
 By extending isospin symmetry from a “global” to a “local” gauge symmetry, Yang and1

Mills(1954) produced the first of the gauge theories that now bear their name. These theories are
now fundamental to the Standard Model of elementary particles. Flavor SU(3) symmetry was key
to the origin of the quark model. BRST symmetry, and symmetries associated with the
renormalization group, are now basic theoretical tools of high energy and condensed matter
physics.

 Earman(1989) gave a classic analysis of the relation between dynamical and space-time2

symmetries of a theory. A number of essays in Brading and Castellani(2003) distinguish different
kinds of symmetry that may be associated with a theory.

Perfect Symmetries

Abstract

While empirical symmetries relate situations, theoretical symmetries relate models of a theory we
use to represent them. An empirical symmetry is perfect if and only if any two situations it relates
share all intrinsic properties. Sometimes one can use a theory to explain an empirical symmetry
by showing how it follows from a corresponding theoretical symmetry. The theory then reveals a
perfect symmetry. I say what this involves and why it matters, beginning with a puzzle which is
resolved by the subsequent analysis. I conclude by pointing to applications and implications of
the ideas developed earlier in the paper. 

1. Introduction

The importance of symmetry principles in physical theory is now widely acknowledged among

both physicists and philosophers. Reflection on increasingly abstract symmetries has become an

important heuristic in theory construction . Philosophers have offered analyses of various kinds1

of symmetry that a theory may display, and of the relations between these . Not all symmetries of2

a theory correspond to symmetries in nature, even when that theory succeeds in representing

significant features of our world. Sometimes a theoretical symmetry is broken, as when a theory’s

equations have a solution that lacks their symmetry. Sometimes a theoretical symmetry

associated with alternative representational devices may have no empirical consequences. But in

an important class of cases one can use a theory to account for an empirical symmetry by
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exhibiting that symmetry as a consequence of a symmetry of the theory. Such explanations are

especially satisfying and may provide convincing reasons to believe the theory that makes them

possible. In such a case I shall say that the theory reveals a perfect symmetry.

A theory reveals a perfect symmetry when a theoretical symmetry implies a

corresponding empirical symmetry. In what follows I say what this involves and why it matters.

Section 2 presents a puzzle to motivate the analysis to come. Section 3 distinguishes various

kinds of empirical symmetry and illustrates them with examples. Section 4 presents an analysis

of one kind of theoretical symmetry and contrasts this with theoretical symmetries of other kinds.

Section 5 explores different ways in which a theory can explain an empirical symmetry, focusing

on the exhibition of a perfect symmetry: this section resolves section 2's puzzle.  I conclude by

pointing to applications and implications of the ideas developed earlier in the paper. The

appendix presents more details of a key argument from section 5. 

2. Is Faraday in the Same Boat as Galileo?

Here are two examples of observations of a symmetry in nature.

Galileo described the first example in his Dialogue Concerning the Two Chief World

Systems, which contains the following famous passage.

Shut yourself up with some friend in the main cabin below decks on some large ship, and

have with you there some flies, butterflies, and other small flying animals. Have a large

bowl of water with some fish in it; hang up a bottle that empties drop by drop into a wide

vessel beneath it. With the ship standing still, observe carefully how the little animals fly

with equal speed to all sides of the cabin. The fish swim indifferently in all directions; the



 Galileo may have taken his observations rather to provide support for a principle of the3

relativity of uniform circular motion about the earth’s center. Galileo’s ship could not have been
moving at constant uniform velocity even if its motion across the ocean were perfectly smooth.
Horizontal motion follows the curvature of the earth; the earth rotates about its axis and orbits
the sun; etc. But observations much more precise than those described by Galileo would be
necessary to detect  the ship’s slight resulting deviation from inertial motion.
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drops fall into the vessel beneath; and, in throwing something to your friend, you need

throw it no more strongly in one direction than another, the distances being equal;

jumping with your feet together, you pass equal spaces in every direction. When you have

observed all these things carefully (though there is no doubt that when the ship is standing

still everything must happen in this way), have the ship proceed with any speed you like,

so long as the motion is uniform and not fluctuating this way and that. You will discover

not the least change in all the effects named, nor could you tell from any of them whether

the ship was moving or standing still. (Galileo 1632/1967, pp.186-7)

The observations Galileo describes provide evidence that setting a confined system in uniform

rectilinear motion has no noticeable effect on mechanical processes taking place within the

system, and is in that sense a symmetry of those situations. This symmetry is closely related to

the following relativity principle, often called the principle of Galilean relativity :3

Situations related by a transformation from one state of uniform rectilinear motion to

another are internally indistinguishable.

A uniform relative velocity transformation is a symmetry of such situations.

Galileo’s ship provides a classic illustration of an empirical symmetry. His description of

phenomena in its cabin in different states of motion supplies rich instances of that symmetry that

are apparent even in the absence of a theory capable of accounting for them. Stimulated by these
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and other phenomena, Newton later found a dynamical theory of which Galilean relativity is a

consequence, provided that the situations involve only mechanical processes conforming to his

laws of motion, and that all masses and forces involved are independent of absolute velocity.

Still later Einstein formulated a different theory (special relativity) that implies a reinterpreted

extension of Galileo’s relativity principle to all (non-gravitational) processes. I shall examine this

implication in more detail in section 5. For now only two things matter. First, observations like

those Galileo describes in this passage provide evidence that uniform velocity boosts are

empirical symmetries of such situations.  Second, these observations could be, and indeed were,

made prior to and independent of any theory capable of accounting for them.

Michael Faraday’s description of his own observations provides the second example. In

1836, Faraday constructed a hollow cube with sides 12 feet long, covered it with good

conducting materials but insulated it carefully from the ground, and electrified it to such an

extent that sparks flew from its surface. An entry in his diary entry during May 1836 reads in part

I went into this cube and lived in it, but though I used lighted candles, electrometers, and

all other tests of electrical states, I could not find the least influence upon them.

