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Abstract

In his book, Physical Relativity, Harvey Brown challenges the orthodox view that
special relativity is preferable to those parts of Lorentz’s classical ether theory it
replaced because it revealed various phenomena that were given a dynamical expla-
nation in Lorentz’s theory to be purely kinematical. I want to defend this orthodoxy.
The phenomena most commonly discussed in this context in the philosophical liter-
ature are length contraction and time dilation. I consider three other phenomena of
this kind that played a role in the early reception of special relativity in the physics
literature: the Fresnel drag effect in the Fizeau experiment, the velocity dependence
of electron mass in β-ray deflection experiments by Kaufmann and others, and the
delicately balanced torques on a moving charged capacitor in the Trouton-Noble
experiment. I offer historical sketches of how Lorentz’s dynamical explanations of
these phenomena came to be replaced by their now standard kinematical explana-
tions. I then take up the philosophical challenge posed by the work of Harvey Brown
and Oliver Pooley and clarify how those kinematical explanations work.

Key words: Lorentz invariance, Minkowski space-time, kinematics, Trouton-Noble
experiment, classical electron models, inference to the best explanation

1 The cart and the horse

“Einstein was the first physicist to formulate clearly the new kinematical foun-
dation for all of physics inherent in Lorentz’s electron theory” (Einstein, 1987–
2006, Vol. 2, p. 253). This is how John Stachel and his associates characterized
the transition from Lorentz’s classical ether theory to Einstein’s special theory
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of relativity in the opening sentence of their editorial note on special relativity
in Einstein’s collected papers. Their statement nicely encapsulates the received
view of this transition. Much of my own work, some of it in collaboration with
Yuri Balashov, has been in defense of this orthodoxy (Janssen, 1995, 2002a;
Balashov and Janssen, 2003). The agenda of Harvey Brown’s work in this
area, much of it in collaboration with Oliver Pooley, has been to question
it (Brown and Pooley, 2001, 2006; Brown, 2005). Our central disagreement
is summed up neatly—a little too neatly in fact—in the title of one of the
sections of Physical Relativity, Brown’s book-length defense of his heretical
views on special relativity: 1 “Minkowski space-time: the cart or the horse”
(Brown, 2005, sec. 8.2; cf. Balashov and Janssen, 2003, p. 340–341). It is a
dispute about the direction of the arrow of explanation connecting the sym-
metries of Minkowski space-time and the Lorentz invariance of the dynamical
laws governing systems in Minkowski space-time. I argue that the space-time
symmetries are the explanans and that the Lorentz invariance of the various
laws is the explanandum; Brown argues that it is the other way around.

1.1 Explanation and inference

Before adding the necessary qualifications to this rough initial characterization
of our disagreement, I want to address the rationale of continuing to frame
the debate in terms of explanation. In his own response to (Brown, 2005),
John Norton (2007) sidesteps “the explanatory issues that have dominated
discussion elsewhere [since] they seem only to lead to futile disputes over just
what it means to explain” (p. 5). Explanation is a notoriously tricky subject in
philosophy of science, so why not follow Norton’s lead and re-stage the debate
in a different venue? Unfortunately, explanation is tied up with inference,
which is absolutely central to the scientific enterprise.

In 1906, J. J. Thomson made an observation about the role of theories in
physics that, I think, applies equally well to explanations. For a working physi-
cist, Thomson wrote, a theory “is a policy rather than a creed.” 2 Physicists
use explanations not to adorn the results of their investigations with the elu-
sive quality of understanding, but to help them come up with ideas for what
to investigate next. They seek answers to why-questions in part no doubt for
the sake of those answers themselves, but mostly to find clues and pointers in
them for further research. Appropriating what Thomson said about theories,
one can say that explanations are supposed to

connect or coordinate apparently diverse phenomena, and above all to sug-
gest, stimulate, and direct experiment. It ought to furnish a compass which,

1 Brown’s book was reviewed for this journal by Al Mart́ınez (2007).
2 Quoted and discussed in (Smith, 2001, p. 63).
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if followed, will lead the observer further and further into previously unex-
plored regions. Whether these regions will be barren or fertile experience
alone will decide; but, at any rate, one who is guided in this way will travel
onward in a definite direction, and will not wander aimlessly to and fro
(quoted from Smith, 2001, p. 63).

The last clause suggests that Thomson was content establishing the modest
claim that relying on any explanation for guidance is better than invoking
no explanations at all. It seems obvious, however, that the best explanations
provide the most reliable guides. The challenge for philosophers of science is
to work out criteria for what counts as a good explanation. What makes this
challenge particularly pressing is precisely the heuristic role of explanations,
not just in physics but in all of science.

One of my favorite examples comes from biology. In a book on the flora of
Tasmania published in 1860, Hooker, one of Darwin’s early confidants but no
easy convert to his friend’s nascent theory, stated that he had at long last
switched from special creation to evolution through natural selection because
he felt that the new theory supplied the more promising “means of penetrating
the mystery which envelopes the history of species.” 3 Evolution would make
for better botany, in Hooker’s estimation, because it offered “a rational expla-
nation” for various “attributes of organic life . . . which are barren facts under
the theory of special creations” (ibid.). Still, Hooker cautioned, the botanist
predicating further research on these evolutionary explanations—to borrow a
turn of phrase from George Smith (2001, p. 25)—should be “holding himself
ready to lay it down when it shall prove as useless for the further advance of
science, as the long serviceable theory of special creations . . . now appears to
me to be” (quoted from Bellon, 2006, p. 173).

