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Abstract

Quantum Mechanics can be viewed as a linear dynamical theory having
a familiar mathematical framework but a mysterious probabilistic inter-
pretation, or as a probabilistic theory having a familiar interpretation but
a mysterious formal framework. These points of view are usually taken
to be somewhat in tension with one another. The first has generated a
vast literature aiming at a “realistic” and “collapse-free” interpretation of
quantum mechanics that will account for its statistical predictions. The
second has generated an at least equally large literature aiming to derive,
or at any rate motivate, the formal structure of quantum theory in prob-
abilistically intelligible terms. In this paper I explore, in a preliminary
way, the possibility that these two programmes have something to offer
one another. In particular, I show that a version of the measurement
problem occurs in essentially any non-classical probabilistic theory, and
ask to what extent various interpretations of quantum mechanics continue
to make sense in such a general setting. I make a start on answering this
question in the case of a simplified version of the Everett interpretation.

1 Two Views of Quantum Mechanics

Like any physical theory, Quantum Mechanics has both kinematical and dy-
namical aspects. The former delineate what changes, and the later delineate
how it changes. In the particular case of quantum mechanics, this picture is
obscured by the fact that the things that change – quantum states and observ-
ables – are related to one another probabilistically. To the extent that we view
probabilities as attaching themselves to events – that is, to things that happen
– and to the extent we think of these happenings as involving a change of state,
we seem to be importing a secondary dynamics. To the extent that we think
of probabilities rather as averages over static states of affairs, we seem to be
committed to hidden variables – which must be both contextual and non-local
(the former by Gleason’s Theorem, the latter, by Bell’s). This dilemma frames
the so-called measurement problem: to give an account of quantum mechanics
that embraces neither hidden variables nor any secondary dynamics, but still
preserves probabilistic appearances.

There is, however, another way to look at quantum mechanics. It is a re-
markable mathematical fact that, given only the barest essentials of its prob-
abilistic apparatus, the rest of the structure of quantum mechanics, including

1For Jeffrey Bub on his 65th Birthday
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its dynamics, is fixed, up to the choice of a Hamiltonian. 2 In view of this,
one is tempted to regard quantum mechanics as first a probability calculus, and
only secondarily a dynamical theory. Indeed, one might go further and regard
quantum theory as just being a non-classical probability calculus – that is, not
a physical theory at all, but only a stage on which to enact physics (as repre-
sented by the various possible Hamiltonians). This point of view has a lot to
recommend it, in terms of conceptual and mathematical economy; and it more
or less bypasses the measurement problem [35]. But it presents us with its own
vexatious foundational problem, namely, that the mathematical infrastructure
of quantum mechanics has little obvious motivation as a pure probability the-
ory: rather, that infrastructure is most naturally seen as arising exactly from
a dynamical theory, in which a system’s states are complex-valued functions
evolving under the action of a linear partial differential operator – but then we
should expect a dynamical account of the probabilistic apparatus, and we are
back where we started.

Thus, we have two problems, somewhat in tension with one another. If
we view quantum mechanics as a linear dynamical theory, in which physical
states are wave functions, evolving according to the Schrödinger equation, then
the theory’s analytical apparatus is not especially problematic (Hilbert spaces
were, after all, invented to describe just this sort of thing); but its probabilistic
content seems mysterious and ad hoc. If, on the other hand, we accept the
theory’s minimal probabilistic interpretation as unproblematic, then it is the
theory’s formal apparatus that seems mysterious and ad hoc.

I’ll refer to the former problem as the problem of interpretation, and to the
latter as the problem of the formalism. Both have proved remarkably refrac-
tory, withstanding decades of sustained, and often brilliant, effort by physicists,
mathematicians, and philosophers of science, and, in the process, accreting sub-
stantial technical literatures. It is quite remarkable, therefore, that these two
obviously related problems have for the most part been considered in isolation
from one another. Superficially, perhaps, this is understandable, as each prob-
lem begins where the other wishes to end; nevertheless, when a tunnel is being
dug through a mountain, it is usual for those working from opposite sides to
coordinate their efforts.

In this paper, I want to urge that each of these two foundational projects has
something to contribute to the other. It has become increasingly clear in recent
years [4, 6, 29, 30, 41] that many of the most puzzling “quantum” phenomena
– in particular, phenomena associated with entanglement, and including, as I’ll
show, a version of the measurement problem – are in fact quite generic features
of essentially all non-classical probabilistic theories, quantum or otherwise. This
suggests that many of the interpretive ideas that have been advanced in con-
nection with quantum mechanics can be carried over to a much more general
setting. This exercise has something to offer to both foundational projects.
On the one hand, an interpretation of quantum mechanics that can’t be made

2This is a one-sentence summation of a vast and intricate story, bringing together among
other things the Spectral Theorem and the Theorems of Gleason, Stone and Wigner. See
Varadarajan [44] for the uncondensed version.
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sense of absent certain special structural features of quantum mechanics, is po-
tentially a source of fruitful ideas with which to approach the problem of the
formalism. On the other hand, if an interpretation can be kept aloft even in the
thin atmosphere of a completely general non-classical probabilistic theory, then
perhaps it has little to tell us about the physical content of quantum theory.
To compress this idea into a slogan: a completely satisfactory interpretation of
a physical theory should be capable of yielding (or at least, constraining!) its
own formalism.

The balance of this paper should be regarded as a preface, and an invita-
tion, to the programme just outlined. In section 2, I sketch a general (and
more or less canonical) mathematical framework within which one can study
and compare various kinds of classical and non-classical probabilistic models.
This part of the paper is tutorial, and includes more than the minimum of de-
tail, since the framework discussed here may be unfamiliar to many readers.
In section 3, I consider coupled systems and entanglement in this setting. The
main point I wish to make here is that, as mentioned above, the existence and
the basic properties of entangled states are in no way specifically or character-
istically quantum-mechanical phenomena. Most of the serious interpretational
issues confronting quantum theory arise precisely in connection with entangled
states; thus, the stage is set to rehearse familiar arguments concerning the in-
terpretation of quantum mechanics without the usual Hilbert-space props. As
I show in section 4, a version of the measurement problem can be posed for
any non-classical probabilistic models. One can then ask to what extent fa-
miliar no-collapse interpretations of quantum mechanics – modal, many-worlds,
consistent-histories, etc. – can be made to work in this general setting, and to
what extent they depend on special structural features of quantum mechanics.

I make only the barest start on answering this question (though I hope to
establish at least that it is an interesting one), focussing on a simplified version
of the Everett interpretation. This depends on two features of Hilbert-space
quantum mechanics that are not entirely generic: the fact that the conditional
states of a pure bipartite state are pure, and the fact that pure bipartite quan-
tum states always correlate at least one pair of observables. These features can
be abstracted, and their consequences studied. One such consequence turns out
to be a weak form of the spectral theorem.

2 General Probabilistic Models

Perhaps the most basic difference between classical and quantum probability
theory is that the latter gives up the assumption, tacit in the former, that any
two random quantities can jointly be measured to arbitrary accuracy. Once
we admit the possibility of incommensurable random quantities, however, we
open the door on a vast and rather wild landscape of possible non-classical
probabilistic theories, most of them far removed from quantum mechanics. One
would like to characterize the class of quantum-probabilistic models cleanly, in
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probabilistic (or what some would call operational) terms, and in such a way as
sheds light on why this particular class of models should figure so prominently
in physics.

This is a longstanding problem, already strongly foreshadowed in von Neu-
mann’s work, [45], and articulated in clear and programmatic terms by Mackey
[33]. To approach it, one needs to survey the field of possible alternatives to
classical and quantum probability theory, and this requires some altitude. For-
tunately, this isn’t hard to achieve. Indeed, there is an essentially canonical
formalism of generalized probability theory, developed more or less indepen-
dently by many people, beginning perhaps with Mackey himself [33], and in-
cluding Ludwig [32], Davies and Lewis [16], Edwards [18], Randall and Foulis
[20], Holevo [28], and, more recently, Hardy [27], D’Ariano [15] and Barrett [6],
among others. The next two subsections outline a version of this canonical for-
malism. In the interest of simplicity (and of brevity), I will, in the main, restrict
my attention to finite dimensional probabilistic models. This introduces certain
distortions, but preserves the essential contours of the subject.

2.1 Convex Sets as Abstract State Spaces

One approach to a generalized probability theory begins with an abstract con-
vex set Ω of “states”. In practice, this will be a convex subset of a real vector
space V , though the particular ambient space is largely irrelevant here. Unless
otherwise indicated, I’ll assume that V is finite-dimensional and that Ω is com-
pact, that is, closed and bounded (as remarked below, this allows us a canonical
choice for V ). The idea is that, given a finite sequence of states α1, ..., αn ∈ Ω
and a sequence of non-negative coefficients t1, ..., tn summing to unity, the con-
vex combination α =

∑
i tiαi ∈ Ω represents a statistical mixture in which state

αi occurs with probability ti. A state is said to be mixed iff it can be represented
in this way as a non-trivial convex combination of other states. States not so
representable – that is, the extreme points of Ω – are termed pure states. In the
present finite-dimensional setting, every state can be represented as a convex
combination of pure states. 3

Physical events (e.g., measurement outcomes) can now be defined in terms
of affine – that is, convex combination preserving – functionals from Ω into the
real unit interval. More exactly, let A(Ω) denote the real vector space of all real-
valued affine functionals a : Ω → R; call such a functional an effect iff it takes
values in [0, 1]. We may interpret an effect a as representing a possible event or
occurrence, with a(α) giving the probability of that event in state α ∈ Ω.