(Maxwell 1881, p. 53)

Here Faraday’s observations bear on another symmetry in nature: charging the conducting

exterior of a confined region of space has no effect on electrical phenomena in the interior of that

region. These observations are often glossed by saying that by electrifying his cube Faraday had

succeeded in raising it to a higher electric potential than the rest of his laboratory. That suggests

the following relativity principle

 Situations related by a transformation from one state of uniform electric potential to



5

another are internally indistinguishable.

A uniform electric potential transformation is a symmetry of such situations. Taking this

symmetry to heart, Maxwell developed the theory of electromagnetism that bears his name.

Indeed, Maxwell’s electromagnetic theory accounts for the empirical symmetry observed by

Faraday in his cube. But Faraday needed no such theory to make his observations or to appreciate

the importance of the empirical symmetry that grounded them.

In these passages, Faraday and Galileo describe observations of symmetries in nature. In

each case, different situations are compared, and it is noted that these are indistinguishable with

respect to a whole class of phenomena. The parallels are striking. In each case, the relevant

symmetry was observed before the development of any theory capable of accounting for it. In

each case, observation of an empirical symmetry stimulated the successful construction of a

theory capable of explaining why it obtains.

The parallels appear to extend to internal features of the explanatory theories themselves.

Uniform velocity boosts are among the Galilean transformations that constitute symmetries of the

dynamics of Newton’s theory, and also among the Lorentz transformations  that constitute

symmetries of the dynamics of special relativity. The addition of a constant to all electric

potentials is among the “local” gauge transformations that constitute symmetries of Maxwell’s

electromagnetic theory.

 But now a puzzle emerges. For while the Galilean and Lorentz boost symmetry of

Newton’s and Einstein’s theories each in its own way reflects the empirical relativity of motion,

“local” gauge symmetry is usually thought of as a purely formal feature of classical

electromagnetic theory, with no empirical correlate, and indeed no empirical content. If this is
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correct then, as Brown and Brading (2004) say “there can be no analogue of the Galileo ship

experiment for local gauge transformations.” But then why doesn’t Faraday’s cube provide a

perfect analogue of Galileo’s ship for “local” gauge symmetry? To solve this puzzle it will be

necessary to achieve a better understanding of different ways in which the symmetries of a theory

may be related to the empirical symmetries it explains. The first step is to get clearer on the

nature of empirical and theoretical symmetries themselves.

3. Empirical Symmetries

Abstractly, a symmetry of a structure is an automorphism–a mapping of the elements of the

structure back onto themselves so as to preserve the structure. Formally, a structure

1 2 n iS = <D,R ,R ,…,R > consists of a domain D of elements and a sequence of relations R  (i=1,...,n)

defined on D. Let f: D ÷ D be a 1-1 mapping of the domain of S onto itself. Define the

f f 1 2  n itransformed structure S  by S  / <D, f*R , f*R ,…, f*R >, where, for each m-place relation R ., 

i 1 m i 1  m ff*R [f(d ) ,…, f(d )] if and only if R [d ,…, d ]. Then f is a symmetry of S just in case S  = S.

 Many different structures may be distinguished in a given object. If the structure is that

iof a physical object, the elements of D will generally be parts of that object, while the R  specify

properties of and relations among these parts. A physical object may have a certain size, shape,

composition and pattern of colors. But abstract objects also exhibit a variety of structures. SU(2)

is a group, it is non-Abelian, it is a Lie group (and so also a differentiable manifold), it is

compact, it is simple, etc. We are concerned here with physical theories and the situations to

which they may be applied, so we need to say what kinds of object these involve.

A physical theory specifies a set of models–mathematical structures–that may be used to
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represent various different situations, actual as well as merely possible, and to make claims about

them. Any application of a physical theory is to a situation involving some system, actual or

merely possible. Only rarely is that system the entire universe: typically, one applies a theory to

some subsystem, regarded as a relatively isolated part of its world. The application proceeds by

using the theory to model the situation of that subsystem in a way that abstracts from and

idealizes the subsystem's own features, and also neglects or idealizes its interactions with the rest

of the world.

A system may itself display a symmetric structure at a certain level of idealization. A

human body has a rough bilateral symmetry, while a carefully prepared crystal more precisely

displays a variety of symmetries. A single system may also display symmetric behavior: consider

the motion of a pendulum, or the performance of a mirror fugue. The symmetric structure in this

case is that of the situation in which the system figures rather than that of the system itself. There

are even cases in which it is hard to draw a distinction between system and situation. Think of a

possible world set in Newtonian space-time. A temporal inversion about an arbitrary temporal

instant is a symmetry of the space-time of this world.

A symmetry involving an actual physical system and its situation is empirical. One can

observe and measure the situation of the system to collect evidence that relations among its

spatiotemporal parts are or would be indifferent to the action of a symmetry transformation of

those parts. Such evidence may be direct (the crystal) or indirect (Newtonian space-time).

But Galileo’s ship illustrates the fact that not all empirical symmetries pertain to a single

situation. In that case velocity boosts are observed to be a symmetry of a class of similar but

distinct situations, in each of which the ship is moving with a different velocity. Renderings of a
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particular tune provide another example of a symmetry of a class of situations. Renderings of the

same tune all have a similar structure, even if they are in different keys and some include errors.

Flawless renderings of the same tune are related by a symmetry transformation that transposes

one key into another.

In such cases, a class of different situations constitutes the domain of a structure, and a

symmetry of that structure maps one situation onto another. Formally, suppose that situations of a

certain kind K all have a somewhat similar structure. Any situation with that structure may be

transformed into another by a transformation f. If a subset D of K is closed under f, then f is a

j jsymmetry of the “larger” structure E = < D ,P  >, where the properties P  define the kind K.

