than the two state systems considered here. In an entropy increasing universe,
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microcorrelations must develop, so it seems that the restriction of equation 62 is
too strong. Once we allow microscopic correlations to be developing, it is less clear
what condition on the dynamics is necessary to ensure an RIGUS is less likely than
an IGUS.

It might also seem implausible that the non-existence of an RIGUS here and
now, can genuinely because of a boundary condition in the remote past. All the
condition implies is that, given the existence of a macroscopic correlation now, that
there must have been, some time between now and the start of the universe, a
macroscopic interaction. It does not even guarantee that the systems which are
correlated, now, are the ones that interacted in the past - only that there must have
been an interaction in the past that has had causal influences upon the two systems
now.

In the time reversed situation, the future boundary condition is supposed to
prevent the operation of an IGUS. However, all the future boundary condition
actually guarantees is that, at some point in the future there must be a macroscopic
interaction to remove the correlation. It does not guarantee that this interaction
must involve the system currently correlated to its surroundings. Given the timescale
involved for the future boundary condition to apply, there seems a long way to go
to show that a remote final condition is sufficient to rule out the existence of IGUS
systems in an entropy decreasing universe. However, if true, this implies that a
remote boundary condition has a more direct effect upon possible states now than
just through the conditions given in Sections 2.1 and 2.3.

The argument now begins to resemble attempts to base the causal fork asymme-
try on entropic arguments6. The literature on this topic is too large to consider here
(see [Rei71, Hor87, Alb01, Loe07] and [Pri96, Ear06, Fri07] for criticisms). How-
ever, to question how clear the argument is from a remote boundary condition to
situations now, we will simply consider two scenarios. The first will be Schulman’s
two time boundary condition, where both initial and future boundary condition
constraints exist. The second will be a situation where a local entropy gradient ex-
ists, but without either Initial or future boundary condition. While these scenarios
may be regarded as implausible, their purpose is to examine if there are gaps in the
arguments based upon remote boundary conditions.

4.3.1 Two time boundary conditions

Suppose that we are in a two time boundary condition universe such as Schulman
proposes, but for which the thermalisation time is much greater than half the lifespan
of the universe. In such a situation one might find an overlap between the entropy
increasing and decreasing portions of space-time. It may then be possible for a
complex system, operating in a thermodynamically reversible manner, to operate in
both temporal halves of the universe. Now suppose such a system is a computer is
designed to work very close the thermodynamic reversibility, and can swap from a
power source suitable for an entropy increasing universe to a power source suitable
for an entropy decreasing universe.

6Note, this cannot have been Hawking’s intent, at least, as earlier in [Haw94] he speaks dismis-
sively of causality and the arguments of [Rei71].
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Why is it the case that, when the computer enters the entropy decreasing times-
pan, it ceases to operate as an IGUS? All we can say is that, ultimately, any
information it gathers, must be lost again before the universe reaches its final low
entropy state. That seems to leave a large amount of time over which it is able
to function! Of course, such a scenario also allows the possibility of an equivalent
RIGUS existing in the entropy increasing period of time. The emergence of such
a RIGUS may be taken as an indicator that a future boundary condition exists.
However, there seems no direct reasoning, from thermodynamics, to tell us how far
in the future is such a boundary condition located. If this is the case, we equally
cannot tell how long an IGUS will be able to continue to operate in an entropy
decreasing universe.

4.3.2 Asymmetry without boundary conditions

The crossover, from a entropy increasing to decreasing universe, raises additional
problems, if we are to consider the interactions between an IGUS and an RIGUS in
the same region of space-time. We can remove this problem by considering another,
rather exotic, situation, which questions whether a remote boundary condition could
possibly be responsible for the absence of RIGUS systems.

Consider a system, identical to the solar system except in two respects: the sun
is not a sun, but a boundary that absorbs, scatters and emits photons and particles
into the solar system, with exactly the same profile as our sun does; and around
the solar system (just around the Oort cloud) there is another closed boundary,
that absorbs, scatters and emits photons and particles into the solar system with
the same profile as the radiation crossing a hypothetical surface enclosing our solar
system. Now suppose that this completely enclosed system has been in this state
indefinitely far into the past, and will be in this state indefinitely far into the future.