Let u denote the unit effect, that is, the constant functional with value 1;
then for any effect a, the functional u − a is again an effect, representing the
non-occurrence of a. We can regard the pair (a, u− a) as representing a binary
observable associated with the system. More generally, a discrete observable
taking values in a set E is defined to be a mapping f : E → A(Ω) such that, for

3If Ω is an infinite-dimensional compact convex set, this remains largely true, provided we
replace convex combinations with so-called boundary integrals. See [1] for details. On the
other hand, a non-compact convex set may lack pure states entirely.
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every x ∈ E, f(x) is an effect, and
∑

x∈E f(x) = u. This definition allows us to
pull each state α ∈ Ω back to a classical probability weight f∗(α)(x) = f(x)(α)
on E, which we interpret as giving the statistical distribution of values of the
observable when the state is α. The simplest case is that in which E is itself
just a set of effects summing to u, with f the inclusion mapping. In this case,
we may speak of the set E itself as an observable.

By way of illustration, the set ∆(E) of probability weights on a finite set E
is a compact convex subset of RE . The extreme points of ∆(E) are the point-
masses δx associated with points x ∈ E, defined by the condition δx(x) = 1.
Geometrically, ∆(E) is a simplex: every element α ∈ ∆(E) has a unique expres-
sion as a mixture of extreme points, i.e, point-masses, namely α =

∑
x∈E α(x)δx.

An affine functional on ∆(E) is determined by its values on the point-masses:
if a ∈ A(∆(E)), let φ(x) = a(δx); then φ is a random variable on E, and, for all
α ∈ ∆, a(α) is simply the expected value of φ in state α. In this way, elements
of A(∆(E)) represent random variables on E. Note that any finite-dimensional
simplex ∆ has the form ∆(E): simply let E be extreme points of ∆.

For another example, If H is a finite-dimensional Hilbert space, the collection
Ω(H) of density operators ρ on H is a compact convex set. The extreme points
of Ω(H) are precisely usual quantum-mechanical pure states, that is, rank-one
projection operators. The space A(Ω(H)) is canonically identifiable with the set
of self-adjoint operators on H: if a ∈ A(Ω(H)), there exists a unique self-adjoint
operator A on H with a(ρ) = Tr(Aρ) for all density operators ρ ∈ Ω(H). Note
that Ω(H) is not a simplex, since a density operator can typically be written as
a convex combination of rank-one projections in many ways.

Returning now to an abstract convex set Ω, notice that each state ω ∈ Ω
induces an evaluation functional ω̂ ∈ A(Ω)∗, given by

ω̂(f) = f(ω)

for all f ∈ A(Ω). It can be shown [1] that the mapping ω 7→ ω̂ is injective;
clearly, it is affine. If we don’t mind being a little sloppy, we can identify ω with
ω̂, so that Ω becomes a subset the dual space, A(Ω)∗, of A(Ω). The span of
Ω in A(Ω)∗ is denoted by V (Ω). In the context of discrete classical probability
theory, where Ω is the set ∆(E) of probability weights on a set E, V (Ω) is
simply the space RE of all bounded real-valued functions on E. In the context
of quantum probabilistic models, where Ω is the set of density operators on a
Hilbert space H, V (Ω) amounts to the space of bounded Hermitian operators
on H.

2.2 Test Spaces and Probabilistic Models

Elegant though it is, this convex-sets framework suffers both from a certain lack
of concreteness, which can make it difficult to apply, and from a certain lack of
flexibility: one may not want to allow all effects, or all observables, to count as
“physical”; one may also want to allow measurement-outcomes to encode more
than just probabilistic information – phase information, say [53, 14]. For these
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reasons, it turns out to be more expedient to begin with an abstract model of
a set of measurements. One way to do this is in terms of so-called test spaces
[20, 51].

Definition 1 A test space is is simply pair (X, A), where X is a set and A is
a covering of X by pairwise-incomparable, non-empty sets, called tests. The
intended interpretation is that each test E ∈ A is an exhaustive and mutually
exclusive set of possible outcomes, as of some measurement or experiment. Ac-
cordingly, we call the set X the outcome space of (X, A). A state on (X, A) is
a function α : X → [0, 1] such that

∑
x∈E α(x) = 1 for every test E ∈ A. We

understand α(x) as giving the probability of the outcome x occurring in state α.

It is significant that we allow tests to overlap, that is, to share outcomes.
We want to be as un-dogmatic as possible at this point as to what kind of
thing an outcome is: that decision is an interpretive one, about which we may
want to preserve a maximum of flexibility. For the same reason, we make no
commitments as to when and why outcomes of distinct measurements should
be identified: there are many different reasons why one might make such iden-
tifications, and these will vary from model to model.

The set of all states on a test space (X, A), denoted by Ω(X, A), is of course
a convex subset of RX ; where A consists of finite sets, Ω is compact in the
topology of pointwise convergence. Each outcome x ∈ X defines an affine
functional ex : Ω → R by evaluation, that is, ex(ω) = ω(x) for every state
ω ∈ Ω. Evidently, if E ∈ A, then

∑
x∈E ex = u, where u is the unit functional

on Ω given by u(α) ≡ 1 for all α ∈ Ω; thus, the mapping x 7→ ex defines a
discrete observable on Ω, in the sense of section 2.1, with values in the set E.
To a certain extent, then, one can view a test space as a privileged family of
observables on Ω. However, the mapping x 7→ ex is generally non-injective:
distinct outcomes may have the same probability in every state. In elementary
quantum mechanics, this occurs where the outcomes in question differ by a
phase. Of course, we might choose simply to identify x with ex; but this presents
problems when we need to consider iterated measurements. I refer the reader
to the paper of Wright [53] for a thorough discussion of this point.

In practice, one almost always deals with state spaces that arise as convex
subsets of the state space of a particular test space. We lose no important
generality, then, in making the following

Definition 2 A probabilistic model is a triple (X, A, Γ) where (X, A) is a test
space and Γ is a convex set of states on (X, A).4

In cases where the extra structure provided by the test space is irrelevant
to the discussion, I’ll sometimes identify such a model with its state space Γ,
and proceed as in the convex-sets approach. Later in this paper, I’ll begin to
speak, not of individual probabilistic models, but of probabilistic theories. For

4A theorem of Shultz [40] tells us that any compact convex set can be represented as the
full state space of a test space – indeed, of the test space of finite partitions of unity in an
orthomodular lattice.
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purposes of this paper, the term can remain an informal one: roughly, a theory
is simply a class of models, closed under the formation of a “tensor product”,
as spelled out in Section 3.

2.3 Three Examples

To help fix the foregoing ideas, and to serve as running illustrations in the bal-
ance of this paper, here are three examples of probabilistic models.

Example 1: Classical Models. Discrete classical probability theory is the
theory of test spaces of the form (E, {E}), having just a single test. In this
case, the state space of A is simply the set of all probability weights on the set
E, which we denote by ∆(E). More generally, let S be a set and Σ, a field of
subsets of S. Let B = B(S, Σ) be the collection of (say, countable) partitions of
S into non-empty Σ-measurable sets. We can regard each partition E ∈ B as the
outcome-set for a “coarse-grained” measurement of a value in S. Accordingly,
we have a test space (Σ∗,B), where Σ∗ is the set of non-empty elements of Σ,
called the Borel test space associated with (S, Σ). States on (Σ∗,B) correspond
in an obvious way to σ-additive probability measures on (S,Σ). Thus, full-dress
measure-theoretic classical probability theory is also subsumed by probability
theory based on test spaces.

Example 2: Quantum test spaces. Let H be a Hilbert space. Let X(H)
denote H’s unit sphere and F(H), the set of frames, or maximal orthonormal
subsets, of H. Then (X(H), F(H)) is a test space, called the frame manual of
H, representing the collection of (maximal) discrete quantum-mechanical exper-
iments. Gleason’s theorem [23] lets us represent probability weights by density
operators in the usual way; that is, for every ω ∈ Ω(H) := Ω(F(H)), there exists
a unique density operator ρ on H with ω(x) = 〈ρx, x〉. In particular, every
pure state α ∈ Ω(H) is associated with a unit vector x, unique up to phase,
with α(y) = |〈x, y〉|2. Thus, elementary quantum probability theory is essen-
tially the theory of quantum test spaces. (Much more generally, the collection
A of maximal pairwise-orthogonal sets of projections in a von Neumann algebra
A is a test space. The extensions of Gleason’s Theorem due to Christensen and
Yeadon [13, 54] show that, where A contains no direct summand of type I2,
every state on A extends uniquely to a state on A.)