The kind of reasoning that Hooker and, albeit more covertly, Thomson are
referring to in these passages is known in the philosophical literature as ‘in-
ference to the best explanation’ (IBE). Hooker is referring more specifically
to a subspecies of IBE that I have dubbed ‘common origin inference’ (COI)
(Janssen, 2002b). As Peter Lipton (2004) put it in his book on IBE: “the core
idea of [IBE] is that explanatory considerations are a guide to inference” (p.
56). This then is why I am resisting Norton’s suggestion to move the debate
over the interpretation of special relativity out of the arena of explanation. As
the case study in sec. 3 of this paper will illustrate most clearly, the seemingly
arcane explanatory issue that Brown and I are arguing over can actually make
a difference in scientific practice. Before I can make good on this claim, I need
to characterize our positions more carefully.

3 Quoted and discussed in (Janssen, 2002b, pp. 495–496), where I relied heavily on
work since published as (Bellon, 2006).
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1.2 Kinematics and dynamics

Brown (2005, p. vii) makes it clear from the outset that he is not championing
what is known as a neo-Lorentzian interpretation of special relativity. He is
not proposing a return to the ether or to absolute time, two elements that
Lorentz was never able to let go of. My work has focused on a comparison be-
tween the theories Lorentz and Einstein actually proposed. This comparison is
nonetheless relevant to the evaluation of Brown’s proposal. I have argued that
the main objection against Lorentz’s theory is not that it retains the ether or
absolute time but that it seeks to provide dynamical explanations for a class
of phenomena, namely all manifestations of Lorentz invariance, that special
relativity revealed to be purely kinematical. That objection also applies to
Brown’s proposal. It is a mistake to keep looking for further explanation of a
phenomenon once that phenomenon has convincingly been shown to be kine-
matical. What it means for a phenomenon to be kinematical, in the sense in
which I want to use this term, is that it is nothing but a specific instance
of some generic feature of the world, in the case of the phenomena examined
in this paper instances of default spatio-temporal behavior. Unless one chal-
lenges the classification of the phenomenon as kinematical in this sense—and
it is the universality of the relevant feature that will militate strongly against
such reclassification—there is nothing more to learn from that particular phe-
nomenon, neither about the specific system in which it occurs nor about the
generic feature it instantiates. A call for further explanation is thus completely
misplaced. The examples discussed in secs. 2–4 of this paper are meant to drive
home this point. My disagreement with Brown is therefore ultimately about
how to draw the line between kinematics and dynamics in special relativity.

In what has been the dominant tradition in philosophy of space and time
“over the last three decades or so” (Brown, 2005, p. viii), any respectable
philosophizing about space and time, be it about general relativity or about
Aristotelian physics, starts with: “Let there be a differentiable manifold M
with geometric object fields Oi . . . ” Several evangelists have been responsible
for spreading this ‘angle-brackets-M-O-sub-i’ religion (referred to hereafter as
〈M ,Oi〉). The Gospel According to St. Michael and the Gospel According
to St. John have been particularly influential in bringing the philosophical
community under its spell (Friedman, 1983; Earman, 1989). This tradition
draws Brown’s ire at several points in his book (2005, p. viii, p. 23) and I have
limited patience for it myself. Still, it may be a useful exercise to formulate the
kinematics-dynamics distinction in 〈M ,Oi〉 terms (Janssen, 1995, sec. 2.3.5).
If nothing else, it may help the 〈M ,Oi〉 faithful see what all the fuss is about.

Consider a theory characterized by an M (which fixes such basic things as the
topology) and a set of Oi’s. The Oi’s can be divided into Ai’s, which ‘dress up’
the bare manifold with its spatio-temporal properties (typically a metric and
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an affine connection), and Pi’s, which encode the matter fields living on the
manifold (Earman, 1989, p. 38, p. 45). The Pi’s satisfy local field equations. In
theories like general relativity, the Ai’s do too, but in older theories they are
fixed or absolute, which just means that they are the same in every model of the
theory (i.e., in every configuration allowed by the field equations). This is the
situation, for instance, with Minkowski space-time in special relativity, which
in 〈M ,Oi〉 terms is a bare manifold dressed up with a flat pseudo-Euclidean
metric of Lorentzian signature. 4 If the Ai’s are absolute, it makes sense to
call an effect kinematical if it instantiates properties described by the Ai’s and
dynamical if it instantiates properties described by the Pi’s. That a free particle
moves in a straight line is kinematical in this reckoning since such trajectories
are the geodesics associated with the flat affine structure of Minkowski space-
time. Length contraction and time dilation are likewise kinematical effects
in that they turn on comparisons of the lengths of certain line segments in
the chrono-geometry of Minkowski space-time (Janssen, 2002a, p. 430). The
emission of a photon is a dynamical effect because it instantiates a property
of the electromagnetic field, which is one of the Pi’s.

