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1. Introduction.1  If we ask what reality would be if the current theories of

physics are true or approximately true or, at least, on the right track, an answer from the

physics community may roughly run as follows.  The physical world -- in the broadest

sense of 'physical' -- consists of matter in spacetime whose parts interact with one another

via force-fields2.  It seems likely that all objects in bulk are composed of a few species of

elementary particles which affect each other's behavior through one or more of the four

fundamental force-fields (or interactions), viz. gravity (= the gravitational field),

electromagnetism, the weak interaction, and the strong interaction.  Gravity is identified

with spacetime, if Einstein's general theory of relativity (GR) is true or approximately true,

and the other three fields are gauge fields, if the standard model of high-energy physics is

true or approximately true.3  Because of the wave-particle duality in quantum theory,

elementary particles are also fields (i.e. matter-fields) and force-fields are also particles

(e.g. photons and gluons), but they still belong to markedly distinct categories.

There is nothing inconsistent or intrinsically wrong about this world picture, but the

following puzzle arises for the force-fields in the form of a dilemma.  Either gravity is one

of the fundamental forces in nature or it is not.  If it is, it then makes sense to pursue the

dream of a unified field theory -- a theory which provides, or at least suggests, an ontology

in which the four force-fields are different manifestations of a single field or substance.

However, according to our best theories today, gravity alone -- whether in its classical

outfit or when it is eventually quantized -- is identifiable with the 4-dimensional4 spacetime.

This implies many asymmetries among the relations between gravity and the other three
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force-fields.  For instance, the other three interact to one another in the background of

spacetime, while their interaction with gravity is nothing more than their being in

spacetime!  Therefore, many are justified to say that gravitational force is no force at all; it

is nothing more than the spacetime which turns out to have dynamical properties.  Hence, it

may be better to exclude gravity from the category of fundamental forces of nature; but if

so, the pursuit of including it in the grand unified field theory -- which has ranked so high

on the agenda of physics for several generations -- would not make much sense.

The dilemma is resolved if one can reduce the other three forces to spacetime as

well.  There are then no forces in the traditional senses of the word (more on this later), and

our current theories of force-fields will be abandoned just as the theory of phlogiston was.

This, as we all know, is the type of grand unification that Einstein envisaged and spent

most of his career pursuing (cf. Pais 1982; Vizgin 1994).  The failure of Einstein's (and

others') effort in finding such a unification has put a damper on, if not altogether stopped,

the pursuit in this direction.5

Partly because of such an asymmetry, several philosophers of science recently

raised questions about the rationale of regarding gravity as a gauge field.  Maudlin (1996)

argues,

there seems to be a fundamental incompatibility ... between the basic approaches of

gauge field theories and GTR. ...  Objects couple to the [gauge] field only if they

interact through some charge that serves as a coupling constant. ...  But according

to GTR, gravity simply is not a force. ... Particles do not couple to the gravitational

field, they simply exist in space-time. (p. 143, my italics)

Therefore, even if there is a unified theory with SU(3) ⊗ SU(2) ⊗ U(1) for the three gauge

fields, it is questionable whether we should expect gravity as the next stop on the ride.

Weinstein (1999) observes that even though there is a sense in which the diffeomorphism

group -- Diff (R4 )  -- of GR is a kind of gauge group (see Wald 1984), the gauge groups

for the gauge fields are so radically different from it that to think of GR as a gauge field
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theory would be misleading.  Callender and Huggett (1999) pose the question, 'Why

quantize the gravitational field?' in the title of their paper.  Besides pointing out many

seemingly insurmountable conceptual difficulties in the quantization of gravitational field,

they explode the myth that the quantization of gravity is required by the very consistency of

physical theories.  Even if one adopts the canonical formulation of quantum gravity from

which the theory can be viewed as a gauge-field theory, one still runs into two types of

problems.  First, the canonical quantum gravity is not the same kind of gauge field as the

other force-fields in the program.  Second, there are grave problems in canonical quantum

gravity involving (a) the nature of observables and (b) the very possibility of time and

change, which are not present in quantum gauge-field theories of the other forces; for

details, see also Belot and Earman (1999) and the references therein.

One can always take refuge in the fact that it is ultimately an empirical question as to

whether and how a grand unification including gravity can be achieved.  Therefore, let us

wait and see.  However, given that so much philosophical consideration usually goes into

theoretical projects of such depth in any area of science, it would be significant if we can

see clearly from a philosophical (and foundational) perspective what seems reasonable to

expect and what seems not.  While carrying out a full investigation of all the possibilities in

the logical space for the question of the unification of force-fields needs the length of a

monograph if not more, I shall focus my attention on the following possibility (which is

diametrical to Einstein's original conception of unification).  Could GR be modified or

replaced by another theory so that gravity can be made to join the other force-fields?

Weinstein is right in arguing that GR in its original formulation is no gauge field of the

Yang-Mills type, it does not, however, mean that a gauge theory of gravity -- which differs

from GR -- is not possible, which both meet the experimental findings for gravity and is a

genuine gauge field.6

I shall explore this possibility by giving in section 5 a review of the various

proposals for a gauge theory of gravity, which represent a valiant attempt of the gauge-field
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program to integrate gravity.  But before I do that, I must first examine the concept of

unification of force-fields and the gauge-field program in which a unification of all force-

fields of the Yang-Mills (YM) type may be achieved.  There is a sense in which the four

force-fields are already unified: they are effects of localized symmetries of various

'dynamical spaces'; but the difference between the 'internal' (for gauge fields) and the

'external' (for gravity) symmetries separates gravity from the rest.  This crucial difference

will become clear in section 5.

2. Unification and symmetry.  Given that the conception of unification is so

essential in physics, I shall first discuss its meanings in general.  While a historical study is

beyond the scope of this paper, I shall nevertheless identify some historical anchors for the

meanings I discuss below.  More subtle differences will emerge later.

While some unification in physics involve reductions of theories at the phenomenal

level to ones at the structural level, such as those in solid state physics, others involve

uniting previously separate theories at the same level into a whole, such as the theory of

energy conservation and transformation.  Sometimes, a unification implies a reduction of

the number of phenomena or types of objects/substances, while other times it is no more

than a discovery of a theoretical equation that replaces several distinct equations for

different phenomena.  Let me begin to make these more precise.  I shall not engage here the

various problems with the notion of reduction; for our purpose, it suffices if we understand

'A is reducible to B' as that A can be accounted for by B -- e.g. is derivable with bridge

principles from B, if A and B are theories, or that the theory of A can be accounted for by

the theory of B, if A and B are phenomena or types of objects/substances.

[I] A unification via a reduction of the phenomenal to the (underlying) structural,

which is a case of unification just in case the theory of the structural has a broader
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scope than the phenomenal.  (Otherwise, it is simply a case of reduction without

unification.)

When Maxwell realized that light rays are electromagnetic waves, a case of such a reductive

unification was achieved.  The macro-micro reductions in thermostatistical physics are also

examples.

[II] A unification via an integration -- not a simple conjunction -- of separate theories

into a single theory, which accounts for the integration (or the interdependence) of

the phenomena.

Maxwell's unified theory of electromagnetism is a case for this (see, Maudlin 1996, p.

131).  As Maudlin pointed out, Maxwell's electromagnetism is no mere juxtaposition of the

theories of electricity and magnetism but a single theory which explains how one gives rise

to the other in the phenomena.  However, the two fields remain as separate substances.  In

the same sense, the discovery of the conservation and transformation of two or more forms

of energy -- not the postulation of the general law of conservation of energy -- is also a

unification.  The electromagnetic energy, for instance, remains distinct from the mechanical

energy, while the theory accounts for how one may be transformed into the other.

[III] A unification via a replacement of theories as in [II] and a corresponding ontological

reduction of objects/substances.