Galileo describes processes occurring in the cabin of a ship as having just the same

dynamic structure, independent of how fast the ship moves over the sea. Different instances of

each process are related by the same symmetry transformation—corresponding to a change in the

uniform horizontal velocity of the ship. Here one can think of K as a class of kinematically

possible motions of the objects in the cabin (i.e. those motions relative to the cabin in which

every object has some continuous trajectory or other), while D contains only dynamically

possible motions (i.e. just those kinematically possible motions of objects that are compatible

with the forces acting on them). Renderings of the same tune (K) all have a somewhat similar

structure, even if they are in different keys and some include errors. Flawless renderings of the

same tune (D) are related by a symmetry transformation that transposes one key into another.

One can observe and measure situations to collect evidence that situations related by a

symmetry transformation cannot be distinguished by specific procedures. Flawless renderings of

a tune in different keys can be directly distinguished by someone with perfect pitch: the rest of us
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may need instruments. According to Galileo, measurements of purely mechanical magnitudes

inside the cabin cannot distinguish between different states of uniform horizontal motion of a

ship. These are two examples of the kind of empirical symmetry among situations which will be

at the focus of interest here. They prompt the following abstract formulations.

As I will understand it, an empirical symmetry is a feature of a class of situations—actual

as well as possible. A 1-1 mapping n: S ÷ S of a set of situations onto itself is an empirical

symmetry with respect to C-type measurements if and only if no two situations related by n can

be distinguished by measurements of type C.

This is a contextual definition, since what it counts as an empirical symmetry depends on

what measurement procedures are considered. In the case of Galileo’s ship and Faraday’s cube

one context is particularly salient. It would be easy to observe the ship’s motion over the ocean

by hearing the ship’s wake or viewing it through a porthole, or by consulting a GPS device in the

cabin. It would have been only too easy for Faraday to observe the charge state of his cube by

carelessly stepping out into his laboratory, or more safely by looking for the sparks emitted by the

cube when charged. Such observations involve measurement procedures that provide (more or

less) reliable information about the relation between the situation inside the cabin/cube and its

external environment. In an idealization of the situation in which the interior is regarded as

confined in such a way as to exclude any transmissions from outside, no such information is

available within. Observations and measurements inside can then only provide information about

the intrinsic properties of the internal situation.

I shall say that a measurement is confined to a situation if and only if it is a measurement



 Intuitively, a property of an object is intrinsic if and only if the object’s having that4

property does not depend on the existence or (intrinsic!) properties of any object distinct from it.
I shall have more to say about the notion of an intrinsic property, which  has proven notoriously
resistant to deeper philosophical analysis, in the conclusion to this paper (section 6).
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of intrinsic properties of (one or more objects in) that situation.  Then a 1-1 mapping n: S ÷ S of4

a set of situations onto itself is a strong empirical symmetry if and only if no two situations related

by n can be distinguished by measurements confined to each situation. Note that the reference to

measurement is not superfluous here, in so far as a situation may feature unmeasurable intrinsic

properties. We shall see an example of this soon.

Spatial translations and rotations provide familiar examples of strong empirical

symmetries of situations involving geometrical figures in Euclidean space. If S is any figure in

Euclidean space, then a translation and/or rotation N yields a congruent figure N(S). Note that

situations in S related by a transformation N may be in the same or different possible worlds: if N 

is a strong empirical symmetry, then N(S) may be in the same world w as S, but only if w is itself

sufficiently symmetric.

Uniform velocity boosts are strong empirical symmetries of a set of situations involving

purely mechanical phenomena in a Newtonian world, since a Galilean boost by velocity v applied

vto the situation S of a mechanical system in such a world yields a situation N (S) that is

indistinguishable from S with respect to all measurable intrinsic properties. The special principle

of relativity guarantees that uniform velocity (Lorentz) boosts are also strong empirical

symmetries of electromagnetic and all other phenomena in a special relativistic world. Even when

va situation S actually obtains, N (S)  will rarely do so. In some cases, careful laboratory

vmanipulations may actually bring it about, but the situation N (S) will more typically obtain only
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in some "merely" (i.e. non-actual) possible world. Galileo’s ship provides at best a rough and

approximate realization of the relativity principle it is used to dramatize. A turbulence-free aircraft

in level flight, and a spaceship whose rockets are not firing, supply observable situations that more

closely realize strong empirical symmetries associated with uniform velocity boosts.

This is typical of the observational status of empirical symmetries. Kosso(2000) stated two

necessary conditions for the observation of a symmetry of interest to physics. One must observe

that the specified invariant property is in fact the same, before and after, and one must observe

that the specified transformation has taken place. It follows that an empirical symmetry may or

may not be observable. It may be too hard to create the necessary situations, or to find them

realized in nature: and one may not be able to certify that one has indeed encountered the right

situations. What makes a symmetry empirical is just that the necessary measurements would

reveal it if they could be performed in actual situations. But as the examples of Galileo and

Faraday show, one may be able to observe an empirical symmetry whether or not one has a theory

that accounts for it.

Even though uniform velocity boosts are strong empirical symmetries of mechanical

processes in a Newtonian world, they do effect a significant change in a mechanical system.

According to Newton, a uniform velocity boost changes the absolute velocity of a system to which

it is applied.  But since Newton’s theory itself implies that this change is not measurable

(assuming that all masses and forces are independent of absolute velocity), no measurements on

mechanical systems confined to situations related by a uniform velocity boost can distinguish

between those situations.

While uniform velocity boosts are strong empirical symmetries of mechanical processes in
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a Newtonian world, in a special relativistic world they are not merely strong but perfect

symmetries of all processes. An empirical symmetry N is perfect if and only if any two situations

related by N are duplicates, where a duplicate of a situation is a situation that shares all its

intrinsic properties. Every perfect symmetry is strong, but the converse does not hold, as is

apparent from the example of uniform velocity boosts in the Newtonian world of mechanical

systems: In such a world, subjecting a mechanical process to a uniform velocity boost does not

produce a duplicate process since the absolute velocity of every object is now different. 