Such a system is explicitly time asymmetric. The profile of the radiation being
absorbed, scattered and emitted on the two boundaries is quite different when viewed
in a time reverse direction. In a normal time direction the solar boundary emits low
entropy radiation, some of which falls upon an earth-like planet and is reradiated in
a higher entropy form. Most of the solar radiation, along with most of the earthly re-
radiation is eventually absorbed by the Oort boundary, which radiates a negligibly
small amount of radiation back (largely concentrated at small points) apart from
a roughly symmetric emission and absorbtion of radiation at the cosmic microwave
background frequency. Reversing the time direction will produce a quite different
profile of emission and absorbtion on the two boundaries.

Let us ignore issues, such as the question of the long term stability of the solar
system and so forth, which are not directly relevant to the present day thermo-
dynamics of our solar system. For much of the history of life on our earth, there
has been a reasonably stable non-equilibrium state, maintained by the local entropy
gradient between the radiation falling on earth, from our sun, and re-radiated out
again. The enclosed solar system will be in a stable non-equilibrium state much
like our solar system, including the earth-like planet. It would seem reasonable to
expect conditions on the earth-like planet to resemble conditions on our earth.

The principal argument of this paper has been that there appears nothing in
the thermodynamics of the local conditions on the earth-like planet that prevents
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the existence of an RIGUS. The no-interaction no-correlation argument suggests
that a remote initial boundary condition prevents it on our earth. However, in the
enclosed solar system, there is no remote initial boundary condition. If an RIGUS
is still not possible in the enclosed solar system, it must be the case that there is
something about the local entropy gradient that prevents it, rather than an initial
boundary condition.

If the remote initial boundary condition has an influence on the state of our earth
only through the entropy difference between the incoming and outgoing radiation,
then the cause of the absence of an RIGUS on earth must be the same as on the
enclosed earth-like planet. We have found no explanation in terms of the local
entropy gradient to prevent an RIGUS, so if the local entropy gradient screens
off the effect of a remote initial boundary condition, then such a condition cannot
provide an argument against the existence of an RIGUS on our earth.

Alternatively, the remote initial boundary condition may have a direct effect on
the conditions on earth today that is not screened off by the local entropy gradient.
In this case it may prevent the existence of an RIGUS on our earth, but leaves
the possibility of an RIGUS on the enclosed earth-like planet. It is hard to see
what kind of process could supply such a direct effect, or how this would lead to
conditions begin so radically different on the enclosed earth-like planet, but one
possibility might be the asymmetry of electromagnetic radiation, between advanced
and retarded waves.

5 NESS, not QSES. Complexity, not information

Any process that is a sequence of Quasi-Static Equilibrium States (QSES) can, in
principle, be connected by thermodynamically reversible processes (it is this that
enables us to determine the entropy difference between them). Let us consider a
specific example: the paradigmatic ice cube melting in a glass of water, and the film
of this being run backwards.

There is nothing about the two states: an ice cube in glass; and a glass of water;
that tells us one must come before the other. It is entirely possible in an entropy
increasing universe, for the ice cube to be in the future of the glass of water. There
are entropy increasing processes by which a glass of water can be turned into a glass
containing an ice cube. In the limiting case, of reversible quasistatic processes, we
can go back and forward between ice cube and water, thermodynamically reversibly.

The same is equally true in an entropy decreasing universe. In such a universe
there would also be entropy decreasing processes by which glasses of water could be
converted into ice cubes in glasses and ice cubes in glasses converted into glasses of
water.

The asymmetry in the process, with which we are familiar, is not the fact that
an ice cube is succeeded by water, but is in the process by which it happens. It
is the non-equilibrium nature of the process that reveals the entropic direction. It
is the fact that the ice cube is in the process of melting that tells us the ‘correct’
direction of the film.