Now, the description of any physical effect obviously involves both Ai’s and
Pi’s, but that is perfectly compatible with this way of distinguishing between
kinematical and dynamical effects. In particular, it is not a problem that one
needs a physical system specified by the Pi’s to measure properties described
by the Ai’s. It takes some material system that can serve as a rod, for instance,
to measure length contraction. This truism does not change the fact that
length contraction instantiates a property described by the Ai’s. Neither does
the stronger claim that without rods there would be no length contraction
at all. The kinematics-dynamics distinction in terms of Ai’s vs. Pi’s can be
made without turning Minkowski space-time, or any other space-time 〈M, Ai〉,
into an autonomous substance that exists in addition to the physical systems
characterized by the Pi’s. One can make the same distinction if these physical
systems, in the final analysis, are the bearers of the properties described by
the Ai’s.

This is the ontological constellation favored by Brown (2005): “I see the abso-
lute geometrical structures of Minkowski space-time as parasitic on the rela-
tivistic properties of the dynamical matter fields” (p. 100). I sympathize with
Brown here insofar as he is just saying that the laws governing the matter
fields are the bearers of such properties as Lorentz invariance. That is simply
an endorsement of a relational ontology of space-time. In this same spirit, I
accept Brown and Pooley’s (2006) slogan that Minkowski space-time is a “glo-
rious non-entity.” The pejorative ‘parasitic’ in the quotation above, however,

4 Minkowski’s own work was done in the tradition of projective geometry associated
with Klein’s Erlangen program, whereas the differential geometry of 〈M ,Oi〉 grew
out of a very different tradition that goes back to Riemann (Norton, 1999).
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suggests that Brown wants to go further. In 〈M ,Oi〉 jargon: Brown, it seems,
wants to reduce both the M and the Ai’s to the Pi’s, a proposal sharply criti-
cized by Norton (2007). Here I side with Norton. The spatio-temporal notions
encoded in Minkowski space-time do not have their origin in the particulars of
some Lorentz-invariant matter theory or theories. Let me illustrate this point
with an analogy. Most paintings are rectangular. The individual paintings are
the bearers of this property. Yet, the answer to the question why they are
rectangular is not to be found in any particular one of them. The answer to
that question turns on factors beyond the individual paintings, having to do
with artistic conventions or with the process of stretching cloth over a frame
to make a canvas. Lorentz invariance is likewise a property that transcends
individual laws even though they are the bearers of it.

Like Brown, I have no truck with the (dwindling?) denomination within the
Church of 〈M, Oi〉 that goes by the name of manifold substantivalism. Mem-
bers of this congregation are realists about the points of the bare manifold
and see these points as the subjects for all field-theoretic predicates given by
the Oi’s. Given the general framework of 〈M, Oi〉, it is very seductive to read
this ontology into the formalism. The resulting reification of M is a typical
example of what Stachel (1994, p. 149) has aptly called the “fetishism of math-
ematics.” In fairness to 〈M, Oi〉, it must be said that work in this tradition has
helped the relationist cause as well. 〈M, Oi〉 was instrumental in disseminating
the hole argument, which has probably been the most persuasive and effective
argument against manifold substantivalism (Earman, 1989, Ch. 9). Earman’s
book also took care of the centuries-old objection that absolute motion is in-
compatible with relationism by clearly separating the absolute/relative-motion
distinction from the substantival/relational-ontology distinction.

It is important to separate the position I am defending in this paper from
substantivalism. As Brown (2005) writes at one point: “The real issue is
. . . whether physical geometry . . . when it is absolute and immune to pertur-
bation as in Newtonian and Minkowskian space-time . . . offers a causal expla-
nation of anything” (p. 26, my emphasis). I claim that Minkowski space-time
explains Lorentz invariance. For this to be a causal explanation, Minkowski
space-time would have to be a substance with causal efficacy. Like Brown,
I reject this view (Janssen, 2002b, p. 468). The sense in which Minkowski
space-time explains Lorentz invariance is not causal but closer to the sense
of explanation captured by the old covering-law or deductive-nomological ac-
count of explanation. It is partly to avoid misunderstandings of this sort that
I want to define what I mean by kinematics without using 〈M, Oi〉 jargon.

Special relativity as a physical theory is agnostic about the ontology of space-
time. I want to argue that the orthodox version of this physical theory is
preferable to the alternative proposed by Brown because it provides better
guidance for further research. Given that my argument is ultimately about
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such methodological issues and not about ontology, it had better be inde-
pendent of whether one is a relationist or a substantivalist about Minkowski
space-time (Balashov and Janssen, 2003, p. 341, note 11). The challenge in
this case is to produce an argument that works for the relationist. The sub-
stantivalist can always make that same argument work by reifying the relevant
relations. I can thus join the debate with Brown on his own relationist turf
without compromising the focus on methodological issues.