3. Theoretical Symmetries

One should distinguish symmetries of a set of situations to which a theory may be applied from

symmetries internal to that theory.  One place to look for theoretical symmetries in a dynamical

theory of physics is in its equations of motion. Since these equations pick out a class of

dynamically possible models, one can alternatively focus on symmetries of this class of models. It

is not necessary to endorse any version of the so-called semantic conception of scientific theories

to acknowledge that many physical theories, as well as theories in other sciences, are often

conveniently characterized by specifying the class of models associated with the theory. Here

models are structures (typically mathematical) that may be used to represent situations. So an

analysis of a theoretical symmetry as a transformation that maps models of a theory onto other

models may be expected to be widely applicable. But what kind of transformation?

On the broadest conception, a theoretical symmetry would be any 1-1 function from the set

of a theory’s models onto itself. But while this is a symmetry of the theory in the sense that it

leaves its model class invariant, it is too broad to be of much interest. As Ismael and van Fraassen



 Ismael and van Fraassen think of a theory as specifying sets of possible worlds (the5

physically possible as a subset of the metaphysically possible), rather than models (regarded as
mathematical structures), which serves to blur this distinction.
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(2003) noted, there are theoretical symmetries in this sense that transform a model of Newton’s

theory with one free particle into models with millions of particles interacting in complex ways.

As an automorphism of the model class of a theory, an interesting theoretical symmetry should

preserve more of the internal structure of the models it relates: cardinality of that structure’s

domain is only one very weak requirement.

Ismael and van Fraassen (2003) entertain another condition: that a theoretical symmetry

preserve qualitative features of every model. They take such features to be “quantities that can

characterize a situation, distinguishable by even a gross discrimination of colour, texture, smell

and so on.” (p376), where (as they have explained) a quality can be regarded as a quantity with

range of values 1 (possessed) and 0 (not possessed). To maintain the present clear distinction

between models and situations, one should rather characterize qualitative features of a model as

those elements of the model that may serve to represent qualitative features (in their sense) of

situations.  They distinguish this condition from a stronger condition–that a theoretical symmetry5

preserve measurable features of a model, where these generally extend beyond qualitative features

in a theory-guided way. Newtonian theory, for example, connects the masses and forces its models

are intended to represent to qualitative features such as positions and times in such a way as to

permit the measurement of the former by observation of the latter.

In the case of space-time theories, a theoretical symmetry might be required to preserve

those features of its models that serve to represent space-time structure, which gives rise to the

notion of a space-time symmetry of a theory. So, for example, space-time translations and



 By, for example,  Earman(1989), Belot(2001), Ismael and van Fraassen(2003),6

Roberts(2008).
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rotations are space-time symmetries of a Newtonian theory, while Galilean boosts are space-time

symmetries only if that theory’s models do not permit the representation of a privileged state of

absolute rest.

The interesting relations among these and related conceptions of theoretical symmetry

have been explored elsewhere.  But there is one conception of theoretical symmetry that is6

narrower than any of them and  may at first sight seem to be of little interest. Perhaps surprisingly,

this is the conception that will shed the most light on perfect symmetries. Accordingly, I will say

that

A mapping f:M 6M of the set of models of a theory 1 onto itself is a theoretical symmetry

of 1 if and only if the following condition obtains:

For every model m of 1 that may be used to represent (a situation S in) a possible world w,

f(m) may also be used to represent (S in) w.

Two models related by a theoretical symmetry of 1 are theoretically equivalent in 1. 

Thus defined, the theoretical symmetries of a theory would include only the identity

mapping if no two of its models could be used to represent the same situation. But we know of

many a theory with a redundant set of models. Among gauge theories, such redundancy is the

norm. In analytic Euclidean geometry, a spatial configuration has many algebraic models,

corresponding to a choice of spatial origin, type of coordinates (rectangular Cartesian, cylindrical

polar, spherical polar, etc.) and choice of coordinate axes and their orientation. Even in a

coordinate-free formulation, general relativity permits the representation of a possible world by



 See the papers by Norton and Stachel in Howard, D. and Stachel, J. eds. (1989).7
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any model from within an equivalence class of diffeomorphically related models. 

The redundancy of representational devices is both a resource and a danger for the theorist.

It permits one to choose whichever of a set of theoretically equivalent models offers the most

convenient representation of a given situation, and so simplifies its treatment within the theory.

But it may also mislead one into believing that a mere choice of representational device has

empirical significance. Einstein himself was so misled while struggling to formulate his general

theory of relativity . For a while he was convinced by the so-called “hole” argument that the7

theory could not be generally covariant, precisely because he had not yet come to appreciate that

diffeomorphically related models merely represent the same possible world.

This conviction was not the result of a simple mistake. The case of analytic geometry is

atypical. It is often hard to say when distinct models of a theory simply represent the same

situation, and when they represent distinct situations. It is especially hard when it is the theory

itself that provides our only initial access to those features of situations it represents by newly

introduced structures–hard, but not impossible. As the next section will show, there are cases

when a theoretical symmetry of a theory itself implies an empirical symmetry of situations it

models. In such cases the empirical symmetry is perfect. While models related by a theoretical

symmetry may always be used to represent the very same situation, here they may be used

alternatively to represent distinct but intrinsically indistinguishable situations.  

5. Explaining Empirical Symmetries

Even when a theory explains an empirical symmetry, the explanation need not appeal to a
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theoretical symmetry of that theory. Newton’s explanation of the principle of Galilean relativity

provides an example.