Einstein's special theory of relativity (SR) turns Maxwell's electromagnetism into a

unification of this sort (see. Maudlin 1996), because SR renders the separate appearance of

the electric or the magnetic field purely a choice of inertial reference frames; and since SR

completely removes the privilege of any particular inertial frame, any residual independence
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of the electric or the magnetic field is removed as well.  The Minkowskian unification of

space and time into a 4-dimensional spacetime may be regard as another example.  Note

that the same does not happen in the energy conservation case: there does not appear to be

any way in which we can view different forms of energy as the results of frame or

perspective switching.

[IV]  A unification via an identification of universal axioms or principles from which

different theories may be derivable with the help of constitutive laws and facts.

The canonical -- the Lagrangian or the Hamiltonian -- formulation of dynamics is a typical

example for this (see, Dirac 1957, pp. 48-60).  The unification appears to be purely formal;

in other words, the contents of the Lagrangian or the Hamiltonian formulation of different

theories can be very different, not even having to share the same vocabulary.  On the other

hand, the Hamiltonian does represent the total energy of a system, and the universal

applicability of the Hamiltonian formulation may be seen as a manifestation of the universal

conservation and transformation of energy.  But even if this last point is true, the

formulation by no means suggests any ontological reduction as in the senses of [I] and

[III].

Given our conception of the general categorical structures of physical reality, which

has been more or less the same since Maxwell's field theory of electromagnetism, the

above can be translated into the following ideals or goals of unification in physics.

(i) An ontological reduction of everything, matter, radiation, and forces, to a single

substance in spacetime (or space/time7).

A grand vision involving a unification of [I] and [III], (which may be weakened by

envisaging more than one fundamental substances (in spacetime) as the ultimate reducers).
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Historically, this was the unificational dream of the electromagnetic program which

dominated theoretical physics at the turn of the 20th century.  We see names such as

Larmor, FitzGerald, Lorentz, Wien, Minkowski, Mie, Abraham, and Nordström

associated with the program, and it lasted even beyond the advent of Einstein's general

relativity (see, Whittaker 1953; McCormmach 1970; Liu 1994a; Corry 1999).

(ii) An ontological reduction of everything to the geometrical properties of spacetime.

As a much stronger vision than (i), it was evidently in Hilbert's mind when he tried to

combine Einstein's GR (i.e. the Entwurf version of it) and Mie's theory of

electromagnetism (see, Hilbert, 1924; Corry 1999).  It was not a widely shared ideal and it

is still not clear to me what kind of ontological reduction it might have entailed even if

Hilbert had succeeded in his program -- an interesting investigation which I shall leave for

another occasion.

(iii) An ontological reduction of the fundamental force fields to the geometrical

properties of spacetime.

This is the ideal that Einstein spent the rest of his life pursuing after he obtained his general

theory of relativity (GR) (see, Pais 1982, part III; Vizgin 1994).  It is also the ideal that

inspired Weyl's work in gauge-field (Weyl 1918, 1919) and, indirectly or in a different

guise, the guiding spirit of the gauge-field program (see, O'Raifeartaigh 1997).

(iv) A reduction of laws and concepts of matter and force-fields to a single theoretical

system, whose axioms and schemes of derivation are general and simple.
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A weaker vision than (i) and (ii) involving unifications of [II] and/or [IV].  A pure form of

this ideal can be found in Planck's work for a theory of 'General Dynamics' (see, Planck

1908a,b; Goldberg 1976; Liu 1994a), in which he explicitly challenged the electromagnetic

program by proposing a unification of physics under two of what he regarded as the most

general principles: the least action principle and the principle of SR.  We shall see in a

moment that is vision is also implicit in the gauge-field program.

In addition, there is a special kind of unifications in physics, some of which

Maudlin (1996) call 'perfect' unifications, which I may also described as 'rare' or

'profound.'  Maudlin's examples are the unified theories of electromagnetism and gravity

in SR and GR respectively.  Both are unifications as the result of some symmetry or

equivalence: in the former, it is the symmetry or equivalence of inertial reference frames

(e.g. the equivalence of observing a magnet moving (uniformly) inside a solenoid in the co-

moving frame of the magnet with observing it in the co-moving frame of the solenoid); and

in the latter, it is the symmetry or equivalence of local arbitrary frames (e.g. the equivalence

of observing a system locally 'free-falling' in a constant gravitational field and observing it

in an inertial frame).  Symmetry is usually represented in physics as an invariance under a

group of transformations; and therefore, it is usually taken to signify a lack of physically

real distinction -- physically indistinguishable -- among the states so transformable to one

another (hence their equivalence in this sense) (see, Wigner 1976, pp. 3-109; Kosso

1999).  Other examples of this kind may include the original theory of Yang and Mills for

the strong interaction, in which nucleons are indistinguishable under the SU(2) isospin

transformations, and QCD, in which quarks are indistinguishable under the SU(3) color

transformations.  As I mentioned earlier, these are unifications of type [III], and when

translated into an ideal for all fundamental force-fields, we have (iii), which together with

the advent of quantum theory inspired the gauge-field program.  We shall see later whether

any unification in that program lives up to this standard.
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3. Unification before the gauge-field program.  Even though it may well

be true, as will be explained later, that GR, as is, is not a gauge-field theory of the YM type

(see Weinstein 1999), there is no question, as I shall explain now, that both rest on the

same general idea.  In this section I explain how GR radically changed our general

conception of force-fields and in what sense the gauge-field program is a product of this

revolution.  It may the case that gravity can not longer be seen as a force-field (Maudlin

1996), but do gauge fields of the YM type have to be force-fields?  What exactly makes

something a force-field?8

The ontological picture of the pre-relativistic physics is simple: matter exists and

evolves in a (flat) background of space and time with interactions among them being

mediated by force-fields.  It is mathematically embodied in the Lagrangian (or the

Hamiltonian) formulation .  The action -- which is the time integral of the Lagrangian or, in

the case of fields, the space integral of the Lagrangian density -- can always be written as

the sum of two terms: Itotal = I + II , where I  is the action for the dynamics of the given

system and II  the action for the interaction (or coupling) of the system with the force-field.

The force-field is characterized by its own action, I f , which can be added to the others to

complete the picture: Itotal = I + II + I f .  Applying the variational principle to it, i.e.

δItotal = 0 , one can obtain the field equation and the equation of motion.  (This scheme

remains essentially the same in SR, where the background is a 4-dimensional Minkowski

spacetime.)  With the advent of GR, this scheme had to be radically revised.

Because of the identification of gravitational effects with the geometrical properties

of a 4-dimensional pseudo-Riemannian spacetime, it no longer makes sense to separate the

action for dynamics, I , from the one for the interaction with gravity, II , since gravity is no

longer conceived of as affecting motion as an external force in spacetime.  We now have

the action of matter in gravity alone as Itotal = Ig + Im , where Ig  is the field action and Im

the matter action.  δIm  in terms of δg  (for gravity) and δp  (for motion) produces two

independent terms, i.e. δIm = (Cδg∫ + Dδp)d 4x = 0 .  Term 'C' becomes the mass-
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energy tensor in Einstein's field equation, and term ' Dδp ', with some variable

substitutions, yields the geodesic equation (i.e. the equation of motion) (cf. Dirac 1957 and

Wald 1984, 450ff).  Beyond this point, the traditional scheme mentioned above seems to

sneak in from the back.  When charged matter is present, we have

Itotal = Ig + Im + Iem + Iq , where δIem = 0 gives one the electromagnetic field equation in a

chargeless region and a mass-energy contribution to the Einstein field equation, and

δIq = (EδA∫ + Fδp)d 4x = 0  analogously yields a charge current contribution (by the term

'E') to the electromagnetic field equation and the Lorentz force term (via ' Fδp ') to the

equation of motion (cf. Dirac 1975, pp. 50-57).  This last term is the interaction term that

accounts for the deviation of material objects from their geodesics.  A natural extrapolation

of this scheme is that the total action of any number of different charged matter can be

written as Itotal = (Ig + Im ) + (I f + Iq ), where I f  is the total action of all other force-fields

and Iq  the total action of all charged matter.9  Each of these fields contributes to gravity as

the added stress-energy, and it modifies the dynamics of material bodies (deviation from

their geodesics) as external force-fields.