Example 3: The Firefly Box. One of the virtues of test spaces is the ease
with which one can manufacture simple and instructive ad hoc examples. As an
illustration of this, consider the following test space, known as the Firefly box or
the Wright Triangle5. A sealed triangular box has opaque top and bottom and
translucent walls. The interior is divided into three chambers, each chamber
occupying one corner, as in Figure 1 below. Inside the box is a firefly, which is
visible when viewed through a given wall if, and only if, the firefly occupies one

5The example is due originally to D. J. Foulis, but was heavily promoted by Ron Wright
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of the two chambers behind that wall, and is flashing.
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Figure 1

Each wall corresponds to an experiment: looking through the south-facing
wall, for instance, we may see a light in chamber a, a light in chamber b, or we
may see no light at all. Denoting this latter outcome by x, we may represent
the experiment of looking through the south wall by {a, x, b}. Representing
the experiments associated with the other two walls similarly by {b, y, c} and
{c, z, a} (where y and z denote outcomes in which no light is seen), we have a
test space {{a, x, b}, {b, y, c}, {c, z, a}}. This can conveniently be represented by
a graph, as in figure 2. Here each node represents an outcome, as indicated, with
the outcomes corresponding to each experiment lying along a common line.6
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Figure 2

2.4 Classical Representations

A state ω on a test space A is dispersion-free if it takes only the values 0 and
1, and thus predicts the outcome of each test with certainty. Equivalently, we
may think of a dispersion-free state as a transversal of the set of tests, that is,
a subset of X =

⋃
A meeting each test exactly once. Evidently, every state

on a classical test space A = {E} is uniquely representable as a mixture of
dispersion-free states (i.e., point masses); by Gleason’s Theorem, the quantum
test space (X(H), F(H)) has no dispersion-free states at all.

The Firefly Box presents an interesting intermediate case. Its dispersion-
free states correspond to the four transversals pictured below. The first three of
these represent the situations in which the firefly is flashing in one of the three

6The graphical convention we use here is an example of a useful device called a Greechie
diagram (after R. J. Greechie). The idea is to represent each outcome of a small, finite test
space by a node in a graph, connecting the outcomes belonging to a given test along a smooth
arc (e.g., a straight line or, if necessary, some other smooth curve), arranging matters in
such a way that the arcs corresponding to distinct but overlapping tests intersect one another
transversally, so that they can readily be distinguished from one another by eye.
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chambers; the fourth describes the situation in which the firefly is not flashing
at all (in which case its location is unknown).
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These four states determine the structure of the firefly-box. For each out-
come x ∈ X, let [x] denote the set of dispersion-free states making x certain: the
mapping x 7→ [x] is injective, and takes each test in A to a partition of the set
of dispersion-free states. In some sense, this provides a perfectly classical model
of the state space. However, not every state on the Firefly Box is explained by
this model: there is a fifth pure state, given by

ω(a) = ω(b) = ω(c) = 1/2 and ω(x) = ω(y) = ω(z) = 0, (1)

which is obviously not an average of the four dispersion-free states pictured
above. Rather, it seems to describe a “gregarious” firefly that presents itself at
whichever window it is through which the observer is peering, choosing the left or
right-hand chamber at random. It seems we can understand the “gregarious”
state (1) very easily, but only if we are willing to allow that our choice of
experiment (here, the act of looking through one of the three windows) perturbs
the (deterministic) state of the firefly.

This illustrates a trivial but very important point: there is nothing very
mysterious about non-classical models, provided we are willing to allow for con-
textuality. We can make this precise as follows. Call a test space A semi-classical
iff distinct tests are disjoint; that is, if one can read off from each measurement
outcome, the measurement by which it was secured. The pure states of such
a test space are exactly the dispersion-free states (these corresponding to ar-
bitrary selections of one outcome from each test), and, subject to very weak
analytic conditions, every state is an average of these [49]. Now given an arbi-
trary test space (X, A), let X̃ = {(x,E)|x ∈ E ∈ A}. For each test E ∈ A, let
Ẽ := {(x,E)|x ∈ E}, and let Ã = {Ẽ|E ∈ A}. Then (X̃, Ã) is a semi-classical
test space, which I like to call the semi-classical cover of (X, A). Every state ω

on A defines a state ω̃ on Ã (given by ω̃(x, E) = ω(x) for every (x,E) ∈ X̃), and
hence, can be represented as an average over dispersion-free states on (X̃, Ã).
In this sense, the latter provides a perfectly classical explanation for all of the
states on (X, A). Alas, nothing comes for free. The cost of contextuality is
non-locality – a topic to which I’ll briefly return in section 3.
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2.5 Characteristics of Quantum Models

Having attained a sufficient altitude, we can now revisit the problem of char-
acterizing quantum mechanics as a probability theory. What is it that distin-
guishes quantum probabilistic models from non-classical probabilistic models
generally? It is important to stress here that not just any kind of characteriza-
tion will do: we want to distinguish the quantum-probabilistic models in a way
that sheds some light on why we might expect these models to play an especially
prominent role in physics. It is unlikely that this question will have a best, let
alone a unique, answer. There are, after all, many different ways to characterize
classical probability theory, and the same is doubtless true of quantum proba-
bility theory. And, indeed, such answers as we have, for example, the axiomatic
reconstructions of elementary quantum probability due to Hardy [27], Goyal
[24], and D’Ariano [15] are based on very diverse considerations. Nor is the an-
swer going to be such as to single out quantum models as uniquely reasonable:
in the face of toy models like the Firefly Box, it seems extremely unlikely that
the framework of Quantum Mechanics is in any sense a “law of thought”.

On the other hand, the quantum models do have many features that, from
our current height, look rather special – and, indeed, rather classical – relative
to generic probabilistic models. For one thing, in both discrete classical and
quantum models, every outcome x corresponds to a unique pure state εx such
that εx(x) = 1: in a classical model, εx is simply the point-mass δx at x; in a
quantum model, where x is a unit vector in a Hilbert space H, εx is the pure
state defined by the same vector, that is, εx(y) = |〈x, y〉|2 for all outcomes (i.e,
unit vectors) y ∈ H.

Definition 3 A model (X, A, Ω) is sharp iff for every outcome x ∈ X, there
exists a unique state εx ∈ Ω with εx(x) = 1. Note that the set of states making
a given outcome certain is a face of the state space7; hence, the state εx must
be pure.

The condition that a model be sharp very attractive mathematically, and not
extraordinarily restrictive. For classical and quantum models, the association
runs the other way as well: every pure state makes some outcome certain – a
unique outcome, classically, and an outcome unique up to phase in the quantum
case. On the other hand, as illustrated by the Firefly box, a perfectly sensible
model need have neither property: the outcome x (of seeing no light in the
south-facing window) is certain in either of two pure states, while the strange
pure state (1) makes no outcome certain.

Another respect in which quantum and classical models are similar is this:
while a quantum state has no unique representation as a mixture of pure states,
it often has a preferred decomposition into a mixture of orthogonal pure states.
Indeed, applied to the density matrix representing a quantum state ω, the
Spectral Theorem tells us that there exists an orthonormal basis E such that
ω =

∑
x∈E ω(x)εx, where εx is the unique pure state corresponding to x ∈ E.

7A face of a convex set Ω is a convex set Γ ⊆ Ω such that if tα + (1− t)β ∈ Γ, then either
α ∈ Γ or β ∈ Γ
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Definition 4 Call a family of states {αi} sharply distinguishable iff there exists
a test E ∈ A such that ∀i, ∃xi ∈ E with αi(xi) = 1 and αj(xi) = 0 for all
j 6= i. Call a state ω ∈ Ω spectral iff it is a convex combination of sharply
distinguishable states. Equivalently, ω is spectral iff, for some test E ∈ A, one
has

ω =
∑

x∈E

ω(x)αx,

where, for all x ∈ E with αx ∈ Ω, αx is a state satisfying αx(x) = 1.

Pure quantum states are sharply distinguishable iff their corresponding state
vectors are orthogonal; thus, the spectral theorem, as applied to density ma-
trices, tells us that every quantum-mechanical state is spectral. This is hardly
the case more generally, however. Note that a pure state is spectral iff it makes
some outcome certain; thus, the outré pure state (1) on the Firefly box, which
makes no outcome certain, isn’t spectral.

One should resist the temptation to take it as an axiom of generalized prob-
ability theory that all states be spectral, since to do so would be to rule out
examples like the Firefly Box by fiat. As it happens, one can anyway do a bit
better: as we’ll see in section 4, the spectrality of states follows easily from a
condition with a more obvious motivation in terms of correlation between the
parts of composite systems. Before we can discuss this, of course, we need to
say something about how general probabilistic models can be composed. This
is the subject of the next section.

3 Coupled Systems and Entanglement

As we’ve seen, there is nothing terribly mysterious about quantum or other
non-classical probabilistic models, taken one at a time: they can readily be
understood in terms of contextual hidden variables. The really interesting fea-
tures of such models arise when they are combined: as is well known, composite
quantum systems can be correlated in distinctly non-classical ways, via so-called
entangled states, and these, by Bell’s theorem, are not explicable in terms of
local hidden variables, contextual or otherwise. It is exactly the existence of
such highly correlated states that leads to the most counter-intuitive aspects
of quantum mechanics. However, as we’ll see in this section, entanglement is
not a specifically quantum phenomenon; rather, it arises generically when one
combines two non-classical probabilistic models.

