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ABSTRACT 

 

In recent years, the branching spacetime (BST) interpretation of quantum mechanics has 

come under study by a number of philosophers, physicists and mathematicians.  This paper 

points out some implications of the BST interpretation for two areas of quantum physics:  

(1) quantum gravity, and (2) stochastic interpretations of quantum mechanics. 
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1.  Introduction 

 

Today, most physicists accept the Copenhagen interpretation as the correct way of 

understanding quantum mechanics.  Nevertheless, other interpretations of quantum 

mechanics exist and remain subjects of active research.  One of these alternative 

interpretations, known as the many-worlds interpretation [DeWitt & Graham, 1973], is 

widely discussed by physicists and philosophers, and has proven useful in quantum 

cosmology and in the theory of quantum computing (see [Deutsch & Lockwood, 1994]).  

Another interpretation, generally known as the stochastic interpretation, has a very long 

history that extends back to the time of Einstein (see [Jammer, 1974]) and continues 

in our time in recent research (see, for example, [Pavon, 2001]; [de Angelis, et al., 

1986]; [Nagasawa, 1993]; [Garbaczewski, 1990]; [Vigier, 1989]; [De Angelis & Jona-

Lasinio, 1982]; [Lehr & Park, 1977]; [de la Peña and Cetto, 1975]; [Nelson, 1985]; [de la 

Peña-Auerbach, 1971]; [de la Peña-Auerbach, 1969]).1  Several years ago, Smolin [1986] 

applied the stochastic interpretation to black hole physics, to understand quantum 

phenomena for which the Copenhagen doctrine does not appear to provide a sensible 

interpretation.   

 

Related to the many-worlds and stochastic interpretations is a newer interpretation of 

quantum mechanics, sometimes called the branching spacetime interpretation.  During the 

last dozen years or so, this interpretation has come under intensive study by physicists, 

mathematicians, and philosophers of science (see, for example, [Belnap, 2003]; [Kowalski 

& Placek, 2000]; [Placek, 2000]; [Kowalski & Placek, 1999]; [Belnap and Szabó, 1996]; 

[Douglas, 1995]; [McCall, 1995]).  In the branching spacetime (or BST) interpretation 

[Belnap, 2003]2, the observed indeterminism of quantum mechanics is associated with a 

nonclassical structure for spacetime, which contains multiple branches that allow for 

different possible outcomes of observations.  The BST interpretation resembles the many-

worlds interpretation in that it postulates a branching of history into multiple alternative 

futures.  However, the BST interpretation is not identical to the many-worlds 
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interpretation; the main difference is that the BST interpretation takes the branching of 

history to be a feature of the topology of the set of events with their causal relationships 

[Belnap, 2003], rather than a consequence of the separate evolution of different 

components of a state vector.   

 

In spite of its relative newness, the BST interpretation already has proven to be physically 

useful for understanding certain features of quantum mechanics.  In particular, this 

interpretation has yielded a new and revealing analysis of Bell-like theorems, including the 

GHZ theorem ([Kowalski and Placek, 2000]; [Placek, 2000]; [Kowalski and Placek, 

1999]; [Belnap and Szabó, 1996]).  Anyone who objects to the scientific use of the notion 

of branching spacetime should keep these applications in mind, along with the successes of 

the many-worlds interpretation, which also uses the idea of branching history.       

 

In this paper, I wish to suggest some other ways in which the BST interpretation might 

eventually be useful to quantum physics.  The potential uses that I will mention here are 

intended only as possibilities for future research; they have not been worked out in detail, 

and hence remain speculative.  Nevertheless, these applications may be worthy of further 

study, since in each of them the BST interpretation appears to be able to simplify a known 

problem or to resolve a known conceptual difficulty in physics.   

 

 

2.  BST and Quantum Gravity 

 

A.  BST and spacetime geometry 

 

The chief obstacle which any theory of quantum gravity must overcome is the apparent 

incompatibility between quantum mechanics and general relativity.  At the heart of this 

problem is the difficulty of reconciling quantum mechanics with the conception of 

spacetime geometry used in general relativity.  Familiar principles of quantum theory, 

when applied to the spacetime manifold, suggest that spacetime geometry fluctuates so 
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severely at small scales that the manifold structure of spacetime is lost.  This is expected to 

happen over regions of the scale of the Planck length, LP ~10-35 m (see, for example, 

[Misner et al., 1973]).     