Assuming that no masses or forces depend on absolute velocities, Newton’s laws of

motion entail that uniform velocity boosts are strong empirical symmetries of a set of situations

involving purely mechanical phenomena in a Newtonian world. One can use Newton’s theory to

explain the principle of Galilean relativity by noting that we live in an approximately Newtonian

world in which Galilean relativity (restricted to mechanical phenomena) is a consequence of this

strong empirical symmetry of uniform velocity boosts. But a non-zero uniform velocity boost is

not a theoretical symmetry of Newton’s theory. Two models related by such a transformation

cannot be used to represent the same situation, since each would represent the absolute velocity of

every object in that situation differently.

Uniform velocity boosts are dynamical but not theoretical symmetries of Newton’s theory.

Nor are they space-time symmetries of the Newtonian space-time structure on which Newton

based his theory. Earman(1989) argued that any theory whose dynamical symmetries exceeded its

space-time symmetries was not well-formulated, and that it posited excess spatiotemporal

structure. In this case, the excess structure is provided by Newton’s enduring absolute space, the

trajectories of whose points define a privileged but unobservable state of absolute rest. By

eliminating from the models of Newton’s theory anything capable of representing this superfluous

theoretical structure, one arrives at an empirically equivalent theory of which uniform velocity

boosts are theoretical symmetries. In this revised version, Newtonian theory explains the

symmetries associated with Galilean relativity by appeal to these theoretical symmetries. It

thereby exhibits uniform velocity boosts as not merely strong but perfect symmetries of
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mechanical systems in a Newtonian world.

Einstein (1905) extended the set of situations among which uniform velocity boosts are

empirical symmetries to situations involving non-mechanical phenomena, and specifically

electromagnetic phenomena. His reasoning in that paper is interesting. It begins as follows “It is

known that Maxwell's electrodynamics--as usually understood at the present time--when applied

to moving bodies, leads to asymmetries which do not appear to be inherent in the phenomena.”

The paper goes on to defend a new understanding of Maxwell’s theory whose application to

moving bodies leads to no such asymmetries. Of course, this new understanding involves the

radical changes in how we conceive of space and time for which Einstein is famous. But from the

present perspective what is striking is the way in which Einstein was able successfully to fulfill

his desire to provide an alternative theoretical explanation of the empirical symmetries of

electrodynamic phenomena which eliminated the theoretical asymmetries in the existing account.

Within the new space-time structure, Maxwell’s theory explained the strong empirical symmetries

of electrodynamic phenomena by deriving them from a theoretical symmetry of the theory. It

thereby exhibited these as perfect symmetries.

These two cases exhibit a very similar structure. We begin with an empirical symmetry.

This is then explained as a consequence of a theory. The explanation entails that the empirical

symmetry is strong, but not perfect. It does not appeal to a theoretical symmetry of the theory

itself. But the theory is perceived as in some measure defective, since its models mark a

distinction between situations–a distinction which that theory itself implies is neither observable

nor measurable by us. Indeed, it is the same distinction in each case–the distinction between one

uniform absolute velocity and another. After the theory has been reformulated, the defect is



 There are also important differences between the cases. Elimination of a structure8

representing absolute space from the models of Newton’s theory did not necessitate any further
radical revisions–in the structure of space and time, or in dynamics: elimination of a structure
representing absolute space from the models of Maxwell’s theory entailed radical revisions in the
structure of space and time, and in Newtonian dynamics. By postulating the special principle of
relativity, Einstein immediately generalized the empirical symmetries of uniform velocity boosts
not just to electrodynamic phenomena but to all physical phenomena; even after its revision,
Newton’s theory only implied that uniform velocity boosts are empirical symmetries of
mechanical phenomena within the scope of the theory. 
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removed. A structure is removed from the models that had been intended to represent the

problematic, unobservable feature of these situations. This introduces a new theoretical symmetry

into the theory, which serves as the basis for a new kind of explanation of the empirical symmetry

that reveals this to be not merely strong but perfect.8

In both these cases, a theory comes to reveal a perfect symmetry by implying that distinct

but symmetrically related situations are in fact duplicates of one another–they share all the same

intrinsic properties. This may seem surprising. As analyzed in section 3, a theoretical symmetry

concerns only a single situation. How can it imply that two distinct situations are duplicates?

Moreover, the puzzle presented in section 2 suggests that there may be theories whose theoretical

symmetries carry no such implication. To remove the surprise and solve the puzzle we need to

exhibit the mechanism by which a theoretical symmetry may be transferred to an empirical

symmetry of situations its models represent. It turns out that this mechanism will work only if the

theory has certain special features.

 How exactly does the theory of special relativity imply that Lorentz boosts are perfect

symmetries of situations represented by its models? Here is a sketch of the argument: further

details are spelled out in the appendix. Consider a local situation S represented by model m of the

special theory of relativity. S is local because it occupies a compact region of space-time. Because
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Lorentz boosts are theoretical symmetries of the theory, S is equally represented by a Lorentz-

!vboosted model mN=7 (m): one can think of mN as representing S from the perspective of a frame

FN moving at velocity v with respect to a frame F from whose perspective S is represented by m.

vNow special relativity itself implies that m also represents a distinct situation SN=7 (S) in exactly

the same way that mN represents S. Since m and mN represent S as having exactly the same intrinsic

properties, it follows that m represents S and SN as having exactly the same intrinsic properties.

Hence special relativity implies that Lorentz boosts are perfect empirical symmetries of all local

situations to which the theory applies.

But doesn’t an exactly parallel argument show that a theoretical gauge symmetry of

classical electromagnetic theory (addition of a constant to the value of the electric potential at

each point inside the cube) implies a corresponding perfect empirical gauge symmetry of the

situation inside Faraday’s cube? It does not, since there is a crucial disanalogy between this case

and the case of Lorentz boosts in special relativity. Special relativity itself implies that situation SN

differs from situation S precisely by application of a Lorentz boost, thereby justifying the equation

vSN=7 (S). It implies that these situations differ in just this way, because every joint model in the

theory of the combined situation SrSN represents S, SN as related by a Lorentz boost. But classical

electromagnetic theory has no corresponding implication.