3.1 Products of Probabilistic Models

Suppose we want to construct a model of a system comprising two separate
subsystems. We have in mind here a rather special situation, in which the two
component systems are not interacting in any obvious, causal sense (e.g., sys-
tems occupying space-like separated regions of space-time). I make two prelimi-
nary assumptions: first, that it is possible to make measurements independently
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on the two sub-systems, and secondly, that states of the composite system are
completely determined by the probabilities they assign to the results of such
measurements.8

To make this a bit more precise, suppose that our two sub-systems are
associated with test spaces A and B, with outcome-spaces X and Y , respec-
tively. Following the notation of [20], let us write xy for an ordered pair (x, y)
of outcomes x ∈ X and y ∈ Y , AB for the cartesian product A × B of sets
A ⊆ X and B ⊆ Y , and so on. Our first assumption requires that the test
space corresponding to a coupled system include, at a minimum, all product
tests EF = {xy|x ∈ E, y ∈ F}, where E ∈ A and F ∈ B. The collection of
such product tests, which, in a shameless abuse of notation, we write as A×B,
is itself a test space with outcome set XY . We are requiring, then, that any
“joint test space” C for the combined system contain A×B.

Our second assumption requires that distinct states of the coupled system
be distinguishable by outcomes in XY . Thus, if Θ ⊆ Ω(C) is the state space of
the coupled system, the natural restriction mapping Θ → Ω(A×B) be injective.
This allows us to treat Θ, for most purposes, as a subset of Ω(A×B).

Definition 5 A state ω ∈ A×B is influence-free [20, 29] iff the marginal states
ω2 := ω2|E and ω1 := ω1|F are well-defined, i.e, independent of E ∈ A and
F ∈ B.

The idea is that a state is influence-free if the mere choice of measurement on
the A-system has no effect on the probabilities of B-outcomes, and vice-versa.
(Such states are also sometimes called no-signalling states in the literature, but
I dislike the term, as it can be shown [20, 5] that influence-free states are pre-
cisely those that allow classical signalling between the sub-systems.)

If α ∈ Ω(A) and β ∈ Ω(B), then the product state α⊗β ∈ Ω(A×B), defined
for all xy ∈ XY by

(α⊗ β)(xy) = α(x)β(y),

is clearly influence-free; hence, so is any convex combination ω =
∑

i tiαi⊗βi of
product states. Borrowing language from quantum theory, we call states of this
form separable; influence-free states that are not separable, we call entangled. As
is well-known, quantum mechanics allows for the existence of entangled states.
As will become clear presently, this is equally true of (almost) any non-classical
probabilistic theory, quantum or otherwise.

If ω is influence-free, we have, for every outcome x of A and every outcome
y of B, conditional states ω2|x ∈ Ω(B) and ω1|x ∈ Ω(A), given respectively by

ω2|x(y) =
ω(xy)
ω1(x)

and ω1|y(x) =
ω(xy)
ω2(y)

,

8We are adopting here what Barrett [6] calls the “global state” assumption. As has been
noticed by many authors (see, e.g., [30]), this is sufficient to bar real and quaternionic Hilbert
space models for quantum mechanics. I’ll return to this point below.

12



with the usual proviso that ω2|x ≡ 1 if ω1(x) = 0, and similarly for ω1|y.
We have the expected identities ω(xy) = ω1(x)ω2|x(y) = ω1|y(x)ω2(y) for all
x ∈ X, y ∈ Y . Notice that if we select any test E ∈ A, we can relate the
marginal states ω1 and ω2 by an analogue of the law of total probability, namely

ω2 =
∑

x∈E

ω1(x)ω2|x. (2)

We are now in a position to define what counts as a model of a composite
system. For our purposes, the following will suffice:

Definition 6 A separated product of two probabilistic models (X, A,Ω) and
(Y, B, Γ) is a model (Z, C, Θ) where Z ⊇ XY , C ⊇ A ×B, and Θ is a convex
set of states on (Z, A) such that

(a) The set XY is separating for states in Θ, so that we can identify Θ with
a subset of Ω(A×B);

(b) Every state in Θ is influence-free on A×B;

(c) For every state ω ∈ Θ and all outcomes x ∈ X and y ∈ Y , the conditional
states ω1|y and ω2|x belong to Ω and Γ, respectively;

(d) Θ contains all product states.

Example: Recall that the frame manual of a Hilbert space H is the test space
F(H) consisting of all orthonormal bases for H. The state space of F(H), that
is, the set of density operators on H, we denote by Ω(H). Let X denote the unit
sphere of H. Suppose now that H is the tensor product, H1 ⊗H2, of two com-
plex Hilbert spaces H1 and H2, with unit spheres X1 and X2, frame manuals F1

and F2, and state spaces Ω1 and Ω2, respectively. Identifying xy ∈ X1X2 with
x⊗y ∈ X, we may regard any product test EF in F1×F2 as an orthonormal ba-
sis for H. Modulo this slight sloppiness, F ⊇ F1×F2. I claim that (X, F, Ω(H))
is a separated product of (X1,F1, Ω(H1)) and (X2, F2,Ω(H2)). If ω ∈ Ω(H)
corresponds to the density operator W on H1⊗H2, then the Polarization iden-
tity, applied twice, shows that W – hence, ω – is uniquely determined by the
biquadratic form 〈Wx⊗ y, x⊗ y〉 = ω(xy). Thus, condition (a) is satisfied. To
see that (b) is satisfied, simply note that the marginals of ω ∈ Ω(H) are given
by ω1(x) = Tr(W (Px⊗11)) and ω2(y) = Tr(W (12⊗Px)), where Px and Py are
the rank-one projections on H1 and H2, respectively, corresponding to the unit
vectors x and y, and where 1 represents the identity operator on Hi, i = 1, 2.
Conditional states are essentially just the relative states considered by Everett
(a point to which I’ll return in section 4.1), so condition (c) is satisfied. Condi-
tion (d) is trivial, so we see that (X, F, Ω(H)) is indeed a separated product, in
the sense of Definition, of (X1,F1,Ω(H2)) and (X2, F2, Ω(H2)).

Remark: The use of the polarization identity above is crucial to secure condition
(a) in the definition of a separated product. In fact, the models associated
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with tensor products of real or quaternionic Hilbert spaces are not separated
products in the above sense. This can be seen either as a justification for the
use of complex scalars, or as a defect in the definition.

3.2 Tensor products of state spaces

It is possible to give an abstract characterization of the possible state spaces of
separated products in terms of the state spaces of the component systems, in a
way that makes no reference to test spaces. For what follows, recall that if Ω
is any compact convex set, we write V (Ω) for the span of Ω in A(Ω)∗. In our
finite-dimensional setting, V (Ω) = A(Ω)∗ and V ∗(Ω) = A(Ω). Recall, too, that
if Ω is a set of states on (X, A), then every outcome x ∈ X induces an effect
ex ∈ A(Ω) by ex(α) = α(x) for all α ∈ Ω.

Suppose now that Ω and Γ are convex sets of states on test spaces A and B,
respectively. Let φ be a bilinear form φ : A(Ω)×A(Γ) → R that is positive, in the
sense that φ(a, b) ≥ 0 for all positive a ∈ A(Ω) and b ∈ B(Ω), and normalized, in
the sense that φ(uΩ, uΓ) = 1. It is not difficult to see that φ yields an influence-
free state ω on A×B, given by ω(xy) = φ(ex, ey), with conditional states in Ω
and Γ. It is not difficult to prove the following converse (for details, as well as a
discussion of the analogous result for infinite-dimensional state spaces, see [48];
see also [46, 21] for similar results in a Hilbert space context):

Proposition 1 Let ω be an influence-free state on A × B having conditional
states in Ω and Γ. Then there exists a unique positive, normalized bilinear form
ω̂ on A(Ω)×A(Γ) such that ω̂(ex, ey) = ω(xy) for all x, y.

We now have a perfectly abstract characterization of compound state spaces:

Definition 7 A tensor product of two state spaces Ω and Γ is a convex set
Ω ⊗ Γ of positive, normalized bilinear functionals on A(Ω) × A(Γ), containing
all product states.

Evidently, the largest tensor product, which we call the maximal tensor
product and denote by Ω ⊗max Γ, consists of all normalized positive bilinear
functionals, while the smallest, the minimal tensor product Ω ⊗min Γ, consists
of convex combinations of product states, that is, separable states. Thus, the
minimal tensor product allows for no entanglement, and the maximal tensor
product, for as much entanglement as possible (subject to states being influence-
free and having conditional states in the correct state-spaces).