With a small but important modification, Brown’s definition of (space-time)
kinematics is perfectly adequate for my purposes. Commenting on the title of
the first part of Einstein’s 1905 paper on special relativity, “The kinematical
part” (Einstein, 1905a), Brown (2005) defines it as “the universal behaviour
of rods and clocks in motion” (p. 4). Given his operationalist bend at the
time, Einstein clearly privileged physical systems serving as rods and clocks,
but there is no reason for a restriction to such systems in the definition of
kinematical. It is better to define (space-time) kinematics as the default spatio-
temporal behavior of all physical systems (I prefer ‘default’ or ‘generic’ over
‘universal’). Rods and clocks measure times and distances because they exhibit
the default spatio-temporal behavior of all physical systems, not because they
would be special probes sensing the fabric of space-time the way the ‘waywiser’
gracing the dust cover of Brown’s book sensed the surface of the road as it
was wheeled along the English countryside to measure distances in the days
of old. 5

Brown (2005) characterizes the Minkowski metric as “no more than a cod-
ification of the behaviour of rods and clocks” (p. 9). Once again, my only
complaint is that this characterization privileges rods and clocks. I would say
that Minkowski space-time (both its metric and its affine structure) encodes
the default spatio-temporal behavior of all physical systems in a world in ac-
cordance with the laws of special relativity. Special relativity is completely
agnostic about what inhabits or—to phrase it more awkwardly but in a way
that may be more congenial to a relationist—carries Minkowski space-time.
All the theory has to say about systems inhabiting/carrying Minkowski space-
time is that their spatio-temporal behavior must be in accordance with the
rules it encodes. This requirement is automatically met if the system obeys
Lorentz-invariant laws. It is in this sense that the Lorentz invariance of all
dynamical laws is explained by space-time being Minkowskian rather than
the other way around. This explanation can be put to work in that it con-
siderably narrows the field of acceptable dynamical laws by requiring them

5 Brown ridicules this ‘tracing grooves in space-time’-imagery. His target, I pre-
sume, is substantivalism. Most commentators seem to agree that he is attacking a
straw man. John Earman (private communication) calls this straw man “the really
freaky spacetime freak.” Like any good caricature, however, Brown’s caricature of
the substantivalist does have its value.
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to be Lorentz invariant. Special relativity imposes a kinematical constraint on
all dynamical laws. This kinematical constraint is an example of what Marc
Lange (2007) calls a meta-law. A meta-law cannot be derived from mere or-
dinary laws (which is not to say that we cannot look for a deeper explanation
of the meta-law). In Lange’s language, this is the error that Lorentz made a
century ago and that Brown now invites us to repeat.

1.3 History and philosophy

After going over three concrete examples of phenomena that are purely kine-
matical in (orthodox) special relativity (secs. 2–4), I return to my dispute with
Brown in the concluding section of this paper (sec. 5). With these concrete
examples in hand, I shall be in a better position to articulate and defend
the usefulness and naturalness of the way in which I want to draw the line
between kinematical and dynamical effects. The notion of ‘kinematical’ that
I want to promote is relevant in other contexts as well. I am thinking in
particular of Heisenberg’s (1925) use of the term in the title of the famous
Umdeutung paper with which he laid the foundation for matrix mechanics,
“On the quantum-mechanical reinterpretation of kinematical and mechanical
relations” (my emphasis), and of recent work on the foundations of quantum
mechanics by Jeffrey Bub and Itamar Pitowsky (2007). To bring out this wider
relevance, I need to distinguish between a broad and a narrow sense of kine-
matical. A phenomenon is kinematical in the broad sense if it is independent
of the details of the dynamics. It is kinematical in the narrow sense if it is an
example of standard spatio-temporal behavior. As the terminology suggests, if
a phenomenon is kinematical in the narrow sense, it is a fortiori kinematical in
the broad sense. I shall use the phenomena discussed in secs. 2–4 to illustrate
this distinction. Although philosophers of space and time only use the term
‘kinematical’ in the narrow sense, physicists routinely use it in the broad sense
as well.

At several points in this introduction I already expressed strong sympathy
with Brown’s views. The three historical sections that make up the bulk of
this paper will testify to what is probably the deepest affinity between his work
and mine. We both practice a brand of philosophy of physics that is strongly
informed by (conceptual) history of physics. This provides an additional reason
for our shared dislike of 〈M, Oi〉. There is nothing to be gained from an 〈M, Oi〉
treatment of the texts documenting the transition from the electrodynamics of
the last decade of the 19th century to the relativistic physics of the first decade
of the 20th century. That does not mean that one has to follow these texts
slavishly. I recognize the value of standardizing notation and choice of units,
of explaining results in terms familiar to modern readers, or, more trivially, of
translating German quotations into English.
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It is probably no coincidence that I draw on the work of a different group
of physicists for my philosophical arguments than Brown draws on for his.
Lorentz, Einstein, and Minkowski, unsurprisingly, play a central role both
in Brown’s book and in my paper. Brown’s main focus, however, is on such
late-Victorian Maxwellians as FitzGerald, Heaviside, and Larmor. Although
Larmor is a key figure in one of my case studies (see sec. 4), I focus on the
continent, especially Germany, and on a slightly later period (1901–1911). In
particular, I look at the shift from Abraham’s electromagnetic view of nature
to Laue’s relativistic continuum mechanics. To a large extent this was a shift
from dynamics to kinematics, in both the broad and the narrow sense (Janssen
and Mecklenburg, 2007, sec. 7).

I not only look at different physicists, I also look at different physics. I avoid
such staples of the literature on the history and philosophy of special relativity
as the Michelson-Morley and Kennedy-Thorndike experiments and the length
contraction and clock retardation hypotheses. The dynamical explanation of
the null result of Michelson and Morley by FitzGerald, Lorentz, and Larmor
provides grist for the mill of Brown’s philosophical argument. I base mine on
the analysis of three other experiments that have not received much atten-
tion thus far in the discussion of special relativity in the philosophy of space
and time literature, even though all three of them played a role in the early
reception and elaboration of the theory. A subsidiary goal of my paper is to
bring these experiments and their analysis by Lorentz, Abraham, Laue and
others to the attention of philosophers working in this area. 6 I have written
the sections covering this material with this goal in mind, highlighting the
philosophically salient elements and providing only a minimum of historical
context. For more careful historical treatments of the relevant episodes and
additional references to the historical literature, I refer to some of my other
work.