 

Some models of BST appear to be able to sidestep this problem to some extent.  The BST 

models which may be able to do this are the ones in which there is a fixed time constant 

governing the rate of branching of the spacetime -- in other words, models in which the 

branching of spacetime occurs on a discrete set of non-intersecting hypersurfaces, with a 

fixed time scale T for the time (extremal proper time) between consecutive branchings.  In 

such a BST, any region bounded by hypersurfaces of branching, and having no 

hypersurfaces of branching in its interior, is a Hausdorff manifold -- unlike the total 

spacetime, which is non-Hausdorff.  (Following my usual practice, I will call such a 

Hausdorff region a branch.)  In a branching spacetime of this kind, the motion of a 

particle, as seen by an observer whose time resolution is much coarser than T, must in the 

general case be described by a probability distribution (see [Sharlow, 2003]).  However, 

an observer who probes the particle's motion at time resolution < T will find that the 

particle moves on a branching sharp trajectory.  This latter kind of motion is not what we 

normally call quantum mechanical motion -- at least if we were reared on the Copenhagen 

interpretation.  However, this kind of motion cannot fairly be called "classical," since 

classical physics is based on the concept of a unique actual history. 

 

In BST models of this kind (as in other BST models), the quantum behavior of physical 

systems results from the branching of spacetime.  Hence within any single branch, there 

are no quantum fluctuations of any sort.  It follows that T acts as a cutoff scale for 

quantum fluctuations of spacetime geometry.  If we assume that T is at least as large as 

than the Planck time TP, then the quantum fluctuations of geometry are much less severe 

than a naive application of quantum ideas to general relativity would suggest.  In 

particular, if the time (extremal proper time) between any two consecutive hypersurfaces 

of branching is > TP, then there are no quantum fluctuations at the Planck scale, and the 

breakdown of the manifold structure appears to be forestalled.  Geometry still may 
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fluctuate, but the fluctuations will be relatively tame.  This recipe for taming fluctuations in 

geometry probably can be implemented in a wide range of models of BST.    

 

Needless to say, this non-rigorous qualitative argument is just what it seems to be:  a non-

rigorous qualitative argument.  Nevertheless, this argument is highly suggestive.  One 

always must remember that existing formulations of quantum gravity, such as superstring 

theory and loop quantum gravity, have their own ways of taming the metric fluctuations.  

However, the fact that BST can tame the fluctuations by itself suggests that it might be 

fruitful to try to develop a version of quantum gravity based on BST, along the lines of 

existing ideas about BST quantum mechanics of particles.  A natural candidate for such a 

theory would use a BST with a Lorentzian (and perhaps Einsteinian?) geometry on each 

branch, combined with random changes in the geometry at the hypersurfaces of branching.  

Since we know so little about quantum gravity, this approach cannot be excluded a priori.  

A theory of this sort might be unpalatable to some (especially to those who have worked 

long and hard on one of the existing approaches to quantum gravity), but the existence of 

another alternative formulation of quantum gravity might be healthy for research in the 

field.  The idea of a stochastically fluctuating metric is not new; it appears in the work of 

Namsrai [1986] -- along with the suggestion that these fluctuations make particle motion 

stochastic -- and in some other spacetime theories cited in [Namsrai, 1986] (see p. 9).   

 

The question of the correspondence between classical spacetime and BST inevitably arises 

at this point.  I will not analyze this question in depth here, but will simply point out the 

following.  In a BST, each maximal set of consecutive branches forms what amounts to a 

single alternative history of the universe.  Adapting the terminology of Belnap [2003], I 

will call the union of such a set a history in the spacetime.  One can think of a history as an 

ordinary non-branching spacetime, though of course it differs from a classical spacetime 

because of what happens at the hypersurfaces of branching.  If we look at a single history 

from a coarse-grained standpoint (that is, with time resolution >>T), we will see what 

appears to be a classical spacetime.  We may approximate this with a smooth, classical 

manifold, and may assign events in the history to places in this manifold.  Thus, a "coarse" 
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observer (with time resolution >> T) will be free to interpret a single history in a branching 

spacetime as a classical spacetime manifold -- though some unexpected things may happen 

in this manifold, due to the (unobserved) presence of the hypersurfaces of branching.      