If α and β are pure states in Ω and Γ, respectively, then it is easy to show
that the product state α ⊗ β is a pure state of Ω ⊗ Γ. Unless one factor is
a simplex, however, the latter will contain many extreme states that are not
products. Indeed, we have the

Proposition 2 ([34]) A compact convex set Ω satisfies Ω⊗max Γ = Ω⊗min Γ
for all compact convex sets Γ iff Ω is a simplex.
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It is worth remarking that a positive, normalized bilinear form on A(Ω) ×
A(Γ) is effectively the same thing, in finite dimensions, as a positive linear
mapping φ : A(Ω) → V (Γ) satisfying the normalization condition φ̂(uΩ) ∈ Γ. It
follows [30, 48] that, if Ω and Γ are finite-dimensional convex sets, then for any
choice of tensor products, we have

V (Ω⊗ Γ) = V (Ω)⊗ V (Γ) ' L(A(Ω), V (Γ))

where L(A(Ω), V (Γ)) is the vector space of linear mappings from A(Ω) to V (Γ),
ordered by the cone of positive linear mappings. Similarly

A(Ω⊗ Γ) = A(Ω)⊗A(Γ) ' L(V (Ω), A(Γ))

for any choice of tensor product. In particular, every state a tensor product is
an affine combination of pure tensors – that is, a linear combination of pure
tensors, the coefficients of which sum to unity, but need not all be positive.

Examples: (a) If Ω and Γ are both classical state spaces, say Ω = ∆(E) and
Γ = ∆(E′), then Ω⊗max Γ = Ω⊗min Γ, both being isomorphic to ∆(E × E′).

(b) If Ω(H1) and Ω(H2) are the state spaces associated with complex Hilbert
spaces H1 and H2, respectively, then Ω(H1)⊗minΩ(H2) is properly smaller than
the the quantum state space Ω(H1 ⊗H2) associated with H1 ⊗H2; the latter,
in turn, is properly smaller than Ω(H1)⊗max Ω(H2). Indeed, any positive op-
erator φ : B(H1) → B(H2) satisfying Tr(φ(1)) = 1, where 1 is the identity
operator on H1, defines an element of Ω ⊗max Γ (and conversely); but such a
map corresponds to a bipartite quantum state iff it is completely positive.

What Barrett [6] calls a (probabilistic) theory is essentially a class of mod-
els closed under a separated product construction. I’ll adopt this terminology.
Thus, if one begins with complex quantum state spaces and couples these us-
ing the minimal tensor product, one obtains a theory in Barrett’s sense (what
Halvorson [25] calls the “Shr*dinger theory”) that is quite different from or-
dinary quantum mechanics. Similarly, one might begin with quantum state
spaces, and proceed to couple these using the maximal tensor product [47, 5].
For another example, if one begins with semi-classical test spaces consisting
of dichotomies (two-outcome tests), and couples these using the maximal ten-
sor product, one obtains essentially the class of models considered by Popescu
and Rohrlich [36]. These have come to be called PR boxes; accordingly, one
might call this the Box Theory. Proposition 2 tells us that if a probabilistic the-
ory allows for non-classical (that is, non-simplex) state spaces, it must include
composite systems having entangled states – unless, of course, the theory (like
Halvorson’s “Shr*dinger” theory) makes use exclusively of the minimal tensor
product, which we may regard as a degenerate case. In this sense, entangled
states are a generic feature of non-classical probabilistic theories.
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3.3 Proper and Improper Mixtures

A consequence of the Law of Total Probability – Equation (2) above – is the fact,
well-known in the context of quantum mechanics but in fact entirely general,
that the reduced states of an entangled bipartite state are always mixed. Note
that this is true regardless of what tensor product we use.

Lemma 1 If either marginal, ω1 or ω2, of a bipartite state ω in Ω⊗Γ is pure,
then ω = ω1 ⊗ ω2.

Proof: Suppose ω2 is pure. We wish to show that ω(xy) = ω1(x)ω2(y) for all
x, y ∈ XY . Fix x, and let E be an observable including x. By equation (2) we
have, for every y,

ω2(y) =
∑

x∈E

ω2|x(y)ω1(x).

This gives us ω2 as a convex combination of the conditional states ω2|x. As ω2

is pure, we have, for each x ∈ E, either ω1(x) = 0 or ω2|x = ω2; in either case
we have ω(xy) = ω1(x)ω2(y) for all y ∈ Y . ¤.

An immediate corollary of Lemma 1 is that if either marginal of a pure
bipartite state is pure, then so it the other, and the state is a product state.
Hence, as advertised, the marginals of a pure entangled state must be proper
mixtures.

It follows that the familiar antinomy concerning the “ignorance interpreta-
tion of mixtures” in quantum mechanics is entirely generic. Indeed, suppose
that a bipartite system with state space Ω ⊗ Γ is in a pure entangled state ω.
Then the reduced state ω1 must be mixed – say, ω1 =

∑
i tiαi. It is tempting to

regard ω1 as representing a statistical ensemble, in which system 1 is in state αi

with probability ti. But (so runs the usual argument), if system 1 were really
in pure state αi, then the real pure state of the composite would have to be a
product state, which, by assumption, it isn’t.

This argument is usually glossed by saying that the marginals of pure en-
tangled states don’t admit an ignorance interpretation. Such marginals are
therefore often referred to as improper mixtures. While the argument is cer-
tainly not water-tight from a mathematical point of view (in particular, it relies
on a tacit assumption that the “true” state of system 1 must be the marginal
of the bipartite state), it is widely accepted. What I hope to have established
above is that it holds as much water as applied to general probabilistic models
as it does in quantum theory.

3.4 Generic Information Theory

In recent years, it has become clear that one can use entanglement of bipar-
tite quantum states as a resource with which to perform information-processing
tasks. A programme associated with Brassard [8] and C. Fuchs [21] asks whether
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quantum mechanics might be the unique probabilistic theory having specific
information-theoretic properties. A partial result in this direction, due to
Clifton, Bub and Halvorsen [11], establishes that, indeed, quantum mechanics
(with super-selection rules) is picked out uniquely from among theories hav-
ing a C∗-algebraic state space by three information-theoretic constraints: the
impossibility of super-luminal signalling, of bit-commitment, and of universal
cloning.

Having just seen that entangled states arise generically in coupled non-
classical models, it is natural to ask how far the known results of quantum
information theory extend to this general setting. Barret [6] has shown the
non-availability of universal cloning is generic in this way. More recently, it has
been shown [4] that powerful versions of the no-cloning and no-broadcasting
theorems hold for any finite-dimensional probabilistic model with a compact
state space. In more detail, let Ω be any finite-dimensional compact convex set.
Say that an affine mapping B : Ω → Ω⊗ Ω clones α ∈ Ω iff B(α) = α⊗ α, and
broadcasts α iff B(α)1 = B(α)2 = α. We say that a finite set α1, ..., αn of states
is jointly clonable or jointly broacastable iff there exists a single affine mapping
B that clones, or broadcasts, them all. For a proof of the following, see [4]:

Proposition 3 States α1, ..., αn are jointly clonable iff sharply distinguishable,
and jointly broadcastable iff all αi are mixtures of a single sharply distinguishable
family of states.

This has the usual no-cloning and no-broadcasting theorems as corollaries;
thus, these results are not special to quantum mechanics, but simply reflect
general principles governing all non-classical probabilistic theories.

On the other hand, not every theory supports a teleportation protocol [4].
It’s also well known that generic models can violate Bell inequalities more
strongly than quantum models do [29, 36]. Thus, the possibility remains open
that some combination of constraints motivated by quantum information theory
will single out, or nearly single out, quantum mechanics, not only among theo-
ries within a C∗-algebraic framework, but among probabilistic theories generally.
Rather than pursue this possibility, however, we return in the next section to the
question raised in section 1, of the extent to which familiar interpretive issues
and strategies concerning quantum mechanics can be regarded as generic.

4 Correlation and Measurement

By a realist interpretation of quantum mechanics is usually meant one that does
not take the concept of “measurement” or “outcome” as primitive, but rather,
gives a principled account of which physical interactions count as measurements,
and of how these come to have definite outcomes. A no-collapse interpretation
attempts to do this within the unitary dynamical framework of standard quan-
tum mechanics – without, that is, invoking any actual dynamical “collapse”
of the quantum state. Most such accounts also adhere to what we might call
pure-statism, i.e, the doctrine that the true state of a quantum system is, at all
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times, a pure state. Actually, there are two versions of this doctrine: a strict
version, according to which the state of any quantum system is always a pure
state, and a weaker but perhaps more plausible version, according to which the
state of a closed system (one not in interaction with other systems, e.g., the
universe) is at all times a pure state.

To provide such an interpretation is a non-trivial task in view of the mea-
surement problem, which purports to show that, in general, unitary dynamics
actually precludes measurements having determinate outcomes. There are three
well-known strategies for overcoming this obstacle: dynamical hidden-variables
theories, of which Bohmian mechanics is the best known example; Everettian
relative state or “many-worlds” interpretations; and so-called modal interpreta-
tions. My aim in this section is, first, to show that the measurement problem,
or anyway one version of it, can be formulated generically in any nonclassical
probabilistic theory admitting entangled states. Secondly, I wish to consider –
albeit only in the most preliminary way – to what extent one of the interpretive
strategies mentioned above, that of Everett, is viable in a general setting.