In sec. 2, I examine the so-called Fresnel drag coefficient famously put to the
test in the Fizeau experiment of 1851 (Janssen and Stachel, 2004). Fresnel
introduced the drag coefficient in 1818 to account for refraction at surfaces
moving through the ether. In 1892, Lorentz explained this “drag” effect in
terms of the interaction of light with charged particles inside transparent me-
dia. Three years later, he showed (in effect) that the drag coefficient would
automatically be part of any Lorentz-invariant theory of refraction. In 1907,
Laue showed that this is because it results from a straightforward application
of the relativistic addition theorem of velocities. This episode thus makes for

6 More examples could probably be added. It would be interesting, for instance,
although this is beyond the scope of this paper, to look at experiments by Röntgen,
Rowland, Eichenwald, H. A. Wilson, and M. Wilson (Pauli, 1921, sec. 36(α)) from
the same ‘dynamics vs. kinematics’-angle from which I look at experiments by
Fizeau, Kaufmann, Trouton, and Noble in secs. 2–4.
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an ideal warm-up example of an effect that went from being classified as dy-
namical to being classified as kinematical (first in the broad and then in the
narrow sense).

In sec. 3 and 4, I turn to two considerably more complicated examples, both in
terms of the physics involved and in terms of their history. From a relativistic
point of view, both examples revolve around the transformation properties
of the four-momentum of spatially extended systems (Rohrlich, 1960, 1965).
Sec. 3 deals with the velocity dependence of electron mass measured in a
series of experiments by Kaufmann and others in the first two decades of
the 20th century (Janssen and Mecklenburg, 2007). This episode illustrates
how physicists can be led down the garden path—to borrow another turn of
phrase from Smith (2001, p. 23)—by the demand for a dynamical explanation
of phenomena that are purely kinematical. I shall argue that the velocity
dependence of mass, like the Fresnel drag coefficient, is kinematical both in the
broad and in the narrow sense. What complicates matters in this case is that
the kinematics-dynamics distinction tends to get entangled with Einstein’s
(1919) famous distinction between principle theories and constructive theories
(Brown, 2005, sec. 5.2). Part of my rebuttal of Brown will be to disentangle
the two.

Sec. 4 deals with the torque that Trouton and Noble tried to detect in 1903
on a charged capacitor moving through the ether (Janssen, 1995). The stan-
dard relativistic explanation of the negative result of this experiment is that
there are two delicately balanced torques, one coming from the electromagnetic
forces between the charges on the plates and one coming from the intermolec-
ular forces stabilizing the system. It turns out that one can simply define these
torques out of existence in special relativity by adopting an alternative conven-
tion for choosing spatial hyperplanes in the definition of the four-momentum
of such spatially extended systems as the capacitor and its electromagnetic
field. The same is true for the flow of energy and momentum between the
capacitor and its electromagnetic field in a variant on the Trouton-Noble ex-
periment in which a moving capacitor is set spinning. I shall contrast this
kinematical effect with the flow of energy and momentum from the battery
to the capacitor in the Trouton experiment, a largely forgotten prequel to the
Trouton-Noble experiment (Janssen, 2003). This way of defining torques and
energy and momentum exchanges out of existence suggests a general criterion
for classifying an effect as kinematical (in the narrow sense), which dovetails
nicely with the way in which I want to draw the line between kinematics and
dynamics in special relativity (Janssen, 1995, sec. 2.3.5).
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2 The Fizeau experiment and the Fresnel drag coefficient.

2.1 Aberration, refraction, and the Fresnel drag coefficient

Physicists in the 19th century took it to be completely self-evident that light
waves, like all other waves, need a medium for their propagation. Since light
can reach us from the farthest recesses of the universe, this medium, the
luminiferous ether, had to be omnipresent. In 1804, Young pointed out that
the phenomenon of stellar aberration, discovered by Bradley in the 1720s,
indicated that this universal ether be immobile, i.e., that the earth and other
ponderable matter move through it without disturbing it in the least. Fig.
1 illustrates stellar aberration for a star directly overhead. The situation is
drawn from the point of view of the ether. The solid vertical line through

Fig. 1. Stellar aberration

O and R (ignore the dashed lines for the moment) represents a light ray
(more accurately: the normal to a plane wave front) traveling from the star
to the earth at velocity c. The shaded rectangles represent two snapshots of
a telescope moving with the earth at velocity v, the first as the light enters
at O, the second as it exits at R. For the telescope to collect the light of this
star, it must be tilted at an angle, called the aberration angle and labeled i
in the figure. This means that an observer on earth will see the star in the
direction indicated by the dashed line through O and P . Drawing a vector
diagram for the two components of the velocity of the light with respect to a
terrestrial observer, one sees that the aberration angle is given by tan i = v/c
(since v/c ≈ 10−4, the angle i is actually much smaller than the drawing in
Fig. 1 suggests). Any currents in the ether would add more components to
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the velocity of light and change the aberration angle. Since v/c was clearly
the observed value (for a star directly overhead), Young concluded that the
universal ether had to be immobile.