We witness here an interesting twist in the history of physics, where a perfect

unification between inertia and gravity in GR made it more difficult, if not impossible, for a

broader and more important unification -- the unification of all fundamental forces in

nature.  When the traditional scheme of action principle is replaced by the GR scheme,

gravity drops out of the list of external force-fields.  Instead of the ontological picture

implied by the scheme:

[Spacetime (inertial)] + [Dynamics] + [Interaction] + [Force-fields],

we now have

[Gravitational field] + [Matter] + ['other' Force-fields],

where spacetime drops out; or equivalently:

[Spacetime] + [Matter] + [(3) Force-fields],
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where gravity disappears.10  There is nothing inconsistent about either version of the new

ontological picture, but they break a symmetry among force-fields that seem so natural in

the traditional picture, namely, the dynamics of a physical system is the result of

interactions among material objects via the mediation of force-fields.  In this sense, gravity

seems to be no different from any other force-field.  A demand of unification in sense [III]

above (and by the example of relativistic unification of electromagnetism) seems to be

legitimized by such a symmetry.  On the other hand, this intuition of the symmetry may be

ill-founded.  When one reflects on the fact that the charge of gravity (i.e. the gravitational

mass) necessarily equals the inertial mass, one should realize that gravity is radically

different.  In Hoefer's words, 'this [the universality of gravity] may be Nature's way of

knocking our heads and telling us that gravity is something entirely different from the other

forces.11'  Maudlin (1996), as I quoted him earlier, holds the same view.  But many

physicists, for various reasons, have refused to accept the exclusion of gravity.  Ideal (iii)

given above would be a perfect solution of this dilemma, for if (iii) is realized, our

ontology then becomes a simple and elegant one:

[Spacetime] + [Matter].

 .

4. The gauge-field program.  The above ideal of course has not been, and is

unlikely to be, realized, but the gauge-field program which seems at present to have the

best hope of unifying the 'other' force-fields is, in spirit though not in content, pursuing

the same ideal.  Just as in a gauge-field theory where the force arises from the local gauge

invariance of the laws of physics, gravitational effect arises from the local Poincaré

invariance of the laws as well.  I shall explain in detail the latter in the next section.  Here I

briefly sketch the gauge-field program, which produces theories and unifications for gauge

fields of the YM type.

We begin with a picture of the physical world as having particles as quantum fields

existing in a 4-dimensional Minkowski spacetime, M.  The dynamics of these matter-fields
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are determined if the Lagrangian of each type is given, a scheme virtually the same as the

classical one discussed in the previous section, except here we Lagrangian densities of

fields.  Beside being invariant under the global Poincaré group of transformations, a

requirement for any relativistic field theory, the Lagrangians also enjoy symmetries of other

kinds.  For instance, electrons enjoy the symmetry of the U(1) group of global

transformations: ψ (x) → γψ (x),γ = e− iΛ , where Λ is an arbitrary constant, and leptons

enjoy the symmetry of the SU(2) group of global transformations of similar form, and so

on; more on this later.  These global symmetries produce conservations of the

corresponding charges.  Once the constant factors in those transformations are made

functions of x ∈ M, an act commonly referred to as 'localizing' or 'gauging,' new degrees

of freedom open up.  The aim of the gauge-field program is to geometricize the 'other'

force-fields in such dimensions, the general scheme of which runs roughly as follows (for

details, see Göckeker & Schücker 1987; Frankel 1997).

Given a spacetime M and a Lie group G12 into which M is mapped by local gauge

transformations γ ∈ GM, a connection 1-form, A, is introduced (by the demand of gauge

invariance) on G which transforms as:

A → A' = γAγ −1 + γdγ −1.  (1)

Then, the exterior covariant derivative D is introduced for G as:

DΨ:= dΨ + A ∧ Ψ , (2)

Ψ is any vector-valued p-form (i.e. it takes values in a vector space which is a

representation of G) and d is the ordinary exterior derivative which maps a p-form to a

(p+1)-form and '∧' is the wedge operation.  With that, the curvature of G can be simply

defined as: F: = DA, a 2-form.  In other words,

F = DA = dA + A ∧ A = dA + 1
2

[ A, A], (3)

where [...,...] is the Poisson bracket.  The Lagrangian of a gauge field then has the

following general form:

(DΨ )+ ∧∗ (DΨ ) + 1
q2

tr(F∧∗ F) − m2 (Ψ + ∧∗ Ψ ) (4)
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where q  and m  are respectively the charge and the mass of the matter field which is

represented here by Ψ ; '∗' is the Hodge star operator on forms (analogous to the indices-

raising operator for tensors on M), Ψ +  the Hermitian conjugate of Ψ .  The first is the

dynamics term, the second the field term, and the third the 'mass' term.

The symmetry group for a particular force-field is determined by the

transformational property of the matter-field, i.e., of Ψ ; for instance, for

electromagnetism, it is U(1) because the charged particles are represented by a Ψ  of

complex singlet.  For the weak interaction, the group is SU(2) because the Ψ  of the

leptons are complex doublets, and similarly we have SU(3) for gluons of the strong

interaction because the Ψ  of quarks are complex triplets.  The force-fields corresponding

to these groups also correspond uniquely to different charges, while the particles may carry

one or more charges.   With G determined, gauge invariance under G makes it possible for

the introduction of a connection, which in turn determines the exterior covariant derivative

and the curvature.  And with these the total Lagrangian, including the dynamics and the

force-fields, is determined.

One should note that in the gauge-field program a gauge invariance under G only

provides the possibility of introducing a connection but by no means determines its form

(see Cat 1993; Teller 1999; Liu 1999).  This point can best be seen in contrast with the

analogous case in GR.  The geodesic equation for a free particle in Minkowski spacetime,

M, reads simply as: d 2uσ / ds2 = 0 (where uσ  describes the particle's state in a Cartesian

coordinate system, and ds is the proper time), and it is invariant under any rigid (i.e.

global) Poincaré transformations.  Let the coefficients of the transformations become

functions of x ∈ M, and in so doing we switch to arbitrary coordinate systems.  Now, uσ

in an curvilinear system xµ  becomes a function of xµ .  By a simple application of the chain

rule, we obtain the following geodesic equation:

0 = d

ds
(
∂uσ

∂xµ
∂xµ

ds
) = ∂uσ

∂xµ
d 2xµ

ds2
+ ∂ 2uσ

∂xµ∂x ν
∂xµ

ds

∂x ν

ds
,
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which, by being multiplied by a factor ∂xλ / ∂uσ , turns into the geodesic equation in GR,

0 = d 2xλ

ds2
+ Γµν

λ ∂xµ

ds

∂x ν

ds

where Γµν
λ  turns out to be the needed affine connection for the description of gravity.  One

may conclude that the 'gauging' of the transformations induces and determines the

connection for gravity.  The connection for a gauge field cannot be so introduced.  Take the

U(1) case in which the Lagrangian density of a charged scalar matter field has the form:

(∂µ ψ∂ µ ψ − m2ψ + ψ ) in some suitable basis, where ∂µ = ∂ / ∂ µ x .  It is invariant under the

global U(1) transformations, but when they become local, as functions of xµ , the chain

rule of differentiation does not introduce the connection.  To see this, suppose we have

ψ (x) → γψ (x),γ = e− iΛ ( x ) , then

∂µ ψ → ∂µ ψ ' = ∂µ (e− ieΛ ( x )ψ ) = (∂µ ψ − ieψ∂µ Λ )e− ieΛ ( x ) ,

and hence,

∂µ ψ∂ µ ψ → (∂µ − ie∂µ Λ )ψ * (∂ µ − ie∂ µ Λ )ψ .