4.1 The Quantum Measurement Problem

A standard, if highly idealized, account of measurement as a quantum-mechanical
process runs something like this. An object system S, prepared in a state α,
is coupled with another system, regarded as a measuring apparatus, initially
in a “ready state” βo. The object and apparatus are both understood to be
quantum systems, represented by a Hilbert spaces HO and HA, respectively.
The coupled object-plus-apparatus system is represented, as usual, by the ten-
sor product HO ⊗HA. During measurement, the coupled system undergoes a
unitary evolution that takes the initial state α⊗ βo of the combined system to
a pure final state ω. The observable to be measured may, for our purposes,
be identified with an orthonormal basis E = {xi} of HO; for each unit vector
xi ∈ E let αi = εxi denote the corresponding pure state (so that αi(xi) = 1).
It is required that if the initial state α is an eigenstate of the observable to
be measured – that is, if α = αi for some xi ∈ E – then the final joint state
should have the form α′i⊗βi, where βi is an eigenstate of a “pointer” observable
F = {yi} of the measuring apparatus, in which the apparatus has recorded a
definite outcome xi, and where α′i is the corresponding post-measurement state
of the system (possibly, but not necessarily, equal to αi). Notice that there is no
difficulty in constructing the desired unitary: it is uniquely defined on HO⊗(yo)
(where (yo) is the one-dimensional subspace spanned by yo ∈ HA) by the recipe

U : xi ⊗ yo 7→ xi ⊗ yi ∀i, (3)

and can be extended arbitrarily to the rest of HO ⊗HA.
The problem now arises that, if α = εv is the pure state corresponding to a

proper superposition v =
∑

x∈E cixi of the elements of E, then the linearity of
the evolution requires that the final state correspond to the unit vector

U(v ⊗ yo) =
∑

i

cixi ⊗ yi. (4)
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As this state is entangled, it assigns no definite pure state to the apparatus
system: we have only the mixed marginal state

∑
i |ci|2βi. To be sure, this is

statistically indistinguishable from a situation in which we end up with one of
the states βi with probability |ci|2, but it is an improper mixture, as discussed in
section 3.4, and hence, the apparatus system isn’t actually in any of the states
βi corresponding to the apparatus’ having recorded a definite value.

Tacit here is the assumption that measurement outcomes are to be identified
with final states of the measuring apparatus. This reflects the notion that, for
a measurement to have taken place, some record of its result must come to exist
in the apparatus, and that this must mean the apparatus is left in some state
corresponding to that record. But there is another point of view we can take,
namely, that measurement outcomes are something other than states – say, for
instance, events.9 This would seem to dissolve the measurement problem, as
it is hardly surprising that a two-sorted ontology should support two distinct
dynamics. On the other hand, it carries a commitment to an ontology that is not
as well explored as one would wish, and leaves the formal structure of quantum
theory, if anything, more mysterious than ever: why, after all, should we expect
that every measurement-outcome qua event should correspond to some unique
pure state, and vice versa? It also leaves the fact that some measurements
are repeatable a bit of a mystery: to put it differently, such proposals face the
problem of accounting for stable records.

Similar remarks apply to other proposals that have been made for the some-
thing other that might be the correlates of measurement outcomes. Prominent
here is the suggestion of van Fraassen, Healy, Dieks and others that a quantum
system has, at any time, a set of privileged observables (“beables”, in John
Bell’s famous phrase [7]) that have definite values. In “modal” accounts of this
sort, a quantum system has two distinct states: a dynamical state, which assigns
probabilities to values of observables, and a value state, which determines which
value of each definite-valued observable is actual.10

A more radical, but also far more popular, response to the measurement
problem is the “many-worlds” interpretation, according to which each “branch”
xi⊗ yi of the final object-plus-apparatus system state (4) represents an equally
real state of affairs, in which object and apparatus are correlated. More vividly,
regarding the apparatus system as consisting of the object system’s entire envi-
ronment, we may wish to speak of these branches as “worlds”.

I don’t propose to offer here any detailed review, much less any detailed
critique, of either modal or many-worlds interpretations. But I do want to
make two observations. First, the problem that these interpretations purport
to solve – the quantum measurement problem – depending as it does only on

9Other possibilities for the something other are mental states [26], the “value states” fea-
turing in modal interpretations [43, 31, 17] – discussed below – and perhaps even classes of
“worlds” [3] or “histories”. If these other things turn out to be classical in some way, then so
much the better.

10In order to avoid Gleason-Kochen-Specker problems, of course, the set of definite-valued
observables can not be too large. Various modal interpretations differ from one another as to
how they pick out this privileged set of variables [9, 10].
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very general features of entanglement, arises in essentially any non-classical
probabilistic theory. Secondly, certain versions of both modal and many-worlds
interpretations depend, for their cogency, on structural features of Hilbert space
quantum mechanics that are not completely generic – but which can fruitfully
be abstracted. These points are fleshed out in the following sections.

4.2 A Generic Measurement Problem

The idealized model of measurement sketched in the previous section can be
adapted to the setting of a generic probabilistic model, as follows.

Definition 8 A measurement of a discrete observable E on a system with state
space Ω, by a second system with state space Γ, consists of (i) and affine mapping
µ : Ω⊗Γ → Ω⊗Γ (where Ω⊗Γ is some tensor product of Ω and Γ), called the
measurement dynamics, (ii) an initial apparatus state βo, and (iii) a discrete set
{βx|x ∈ E} of final apparatus states, indexed by x ∈ E, such that, for every
state α ∈ Ω, the reduced apparatus state µ2 is given by

µ2(α⊗ βo) =
∑

x∈E

α(x)βx.

To simplify notation, I’ll frequently refer to the mapping µ alone as a measure-
ment, leaving tacit the initial apparatus state. As a further simplification, I
shall sometimes write µ(α) for µ(α ⊗ βo), conflating µ with the corresponding
mapping Ω → Ω⊗ Γ. Context should make this usage unambiguous.

I should stress that this definition is intended to supply only the broadest
sort of constraint on what kind of physical process could count as a measurement
of a discrete observable. In particular, no assumption is made about the final
apparatus states βx, other than that they be distinct: they need not be pure
states, they need not equal the conditional states µ(α ⊗ βo)2|x, nor need they
correspond to the outcomes of some “pointer observable” on the apparatus
system. 11

We can always define a measurement for an any observable E as follows: let
βx be any (distinct) states you like, indexed by x ∈ E, and let αo be any state
in Ω; the affine mapping

µ : ω 7→
∑

x∈E

ω1(x)αo ⊗ βx

is measurement of E with final states βx (one for which the final joint state µ(α)
is separable at that). However, this measurement is quite brutal, in that the
post-measurement state of the object system is the constant state αo, regardless
of the original state.

11Ruetsche suggests [38] that an affine mapping α⊗β 7→ β⊗α can count as a measurement,
as it perfectly correlates the final apparatus state with the initial system state. But this does
not supply a dynamical model of any particular observable, which is the game here.
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In contrast, the unitary operator U of Equation (3) yields a measurement,
defined by

µU (ω)(x⊗ y) = ω(U−1(x⊗ y))

for all unit vectors x ∈ HO and y ∈ HA, that is very gentle – indeed, µU is an
affine automorphism of the joint state space Ω(HO)⊗Ω(HA) := Ω(HO ⊗HA).

Definition 9 Call a measurement purity-preserving iff (i) the initial apparatus
state βo is pure, and (ii) the measurement dynamics µ : Ω ⊗ Γ → Ω ⊗ Γ takes
pure states to pure states. Call the measurement reversible iff µ is an affine
automorphism of Ω⊗ Γ.

If we are committed to pure-statism, both for the object and apparatus sys-
tems prior to interaction, and for the composite system during interaction, then
we should certainly require that measurements be purity-preserving. Note that,
subject to βo being pure, reversible measurements must be purity-preserving.

Definition 10 A state α is an eigenstate for an observable E if and only if there
exists some x ∈ E with α(x) = 1. If every pure state α ∈ Ω is an eigenstate of
E, then E is classical.

Note that E is classical iff Ω decomposes as a direct convex sum of the faces
Fx := {α ∈ Ω|α(x) = 1}, x ∈ E. In quantum-theoretic terms, this means that
E is a (discrete) superselection rule. Note, too, that if Ω is the state space
of a test space A and every E ∈ A is classical, then every pure state in Ω is
dispersion-free.

Lemma 2 Let µ be a purity-preserving measurement. Then for any pure state
α ∈ Ω not an eigenstate of E, the state µ(α) is necessarily entangled.

Proof: Since α isn’t an eigenstate of E, the marginal state µ2(α) =
∑

x∈E α(x)βx

is a mixed state. Thus, the pure state µ(α) is not a product state. ¤

We can now argue that µ(α) is not a proper mixture of the pointer states
βx, x ∈ E, exactly as in the version of the quantum measurement problem
glossed earlier. In particular – according to this logic – the apparatus system is
not actually in any of the pointer states βx. Thus, this version of the quantum-
mechanical measurement problem is in fact completely generic, arising whenever
we wish to model the measurement of a non-classical observable in terms of the
dynamical interaction of object and apparatus systems.