0 +Classical electromagnetic theory does have joint models of a combined situation C rC

0 +involving the interiors C , C  of uncharged and charged Faraday’s cubes (respectively) that

represent the electric potentials inside the cubes as differing by a real number. But it also has joint

0 +models of that same situation C rC  that represent the electric potentials inside the cubes by the



In such a joint model, electric fields external to the cubes derive instead from a time-9

varying (curl-free) magnetic vector potential. The existence of such models is a simple
consequence of the theoretical “local” gauge symmetry of classical electromagnetism.

+ 0 Thanks to David Wallace for stressing this point. If C  and C  coexist throughout an10

0 +interval of time, this will be a curve in their common space. If C rC  is a situation in which a

+single uncharged cube is charged, so that C  is its equilibrium internal situation at a later time

0than C , then it will be a time-like curve.
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same constant value . So while an argument parallel to that in the case of Lorentz boosts in special9

+ 0 +relativity does establish the existence of a situation C  distinct from C , it does not prove that C  is

0related to C  by an empirical gauge symmetry. Gauge symmetry is merely a theoretical symmetry

of classical electromagnetism, and implies no corresponding empirical symmetry, perfect or not. 

+ 0The relation between C  and C  is worth considering further, because these situations are

related by an empirical symmetry that does not correspond to any empirical gauge symmetry. Note

+ 0first that C  is related to C  by a space-time translation–certainly a perfect symmetry of classical

electromagnetism, but by no means an empirical gauge symmetry. But the empirical symmetry

+ 0relating C  and C  may appear richer and more interesting than a mere space-time translation.

The charge accumulated on the surface of the charged cube will give rise to an electric

0 +field outside the cubes. Every joint model in classical electromagnetic theory of a situation C rC

+ 0incorporating C  and C  must represent this electric field. The line integral L of this electric field

along a curve joining any two points, one in the interior of the charged cube, the other in the

0 + +interior of the uncharged cube, is an invariant of all situations C rC  incorporating both C  and

0 0 +C .  So classical electromagnetic theory implies that the transformation C  6C  is an empirical10

symmetry that seems to be more than just a space-time translation, and indeed this is a perfect

empirical symmetry.



 One can alter the size of their relative 3-velocity by changing frames, but this merely11

changes how their 4-vector relative velocity is projected onto different hyperplanes of
simultaneity. The magnitude of the difference in 4-velocities is Lorentz invariant.
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0 +But while the value of L represents a relation between C  and C , this relation obtains only

by virtue of their relations to the electromagnetic situation outside the cube(s). In David

0Lewis’s(1986, 62) terminology, it is neither an internal nor an external relation between C  and

+C . I follow custom in calling a relation (e.g. having the same owner) whose obtaining depends on

relations between its relata and some distinct object (e.g. the owner) an extrinsic relation. The line

integral of the electric field joining points in the interior of the cube(s) represents an extrinsic

0 +relation between C  and C . To suppose one can change the electromagnetic condition inside

Faraday’s cube by charging its exterior is just as mistaken as to think one can move a car from

New York to Los Angeles merely by selling it.

Despite appearances, according to classical electromagnetism the only empirical symmetry

+ 0relating C  and C  is a space-time translation. This is  not an empirical correlate of the theoretical

local gauge transformation of adding a constant (L) to the value of the electric potential at each

point inside the cube. Moreover, a constant difference in electrostatic potential is not an invariant

0 +of the models of C rC  within classical electromagnetism. Contrast this with the case of Lorentz

boosts in special relativity, where every model agrees on the size of the velocity difference

between boosted and un-boosted situations.  In classical electromagnetic theory, the perfect11

+ 0empirical symmetry between C  and C  does not reflect a theoretical gauge symmetry.

Another way to see this is to note that this empirical symmetry is also a consequence of a

formulation of classical electromagnetism whose models include no gauge potentials, but only

+electric and magnetic fields. While these suffice to exhibit the extrinsic difference between C  and
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0C  represented by the line integral of the electric field between them, the models of this

formulation admit no gauge transformations of which these are invariant magnitudes.

It is natural to describe the state of Faraday’s cube when charged by saying that it has been

raised to an electric potential with respect to the ground. But this is not something that we

observe—all we observe are differences in electric field outside the cube when charged and

uncharged. And it is not entailed by classical electromagnetic theory, since that theory has models

that represent this electric field as arising not from a difference in electric potential, but from

variations in magnetic vector potential.

+ 0It is interesting to note that the empirical symmetry between C  and C  does reflect a

0theoretical symmetry of a different theory. Classical electrostatics with potentials can model C ,

+ 0 + 0 +C  and C rC . But in classical electrostatics the only models of C rC  are those that represent

0two distinct cubes at rest with respect to one another. Moreover, every such model represents C ,

+ 0 +C  as at different electrostatic potentials N , N  respectively. In this way, classical electrostatics

+ 0 represents a relation between C  and C that is external rather than extrinsic. This theory not only

+ 0implies a perfect electrostatic empirical symmetry between C  and C : it also implies that this

uniquely corresponds to the theoretical gauge symmetry of adding a constant to the value of the

electric potential at each point in a model of a local situation. In classical electrostatics, but not the

full theory of classical electromagnetism, some gauge symmetries are empirical.

In a world with static electricity but no magnetism, the empirical success of electrostatics

might have justified belief in the empirical adequacy of a theory in which the only joint models of

0 +the combined situation C rC  represented an electric potential difference between the cubes of the

0 + 0same constant value )N. In such a world, the limited theoretical gauge symmetry N  6N  =N +)N



 For which, see Earman and Norton (1987) and the literature it spawned: and Howard,12

D. and Stachel, J. eds. (1989) for details of Einstein’s original “hole argument”.
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would have implied a corresponding empirical gauge symmetry. We would have had indirect

empirical evidence that differences in electric potential are real, as are transformations from one

state of electric potential to a state of lower or higher potential—just as, in our world, we have

(both direct and) indirect evidence that differences in uniform velocity are real, as are

transformations from one uniform velocity to another.