 

B.  BST and topology change 

 

Another problem facing quantum theories of spacetime geometry is the thorny issue of 

topology change ([Visser, 1995]; [Misner et al., 1973]; [Wheeler, 1968]).  This issue 

arises because it is mathematically possible for space to have many different topologies, 

including multiply connected topologies containing wormholes.  If quantum mechanics is 

applicable to spacetime, then one would expect space configurations with wormholes to 

contribute to the time evolution of spacetime geometry.  In particular, wormholes might 

be created or destroyed, resulting in changes in the connectivity of space.  This process is 

known to be difficult to understand within the framework of a classical spacetime 

manifold.     

 

In BST, it is much easier to understand (at least in an intuitive way) how topology change 

might occur.  In a sense, any BST already contains topology change of a certain sort.  A 

particle in a BST repeatedly goes into places (the hypersurfaces of branching) that differ 

topologically from surrounding regions of spacetime.  These hypersurfaces are not just 

topologically different from their surroundings; they also are discontinuous in a certain 

sense -- at very least, they represent sudden temporary changes in the structure of space.  

Further, the structure of these hypersurfaces makes them natural candidates for the places 

where topology change might occur.  The following argument shows what I mean by this.       

 

Mathematically speaking, one can think of the region near a hypersurface of branching as 

constructed from three different sheets of ordinary, non-branching spacetime, glued 

together by identification of points.3  (A very similar construction, not involving 

identification of points but giving the same results, is carried out in a different context in 

[Visser, 1995].)  There are many different ways of doing this gluing.  One way is to take a 
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pair of isometries f:B1→B2 and f:B1→B3, where B1 is the future boundary of the initial 

sheet and B2, B3 are the past boundaries of the final sheets, and then glue together points 

related by the isometry (that is, identify x∈ B1 with f(x) and g(x)).  This will result in a 

boundary that is geometrically smooth.  However, this way of joining the boundaries is 

rather arbitrary.  Instead of using isometries, we can use non-isometric mappings between 

B1 and B2 and between B1 and B3.  If we use arbitrary homeomorphisms, then we can 

create discontinuous changes in geometry across the junction [Sharlow, 2003].  If we use 

mappings that are not even homeomorphisms, then we can create junctions at which 

topology change occurs.  This is done by gluing together sheets with different numbers of 

wormholes.  Depending upon the topology of the sheets that are glued together, the 

resulting spacetime may have topology change at its hypersurfaces of branching .   

 

From a mathematical standpoint, it is possible to construct a BST having random, 

discontinuous changes in geometry across hypersurfaces of branching [Sharlow, 2003].  

Once one has entertained this possibility, there is no obvious reason why topology also 

could not change abruptly and randomly.  Certainly, topology change is much more 

plausible in a spacetime that already has a kind of discontinuous topology change than in a 

spacetime that is everywhere smooth.      

 

One problem facing the idea of topology change is the potentially nonlocal character of the 

process.  If a wormhole comes into existence, what (if anything) governs the relative 

positions of the wormhole's two mouths?  Can the mouths spring into existence far from 

each other?  What causality problems would this cause?  To avoid all these questions, one 

might want to assume arbitrarily that topology change follows only the pathways shown in 

Figure 1.   
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Figure 1.  "Local" pathways for topology change.

 
 

In the first of these pathways, a wormhole is created "all in one place," with its two 

mouths initially merged into a single mouth.  Wormhole creation of this kind could begin 

at a single event in spacetime, as shown in Figure 1.  In the second pathway shown in 

Figure 1, the total number of wormholes in space is reduced by one when two mouths 

belonging to two different wormholes merge, and the resulting mouth closes, leaving 

behind a single combined wormhole.  (The same thing could happen with two mouths of 

the same wormhole, leaving no wormhole at all -- the reverse of the first pathway in 

Figure 1.)  Both of these processes, wormhole creation and wormhole annihilation, are 

local in character.  Each of them is discontinuous only at a single event in spacetime.  Of 

course, I am not suggesting that topology change really occurs via these pathways; we do 

not know enough about topology change to dare to venture such a suggestion.  I am only 

suggesting that if topology change did occur only in these ways, then topology change 

might be less messy, both mathematically and physically, than we think.       
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3.  BST and Stochastic Mechanics 

 

Another area of physics in which BST might be useful is stochastic mechanics, and 

particularly the application of stochastic mechanics to the stochastic interpretation of 

quantum mechanics.  Since the stochastic interpretation of quantum mechanics may be 

unfamiliar to some readers, I will explain briefly what this interpretation is.   