The generalisation of the arguments sections 3 is that any process, which can be
defined solely in terms of a (deterministic or probabilistic) succession of QSES, can
occur in an entropy increasing universe and in an entropy decreasing universe. What
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distinguishes the two universes is not a possible succession of QSES, but rather the
processes by which the transitions between the states can take place. This suggests
that, if one is to find connections to an entropic arrow of time, we should not be
looking at the QSES that are the thermodynamic limit for information processing
systems. Any process defined solely in terms of such states can occur in either
entropic direction.

The existence of Non-Equilibrium Steady States (NESS), on the other hand,
are not time symmetric. Complex biochemical structures that arise in far from
equilibrium conditions are associated with fundamentally time asymmetric, entropy
increasing processes. The time reverse of these processes in entropy decreasing
universes will lead to a different sequence of NESS, entropy decreasing processes.
These complex structures are also the building blocks from which the biological
processes are constructed that are necessary to house the information gathering and
utilising systems.

A generalisation of this may be conjectured: any time asymmetry that is sup-
posed to be a consequence of the thermodynamic time asymmetry, cannot be ex-
pressed solely in terms of sequences of QSES. If we are to find stable states whose
time asymmetry is a consequence of thermodynamics, their properties must come
from NESS, not QSES. This suggests that the ideas of complexity, rather than
information, are needed.

6 Conclusion

The argument of this paper is that an arrow of time associated with information
processing systems cannot be deduced from thermodynamic arguments. The ther-
modynamic arrow is insufficient to entail the computational arrow. Any sequence
of logical operations in an entropy increasing universe is physical possible in an
entropy decreasing universe. Landauer’s Principle, as it is commonly stated, as-
sumes statistical mechanical principles that are equivalent to being in an entropy
increasing universe. If one changes those assumptions, so that one is in an entropy
decreasing universe, a critical inequality in Landauer’s Principle in reversed. The
physical implementation of logical operations, which increase entropy, do so, not by
virtue of any inherent properties of the logical operation, but by virtue of being in
an entropy increasing universe. If the same logical operation is performed in an en-
tropy decreasing universe, it is entropy decreasing. As a result, entropy decreasing
universes are not inherently hostile to the acquisition, persistence or utilisation of
information.

In principle, the operation of acquiring information can be made thermodynami-
cally reversible. This is precisely one of the main insights of Landauer’s work on the
thermodynamics of computation: a measurement can take place without generating
heat (see [LR90, LR03] and many references within).

Landauers principle, while perhaps obvious in retrospect, makes it clear
that information processing and acquisition have no intrinsic, irreducible
thermodynamic cost[Ben03]

If the acquisition of information can take place in a thermodynamically neutral
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manner, it can take place in an entropy decreasing as easily as an entropy increasing
universe.

While any information gathering and utilising system will ultimately cease to
function in an entropy decreasing universe that reaches a final extremal entropy
state, this doesn’t seem sufficient to rule out such systems7. Firstly, the decrease in
entropy is due to the decorrelation that comes about from losing microcorrelations.
It is of a different kind to the macrocorrelations that arise during the acquisition
of information. Secondly, on the timescales during which information gathering
and utilising systems work, between the low or high entropy extremal starting and
ending points, there seems nothing to directly prefer IGUS over RIGUS. Thirdly,
if the effect of the initial or future boundary conditions is screened off by the local
entropy gradient, the no correlation, no interaction argument does not seem to be
applicable, as such an entropy gradient can exist in a situation with no initial or
final boundary condition.

The suggestion is made that an entropic arrow of time will never be found in
processes that can be defined solely in terms of a succession of Quasi-Static Equi-
librium States. Information processing can be so defined. If the psychological arrow
of time is to be aligned with the thermodynamic arrow, it cannot be through the
information processing properties of the brain. It may be through the biochemical
structures that arise in Non-Equilibrium Steady State processes, but if so, it is cer-
tainly not through any information processing characterisation of such structures.
This would seem to imply that at least one aspect of conscious experience cannot
be logically supervenient on the states of a computer. If instead the psychological
arrow of time does indeed arise out of information processing properties, this would
mean that the psychological arrow is logically independant of the thermodynamic
arrow of time.
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