It is important to note the following

Corollary: If Γ is classical (a simplex), then there exists no purity-preserving
measurement of E, unless E is classical.12

12It is unfortunate that, in the language adopted here, classical probabilistic models support
non-classical observables, namely, noisy, or “fuzzy”, versions of random variables. A better
term would be welcome.
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Proof: As Γ is a simplex, Ω⊗Γ = Ω⊗max Γ = Ω⊗min Γ, by Proposition 1. Let
µ : Ω → Ω⊗ Γ be a purity-preserving measurement. Then for every pure state
α ∈ Ω, µ(α) is a pure state in Ω⊗min Γ, hence, a product of pure states – say
µ(α) = γ ⊗ β. But then µ(α)1 =

∑
x∈E α(x)βx = β. Since β is pure and the

states βx are distinct, there must be a unique x ∈ E with βx = β and α(x) = 1.
In particular, α is an eigenstate of E. ¤

Thus, to resolve our generic measurement problem, it is not sufficient to
invoke the existence of classical systems that can serve as measuring devices. In
the next two sections, I’ll investigate whether a particular strategy for resolving
the quantum measurement problem – a very simple form of Everettian relative-
state interpretation – can be made to work for a general probabilistic theory.

4.3 Relative and Conditional States

According to Everett [19], if a bipartite quantum system, is in a pure entangled
state represented by a vector v ∈ H1 ⊗H2, where H1 and H2 are the Hilbert
spaces representing the component systems, then these component systems do
not have states of their own in any absolute sense, but only relative states. More
exactly, Everett notes that v defines, in a perfectly standard way, an operator
v̂ from H1 to H2, defined, for all vectors x ∈ H1, by the condition hat

〈v̂(x), y〉 = 〈v, x⊗ y〉
for all y ∈ H2. Everett regards the vector v̂(x), suitably normalized, as rep-
resenting the state of system 2 relative to system 1’s being in the state cor-
responding to x. In fact, this relative state vrel,x := v̂(x)/‖v̂(x)‖ represents
nothing other than the conditional state of system 2, given the outcome cor-
responding to x ∈ H1. Although Everett mentions this in passing, it is worth
spelling out, since the point seems to get lost in many discussions of the Everett
interpretation.

Lemma 3 Let Ω be the state space of a bipartite quantum system with Hilbert
space H = H1 ⊗H2. If α ∈ Ω is the pure state associated with a unit vector
v ∈ H, then for any unit vector a in H1, the conditional state αa is the pure
state associated with the unit vector vrel,x = v̂(a)/‖v̂(a)‖.
Proof: Given orthonormal bases E and F for H1 and H2, respectively, we can
express the vector v as

v =
∑

xy∈EF

cxyx⊗ y.

Note that this defines an operator from H1 to H2, namely v̂ : a 7→ ∑
xy cxy〈x|a〉y.

For a fixed a, we are free here to choose the basis E so that a ∈ E; then the
foregoing is more simply expressed as v̂(a) =

∑
y∈F cayy. Since the vectors

y ∈ F are orthonormal, we have

‖v̂(a)‖2 =
∑

y∈F

c2
ay = α(aF ).
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Now the conditional state of α, given outcome (represented by) a ∈ H1, is given
by αa(z) = ρ(az)/α(aF ) for any orthonormal basis F . Now,

α(az) = |〈v|a⊗ z〉|2
= |

∑

xy∈EF

cxy〈x|a〉〈y|z〉|2

= |
∑

y∈F

cay〈y|z〉|2.

= |〈v̂(a)|z〉|2.

Since the norm squared of v̂(a) is exactly α(aF ) for any orthonormal basis F of
H2, normalization on the two sides gives us

αa(z) = 〈vrel,a|z〉,

as advertised. ¤

It is striking here that, in quantum mechanics, conditioning a pure bipartite
state on an outcome of one system gives a pure state of the second. This is also
true of classical probability theory, of course; but it isn’t true of all probabilistic
models.

Example: Consider the maximal tensor product of two quantum state
spaces. It can be shown (e.g., [5]) that a positive linear mapping V (ΩH) →
V (ΩK) that sends extremal rays to extremal rays is either of the form ρ 7→ AρA∗

or ρ 7→ AρtA∗, where ρ 7→ ρt is transposition relative to some orthonormal ba-
sis. Mappings of the first kind are completely positive, those of the second are
said to be co-completely positive. A positive linear mapping is decomposable
iff it is a convex combination of completely positive and co-completely positive
mappings. In dimension higher than 2, there always exist non-decomposable
positive mappings [12]; thus, any extreme, normalized, non-decomposable posi-
tive mapping has non-pure conditional states.

This suggests the following terminology:

Definition 11 Say that a probabilistic theory satisfies the pure conditionaliza-
tion principle iff, for every pair of models (X, A, Ω) and (Y, B, Γ) of the theory,
for any pure bipartite state ω ∈ Ω⊗Γ, and for any outcomes x ∈ X and y ∈ Y ,
the conditional states ω2|x and ω1|y are pure in Ω and Γ, respectively.

If we are aiming for an Everettian solution to the generalized measurement
problem, and if we wish to adhere (as I take it that Everett did) to a strict
pure-statism at the level of the components of a coupled object-plus-apparatus
system, then this is the least we should require of a theory (though whether such
a component-wise pure-statism is indispensable to a relative-state interpretation
is, I think, open to question).
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4.4 Correlation and Spectrality

In the standard account of measurement interactions sketched in section 4.1,
the final system-plus-apparatus state, given by Equation (4), perfectly corre-
lates the eigenstates of the object system observable E with those of a “pointer
observable” of the apparatus system. In fact, any unit vector v in the tensor
product H1 ⊗H2 of two Hilbert spaces expresses a perfect correlation of this
sort between some pair of observables. Indeed, suppose that v corresponds to
the pure bipartite state ω, and let {xi} be an orthonormal basis diagonalizing
the density matrix corresponding to the marginal state Ω. By Lemma 3, the
conditional states ω2|xi

are pure, and hence, correspond to unit vectors yi in H2

(namely, yi = vrel,xi
). It can be shown that these are orthonormal, and that in

fact,
v =

∑

i

λixi ⊗ yi

where λi =
√

ω(xiyi). This biorthogonal or Schmidt decomposition of v is unique
when the non-zero coefficients λi are distinct (which is the case for almost all
choices of v).

The biorthogonal decomposition plays an important role in Everett’s original
formulation of his relative state interpretation [19] (Everett calls it the canonical
representation)13, and also in the Modal interpretations of Kochen [31] and
Dieks [17]. It allows the state itself to select a set of preferred pairs of observables
– and, in non-degenerate cases, a unique preferred pair – between which the state
establishes a perfect correlation.

To consider the Everett interpretation, suppose a composite object-plus-
apparatus system is in a pure state represented by a unit vector v ∈ HO ⊗
HA, with biorthogonal decomposition as in (4). Then we can regard each of
the pure tensors xi ⊗ yi appearing in that decomposition as representing a
possible state of affairs (or, more colorfully, a “possible world”); the set of
pure tensors arising from the biorthogonal decomposition of v thus gives us a
family of pairwise orthogonal states of affairs, in each of which object system
and measuring apparatus are perfectly correlated. The state vector v gives us
also a probability weight on these, namely |〈v, xi ⊗ yi〉|2 = c2

i . Note that any
observables diagonal with respect to E = {xi} will be perfectly correlated with
corresponding observables diagonal with respect to {yi}. Finally, note that
these sets of correlated observables are not put into the account by hand, but
are determined (at least in the non-degenerate case) by the state ω itself.

At this point, Everettian and modal interpretations differ in their meta-
physics: the former conceives that all of the states of affairs (or “worlds”) rep-
resented by the correlated pairs (xi, yi) are equally actual; the latter assumes
that exactly one of these pairs is actual. At the present rather abstract level
of discussion, it is unclear what basis, other than aesthetics, we could have for
preferring one of these points of view to the other. 14

13This has little role in more contemporary Everettian interpretations, which rely instead
on ideas from decoherence theory.

14It is also unclear to me just how far a many-worlds interpretation, in particular, needs the
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In what follows, I’ll concentrate on the kind of Everettian theory sketched
above. In order to loft a similar interpretation of an otherwise arbitrary prob-
abilistic theory, we would seem to need a stand-in for the biorthogonal decom-
position. For simplicity, I’ll assume, from this point on, that both object and
apparatus systems are described by the same probabilistic model (X, A, Ω).

Definition 12 Call a bipartite state ω ∈ Ω⊗ Ω correlating iff there exist tests
E, F ∈ A and a bijection f : E → F such that, for all xy ∈ EF , ω(xy) = 0 if
y 6= f(x). In this case, say that ω correlates E and F via f .

If A is the frame manual of a Hilbert space, then the biorthogonal decom-
position theorem is exactly the statement that every pure state is correlating.
This is certainly not true of probabilistic models generally.

Lemma 4 The marginals of a correlating bipartite state are spectral.

Proof: As observed above (Equation (2) in section 3.2), for every E ∈ A, we
have

ω2(y) =
∑

x∈E

ω1(x)ω2|x.

If ω is correlated via f : E → F , then we have, for all x ∈ E with ω1(x) > 0,
that ω2|x(y) = 1 if y = f(x) ∈ F ; thus, the conditional states ω2|x, x ∈ E, are
distinguishable by {f(x)|ω1(x) > 0}. ¤.