 

A.  The stochastic interpretation:  an introduction 

 

At least since the mid-twentieth century, some physicists have suggested that quantum 

mechanics, with its probabilistic description of matter, might be interpreted as a 

description of some kind of stochastic motion of particles (see [Jammer, 1974]).  

According to this idea, the reason that we must describe the motion of particles 

probabilistically is that the particle's motion really is random.  Particle motion, according 

to this view, is a stochastic process, similar (in spirit if not in detail) to Brownian motion.  

The wave function then is taken to be a description of the probabilities connected with this 

motion.  The stochastic interpretation of quantum mechanics is the view that this is the 

correct way to understand physically the equations of quantum mechanics.  Several 

different versions of this interpretation are known (see [Jammer, 1974]).   

 

This mental picture of quantum mechanics may seem utterly unacceptable to those of us 

who grew up on the Copenhagen interpretation.  However, as I stated in Section 1, the 

Copenhagen interpretation is not the only possible interpretation of quantum mechanics, 

and the stochastic interpretation still is an active field of research.  Despite its historical 

importance and its current live status, the stochastic interpretation appears to be unfamiliar 

to most physicists today.  The chief reasons for its unfamiliarity are, I think, the 

widespread acceptance of the Copenhagen interpretation and the demise of local hidden 

variable theories (see [Shimony, 1988]) -- although the stochastic interpretation in itself 
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does not imply a local hidden variable theory, and appears to be able to bypass the usual 

objections to such theories (see [Nelson, 1985]).  The stochastic interpretation has been 

a subject of intensive recent research, and appears to have a significant, and possibly 

growing, constituency among physicists (recall the list of references in Section 1).  It has 

been shown that most of the wave equations of quantum theory can be interpreted as 

descriptions of stochastic motion of various sorts.  Such results have been obtained for the 

Schrödinger equation ([Nagasawa, 1993]; [Nelson, 1985]; [de la Peña and Cetto, 1975]; 

[de la Peña-Auerbach, 1971]; [de la Peña-Auerbach, 1969]; see also [Ord, 1997b]), the 

Klein-Gordon equation ([Pavon, 2001]; [Lehr & Park, 1977]), the Maxwell-Proca 

equation ([Garuccio & Vigier, 1981]; see also [Ord, 1997a] for a special case), and the 

Dirac equation (see [de la Peña-Auerbach, 1971]; see also [de Angelis, et al., 1986], [Ord, 

2002] and [Ord, 1997b] for the (1+1)-dimensional case).  In addition, progress has been 

made toward an understanding of quantum measurement in terms of stochastic mechanics 

[Nelson, 1985].  The stochastic interpretation even has found use in black hole physics; 

Smolin [1986] has suggested that the stochastic interpretation may be useful in 

understanding certain aspects of the quantum theory of black holes.     

 

The main conceptual difference between the stochastic interpretation and the Copenhagen 

interpretation of quantum mechanics lies in the understanding of the nature of quantum 

probability.  According to the Copenhagen interpretation, a particle's position and other 

dynamical variables can be genuinely indefinite, in the sense that there is no fact of the 

matter as to which value of the variable is the correct one at a given time.  According to 

the stochastic interpretation, there is a fact of the matter -- but it is a fact which we, 

because of the limitations of our observational capacities, cannot know.  Neither the 

stochastic interpretation nor the Copenhagen interpretation requires the kind of hidden 

determinism that one often associates with hidden variable theories.  It should be 

mentioned that the stochastic interpretation is not a purely philosophical interpretation of 

quantum mechanics, but actually represents an attempt to reduce quantum mechanics to an 

underlying theory of stochastic mechanics.       
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Today, the Copenhagen interpretation is so widely accepted that its ideas even pervade 

introductory courses in quantum mechanics.  Popularized discussions of quantum 

mechanics also tend to rely upon the Copenhagen interpretation, often as the basis for 

mystical conclusions.  In an intellectual atmosphere of this sort, it is all too easy to forget 

that the Copenhagen interpretation is only an interpretation of quantum mechanics, and is 

not the same as quantum mechanics itself.  The fact that other interpretations are possible 

is evidenced by the growth of interest in the many-worlds interpretation (see, for example, 

[Deutsch & Lockwood, 1994]).   

 

The idea of interpreting quantum mechanics as a description of a stochastic motion of 

particles may be upsetting to persons used to the Copenhagen interpretation.  Such 

persons need to remind themselves that the question of the correct interpretation of 

quantum mechanics is not yet closed.  (If Smolin's suggestion contains even a grain of 

truth, then we may not have a choice in the matter.)   

