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Abstract

Here we briefly review the concept of “prediction” within the con-
text of classical relativity theory. We prove a theorem asserting that one
may predict one’s own future only in a closed universe. We then ques-
tion whether prediction is possible at all (even in closed universes). We
note that interest in prediction has stemmed from considering the epis-
temological predicament of the observer. We argue that the definitions
of prediction found thus far in the literature do not fully appreciate this
predicament. We propose a more adequate alternative and show that, un-
der this definition, prediction is essentially impossible in general relativity.

In general relativity, “prediction” and “determinism” are two very different
concepts [2, p. 93]. The difference can be easily noted by considering Minkowski
spacetime (R4, η).1 Of course, in this spacetime, any set S = {(t, x, y, z) ∈ R4 :
t = constant} is a Cauchy surface. So, for such a surface, D(S) = R4 where
D(S) is the domain of dependence of S.2 It is a theorem that, given the physical
situation on any achronal surface S, the physical situation in all of D(S) is
uniquely determined.3 So, any t = constant surface S in Minkowski spacetime
determines the physical situation on the entire manifold.

However, consider an actual observer in Minkowski spacetime at some point
q ∈ R4. The observer at q is not able to make a prediction about the physical
situation on all of R4 because there is no t = constant surface S contained in
J−(q) where J−(q) is the causal past of the point q.4

Additionally, the observer at q cannot even make a local prediction. It is
a simple result that, for any point q and any achronal surface S in Minkowski

∗I would like to thank Robert Geroch and David Malament for helful discussions on this
topic.

1For details on Minkowski spacetime, see [5, p. 118-124].
2The future domain of dependence D+(S) of an achronal surface S is the set of points p

such that every past inextendible causal curve through p intersects S. The past domain of
dependence D−(S) of an achronal surface S is defined analogously. The (total) domain of
dependence D(S) of achronal surface S is just the set D−(S) ∪D+(S). See [8, p. 200-201].

3See chapter 10 in [8].
4The causal past J−(q) of a point q is the set of points p such that there exists a past-

directed causal curve from q to p. The causal future J+(q) of a point q is defined analogously.
See [8, p. 190].

1



spacetime, if S ⊂ J−(q) then D(S) ⊂ J−(q) [2, p. 128]. This means that by
the time the observer is able to gather the data on S, the region of spacetime
determined by this data is in the causal past of the observer (a retrodiction is
possible but a prediction is not).

There are, however, spacetimes that seem to allow for predictions. For ex-
ample, consider the (two-dimensional) spacetime (M,η) where M = {(t, x) : t ∈
R & x ∈ S} and η is the Minkowskian metric. Here, each t = constant surface
S is a Cauchy surface. For any point q ∈ M , there exists some t = constant
surface S such that S ⊂ J−(q). So, in this spacetime, it seems that one can
make a genuine prediction at q concerning any point in M−J−(q) [4, p. 89-91].

Examples of such spacetimes have motivated various definitions of predic-
tion.5 Here is one that seems fairly intuitive due to Geroch:6

Definition: Let (M, g) be a spacetime. Let q be any point in M . We say a
point p ∈M is in the domain of prediction of q (written P (q)) iff (i) p /∈ J−(q)
and (ii) there exists an achronal, closed, spacelike surface S in J−(q) such that
p ∈ D(S).

The physical intuition behind this definition is the following. The set J−(q)
represents the region of spacetime from which information can be gathered at
point q. Condition (i) requires that, whatever else is the case, any knowledge
concerning the state of affairs at p is a prediction and not a retrodiction. Con-
dition (ii) requires that every causal influence that could affect the point p must
have been registered on some achronal, spacelike surface S in J−(q).

An interesting subset of the domain of prediction is the directly verifiable
domain of prediction [4, p. 89]. Given a point q, this is the set P (q) ∩ I+(q)
where I+(q) is the chronological future of q.7 It represents the events in one’s
own future that are predictable. It has been conjectured by Geroch8 that, if
a spacetime has a non-empty directly verifiable domain of prediction, then the
spacetime is closed in the sense that it admits a compact, spacelike slice.9 Here
we provide a proof of this conjecture.

Theorem: Let (M, g) be a spacetime. If there are points q, p ∈ M such that
p ∈ P (q) ∩ I+(q), then (M, g) admits a compact, spacelike slice.

Proof. Let (M, g) be a spacetime. Let q, p ∈M be such that p ∈ P (q) ∩ I+(q).