However much the rhs of the arrow resembles the result of the 'minimal coupling,' i.e.

∂µ − ieAµ , it is not.  If we define the connection as Aµ = ∂ µ Λ  (i.e. A = dΛ  in the

abstract formulation), what is introduced is a identically flat connection because the

curvature in this case is F = dA = d 2Λ ≡ 0.

The quantum weak force-field13 operating among leptons and quarks is considered

to be unified with quantum electrodynamics into a theory of electroweak force-field under

the structure group, SU(2) ⊗ U(1).  What kind of unification is it, if it is one?  Since its

structure group is a Cartesian product of two groups, its exterior covariant derivative is the

sum of the two separate minimal couplings, i.e. from (2), 

DΨ = dΨ + (Ae ∧ Ψ ) + (Aw ∧ Ψ ),

and its Lagrangian is also a sum, i.e. from (4),

(Dψ )+ ∧∗ (Dψ ) + 1
e2

tr(Fe ∧∗ Fe ) + 1
q2

tr(Fw ∧∗ Fw ) − V(ψ + ∧∗ ψ ),
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where Fe = DAe , Fw = DAw , V(...) is a quadratic function of ψ + ψ , and ψ = (
ψ1

ψ 2

) is a

complex doublet.  For the U(1) field of electromagnetism, from (1) above we have

Ae = ieA, where e  is the charge and A  the potential vector of the electromagnetic field; and

Fe = dA, since the U(1) field is Abelian, A ∧ A = 0.  For SU(2) field of the weak force,

we have Aw = iqW kτk , where q is the charge of the weak source, W k  and τk  (k = 1, 2, 3),

are respectively the potentials (a triplet) and the generators of the weak field; and

Fw = dAw + (1 / 2)q[ Aw , Aw ]14.

The SU(2) part of the electroweak field is the typical YM gauge theory for the weak

isotopic spin space, where when electric charge is ignored there is a perfect local symmetry

between the particles in a doublet, such as {e,v }, the electron and its neutrino.  Besides the

phenomenological charged weak bosons, W ± , where W ± := (1 / 2 )(W1 ± iW 2 ), which

were known before the theory was invented, the theory predicts a neutral weak boson, W 3,

which is, moreover, mixed with the photon.  One finds the mixing in the neutral interaction

terms of the Lagrangian density, such as the term for a pair of neutrino and antineutrino.

There, we have the phenomenological (or observable) neutral weak field as

Z 0 = (eA + qW 3 ) / q2 + e2 ; (5)

and then, the phenomenological photon -- which must be 'orthogonal' to Z 0  -- comes out

naturally as

Aem = (qA − eW 3 ) / q2 + e2 .  (6)

Accordingly, the phenomenological electric charge and weak charge are different from q

and e : the electric charge is E = qe / e2 + q2 , and the neutral weak charges are

Gν = e2 + q2  (coupling with neutrinos), GeR
= e2 / e2 + q2  (with right-handed

electrons), and GeL
= (e2 − q2 ) / e2 + q2  (with left-handed electrons).  (The difference of

the last two is the result of the parity violation in weak interactions.)

To complete the picture, one needs to add the Higgs mechanism which

spontaneously 'breaks' the gauge symmetry of the original theory and therefore makes it
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possible for the W-bosons to have non-zero masses, the details of which should not

concern us here (cf. Higgs 1974; Aitchison 1982; Quigg 1983).  Let us return to our

question of whether the electroweak theory is a unification.

There is a sense in which it is a unification of type [I] given above.  There seem to

be two different levels, one phenomenological at which we have the four bosons, W ± , Z 0 ,

and Aem , and one theoretical at which we have the A-field and Wk-fields, where the neutral

boson and the photon are, from (5) and (6), prima facie composed of A and W3.

However, this picture may not hold up for two reasons.  First, it is not clear whether or not

the A- and Wk- fields are real.  This is similar to a question one asks in the classical

electrodynamics, namely, whether the electromagnetic potential A (quite analogous to the

A-field here) is real given what is observable there are the strength of E and B.15  Without

having a handle on the question, there would not a point to ask whether a theory of

electrodynamics in terms of E and B is reducible to a theory of it in terms of A (and thus

becoming unified).  Second, even if the A- and Wk- fields are real, there is no ontological

attribution in this case: four bosons are reduced to another set of four bosons.  Hence, even

if there is reduction, there is no unification.

Sense [IV] of unification does not seem to apply in this case because even before

the electroweak theory, the gauge theories of the separate fields are already well unified in

sense [IV].  And it is certainly a unification of type [II], but is it strong enough to be a

unification of type [III].  If it is a type [II], it must be because of the mixing roughly

characterized above, which is accentuated by the use of the Weinberg (or the weak) angle:

θw = e / q.  From (5) and (6) we see that the mixing of A-field and the W 3-field can be

seen as the effect of a rotation of the Weinberg angle.  One may think that for this reason,

the unification is as good as the one for electromagnetism in SR.16  This is not the case.

What makes the SR unification of electromagnetism profound is the idea that in any

situation where an electromagnetic force-field is present, how much of the force is magnetic

and how much electric depends entirely on the reference frame in which the force is
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observed.  Therefore, the electromagnetic force-field is not just a mixture of the electric and

the magnetic, but really one force-field that manifests itself differently in different reference

frames.  The electroweak theory, however, portrays a genuine mixture of two different

force-fields with two different coupling constants and ranges of application.  The mixing --

i.e. the angle -- is also fixed the charges of the two fields: e  and q .

For lack of space, I shall not discuss the strong interaction and its unification with

the others.  Suffices it to mention that the SU(3) theory for the strong interaction is also of

YM type and the SU(3) ⊗ SU(2) ⊗ U(1) unification is very much like the SU(2) ⊗ U(1)

unification.17  To summarize, the gauge-field program offers a two-step procedure for the

unification of force-fields: first we find out whether or not some fields are gauge fields of

the YM type (whose general scheme I sketched above), and then if they are, we find out

whether or not we can formulate a single theory for them whose gauge group is either a

single group or a Cartesian product of their own gauge groups.  Note that all YM type

fields (i.e. the products of the first step) may be regarded as already unified in sense [IV],

but the real meaning of step one is not for unification; it is rather to provide a 'unified'

answer to the question: what is it to be a force-field?  I may even venture to say that it

answers the question: whence does a force-field come?  For the answer from the gauge-

field program seems to be that it comes from gauging: the production of extra dynamical

degrees of freedom via localizing appropriate gauge symmetries.  However, as I explained

above, gauging does not determine uniquely the connection but only makes it possible for

its introduction, and hence gauging of the appropriate dynamical degrees of freedom is not

sufficient for a gauge theory of the corresponding field.  It does, however, appear to be

necessary, i.e. a gauge field cannot be introduced without a local gauge symmetry.

Therefore, gauging (or local gauge symmetry) is indeed essential to the presence of a force-

field.  More on this in section 6.
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5. Gauge theories of gravity.  Can gravity be unified with the gauge fields in

the program?  To answer it we need to first find out whether it can be made into a gauge

field as the others in the program.  Utiyama (1956) is widely regarded as the first person to

have explicitly proposed a gauge theory of gravity.  His theory was later improved by

Kibble (1961) and Sciama (1962).  Trautman later argued that the Utiyama-Sciama-Kibble

theory can be recognized 'as being essentially equivalent to Cartan's theory of 1923.'