 

In this paper I will not try to build a case for or against the stochastic interpretation of 

quantum mechanics.  Instead, I will point out some ways in which BST might contribute 

to our understanding of stochastic mechanics and of the stochastic interpretation.  My 

discussion of the stochastic interpretation will be disproportionately long, simply because 

there are several points of contact that need to be discussed.       

 

B.  Modeling stochastic motion in BST 

 

The main way in which BST could affect our understanding of the stochastic 

interpretation is by providing models of spacetime geometry in which particles 

spontaneously undergo stochastic motion.  Some models of BST already have stochastic 

particle motion "built in" in a natural way; for example, the model in [Sharlow, 2003] even 

allows explicitly for stochastic motion of the sort that a stochastic interpretation of 

quantum mechanics would require.  Normally, the stochastic interpretation of quantum 

mechanics is formulated in non-branching spacetime.  Even those versions of the 
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interpretation which incorporate stochastic features into spacetime (as in [Namsrai, 1986] 

and [Prugove ki, 1984]) do not use branching spacetime.  However, branching spacetime 

may have a conceptual advantage over non-branching spacetime models as a setting for 

the stochastic interpretation of quantum mechanics.  BST does not just provide a way to 

incorporate stochastic motion into spacetime; it also has an independent rationale as a 

model for the understanding of quantum mechanics ([Belnap, 2003]; [Kowalski and 

Placek, 2000]; [Placek, 2000]; [Kowalski and Placek, 1999]; [Belnap and Szabó, 1996]; 

[Douglas, 1995]; [McCall, 1995]) and of indeterminism in general ([Belnap, 2003]; 

[Belnap, 1998]; [Douglas, 1995]; [McCall, 1995]).   

 

One of the main conceptual difficulties with the stochastic interpretation is the problem of 

the physical origin of the random changes in particle motion.  In some versions of 

stochastic mechanics [Nelson, 1985], an electromagnetic background field may be 

responsible for these changes.  In other versions, new kinds of fields or particles are 

invoked (see [Jammer, 1974]).  If we adopt a branching picture of spacetime, then another 

hypothesis is possible.  In BST, every particle in spacetime is constantly encountering 

hypersurfaces of branching.  The geometry on these hypersurfaces can carry degrees of 

freedom, distinct from gravity, that do not exist elsewhere in spacetime [Sharlow, 2003].  

Hence, this geometry might well be the source of disturbances in particle motion.  Once 

one admits that spacetime might be a BST, there is no further need to search for a 

background field to supply the random kicks that stochastic quantum mechanics requires.  

Random variations in the geometry of the hypersurfaces of branching can perform that 

task.  (Of course, to formulate a real theory of stochastic mechanics in BST, we would 

have to figure out what sort of geometry on the hypersurfaces of branching could produce 

the kind of jumps necessary for the stochastic theory.  Because there is a lot of freedom in 

the choice of this geometry, it seems very likely that we could replicate the jumps needed 

for any sensible theory of stochastic mechanics [Sharlow, 2003].)        
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C.  Modeling timelike jumps in BST 

 

Another way in which BST might help stochastic mechanics is by providing a ready 

mechanism for a certain kind of jump that some stochastic theories require, but that seems 

implausible in ordinary spacetime.  Some formulations of relativistic stochastic mechanics 

make use of jumps in the time coordinates of particles, as well as in the space coordinates 

(see [Ord, 2002]; [Ord, 1997b]).  At first glance, these time coordinate jumps may appear 

to pose the threat of time travel, with its usual consequences of causal loops and 

paradoxes.  It is possible to reinterpret the backward jumps Feynman-style, in terms of 

pair creation and annihilation; this is done in [Ord 1997b].  However, if the jumps occur in 

BST, then this reinterpretation is not necessary.  In some versions of BST, a particle can 

undergo a backward jump in its time coordinate without any threat of real time travel.   

 

To see how this can happen, refer to Figure 2.  Note that a hypersurface of branching can 

in principle change the position, as well as the state of motion, of a particle that crosses it.  