5See, for example, [1], [4], [6], and [7].
6Private communication. This definition differs slightly from the one given in [4]. Here we

make the physically reasonable requirement that the surface S in the definition be spacelike.
We also follow standard practice and require S to be closed for mathematical convenience [8,
p. 200].

7The chronological future I+(q) of a point q is the set of points p such that there exists a
future-directed timelike curve from q to p. The chronological past I−(q) of a point q is defined
analogously. See [8, p. 190].

8Private communication. The corresponding claim made by Geroch in [4, p. 92] was later
shown to be false [6, p. 726-727].

9A slice is a closed, achronal set without edge. See [8, p. 200].
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By definition, there is a closed, spacelike, achronal set S such that S ⊆ J−(q)
and p ∈ D(S). If p ∈ D−(S), then p ∈ J−(q) which is, by definition of P (q),
impossible. So, p ∈ D+(S). It can be easily verified that q ∈ I−[D+(S)]
(becuase p ∈ I+(q) and p ∈ D+(S)) and q ∈ I+(S) (because S ⊆ J−(q) and S
is spacelike). So by [8, prop. 8.3.3], q ∈ int[D+(S)]. This implies, by [5, prop.
6.6.6], that J+[S] ∩ J−(q) is compact. Clearly S ⊂ J+[S] ∩ J−(q). Because S
is closed, it follows that S is compact.

Finally we show that S is edgeless. Assume not and let r be any point in
edge(S). We show a contradiction. So, there is a neighborhood of r in I−(q)
containing a point u ∈ I+(r), a point v ∈ I−(r), and a past directed timelike
curve from u to v which does not intersect S.10 Let γ be any past inextendible
timelike curve from v. If γ were to intersect S (say at point w), we could find a
past inextendible timelike curve γ′ from r to v to w. But this cannot be given
that S is achronal and r, w ∈ S. So, there is a past inextendible timelike curve
from v which does not intersect S. Now, because r ∈ J−(q) it follows from [5,
prop. 6.5.2-3] that either r ∈ I−(q) or q ∈ H+(S) where H+(S) is the future
Cauchy horizon of S.11 If r ∈ I−(q), then it follows from the argument above
that there exists a past inextendible timelike curve from q which fails to meet
S. But this contradicts the fact that q ∈ D+(S). If q ∈ H+(S), this contradicts
the fact that q ∈ int[D+(S)]. So, we are done. �

One may wonder if the definition of the domain of prediction given above
accurately reflects the physical notion of “making predictions in general relativ-
ity”? It is our position that it does not (and that the other definitions given in
[1], [4], [6], and [7] are also insufficient). Recall that interest in prediction within
the context of general relativity stemmed from considering the epistemological
predicament of the observer. As we have noted, even in spacetimes possessing
Cauchy surfaces, there does not always exist an observer with a Cauchy surface
in her causal past. But here is a question: Does an observer who has a Cauchy
surface in her causal past know that she has a Cauchy surface in her causal
past?

Consider the following example. As before, let (M,η) be such that M =
{(t, x) : t ∈ R & x ∈ S} and η is the Minkowskian metric. Now let p be any point
in M and let (M ′, η|M ′) be a second spacetime such that M ′ = M − {p}. Now
consider any point q ∈M such that p /∈ J−(q). Of course, by definition p ∈ P (q).
But can an observer at q really make a sure prediction about the point p? How
does an observer at q know that she does not inhabit the spacetime (M ′, η|M ′)
where the point p is “missing” from the manifold? Of course, one could require
that spacetime be inextendible. However, more complicated examples could
be constructed to show that, even under this assumption, one cannot make a
genuine prediction.12 It seems that knowledge about one’s domain of prediction
requires knowledge not only of one’s causal past but also of the spacetime in

10See [8, p. 200].
11The future Cauchy horizon H+(S) of an achronal surface S is the set D+(S)−I−[D+(S)].