(Trautman 1980, p. 305).  The Cartan theory -- now known as the Einstein-Cartan theory

(see also Trautman 1972, 1973; Göckeler & Schücker 1987; Prasanna 1989) -- is a theory

of gravity on a Riemann-Cartan spacetime, U 4 , which is a paracompact, Hausdorff,

connected, C∞ , and oriented 4-dimensional manifold on which are defined a local Lorentz

metric g  and a linear affine connection Γ , which transformed just like A  in (1), with

γ ∈GL+ (4, R) -- the set of all arbitrary linear transformations on the manifold with positive

determinants and which is metric, i.e. Dg = 0.  From Γ  a curvature and a torsion tensor

can be obtained on U 4 .  If the torsion tensor vanishes, the Riemann-Cartan spacetime

becomes the pseudo-Riemannian spacetime, V 4 ; if the curvature tensor vanishes, it

becomes the Weitzenböck spacetime, A4 ; and if both tensors vanish, it becomes the

Minkowski spacetime, M 4  (see Hayashi & Shirafuji 1979; Ivanenko & Sardanashvily

1983).  The pseudo-Riemannian spacetime, V 4  (i.e. with a signature of (-, +, +, +)), is the

one used by GR to describe, inter alia, gravity.

For more details, let us begin with U 4  and its local tangent space, Tx (U 4 ).  A

frame can be define on it by a linear base, {ei } (i = 0, 1, 2, 3).  With the Lorentz metric

tensor, g, we can also define a coframe for the cotangent space at x ∈U 4  with a base,

{θ i }, such that θ i = gijej .  In local coordinate system xµ , we have θ i = hµ
i dxµ ,where the

components, hµ
i , are known as the tetrads or vierbeins.  The two systems of indices --

Latin and Greek -- denote two different sets of transformational properties.  The Latin

indices are used to indicate tensors in the local coframe which transform as the G-tensors

(where 'G' indicates the gauge group), and we use the Greek indices to denote tensors
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which transform as covariant tensors on U 4 under Diff (R4 )  -- the set of all

diffeomorphisms.   Given the group, which may be GL+ (4, R)  or one of its subgroups, a

connection Γ  may be determined; and in U 4 Γ  is independent of the metric.  Then the

curvature is similarly, see (3), defined as R = dΓ + 1
2

[Γ ,Γ ]  and R' = γRγ −1 , and the

torsion is defined as a 2-form with values in R4, T:= Dθ = dθ + Γ ∧ θ  and T' = γT .  In

words, the torsion of a space is represented in the twisting of its local coframe.  The field

action for the Einstein-Cartan field can be written as

IEC = −(1 / 32πG) tr[R∧∗ (θ ∧ θ )]
S∫ ,

where G is the gravitational constant.  The appearance of two different 2-forms is because

independent representation of the connection and of the metric are needed, and R  is a 2-

form in terms of Γ  and θ ∧ θ  a 2-form in terms of g.  Now, δIEC = 0 under the variation

of θ alone gets us Einstein's field equation, while δIEC = 0 under the variation of Γ  alone

gets us torsion equation.

Different gauge groups, G, when applicable to the Riemann-Cartan manifold may

produce slightly different versions of the Einstein-Cartan theory, but there is no gauge

group (cf. Invanenko & Sardanashvily 1983) which directly produces the connection in

GR (i.e. the Christoffel symbols) and, hence, GR itself. This is rather different from the

YM type gauge fields.  Let us now see briefly what these different versions are.

The gauge group Utiyama (1956) used to generate the Riemann-Cartan spacetime is

that of homogeneous Lorentz transformations (LTs), sometimes known as the Lorentz

group18.  Here, the tetrads comprise the local orthonormal coframe in which the

transformations among bases are restricted to the 6-parameter LTs.  The coordinates in each

local frame -- where g = η = (−1,1,1,1)  -- are related to the global curvilinear coordinates

by the vierbein fields, θ i = hµ
i dxµ .  The use of the Lorentz group is natural if one takes

literally the idea of 'gauging' -- i.e. the localization of a previously global symmetry.  If the

gauge theory of electrodynamics is the exemplar to be followed strictly, GR should be the

result of a simple gauging of the global LTs in SR.  However, it was argued that the
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vierbeins are put in 'by hand', because they are introduced by demanding that tensors in the

local coframes be covariant under arbitrary diffeomorphisms across spacetime; and this is

clearly a demand beyond the idea of gauging.  There is no analogous move of this kind in

the YM type gauge fields.

Kibble (1962) and Sciama (1962) noticed the defect and discovered a remedy in the

10-parameter group of inhomogeneous LTs (the Poincaré group).  The inhomogeneous

LTs, written as infinitesimal transformations in Cartesian coordinates, have the form:

xi → xi + Λ j
i x j + ε i , where Λ j

i  is the rotational part and ε i  the translational part.

Gauging the group means that the two parts become arbitrary functions of x .  The result,

to put it very roughly19, is essentially a manifold which admits local coframes as copies of

the Lorentz group, i.e. the rotational (or homogeneous) part, but which also admits general

coordinate transformations, i.e. the translational part.  'On the other hand,' Trautman

(1973) pointed out, 'curvature and torsion are related, respectively, to the groups of

homogeneous transformations and of translations in the tangent spaces of a manifold

endowed with a linear connection. (p.194)'  Once the local coframes are naturally related to

the base via the vierbeins, θ i = hµ
i dxµ , the rest of the geometry of U 4  is derived as in

Utiyama.

The Poincaré group approach was further developed by Hehl et al (1976).  In that

work an active (rather than a passive) interpretation of the localized Poincaré

transformations is used to derive the geometry of the Riemann-Cartan spacetime.  The

general idea of gauge-field program -- the invariance of physics under localized

transformations -- produces in this case two gauge potentials: the rotational potential for

the connection and a translational potential for the tetrads.  Hehl et al further argue that the

contortion (because of the torsion in U 4 ) is a physically meaningful magnitude; it couples

to the spin of matter just as the curvature couples to the mass.  We do not see the contortion

part in GR because GR is a theory of the macroscopic, and at the macroscopic level the

total spin of matter is usually unnoticeable (e.g. being averaged out).
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One may think that this is the end of the story for gauge gravity; what remains is the

experimental verification (or falsification) of the coupling between spin and contortion.

No, it is not, for as early as 1928, Einstein entertained the idea of characterizing gravity in

absolute parallelism, i.e. in a spacetime with a vanishing curvature (see Pais 1982, pp.

344-345).20  The idea was later picked up and developed into a full-fledged gauge theory

of gravity (cf. Hayashi & Shirafuji 1979; Muench et al 1998).  It turns out -- details aside --

that the Weitzenböck spacetime has enough geometry of the right kind to describe gravity.

This result may appear surprising because gravity has always been associated with the

Riemannian curvature; but here the curvature identically vanishes.  However, if one begins

with a Riemann-Cartan spacetime -- whose connection has no intrinsic relation with the

metric, there is no a priori reason that gravity be captured only by a curved spacetime.  The

so called teleparallel tetrad fields can do the job equally well, according to Hayashi and

Shirafuji (1979).  One must also note that in a Weitzenböck spacetime, the vanishing of the

Riemannian curvature does not at all imply that spacetime is flat (i.e. Minkowskian).  The

metric is defined by the tetrad fields, as is the case for all Riemann-Cartan manifolds.  One

may say that in the teleparallel version of gauge gravity, it is the 'twisted' rather than the

'curved' manifold that accounts for gravity.

Along the same line, an argument is made recently by de Andrade and Pereira

(1997, 1998) for the conclusion that gravity can be equivalently described either by the

Riemann spacetime or by the Weitzenböck spacetime.  In other words, one can use either

the Riemann connection (torsion free) or the Cartan connection (curvature free) to describe

the effects of gravity.21

Some other groups are also considered as candidates for the gauge group, e.g. de

Sitter group or the general linear group, GL(4, R) , or the general affine group, GA(4, R)

(see Trautman 1980b; Ivanov & Niederle 1982; Ivanenko & Sardanashvily 1983; Nounou

1995).  Unlike the case of Poincaré group, which is intended to be a replacement of the

Lorentz group, the GL(4, R)  and GA(4, R) are generalizations.  The local coframes with
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such groups as their gauge groups are more general than the Riemann-Cartan spacetime;

and a contraction of GL(4, R)  or GA(4, R) to either the Lorentz or the Poincaré group will

have to be implemented before we get the Riemann-Cartan spacetime back.