Mathematically speaking, we can construct a hypersurface that does this by gluing 

together the edges of sheets of spacetime in certain ways.  For example, we can glue 

points that are close to each other on the edge of a past sheet A to points that are far from 

each other on the edge of a future sheet B.  (Note that we do not have to deform the 

geometry of either sheet to do this; both sheets might have flat metrics.)  Now suppose 

that each of the two glued edges is a future null cone.  Then the hypersurface of branching 

also has the shape of a future null cone.  A particle that hits the hypersurface might 

undergo a jump along that cone.  If the particle jumped toward the vertex of the cone, 

then the particle would undergo a negative jump in its time coordinate as measured from 

either of the two glued-together branches.  Note that such a jump could not lead to any of 

the usual time travel paradoxes, because once the particle crossed the junction it could not 

go back.  All particles would begin on the past side of the junction and end up on the 

future side; hence no particle could meet itself in the past.   

 



 

                                                                                13 

Figure 2.  A spacetime that allows time-reversed jumps without causal loops.
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This mechanism for jumping also could provide the jumps at light speed that some 

stochastic models of relativistic quantum mechanics require ([Ord, 2002]; [Ord, 1997a]; 

[de Angelis et al., 1986]; [Lehr & Park, 1977]).  In the BST just described, particles could 

jump forward or backward along the cone; these jumps would have a formal velocity of c.             

 

One can get the same results if the hypersurfaces of branching are unions of pieces of null 

cones instead of single future null cones (see Figure 3).   
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Figure 3.  (1+1)-dimensional schematic diagram of hypersurface composed

of pieces of null cones.  The vertices of the null cones are at the

x
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events A, B, C and D.

 
 

 

D.  Tunneling   

 

Another way in which BST might help the stochastic interpretation of quantum mechanics 

is by resolving some of the known objections against that interpretation.  One such 

objection, raised by Baublitz [1997], is that some versions of the stochastic interpretation 

cannot adequately explain tunneling.  Baublitz pointed out that "classical stochastic 

theories" explain tunneling as an effect of fluctuations in the energy of the tunneling 

particle; the particle happens to gain energy before crossing the barrier and thereby 

becomes able to cross the barrier.  This picture, Baublitz claimed, leads to predictions 

incompatible with what we know about tunneling.  Baublitz argued against one possible 

way to avoid such predictions, namely, to assume that the particle loses its excess energy 

after crossing the barrier.   
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In my opinion, BST provides two possible ways around this objection.   

 

First, note that from the standard point of view of quantum field theory, the potential 

through which a particle tunnels is not really a classical potential, but is a result of the 

exchange of field quanta.  Thus, if a particle enters a classically forbidden region and is 

reflected, it is not really a smooth classical potential that throws the particle back, but 

discrete events of emission and/or absorption of virtual quanta.  If we think of the field 

quanta as real entities governed by stochastic mechanics (as the stochastic derivations of 

the Klein-Gordon, Maxwell and Dirac equations suggest we might), then it is a matter of 

chance how far the particle gets into the barrier region before it undergoes an interaction.  

Thus, the tunneling particle can undergo some real tunneling (entry into the classically 

forbidden region), at least over a very short distance, even if it does not have the energy to 

cross the barrier classically.  Hence it is not obvious that a particle in the stochastic 

interpretation must have an energy that is classically sufficient to enter the barrier.   

 

The preceding argument does not depend on BST, but upon a consistent application of the 

stochastic interpretation to the barrier as well as to the particle.  In BST, however, 

tunneling would be even easier, as the following argument suggests.   

 

We have seen that in some versions of stochastic mechanics, particles undergo jumps at 

the speed of light.  There are two possible physical interpretations for such jumps, 

depending upon what kind of spacetime model one adopts.   

 

(1)  In classical spacetime, one must think of these jumps as real motions through space.  

According to special relativity, this implies that the particle executing the jump actually is 

massless -- so the observed mass of the particle is not equal to the particle's "true" mass.  

It is not at all clear that a relativistic jump of this peculiar sort would be blocked by the 

classical, nonrelativistic potential in the way that Newtonian mechanics, or even 

nonrelativistic quantum mechanics, would demand.     
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(2)  In BST, we could think of these jumps in the same way as in (1), but there is another 

alternative:  we can think of the jumps as displacements of the particle along a 

hypersurface of branching, due to the non-isometric "gluing" of the hypersurface (recall 

Figure 2).  If the jumps are like this, then the particle effectively jumps from one spatial 

position to another without crossing the region in between.  If a particle can jump in this 

way, then there is nothing to keep the particle out of a classically forbidden region -- 

though the particle's energy after the jump could, of course, affect the particle's behavior 

after it gets there.   