6. Conclusion

I conclude by drawing some morals from this investigation of perfect symmetries. The first moral

is that most, if not all, empirical symmetries relate local rather than global situations.

Sometimes a symmetry masquerades as empirical when it is a merely theoretical symmetry

of a theory’s global models. Gauge theories provide examples of this General covariance provides

another important example.

In discussions of the general covariance of a space-time theory like the general theory of

relativity, it is important to distinguish covariance of a theory’s equations under smooth

coordinate transformations from diffeomorphic equivalence among models of the theory. This

distinction is commonly glossed by calling a coordinate transformation passive while a manifold

diffeomorphism is active. The terminology suggests that while performing a coordinate

transformation in a generally covariant theory merely leads to an alternative representation of a

given situation, performing a diffeomorphism on a model results in a model of a physically

distinct situation. Taking this suggestion seriously leads to the notorious “hole argument” .12



 Some may suppose that space-time substantivalism provides such a reason. I disagree.13
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Diffeomorphisms are theoretical symmetries of a generally covariant theory. But a

symmetry of global models of such a theory (i.e. models that serve to represent all of space-time)

cannot imply a corresponding empirical symmetry in accordance with the argument illustrated in

the previous section and detailed in the appendix. Lacking such an argument, there seems no good

reason to believe that the theoretical symmetry under diffeomorphisms of a generally covariant

theory reflects any corresponding empirical symmetry . Indeed, careful general relativity texts13

now point out that diffeomorphically related models merely offer alternative representations of the

same global situation.

Contrast this with another instance of a symmetry related to general relativity, this time

involving local situations. On the road to general relativity, Einstein focused on a particular

empirical symmetry of gravitational phenomena that followed from the equality of (passive)

gravitational and inertial mass. Measurements of mechanical phenomena cannot distinguish a

situation involving a uniform gravitational field from a similar situation involving a uniform

acceleration. Consequently, 

“The gravitational field has only a relative existence... Because for an observer freely falling from

the roof of a house - at least in his immediate surroundings - there exists no gravitational field.”

Einstein called this “the happiest thought of my life”! His general theory of relativity finally

enabled him to account for the perfect empirical symmetry among situations in which we take a

system to be subject to no gravitational field.  A diffeomorphism applied to a local model of a

freely-falling system will produce a model of a distinct situation involving a similar freely-falling

system elsewhere in a common space-time.
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The second moral is that even though empirical symmetries concern nature rather than our

representations of it, theories are very important tools in revealing perfect empirical symmetries.

One reason is that theoretical models often introduce the structures that provide our best

way of representing situations related by a perfect symmetry. Many symmetries of Euclidean

geometry may be represented without introducing mathematical structures such as real numbers to

serve as measures of angles and lengths. But it is not so easy to represent empirical Lorentz boost

symmetry or flavor SU(3) symmetry (say) without appeal to a fair amount of the mathematical

structure that accompanies theoretical models of those symmetries.

A second reason is deeper. Real life situations almost never display perfect empirical

symmetries. The world is a complicated and messy place, and actual situations are rarely

duplicated in all their details. In theory construction physicists abstract from and idealize real life

situations in order to focus on what they consider their essential features. Debs and

Redhead(2007) mark this process by interposing what they call a conceptual model between a

situation in unvarnished nature and a mathematical model that a theory uses to represent it. While

a brilliantly original thinker like Galileo may have been able to arrive at a good conceptual model

without the aid of a theory, I believe it is increasingly common for physicists to view the world

through the lens of their theories. From this perspective, the mathematical model may precede the

conceptual model in their thinking, in which case the features of an actual situation will naturally

come to be represented in terms of the theoretical models applied to it.

For these reasons, when a theory reveals an empirical symmetry as perfect, it may not

simply recharacterize a previously acknowledged empirical symmetry. Rather, the theory gives us

a new way of conceptualizing the situations it relates, along with a set of mathematical models to
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represent them. If there is an isomorphism between model and (idealized) situation, this is then

something that is read into the situation by reconceptualizing its structure, rather than discovered

on the basis of an independent, pre-existing description of that situation.

This has implications for the notion of intrinsic properties. Recall that situations related by

a perfect empirical symmetry are duplicates–each shares all intrinsic properties of the other. When

a theory exhibits a perfect empirical symmetry corresponding to a theoretical symmetry, it thereby

displays or at least circumscribes what these intrinsic properties are. It is through the development

of physical theories that we learn more about the fundamental intrinsic properties of the world.

In this way we get a better grasp not only on the list of intrinsic properties, but also on

what it is for a property to be intrinsic. Here is a way in which physical science merges with

metaphysics. A property of an object (or a relation among objects) in a situation is intrinsic just in

case objects in duplicates of that situation share that property (or relation). Duplicate situations are

those that are related by perfect empirical symmetries. The progress of physical theorizing gives

us richer and more widely applicable models with which we are able successfully to represent

situations. Physics claims a perfect empirical symmetry when it is implied by a theoretical

symmetry of such models.

According to Lewis (1986, 60) “What physics has undertaken, whether or not ours is a

world where the undertaking will succeed, is an inventory of the sparse properties of this-worldly

things.” The sparse properties are supposedly those that “carve at the joints”: he later calls such

properties natural. But we do not need to assume our world comes “pre-packaged” in order to

appreciate the significant improvements in and enrichments of our categorizations made possible

by advances in our physical theories.



Appendix
Let �; � 2M(�) be structures with domains D�; D� respectively.

Since � 2M(�), there is a possible situation a and a bijective representing

function ra such that � represents a via ra (ra : Da ! D�, where Da is the

domain of objects in a).