See [8, p. 203].
12For such an example, see the theorem below.
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which one’s causal past is embedded.13

One may naturally wonder if genuine prediction is possible at all in general
relativity. In order to answer the question we must give a definition of the do-
main of prediction which requires that the observer not only have the resources
to make a prediction but also the resources to know that she can make a pre-
diction. Let (M, g) be a spacetime. More precisely, a genuine prediction at
q ∈ M about some point p ∈ P (q) requires that, for all spacetimes (M ′, g′), if
there is an isometric embedding φ : J−(q)→M ′, then it must also be possible
to extend the domain of this embedding to the set J−(q) ∪ J−(p) (there must
be an isometric embedding φ′ : J−(q) ∪ J−(p) → M ′ such that φ = φ′|J−(q)).
This would ensure that φ′(p) ∈ P (φ′(q)). In this sense, the observer at q can be
sure that genuine prediction about p is possible (regardless of whether or not
she knows which spacetime she inhabits). This suggests the following definition:

Definition: Let (M, g) be a spacetime. Let q be any point in M . We say a point
p ∈ M is in the domain of genuine prediction of q (written P(q)) iff p ∈ P (q)
and, for all inextendible spacetimes (M ′, g′), if there is an isometric embedding
φ : J−(q)→M ′, then there is an isometric embedding φ′ : J−(q)∪J−(p)→M ′

such that φ = φ′|J−(q).

What is interesting about genuine prediction is that it is essentially impos-
sible. We have:

Theorem: Let (M, g) be any spacetime and let q be any point in M . Then
P(q) ⊆ ∂J−(q).

Proof. Let (M, g) be any (four-dimensional) spacetime and let q be any point in
M . Let p be a point in P(q). By definition, p ∈ P (q) and therefore p /∈ J−(q).
We assume p /∈ ∂J−(q) and show a contradiction. Let U be a neighborhood of
p such that U ∩ J−(q) = ∅ (such a neighborhood must exist because p /∈ J−(q)
and M is open). Let S be any three-dimensional, closed, achronal surface in
U such that p is in ∂S. Let (M ′, g|M ′) be the spacetime where M ′ = M − S.
Consider two copies of the spacetime (M ′, g|M ′). Excluding boundary points
∂S, identify the upper edge of S in the first copy with the lower edge of S is
the second copy. Similarly, identify the lower edge of S in the first copy with
the upper edge of S in the second copy.14 Call the resulting (inextendible)
spacetime (M ′′, g′′). Because S ∩ J−(q) = ∅, there is an isometric embedding
φ : J−(q)→M ′′. Yet, because the boundary points ∂S are “missing” from M ′′

and because p ∈ ∂S, there is no isometric embedding φ′ : J−(q)∪ J−(p)→M ′′

such that φ = φ′|J−(q). So, p /∈ P(q) and we are done. �

The theorem shows that one cannot make a genuine prediction outside the
boundary of one’s observational past. In other words, the only possible predic-

13See [4, p. 85-86].
14See [4, p. 89-90] and [5, p. 58-59] for other examples of this type of construction.
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tions are those “on the verge” of being retrodictions. One might wonder about
the role of matter fields and Einstein’s equation in our discussion of genuine
prediction. It has been argued, for example, that Maxwell’s equations constrain
some spacetimes in such a way as to allow for prediction.15 But, notice that the
spacetime (M ′′, g′′) constructed in the proof above is locally isometric to the
spacetime (M, g). So, the theorem goes through even under the imposition of
any local conditions (e.g. the energy conditions, Maxwell’s equations, or Ein-
stein equation). Thus, if the epistemological predicament of the observer is fully
considered, there seems to be an interesting and robust sense in which genuine
prediction is not possible in general relativity.

References

[1] Budic, R., Sachs, R. K.: Deterministic spacetimes. Gen. Relativ. Gravit. 7,
21-29 (1976)

[2] Earman, J.: Bangs, Crunches, Whimpers, and Shrieks. Oxford University
Press, Oxford (1995)

[3] Ellis, G. F. R., Sciama, D. W.: Global and non-global problems in cosmol-
ogy. In: O’Raifeartaigh, L. (ed.) General Relativity: Papers in Honor of J.
L. Synge, pp. 35-59. Clarendon Press, Oxford (1972)

[4] Geroch, R.: Prediction in general relativity. In: Earman, J., Glymour, C.,
Stachel, J. (eds.) Foundations of Space-Time Theories. Minnesota Studies
in the Philosophy of Science, vol. 8, pp. 81-93. University of Minnesota
Press, Minneapolis (1977)

[5] Hawking, S. W., Ellis, G. F. R.: The Large Scale Structure of Space-Time.
Cambridge University Press, Cambridge (1973)

[6] Hogarth, M. L.: Predicting the future in relativistic spacetimes. Stud. Hist.
Philos. Sci. 24, 721-739 (1993)

[7] Müller-Hoissen, F.: Determinism in space-time. Int. J. Theor. Phys. 20 (6)
443-450 (1981)

[8] Wald, R. M.: General Relativity. University of Chicago Press, Chicago
(1984)

15See [2, p. 125-130] and [3, p. 41-42].

5