In 1818, however, Fresnel argued that in some situations ether does get dragged
along by matter. In the early part of the 19th century, wave theorists as-
sumed that the index of refraction n was proportional to the square root of
the ether density ρ. Moving transparent substances, Fresnel assumed, would
not affect the universal ether in the space they traveled through but would
carry excess ether along with them to preserve the ether density inside. The
weighted average of the velocities of these two types of ether, the unaffected
and the dragged-along, is a fraction ρexcess/ρtotal of the velocity with which
the substance is moving through the ether. Since ρexcess = ρtotal − ρvacuum and
ρtotal/ρvacuum = n2, this fraction is equal to 1− 1/n2. This expression became
known as the Fresnel drag coefficient. In 1846, Stokes suggested an alternative
mechanism in which transparent media moving through the ether drags along
all ether inside of it with this fraction.

No matter how one envisions this ether drag, Fresnel showed that the compo-
nent it adds to the velocity of light is necessary to explain why the presumed
motion of the earth with respect to the universal ether does not affect the out-
come of refraction experiments. This extra velocity component ensures that,
to first order in v/c (and greater experimental accuracy was not attainable
until much later in the century), refraction at the surface of a body moving
through the ether will follow Snell’s law, sin i = n sin r (where i is the an-
gle of incidence and r is the angle of refraction), from the point of view of
someone moving with the refracting body. A lens in a telescope is an example
of a refracting body in motion through the ether. In the simple derivation of
the formula for the aberration angle above, it was tacitly assumed that the
observer moving with the telescope can appeal to Snell’s laws to describe the
refraction in the lenses of the telescope. That assumption, Fresnel showed, is
not as innocuous as it may sound. It would not be true without the extra
velocity component resulting from the Fresnel drag effect. With this extra
component, however, no first-order refraction experiment can ever reveal the
earth’s motion through the ether. In 1871, for instance, Airy found that filling
the tube of his telescope with water did not affect the aberration angle.

A more primitive version of Airy’s experiment can be used to derive Fresnel’s
result for the special case in which the angle of incidence is 0o for the observer
moving with the refracting body. Imagine that the shaded rectangles in Fig.
1 represent two snapshots of a piece of glass with flat surfaces at the top and
the bottom. From the point of view of the ether, the light ray striking the
surface at O makes an angle i with the normal, the dashed line through O and
P . If Snell’s law were to hold from the ether’s perspective, as would be the
case if no ether drag were assumed, the refracted ray would follow the dashed
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line segment OQ at an angle r < i with the normal. For an observer moving
with the glass, because of aberration (no matter whether the light source is
terrestrial or celestial), the light ray strikes the surface at O perpendicularly. If
Snell’s law holds from this observer’s perspective, the light thus goes straight
through (r′ = i′ = 0o), which from the perspective from which Fig. 1 is drawn
means that the refracted ray follows the solid line segment OR. As the light
is traveling through the glass, it must therefore be dragged from OQ to OR.
Suppose it takes the light an amount of time ∆t to get from O to R. In that
case,

OQ = (c/n) ∆t, PR = v ∆t, QR = f v ∆t, (1)

where f at this point is some unknown fraction of v. Since the angles i and r
are very small, their tangents and sines can be used interchangeably and the
angle PQO is almost a right angle so that tan r can be set equal to PQ/OQ.
Substituting this value into Snell’s law in the form tan i = n tan r and using
that the aberration angle i satisfies tan i = v/c, one finds:

v

c
≈ n

PQ

OQ
= n

PR−QR

OQ
. (2)

Substituting the expressions in Eq. (1) in Eq. (2), one finds:

v

c
≈ v

c
n2(1− f). (3)

It follows that, to order v/c, f must be equal to 1 − 1/n2, which is just the
Fresnel drag coefficient.

Direct confirmation of the “drag” effect, or so it seemed, was provided in
1851 when Fizeau did an interference experiment that convincingly showed
that flowing water drags along light waves with about half its velocity, which
is roughly the value of the Fresnel drag coefficient for water. In 1886, as a
prelude to their famous ether drift experiment the following year, Michelson
and Morley repeated Fizeau’s experiment and found the same result. In the
period 1914–1927, Zeeman measured the velocity of light in various moving
liquids and solids and confirmed the Fresnel drag coefficient (with a small
correction term due to Lorentz) with much greater accuracy than either Fizeau
or Michelson and Morley (Zeeman, 1927).

2.2 Lorentz’s two derivations of the Fresnel drag coefficient in the 1890s

Although the formula for the Fresnel drag effect was widely accepted in the
19th century, the proposals for the physical mechanism behind it—be it Fres-
nel’s picture of full drag of some ether or Stokes’s picture of partial drag of all
ether—were not. Stachel (2005, pp. 6–8) quotes statements by Fizeau in 1851
and by Ketteler, Mascart, and Veltmann in the early 1870s to this effect. The

13



main objection to the literal interpretation of the Fresnel drag coefficient in
terms of ether drag was connected to a more general problem facing theoretical
accounts of the phenomenon of optical dispersion, the differential refraction of
light of different colors familiar from rainbows and prisms. 7 Dispersion theory
ought to furnish a formula showing how the index of refraction depends on
the frequency of the refracted light. In the early part of the 19th century, as I
already mentioned, the index of refraction was assumed to be proportional to
the square root of the ether density. This means that substances must carry
different amounts of ether for different colors of light. This implies, if the Fres-
nel drag coefficient is interpreted literally, that substances would have to drag
along ether with different fractions of their velocity for different colors.