There are also proposals (cf. Ivanov & Niederle 1982 and Mukunda 1989) in which

attempts are made to treat the Poincaré group as an internal symmetry group when it is

gauged -- i.e. the elements of the group do not act on spacetime points at all.  In other

words, the full invariance group of the gauge gravity Lagrangian is the product of two

groups: Ploc ⊗ Diff (R4 ), where Ploc  is the gauged Poincaré group and Diff (R4 )  the set of

all diffeomorphisms acting on the spacetime manifold.  The point of doing this is to make

the result of gauging in gravity having exactly the same structure as that in the YM type

gauge fields.  In the later case, we have, Gloc ⊗ P , where Gloc  is the gauge group of

internal symmetries and P  is the global Poincaré group which acts on the Minkowski

spacetime.  I can see several problems with this approach, the most obvious of which

would be this: what would be the group structure for an interaction between, say,

electromagnetism and gravity?  Should it not be U(1) ⊗ Diff (R4 ), according to the

approach?  But according to the same approach, gravity disappears in the Lagrangian under

this group.

There is yet another very different approach to making GR a gauge-field theory,

which is carried out on Riem(∑), the space of Riemannian metrics on a compact 3-

dimensional manifold.  Since this approach is, at least in appearance, quite different from

the gauge-field program I examine in this paper, I shall refer the interested readers to the

following references: Earman 2000; Belot & Earman 1999; Wald 1984; and the literature

therein.  It appears that this approach disregards the symmetry of the Poincaré group from

the very beginning by making an explicit separation of the temporal dimension from the

spatial ones; but see Crnkovic & Witten 1987 for an argument to the contrary.
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6. The nature of gauging and the unity of force-fields.  We now return

to the question: can gravity be unified with the other fundamental force-fields in the gauge-

field program?  An affirmative answer is supposed to be given by gauge gravity, at least

with regard to the first step of the unification in the program (see the end of section 4).  The

Einstein-Cartan gauge theory of gravity may not be true, but that is a possibility for all

gauge-field theories in the program.  Hence, our question should be: if the Einstein-Cartan

theory is true, is it a gauge theory that truly belongs to the gauge-field program?

Two essential features of the YM type gauge fields are pertinent to our evaluation of

gauge gravity.

[F1] The background spacetime for such fields may be Minkowskian, i.e. flat.  (They

are also compatible with curved background spacetime, such as the pseudo-

Riemannian spacetime, but that is not important here.)

[F2] The existence of such fields is made possible by the gauging of the appropriate

gauge spaces.

Gauge gravity cannot have the first of these features because if one 'flattens' the

background spacetime for the Einstein-Cartan theory, none of the geometric objects on the

coframes can have the proper properties to describe the effects of gravity.  Since the

coframes with a Minkowski metric will be θ i = hµ
i dxµ = δµ

i dxµ = dxµ , i.e. they coincide

with the global Cartesian frame (which is holonomic and orthonormal), both the curvature

and the torsion will vanish.22

Perhaps this fact gives some explanation to the real difference between the external

and the internal symmetries which were said to separate GR from the other gauge-field

theories.  While the other gauge fields are geometric properties of spaces over and beyond

spacetime -- hence, internal to the matter they affect -- gravity cannot be conceived as being

independent of spacetime -- hence, external to the matter it affects.  And while for gauge

fields it is still possible to retain the sense of 'force' as something that compel objects to
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deviate from their inertial motion in a spacetime, i.e. from their geodesics, that is not at all

possible for gravity.

Does the gauge gravity have the second feature?  From the works we discussed

above, the answer seems to be 'Yes.'  The question is: which group should it be, the

gauging of which 'automatically' yields the Einstein-Cartan theory of gravity?  We have

seen that it cannot be the Lorentz group, for its gauging in the coframe of a flat spacetime is

compatible with the spacetime's remaining flat; but no gravity arises this way.  As

mentioned earlier, if one gauges the Poincaré, rather than the Lorentz, group, this defect

can be removed.  We now examine some details of this argument to see how it is done.  To

my best knowledge, Hehl et al (1976) and Mukunda (1989) give the most detailed

arguments.  Hehl et al begin their argument by claiming,

We shall show in this section that to require the invariance of a special relativistic

theory of matter under local space-time rotations and translations (independent

actions of the Poincaré group at every point) leads inexorably to the introduction of

torsion and curvature.  In view of the fundamental significance of the Poincaré

group for physics, and of the local gauge approach in general, we take such a

derivation as the strongest evidence that the geometry of the physical world is

indeed a Riemann-Cartan geometry. [my italics] (p.400)

To show this, they begin with the global inhomogeneous LTs of the Poincaré group

xi → x'i = Λ j
i x j + ai , where Λ j

i  are the rotational, and ai  the translational, elements of the

group.  Making these infinitesimal transformations, we have, δxi = ω j
i x j + ε i ; and for a

scalar matter-field, ψ (x) , we have

ψ (x) → ψ ' (x) = (1 + ω ij f ij )ψ (x) , (7)

where f ij  are the generators of the group.  There are two ways of gauging the Poincaré

group.  If one treats the LTs as transformations among coordinate systems (i.e. the passive
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reading), then making the transformations local would blur the distinction between the

rotational and the translational elements.  It turns the group into a 4-parameter group of

general coordinate transformations: xµ → x'µ = xµ + ε µ (x), where the Greek indices

signify coordinates in arbitrary coordinate systems.

However, if one interprets the infinitesimal LTs as acts of re-orienting and

displacing our experimental (or measuring) frames or apparati (i.e. the active reading) and

keeps the two actions separate, one first writes (7) as,

ψ (x) → Πψ (x) = (1 + ω µν f µν − ε µ∂µ )ψ (x), (8)

where Π  is a linear mapping of the field at the neighborhood of x , which re-orients and

shifts ψ (x)  with the following respective amounts:

ω µν = ω ij   and ε µ = ε i + δ i
µω j

i x j , (9)

where ε i  and ω ij (and ω j
i ) are the same parameters as in (7), which are now restricted to

an orthonormal basis, ei , at x .  This operation is explained by Hehl et al (1976) thus:

Replace the fields ψ  at a point xi  by fields which have first been rotated by an amount

− ω , that is, ψ (x) → [Λψ ](x) = (1 + ωf )ψ (x) , and then have been translated by an

amount +ε = ε
o

+ ω
o

• x , that is, [Λψ ](x) → [Πψ ](x) = [Λψ ](x − ε ) .  Then,

experience shows, matter distribution Πψ  and ψ  are physically equivalent (p. 401).

Because of the equivalence of the active and the passing reading, nothing is changed in SR.

However, when one gauges the symmetry in the active reading, one localizes the ε i  and

ω ij (and ω j
i ) in the orthonormal frames.  As usual, when ε i → ε i (x)  and ω ij → ω ij (x) , (note

that they are all G-tensors), we have the Lagrangian density:

L(ψ ,∂iψ ) → L(ψ ,∂iψ ,Γµ
ij ,hµ

i ) ,

where in the limit of a weak force-field, we have,

δΓµ
ij ≅ −∂µω ij (x) and δhµ

i ≅ ω j
iδµ

j − ∂µε i (x),
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as the results of non-vanishing differentials of ε i  and ω ij .  This is the first step through which

the Poincaré group is said to have introduced the connection coefficients Γµ
ij  and the vierbeins

hµ
i  as coordinate vectors via the localization of ε i  and ω ij .  (Again, Latin indices denote

tensors in the orthonormal coframes and Greek indices tensors in the general coordinate

systems.)