 

Regardless of whether we adopt alternative (1) or (2), it is clear that the possibility of real 

tunneling (instead of just high-energy fluctuations) exists.  It would be interesting to work 

out the details of this mechanism of tunneling and find out whether it really circumvents 

Baublitz's argument.     

 

E.  Rethinking the Madelung equations 

 

Another objection to stochastic theories was proposed by Wallstrom [1994], who found 

an argument against a wide class of stochastic derivations of the Schrödinger equation.  

(Baublitz [1997] also discusses Wallstrom's objection.)  This objection focuses on the 

derivation of the Schrödinger equation from the Madelung equations, which are 

differential equations governing the functions R(x, t) and S(x, t) defined by ψ = e(R + iS), 

where ψ is of course the wave function for a particle.  That derivation plays a central role 

in many versions of the stochastic interpretation of the Schrödinger equation.  According 

to Wallstrom's objection, the presence of the azimuthal factor eimϕ (m = integer) in wave 

functions with nonzero angular momentum introduces a term mϕ into S, thereby making S 

multiple-valued.  This, in turn, makes it impossible to derive the Schrödinger equation 

from classical stochastic mechanics unless we assume a certain seemingly arbitrary 

quantization condition for the particle velocity field.  Wallstrom has noted that this 

objection depends crucially upon the assumption that S is continuous.  He avoids 

discarding this assumption, noting that if S is discontinuous, then the equality ∇ψ  = (∇ R + 
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i∇ S)ψ, which plays a role in the derivations of stochastic theories, makes ∇ψ  singular.      

 

The BST picture of spacetime suggests a possible way to circumvent this objection.  I will 

explain this way in the next few paragraphs. 

 

First, we note that even if S is discontinuous, ψ does not need to be discontinuous if S 

only undergoes jumps that are multiples of 2π.  By subtracting step functions of height 2π 

from S (for example, by setting Snew ≡ S mod 2π), we can make S single-valued without 

changing the values of ψ at all.  Because such a change in S does not change ψ, it also 

cannot make ∇ψ  singular; the equality ∇ψ  = (∇ R + i∇ S)ψ cannot be used to infer that 

∇ψ  is singular, because this equality does not generally hold when the argument of the 

exponential is not differentiable.  Thus, for any given S, we can construct a new S that is 

single-valued, gives exactly the same ψ, and has discontinuities (in S, not in ψ) only on a 

set of space points of measure zero.   

 

Given any single-valued ψ, if we adjust S in this way to allow for discontinuities, then we 

find that the velocity field v, which is proportional to ∇ S, develops singularities.  In 

ordinary spacetime this would be unphysical.  However, in a BST model (or at least in a 

BST of the kind we have been discussing in this section), one can argue that a 

discontinuity of this sort lacks its usual physical meaning.  Consider the physical 

significance of a one-particle wave function ψ = R(r,z)eimϕ according to the stochastic 

interpretation in BST.  The coordinates r, z, ϕ are defined on the spacetime as seen by a 

coarse-grained observer; ψ itself is a statistical quantity, reflecting the behavior of the 

particle as it crosses very many hypersurfaces of branching.  The piece of spacetime on 

which ψ is defined actually is not a placid, unchanging classical spacetime; instead, it is a 

history in a BST, in which any object or observer repeatedly hits hypersurfaces of 

branching and undergoes discontinuous changes there.  If the hypersurfaces of branching 

are built up from null cones (as in Figure 3), then those hypersurfaces would appear, to a 

three-dimensional observer who could see them, as multiple spherical "shock fronts" 
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expanding at v = c and ultimately merging with each other.  Of course, real coarse-grained 

observers such as ourselves will not see these hypersurfaces; we would be unable to 

resolve the "shock fronts" at all, and would see a smooth effective spacetime geometry.  

Given that a coarse-grained observer cannot see these discontinuities in space, one 

wonders whether such an observer could notice a singularity in v which occupies a set of 

measure zero in space, just as the other (unobservable) discontinuities do!  Physically, the 

singularity in v amounts to a sudden very large jump in particle velocity, followed 

instantaneously by the loss of the same velocity.  This is something that might easily 

happen at a hypersurface of branching, if we choose the geometry there judiciously.  We 

do not know if it makes any physical sense to assume such a geometry at some 

hypersurfaces of branching -- but at least we cannot rule it out.  Thus, it is not obviously 

impossible that our BST model would allow for a jump in particle velocity corresponding 

to an unobserved singularity in v, and hence would allow S to be discontinuous in the way 

required to get around Wallstrom's argument.       