What eventually led to the abandonment of these simple theories of refrac-
tion and dispersion in terms of variable ether density was that they could
not account for the phenomenon of anomalous dispersion, in which the index
of refraction for part(s) of the spectrum decreases rather than increases with
frequency. The phenomenon had been noticed by early pioneers in photogra-
phy but did not receive serious attention from physicists until the 1870s. At
that point, Sellmeier, Helmholtz and others began to develop a new type of
dispersion theory in which the behavior of light in transparent media is ex-
plained in terms of the interaction of the light waves with small harmonically-
bound particles with resonance frequencies at the absorption frequencies of
the material. It is in the vicinity of these frequencies that dispersion becomes
anomalous. Originally, these theories were purely mechanical, but in the early
1890s they were reworked in terms of electromagnetic waves interacting with
electrically charged particles, later to be identified as electrons. The most so-
phisticated theory along these lines was the one proposed by Lorentz (1892a)
in a monograph-length paper on Maxwell’s electromagnetic theory and its ap-
plication to moving bodies. The ether is completely immobile in this theory
and has the same density everywhere. The index of refraction is related not
to ether density but to the concentration of charged oscillators.

Lorentz’s 190-page treatise is divided into seven chapters and an appendix.
The behavior of light in dielectric media is the topic of the final two chapters.
Ch. VI, on media at rest in the ether, takes up 24 pages (Lorentz, 1892a, pp.
474–497). Ch. VII, on media in motion through the ether, takes up 30 pages
(ibid., pp. 498–527). In Ch. VI, Lorentz derives the equations governing the
propagation of light in a medium at rest in the ether and shows that they have
solutions describing waves traveling with velocity c/n through the ether, where
n can be expressed in terms of properties of Lorentz’s microscopic model of the
medium. In Ch. VII, he derives the analogous equations for a medium moving
through the ether with some velocity v, using a co-moving frame of reference

7 For a brief discussion of 19th-century dispersion theory and references to further
literature on this topic, see (Duncan and Janssen, 2007a, sec. 3.1).
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(related to a frame at rest in the ether through a Galilean transformation).
Lorentz (1892a, pp. 524–527) shows that these equations allow waves with
velocity (c/n)− (v/n2) in the direction of motion of the medium. The velocity
of these waves with respect to the ether is (c/n) + (1− 1/n2)v , in accordance
with Fresnel’s formula.

Physicists had been struggling with dispersion since the days of Newton, so
it was a tremendous success for Lorentz’s theory that it gave a reasonably
satisfactory account not just of normal but also of anomalous dispersion. 8

What especially inspired confidence in Lorentz’s theory was that it gave the
Fresnel drag coefficient without introducing any actual ether drag. This was a
triumph for the theory on a par with the explanation of the normal Zeeman
effect half a decade later. Einstein still rehearsed the final steps of Lorentz’s
1892 derivation of the Fresnel drag coefficient in an unpublished review article
on special relativity twenty years later as well as in courses on special relativity
in 1914–15 and 1918–19 in Berlin, as can be gleaned from his lecture notes
(Einstein, 1987–2006, Vol. 7, p. 279, note 7). What makes this all the more
remarkable is that Einstein did not cover—neither in these three documents
nor in any other document that I am aware of—a far simpler derivation of
the Fresnel drag coefficient that Lorentz gave in 1895 and that is much closer
in spirit to special relativity. Norton (2004, pp. 87–92) conjectures that this
1895 derivation was one of the stepping stones on Einstein’s path to special
relativity and is thus forced to explain away that Einstein covered the 1892
derivation in these documents without so much as a hint at the 1895 one.

The 1895 derivation is given in two short sections of a book on the electro-
dynamics of moving bodies known in the historical literature as the Versuch
(Lorentz, 1895, secs. 68–69, pp. 95–97). It is an application of the so-called
theorem of corresponding states that Lorentz first introduced in this book.
Later versions of this theorem (Lorentz, 1899, 1904b) will play an important
role in secs. 3–4. In modern terms, these theorems express, though initially
only partially and approximately, the Lorentz invariance of Maxwell’s equa-
tions. At the beginning of sec. 3.1, I shall formulate the theorem in a form
specifically tailored to its use in this paper. In this section, I want to stay
closer to Lorentz’s own reasoning.

Lorentz first subjected Maxwell’s equations to what would now be called a
Galilean transformation from a frame of reference with Cartesian coordinates
(x0, y0, z0) at rest in the ether to a frame with coordinates (x, y, z) moving
through the ether with velocity v. It will be convenient to assume that this
velocity is in the x-direction. Lorentz now replaced the electric and magnetic
fields and the time coordinate with auxiliary quantities such that, as long as

8 Only two decades later, the old quantum theory would pull the rug out from
under Lorentz’s account of dispersion (Duncan and Janssen, 2007a, sec. 3).
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quantities v2/c2 and smaller are neglected, the equations in the moving frame
have the same form as Maxwell’s equations in a frame at rest in the ether.
To first order in v/c, the quantities replacing the fields and the time t in the
moving frame are just what would now be called the Lorentz transforms of
the fields and the time t0 = t in the frame at rest. The auxiliary time variable
thus depends on position and Lorentz gave it the suggestive name “local time”
(Lorentz, 1895, p. 81). For the frame moving through the ether at velocity v
in the x-direction, it is given by:

t′ ≡ t− (v/c2)x. (4)

Lorentz used the embryonic Lorentz invariance of Maxwell’s equations to show
that one could never detect the earth’s motion through the ether with a first-
order experiment in optics that ultimately boils down to the observation of a
pattern of brightness and darkness. Any such experiment performed on earth,
in near-uniform motion through the ether, would give the same result that
one would find if one could somehow perform the experiment at rest in the
ether.