Further advantage is taken of this active reading of the Poincaré group, for (8) and (9)

may be seen as yielding a rigidity condition which says that Π  changes 'neither the distance

between events nor the relative orientation of neighboring matter fields (Hehl et al 1976, p.

402).'  More formally, the condition before gauging is:

Π (ξ i∂iψ ) = (Πξ i )∂i (Πψ ) = (Πξ i )δ i
µ∂µ (Πψ ),

for any infinitesimal vector field, ξ i , that is bound to the field ψ .  Here the insertion of δ i
µ  in

the last step is trivial with the global Poincaré group.  However, when the group is gauged, the

rigidity condition should hold as well.  But then we have

δ i
µ → hi

µ (x) and ∂µ → Dµ = ∂µ + Γµ
ij (x) f ij , (10)

such that the rigidity condition holds in general as,

Π (ξ µ Dµ ψ ) ≅ (Πξ i )(hi
µ + δhi

µ )(Dµ + δΓµ
ij f ij )(Πψ ) .

Here the first transition in (10) introduces the vierbeins which connect the orthonormal

coframes to the general coordinate base, while the second transition in (10) is the result of a

relative rotation, dxµΓµj
i ei , of the frame base, e j , at neighboring points xµ  and xµ + dxµ .

Once the connections and the vierbein fields are introduced, the rest of the steps towards the

full Riemann-Cartan manifold are rather standard, which most of the accounts of the Einstein-

Cartan theory follow.  For instance, the metric of the background spacetime is given by

gµν = ηijhµ
i hν

j ,

In other words, the pseudo-Riemannian metric is a natural result of the gauging of the

translational element of the Poincaré group.23  Although Weinstein (1999) is right in arguing

that Diff (R4 )  is not the gauge group of any fibre bundle that may describe gravity, gauge
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gravity is at least able to tell a story of how Diff (R4 )  drops out for the background spacetime

as a result of gauging the Poincaré group.

Therefore, with respective to F2, gauge gravity -- the Einstein-Cartan theory of gravity

-- appears to be just as good a gauge-field theory as any of the YM type; but it differs from

them with respect to F1.  This I believe clarifies the precise sense in which such claims as

gravity in GR is a gauge field but not one of the YM type.  The correct claim should be: gravity

in the Einstein-Cartan theory is a gauge field (because of having F2) but it is not one of the YM

type (because of not having F1).  Note that the GR gravity has neither features.24

Why should F1 be an essential feature to the gauge-field program (or why is it

important that gauge fields are of YM type)?  I have ventured a short answer to this earlier,

namely, it allows us to retain the traditional sense of force for these gauge fields.

Geometricized or not, they can still be understood as agents which cause deviations of quantum

particles from their inertial evolutions in spacetime.  Such an interpretation is no longer

available for gauge gravity because of the modified notion of geodesics in GR (or the Einstein-

Cartan theory).  This difference is also fundamental for another reason.  Gauging is an act of

making spacetime independent (global) symmetries into spacetime dependent (local) ones.  If

the symmetry is of a gauge space other than spacetime, such as the U(1) symmetry of phase

space, it make sense to say that the gauging of the symmetry produces a transition from a 'flat'

phase space to a 'curved' one in the same spacetime background.  We cannot use the same

image for the gauging of the Poincaré symmetry, since it is a symmetry of spacetime in

spacetime.  As I discussed earlier, the gauging that changes a global coframe into local ones,

θ i:δµ
i dxµ → hµ

i dxµ , inevitably 'unflatttens' the metric, because the soldering relation between

the vierbeins, hµ
i , and the metric.

We are now ready to revisit the questions I asked at the beginning of section 3.  They

are essentially two: what is a force-field, given what we have learned so far?  And given the

answer to that, is gravity a force-field?  In section 3 we see that the advent of Einstein's GR in

some sense breaks an old unified concept which takes forces to be external interactions that
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alter the inertial state of a system.  Though the concept was a unified one, the forces were

distinct -- there was no theory which unifies them in the pre-relativistic era.  After GR, the

quest was not only for a new unified concept but also for a unified theory.  If Einstein's dream

for a unified field theory were fulfilled, there would be a unified theory for a single 'force'-

field in which the force disappears.  If all fundamental forces were reduced to some geometric

properties of spacetime -- i.e. a particle freely moving in any or all force-fields is moving along

its geodesic -- it would be better to stop using the notion of force or force-field altogether.

Although the picture in the gauge-field program is more complicated, it is still reasonable, I

argue, to regard the above line of thought valid in it.  The notions of reduction and of

geometricization are almost the same as in Einstein's original conception, only the spaces in

which the force-fields are geometricized are different.  Therefore, I urge that, at least for the

YM type force-fields, we see the first stage of the program (see the end of section 4) as an

attempt to replace one unified concept of forces with another, perhaps more profound, one.

In view of the gauge-field program, we now realize that the GR reduction involves two

separable components, one is the geometrization of force-fields (i.e. gravity) and the other is

the identification of the geometry with that of the pseudo-Riemannian spacetime.  The sense in

which the gauge-field program provides a replacement of the unified concept of forces only

involves the first component -- i.e. geometricization.  Redhead (1999) gives a general sketch of

the nature of such a geometricization in the mathematical modeling of physical systems.

According to his account, surplus structures are often inevitable in the process of imbedding a

physical system into a mathematical model.  Such structures are always 'controlled' by using

groups of global transformations such that the contracted model (one without the surplus)

becomes isomorphic to the physical model.  But such surpluses are fertile grounds for gauge

fields, for once some of them are gauged -- i.e. that  the transformations are made local -- their

geometries may offer the grounding for the reduction of the appropriate force-fields.  Because

of F1, the gauging of internal symmetries realizes the first component and therefore

geometricizes the corresponding force-fields, but it does not quite eliminates them, since it does



29

not realize the second component.  There is still a proper notion of the geodesic of a system,

whether in a flat or a curved spacetime, from which the deviation of the system's motion is

accountable by the presence of some gauge fields of the YM type.

In the pre-relativistic regime, force-fields are represented either in the interaction

Lagrangians, as explained in section 3, or by potential terms, which express a disposition of

making systems under the fields' influence to deviate from their geodesics.  The force-fields

are not unified in terms of their categorical properties, such as their energy and momentum, but

they all play the same causal role in nature: they dispose objects under their influence to deviate

from their geodesics.  Geometricization, by which the gauge-field program replaces the old

regime, helps to replace the dispositional concept of force-fields by a categorical one: the

shapes of dynamical (or gauge) spaces.

I believe we now know the answers to our questions.  They are not straightforward

'yes' or 'no' answers.  We know exactly what a gauge force-field is qua force and how it

differs from the old concept; and we know gravity is strictly speaking not a gauge force-field --

it is not a force-field at all -- but it shares with such fields an essential feature, geometricization.

Finally, from a unificational point of view, the search for a gauge theory of gravity

does not seem well motivated.  Unless one can find a gauge theory that possesses F1, gravity

cannot be regarded as one of the force-fields of the YM type; and therefore there is little hope

that it can be unified with the others within the program.  Of course, a unification is always

possible with field theories beyond the program.  But then gauge gravity is even less well-

motivated, for one should probably try to unify a gauge field with gravity in GR.  At least, GR

is a much better confirmed theory of gravity than the Einstein-Cartan theory.
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NOTES

† I would like to thank Gordon Belot, Richard Healey, Peter Kosso, Stephen Leeds, Paul
Teller for listening to an earlier version of this paper and for their questions and comments.

1 I would like to dedicate this paper to the memory of Wes Salmon.  Acknowledgment is withheld for the
review process.

2 I shall consistently use the term 'force-field' (or simply force) in contrast to the term 'matter-field'.  In
classical (i.e. non-quantum) physics, there is no matter-field, so the simple term 'field' may suffice; but in
quantum physics, where we have both matter- and force- fields, the longer term is necessary.