If ω correlates tests E and F via a bijection f : E → F , then ω2|x(f(x)) =
ω1|f(x)(x) = 1. If (X, A, Ω) is sharp, this tells us that ω1|f(x) = εx and ω2|x =
εf(x), where as usual εx denotes the unique (hence, pure) state making x certain.

Definition 13 Let us say that a probabilistic theory is

(a) correlational (for want of a better adjective!) iff, for all state spaces Ω and
Γ of the theory, every pure state of Ω⊗ Γ is correlating, and

(b) strongly correlational iff, in addition, every state in Ω is the marginal of
some pure state of Ω⊗ Γ.

Lemma 4 gives us, for any strongly correlational theory, a kind of weak spec-
tral theorem for states: every state is a convex combination of distinguishable
states. If the theory in question also satisfies the pure conditionalization prin-
ciple, or if its models are sharp, then every state is a mixture of distinguishable
pure states. This would seem to be enough to allow a rudimentary sort of rela-
tive state interpretation to fly, even in this still very rarified air. Thus, consider
a composite system having two parts, with state space Ω⊗Γ. If the global state
ω is biorthogonal with respect to a bijection f : E → F correlating observables

uniqueness of the biorthogonal decomposition, since different choices of correlated bases {xi}
and {yi} would simply correspond to different sets of alternative possible worlds – perhaps we
should call these alternative “universes”? – all of which one could, in keeping with the spirit
of this approach, regard as all equally “real”.
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E and F (on Ω and on Γ, respectively), then for all x ∈ E, ω2|x is a pure state
making f(x) certain; we can say that this is the state of B relative to A’s being
in a pure state corresponding to (concentrated at) x ∈ E. Similarly, ω1|y is a
pure state making f−1(y) certain. One might wish to speak of each pair (x, y)
(or perhaps better, each pair (ω1|y, ω2|x) with y = f(x)) as defining a “world”
in which the system and apparatus observables have, respectively, values x and
y: then the state ω assigns perfectly classical probabilities to these pairs.

4.5 Measurement again

Of course, this does not, by itself, solve the measurement problem. To do that,
we need to say something about the measurement dynamics, i.e., the mapping
µ. For this to work properly, within the interpretation sketched above, it seems
we must require at a minimum that, for every initial state of the system Ω, µ(α)
be a pure state such that µ(α)x = βx for every x ∈ E; better still, we should
require that {βx|x ∈ E} be sharply distinguishable by an observable correlated
with E by µ(α).

It seems a rather special feature of quantum probabilistic models that this
is always possible: the measurement µU associated with the unitary operator
U on HO ⊗ HA defined by equation (3) takes an initial pure product state
α ⊗ βo an entangled pure state correlating the observables E = {xi} and F =
{yi}. Ultimately, what allows us to manufacture the unitary U , and hence
the measurement µU , is a strong symmetry property shared by quantum and
classical test spaces.

Definition 14 A symmetry of a model (X, A, Ω) is a bijection g : X → X
such that both A and Ω are invariant under g and g−1. Call (X, A, Ω) fully
symmetric [50] iff, for every pair of tests E,F ∈ A, |E| = |F | and, for every
bijection f : E → F there exists a symmetry g such that with gx = f(x) for
every x ∈ E.

Both classical and quantum test models are fully symmetric: the former
trivially, and the latter because any bijection between two orthonormal bases
of a Hilbert space extends to a unitary operator. On the other hand, there is
no shortage of exotic non-classical fully-symmetric test spaces that are very far
from being quantum [42]. For a simple example, let X denote the set of edges
of a tetrahedron, and let A denote the collection of triples of edges incident at
a vertex.

Recall that a probabilistic model is sharp iff each outcome x is made certain
by unique (and necessarily therefore pure) state εx.

Lemma 5 Suppose that (X, A,Ω) is sharp, and that there exists a fully sym-
metric separated product (Z, C, Ω⊗ Ω) of (X, A, Ω) with itself. Then every test
in E ∈ A admits a correlating measurement µ with final states εx for all x ∈ E.

Proof: Let Fix any xo ∈ E, and let εo denote εxo . Let f : EE → EE be
any bijection such that g(xxo) = xx for every x ∈ E: by our full symmetry
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assumption, this bijection extends to a symmetry g of the composite model
(Z, C, Ω⊗ Ω). For any ω ∈ Ω⊗ Ω, let

µ(ω)(xy) = ω(g−1(xy)).

This defines an affine mapping µ : Ω⊗ Ω → Ω⊗ Ω. Now let η = µ(α⊗ εo). By
equation (2) in section 3 (the law of total probability),

η2(xy) =
∑

x∈E

η1(x)η2|x(y).

It’s enough, then, to show that for all x ∈ E,

(i) η1(x) = α(x) and

(ii) η2|x = εx.

For the first part, note that, for each x ∈ E, η1(x) = η1(xE) = (α⊗εo)(g−1(xE)).
Now g−1(xE) = xxo ∪ R where R = g−1(x(E \ x)). For any uv ∈ R, we have
v 6= xo (else g(uv) = g(uxo) = uu ∈ xE, whence u = x, contradiction). So
α ⊗ εo is zero on R. Hence, ω1(x) = (α ⊗ εo)(xxo) = α(x)εo(xo) = α(x). For
the second part, note that

η2|x(y) =
η(xy)
η1(x)

=
(α⊗ εo)(g−1(xy))

α(x)
.

This equals 1 if y = x; hence, by sharpness, η2|x = εx. ¤

Lemma 5 suggests that any theory in which all models are sharp and fully
symmetric supports an Everettian interpretation, at least of the simple kind
discussed above. It would therefore be of great interest to construct explicit
examples of such theories that are neither classical nor quantum.

5 Summary and Further Questions

It seems that many ideas that have become standard in discussions of the inter-
pretation of quantum mechanics can be carried over, with little change, to the
much more general framework of abstract probabilistic models. In particular,
the phenomenon of entanglement and many of its most familiar consequences are
in fact generic features of all non-classical probabilistic theories that use any rea-
sonably general tensor product. Among these consequences is the measurement
problem. These facts present a challenge for any proposed realist interpretation
of quantum mechanics. If, as I have suggested in Section 1, it is a criterion of
adequacy for an interpretation of a physical theory that it help to motivate that
theory’s formal framework, then a proposed interpretation of quantum mechan-
ics that makes equally good sense for any, or nearly any, probabilistic theory
can hardly be adequate.
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That said, most realist interpretations of quantum mechanics do appear to
rely on structural features of Hilbert space quantum mechanics that are at least
somewhat special. As we’ve seen, three conditions underwriting a rudimentary
form of the Everett interpretation – that the conditional states of pure bipartite
states be pure, that pure entangled states be states of perfect correlation between
some pair of discrete observables, and that every mixed state be the marginal
of some pure entangled state – are already enough to secure a form of the
spectral theorem for states. Moreover, in order for this rudimentary Everettian
interpretation to do its intended work of solving the measurement problem,
we apparently need to place what look like a strong further constraint on the
theory’s dynamics. A sufficient condition seems to be that all of the theory’s
models be both sharp and fully symmetric – but this is a non-trivial condition,
to say the least.

All this likely leaves us still some way from Hilbert space, but exactly how
far is unclear: the fundamental question I’ve raised – that of the extent to
which the familiar types of no-collapse interpretations of quantum mechanics can
be made to work in a setting that is neither classical nor quantum – remains
wide open. An obvious next step would be to try reconstruct, in detail, as
many of the prominent “realist” interpretations as possible in the context of
an otherwise generic probabilistic theory, subject to perhaps to the conditions
discussed in the preceding paragraph. (At the same time, of course, it would be
desirable to obtain a clean characterization of those theories picked out by these
postulates). An important part of such a project would be to study decoherence
at this level of abstraction, as modern many-worlds interpretations lean heavily
on decoherence to pick out the which branches of the universal state count as
potential worlds.

An objection that might be raised against the point of view underlying this
paper, and thus against the project I am suggesting here, is that the mathemat-
ical framework of a physical theory can be understood as reflecting the ontology
that the theory embraces. Thus, for example, in the deBroglie-Bohm interpre-
tation, the wave function is a physical field on configuration space, governed by
a linear PDE (the Schrodinger equation); it is simply a fact that such objects
form a Hilbert space, at least up to certain well-understood mathematical ide-
alizations. This is fair enough, and must be regarded, from the point of view
of this paper, as a virtue of the deBroglie-Bohm interpretation. On the other
hand, to urge that, similarly, the very ontology of a Many-Worlds interpretation
presupposes a Hilbert space structure, would beg a very large question indeed.
15

15Another possible objection is that a probabilistic/operational interpretation that takes
“measurements” and ”outcomes” as primitive cannot, in principle, accommodate cosmological
questions, since one cannot make measurements on the entirety of space-time. But this is
objection is hardly compelling. Nothing prohibits one from making measurements locally
that are determined by essentially global data; or, to put it more broadly, there is no reason
to suppose that a model of the universe can not be made by stitching together models of
localized bits thereof, in something like the manner in which a manifold is pieced together
from small Euclidean patches.
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