 

BST also raises doubts about Wallstrom's objection from another angle.  We have not 

specified the exact geometry of the hypersurfaces of branching.  Hence, one might ask 

whether the quantization condition on v, to which Wallstrom's argument leads, could be 

derived from some constraint on the geometry of the hypersurfaces of branching.  This 

geometry controls the velocities of the jumps; hence a judicious choice of this geometry 

might (for all we know) impose a quantization condition on particle velocities.   

 

Wallstrom [1994] also gives another argument for the view that the Madelung equations 

cannot rule out multiple-valued S.  This other argument is based on the fact that S is not 

defined at the nodal surfaces of the wave function; if we consider only the part of space on 

which S is defined, we get a non-simply connected space which allows for a multiple-

valued S.  The possibility of converting a multiple-valued S to a single-valued one, as we 

did for the first objection, casts doubt upon this objection too.       

 

Of course, the above remarks about Wallstrom's objection do not add up to a rebuttal of 
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that objection.  We have not worked out these ideas in enough detail to know whether 

they really undermine the objection.  However, these remarks do show that the cogency of 

Wallstrom's objection is much less obvious in a branching spacetime than in a classical, 

non-branching one.     

 

F.  Nonlocality   

 

Some versions of the stochastic interpretation of quantum mechanics require nonlocal 

interactions (see, for example, the remarks in [Wallstrom, 1994] and [Nelson, 1985]).  I 

am not going to argue for or against the physical plausibility of such interactions.  Instead, 

I will merely point out that if one wants nonlocal interactions in one's picture of physics, 

BST can accommodate these interactions in a natural way -- without postulation of any 

new fields, and apparently without causality violations.   

 

Earlier I pointed out a way in which a particle in a BST can jump forward or backward in 

time without any threat of a causal loop.  The trick is that this jumping takes place only on 

a hypersurface of branching which is a union of subsets of null cones; the particle arrives 

at that hypersurface from the past, makes a jump, and then departs into the hypersurface's 

future.  One can envision particles jumping in this way along a hypersurface of branching, 

resulting in an apparently instantaneous interaction between events on that hypersurface -- 

but still without any possibility of an observable causality violation.   

 

Even without signals of this kind, there might conceivably be correlations among distant 

events on a hypersurface of branching.  As yet, we know nothing about the details of the 

geometry of hypersurfaces of branching in a BST.  Thus, we cannot rule out the possibility 

that this geometry contains long-range regularities which would cause correlations in the 

motion of particles crossing the hypersurface at distant points.  If these correlations are 

restricted to hypersurfaces of branching, then the threat of causal loops is greatly reduced. 

 

At present, we do not know whether either of these mechanisms can lead to physically 
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interesting kinds of nonlocality, or can explain the nonlocality known to exist in quantum 

mechanics.  My only point in describing these extremely speculative mechanisms is to 

point out that BST can accommodate nonlocality in a relatively natural way -- as 

correlations that occur only on hypersurfaces of branching, where they pose no great 

threat to causality. 

 

 

4.  Concluding Remarks 

 

In this paper, I have suggested a number of ways in which the BST interpretation of 

quantum mechanics might eventually prove to be useful in various areas of physics.  At 

present, all of the suggestions given here are highly speculative; none of them has been 

worked out in any detail, and in many cases we do not know enough about the theories 

involved to work out the suggestions in detail.  The only thing that we can say with near 

certainty is that many of the suggestions made here will turn out to be wrong.  

Nevertheless, I believe that these potential uses of BST are worthy of further investigation 

despite their conjectural nature.  Judging by the current intensity of research in quantum 

gravity, the ongoing effort to understand stochastic mechanics, and the growth of interest 

in BST, it would be interesting to see what happens when these three fields are brought 

closer together. 
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Notes 

 

1.  This list is not meant to be exhaustive; it is intended only to show the scope of past and 

present work in this field.  Works not included here are not being slighted.   

 

2.  I adopt the abbreviation "BST" from Belnap [2003].  In the present paper I have used 

this abbreviation to cover all branching spacetime models.  

 

3.  A way of joining branches different from the one described here is given in [Sharlow, 

1998].  This alternative way of joining branches may soften some of the philosophical 

problems about the identities of observers and objects with branching histories (see 

[Sharlow, 1998]). 
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