3 If one finds the claim that gravity is identified with spacetime in GR too crude, here is a better way of
stating it.  In GR, gravitational effects can be identified with geometrical properties of spacetime regions in
a way that the effects of the other three force fields cannot (at least, not likely if the standard model is on the
right track).  This, I warn, should not be taken as being incompatible with the metaphysical claim that all
matter and forces are properties of spacetime regions, e.g. a house may be thought of as some kind of
property of the space it occupies, but it cannot be said to be a geometrical property of the space unless a
theory about that is given.

4 This predicate is not superfluous here because the claim may not be true for a spacetime of more than 4-
dimensions. see the next footnote.

5 There is a small complication of the otherwise clear dichotomy.  If the 'manifold' of nature is a
Riemannian manifold of more than 4 dimensions, then it is possible to integrate the other forces into this
manifold.   One example of such a theory is the Kaluza-Klein theory of gravity and electromagnetism in the
5-dimensional Riemannian manifold.  Does this theory, if made viable, count as a successful unification of
gravity and electromagnetism?  Perhaps it is; but it is certainly not a reduction of the two forces to
manifestly 4-dimensional spacetime.  Hence, even if the Kaluza-Klein theory is true, gravity still does not
belong to the rest of the natural forces.  Because the Kaluza-Klein approach to the unity of force-fields is
not one in the gauge-field program, I shall not discuss it in any detail in this paper.  See O'Raifeartaigh
1997 and Maheshwari 1989 and the literature therein for details.

6 Weinstein (1999) acknowledges such attempts, see pp. S152-S154, and points out, 'Though some of
these constructions are interesting and illuminating in their own right, in none of them is the
diffeomorphism group a gauge group.'  I shall address the last point in due course.

7 I here use 'space/time' to mean the pre-relativistic space and time.
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8 An approach to an answer to this question will be given in section 6, after we have seen how physicists
struggle with this notion.  As a starter, the concept of force-field behind the theories I examine in this and
the next section is that it is a substance which interacts with matter and, after quantization, also with itself.

9 This is formulated slightly differently from Dirac's formulation, where he has, Itotal = Ig + I'  (p. 58).

Mathematically they are obviously the same, the difference is in emphasis.  While Dirac wants to single
out gravity, I want to single out gravity and massed terms.

10 It is pointed out to me that if I consider the Palatini variational principle, I may get a different
ontological picture, or at least a more profound understanding of what the theory of GR says.  Suppose we
only consider Ig .  We calculate δIg = 0 in terms of δg  and δΓ  (i.e. the variation of the connection),

separately.  The result is that the vanishing of δg 's coefficient yields Einstein's field question in vacuum,

while the vanishing of δΓ 's coefficient yields the metric compatibility condition, ∇λ gµν = 0.  This may

provide us with a better understanding of GR, but I fail to see how it can offer an ontological picture which
differs from the two alternatives I provided here.  If the metric is interpreted as the potential for gravity, the
results of both variations -- the field equation and metric compatibility -- are about gravitational field; but if
the metric is interpreted as a property of spacetime, the two results should be understood as about
spacetime.  I fail to see the possibility in the Palatini method of treating spacetime and gravity as
ontologically distinct substances if it is not already in the regular theory of GR.  Such a possibility may
indeed emerge in the Einstein-Cartan theory, but there it is the result of a different conception of spacetime,
as I shall explain in section 5.

11 From a lunch-time conversation in October of 1999.

12 Keep in mind that a Lie group is a special kind of manifold; and in this case, having a copy of G sitting
on each x ∈ M (since M is mapped into G by local gauge transformations γ) provides the new degrees of
freedom (or new space) to which gauge fields are reduced.  For those who are familiar with the fibre bundle
language, these are the fibres; and the A and F introduced later are the connection 1-form and the curvature
2-form of the fibre bundle.

13 In this paper I will not introduce the quantization of these fields in any systematic way.  The procedures
of quantizing force- and matter- fields have their own deep conceptual problems, but they are not at all
pertinent to the question of whether or not the fields are unifiable.  What I delineate in the following is of
such generality that it is entirely preserved after the quantization of the fields in question. One may therefore
think of the fields discussed here as quantum fields, e.g. interactional bosons.  For problems in the
quantization of gravity, see Belot & Earman 1999.

14 In a suitable coordinate system the components of this F reads:

(Fw )µν = (∂µWν
k − ∂νWµ

k ) − q[Wµ
k ,Wν

k ], which is the familiar form one sees in most of the physics

textbooks.

15 For a discussion of the meaning of A, see Liu 1994b, 1996; Healey 1997; Maudlin 1998; Leeds 1999.

16 Maudlin says, 'It [the electroweak theory] is at least as strong as the unification of electricity and
magnetism in Maxwell's theory, ....  And there is something deeper, .... Still the unification fails to reach
the level of perfection found in GTR,... (Maudlin 1996, p. 138)'  So, it is not clear whether he thinks that
it is as good a unification as the one in SR -- the other perfect unification.

17 There have been attempts to reduce the coupling constants to a single one.  For electroweak, one may
imbed SU(2) ⊗ U(1) into SO(3), but it is 'ruled out by experiment.' (Weinberg 1996)  For the strong and
the electroweak unification, one may likewise imbed SU(3) ⊗ SU(2) ⊗ U(1) into groups such as SU(5) or
SO(10).  The jury is still out on such attempts (Weinberg 1996).
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18 In Utiyama's paper (1956), the full Riemann-Cartan spacetime is never explicitly derived, nor is torsion

even considered.  All results are derived under the stipulation that Dg = 0 and Γµν
λ = Γ νµ

λ .  It was later

realized that the natural result of gauging the Lorentz group is indeed the Riemann-Cartan spacetime.

19 Here I mostly follow Trautman 1973.  But we will see the details of this point in section 6.

20 Einstein appeared to be wanting to see whether absolute parallelism could carry electromagnetic field.
But it is not clear how he could do it without curvature on the manifold for gravity.  If the torsion tensor
was used for electromagnetic field, which Einstein did so use, what could he use for gravity?  The metric is

still pseudo-Riemannian because gµν = hµ
i hν

i , but it is not clear whether this is sufficient for gravity.

21 De Andrade and Pereira (1997) give the following interesting argument.  First, by entertaining what
appears to be a principal bundle (think of it as a bundle of local coframes) whose typical fiber is a local
translational group -- i.e. the translational part of the localized Poincaré group -- and the base space a
Minkowski spacetime, they are able to derive a 'gravitational analogue of the Lorentz force' (p. 4691) that
gives an adequate account of gravity in the YM fashion.  Then, the vierbein fields so obtained (as the vector
fields that set up the local translational coframes) are used to define, first, a teleparallel covariant derivative
and, second, a Riemannian covariant derivative.  Both eventually lead to a description of gravity that is then
proven to be equivalent.  However, as they show, the teleparallel description treats gravity as an external
force-field -- external to the Weitzenböck spacetime, while the Riemannian description identifies gravity
with the spacetime (as is the case in GR).  In other words, if we choose the Weitzenböck formulation,
gravity is just like any other YM type gauge fields, whose presence is external to spacetime.

22 There is a long-standing tradition consisting of attempts to reproduce results in Einstein's GR in a flat
spacetime background.  It is not at all clear to me whether they can be integrated into the gauge-field
program I discuss in this paper.  Interested readers may consult Deser 1970 and Gupta 1954.

23 See also (Mukunda 1989) for a simpler and more intuitive but less rigorous discussion of the gauging of the
Poincaré group.

24 Again, if one consider GR as a theory of constraint Hamiltonian systems on Riem(Σ) (see the end of
section 5), these considerations may not apply.  The relationship between this approach and the one I
examine in this paper is an interesting one; but I must leave the discussion of it to another occasion.