Suppose that ' : M(�) ! M(�) is a theoretical symmetry of �, with

� = '(�). Then � also represents a via r0a = ' � ra (r0a : Da ! D�). Moreover,

' de�nes a bijective map �' : D� ! D� between the domains of �; �.

Now make the following

Assumption: h�; h� de�ne embeddings of �; � as substructures �0; �0 of a

structure � � � 2 M(�) with domain D��� such that D�0 = h�(D�); D�0 =

h�(D�) and D�0 ; D�0 � D��� with D�0 \D�0 = ;.

Then �0 represents a in � � � via the bijective function h� � ra : Da !

D�0 . Since � � � 2 M(�), this representation of a may be extended to a

representation of a situation a� b of which a is a sub-situation, via a bijective

function r : Da�b ! D��� such that r�Da = h� � ra. Then �
0 represents a and

�0 represents a sub-situation b (via r), where Db is the domain of objects in b,

and Da \Db = ;, since r is bijective.

Now consider the function rb � h�1� �
�
r�Db

�
: � represents b via rb. Moreover

rb 6= r0a, since they have non-overlapping domains. So � not only represents

situation a via r0a, � also represents a distinct situation b via rb. a and b are

distinct because � � � models a situation a � b incorporating both a and b as

sub-situations with non-overlapping domains.

Now specialize to a case in which we are considering a theory � that models

the behavior of physical systems located in a �xed, �at space-time. As model of

such a space-time we have a structure < M;Ai >, where M is a 4-dimensional

di¤erentiable manifold representing space-time, and the Ai are �xed geometric
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object �elds representing the �at space-time background.

For a special relativistic theory, the Ai include the Minkowski metric tensor �

determining the light-cone and spatio-temporal metric structure, and the unique

compatible symmetric a¢ ne connection D that makes this a �at a¢ ne space,

representing the inertial structure.

For a Newtonian theory, the Ai include objects representing an absolute

temporal as well as spatial metric, a �at a¢ ne connection compatible with

these de�ning the inertial structure, and possibly also a vector �eld de�ning

a timelike congruence of inertial lines representing the trajectories of points of

absolute space.

A global model of� extends this model of space-time to a model< M;Ai; Oj >

of dynamical processes in space-time by the addition of geometric object �elds

Oj intended to represent such processes. For example, source-free electromag-

netism includes the Maxwell-Faraday tensor Fab, intended to model the behavior

of electromagnetic �elds.

But� will also be assumed to possess local models of the form< U;Ai�U ; Oj >,

where U is a 4-dimensional submanifold of M , the Ai�U are restrictions of the

Ai to U , and the Oj are geometric object �elds on U intended to model the

behavior of systems in a restricted region of space-time modeled by U .

Now consider two models �; � 2M(�) of �: � =< U�; Ai�U� ; O
�
j >; � =<

U� ; Ai�U� ; O
�
j > related by a theoretical symmetry ' that de�nes a di¤eomor-

phism �' : U� ! U� representing a space-time translation: Ai�U� j�'(x) = Ai�U� jx.

� represents a situation a via representing function ra : Ra ! U�, where Ra

is the region of space-time occupied by a. � also represents a via r0a = ' � ra.

Assumption: There exists a structure � � � 2 M(�) of the form <

U;Ai�U ; Oj > such that �; � are each sub-structures of ��� with U� \U� = ;:

where U�; U� � U , Ai�U� = (Ai�U )�U� , Ai�Ub = (Ai�U )�Ub , O
�
j = Oj�U� ; O

�
j =
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Oj�U� .

N.B. The Assumption may hold when ' itself simply represents a space-

time translation: in that case, O�j = �'�O�j , where �'
� is the drag along of �':�

�'�O�j
�
j�'(x) = O�j jx. We are chie�y interested in cases in which the transfor-

mation ' represents something other than a simple space-time translation.

In � � �, � represents a via the bijective function ra : Ra ! U�. Since

��� 2M(�), this representation of a may be extended to a representation of a

situation a�b of which a is a sub-situation, via a bijective function r : Ra�b ! U

such that r�Ra = ra. Then � represents a and � represents a sub-situation b,

where Rb is the space-time region occupied by b, and Ra \ Rb = ;, since r is

bijective.

Now � represents b via r�Rb . Moreover rb 6= r0a, since they have non-

overlapping domains. So � not only represents a via r0a, � also represents a

distinct situation b: a and b are distinct because � � � models situation a � b

incorporating both a and b as sub-situations occupying disjoint space-time re-

gions.

So when the Assumption holds, the theoretical symmetry ' implies a perfect

empirical symmetry f between situations a and b. For a single model of �

(namely �) may be used to represent either situation.

But what kind of symmetry is f? In particular, is it some new dynamical

symmetry that is uniquely represented by '?

Suppose that � � � represents a � b via r, and that ' does not simply

represent a space-time translation.

There may be a distinct model 
 that also represents a � b via r
 : indeed,

any non-trivial theoretical symmetry of � applied to � � � will produce such

a model. If some model 
 2 M(�) representing a � b represents a and b as

related just by a space-time translation, then ' does not represent some new
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dynamical symmetry: it relates distinct situations that � can represent (by 
)

as di¤ering simply by a space-time translation.

Suppose on the other hand that every structure 
 related to � � � by a

theoretical symmetry of � represents a as di¤ering from b in some way that does

not correspond to a mere space-time translation. Suppose further that there is

some new dynamical relation R' that all such models 
 represent a as bearing

to b, and that this depends uniquely on ' (as the notation R' indicates). R' is

a new dynamical relation since it is represented in ��� by a di¤erence between

the O�j and the �'
�O�j that would have represented the space-time translates of

the O�j if ' had simply represented a space-time translation of a to b. Then the

theoretical symmetry ' of � implies a corresponding new dynamical symmetry

f . f is a perfect empirical symmetry of situations modeled by �, and any two

f -related situations are related by R' :

30
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