Given how broad this class of experiments is, the argument showing that the
theorem of corresponding states predicts negative results for all of them is
surprisingly simple. 9 The auxiliary fields at a point with coordinates x and
at local time t′ in the experiment on earth will have the same values as the
real fields in the experiment at rest in the ether for the same values of the
coordinates x0 and the real time t0. To describe a pattern of brightness and
darkness it suffices to specify where the fields are large averaged over times
that are long compared to the periods of the light waves used and where these
averages vanish. The components of the auxiliary fields are linear combinations
of components of the real fields (cf. Eq. (15) below). They vanish or are large
wherever and whenever the real fields are. Since patterns of brightness and
darkness can only be defined on time scales that are large compared to the
periods of the light waves producing them, local time and real time can be used
interchangeably. Combining these observations, one arrives at the conclusion
that if there is a bright (dark) spot at point x0 in the experiment at rest in
the ether, then there will likewise be bright (dark) spot at the corresponding
point x in the experiment on earth. The experiment will not reveal the earth’s
motion through the ether.

The class of optical experiments covered by Lorentz’s argument clearly in-
cludes refraction experiments. Fresnel had shown that refraction experiments
will reveal motion through the ether according to the immobile-ether theory
unless the Fresnel drag coefficient is added to it. Lorentz’s theory must thus
imply the Fresnel drag coefficient. In fact, it is a consequence of the embryonic
Lorentz invariance of Maxwell’s equations that Lorentz established with his

9 But I suppress one key assumption that Lorentz tacitly made (see note 12 below).
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theorem of corresponding states. As Lorentz (1895, secs. 56–58) showed ex-
plicitly, it follows directly from the expression for local time. In Ch. VI of his
1892 treatise, Lorentz had shown that Maxwell’s equations can serve as the
basis for a theory explaining why light travels at velocity c/n through a trans-
parent medium with refractive index n at rest in the ether. The components
of the electric and magnetic fields of a light wave traveling in the x-direction
all depend in the same way on x0 and t0 via the combination

t0 −
x0

c/n
. (5)

Now consider the same transparent medium moving through the ether with
velocity v in the x-direction. Replacing the real fields, the coordinates x0, and
the real time t0 in the description of a light wave in the medium at rest in the
ether by the auxiliary fields, the coordinates x, and the local time t′ of the
moving frame, one arrives at a description of a light wave in the same medium
in motion through the ether. For a wave in the x-direction, the components
of the auxiliary fields all depend on t′ and x via

t′ − x

c/n
. (6)

The same is true for the components of the real fields, which are just linear
combinations of the components of the auxiliary fields. Using expression (4)
for t′, one finds that they all depend on t and x via

t−
(

v

c2
+

n

c

)
x. (7)

Taking the reciprocal of the expression in parentheses, one finds that the light
wave in the moving medium has velocity(

v

c2
+

n

c

)−1

=
c/n

1 + (v/cn)
≈ c

n
− v

n2
(8)

in the x-direction with respect to the medium. The medium itself is moving
through the ether with velocity v in the x-direction. So, to order v/c, the light
wave in the moving medium has velocity

c

n
+
(
1− 1

n2

)
v (9)

with respect to the ether, in accordance with Fresnel’s formula.

Lorentz’s simple derivation of the Fresnel drag coefficient of 1895 (see Eqs.
(5)–(9)) rendered the lengthy calculations in Ch. VII of his 1892 treatise su-
perfluous. The new derivation made it clear that it suffices to derive from
Maxwell’s equations that light has velocity c/n in a medium at rest in the ether
with refractive index n (Lorentz, 1892a, Ch. VI) and to show that Maxwell’s
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equations are invariant under Lorentz transformations, at least to first order
in v/c and for the kind of charge distributions involved (Lorentz, 1895, secs.
56–58). Although Lorentz himself saw it merely as a convenient shortcut for
his derivation of 1892, he had thus achieved a good deal more with his new
derivation of 1895. In the terms that I introduced in sec. 1.3, the 1895 deriva-
tion shows that the Fresnel drag coefficient is kinematical in the broad sense
of being independent of the details of the dynamics.

2.3 Laue’s derivation of the Fresnel drag coefficient from the relativistic ad-
dition theorem for velocities

It was left to Laue in 1907 to show that the Fresnel drag coefficient is also
kinematical in the narrow sense of having to do with standard spatio-temporal
behavior in special relativity. Laue (1907) showed that the drag coefficient is
a direct consequence of the relativistic addition theorem of velocities. Einstein
(1905a) derived the theorem in his first paper on special relativity, but missed
this important application of it. This is another omission that is hard to square
with Norton’s (2004) conjecture about the importance of Lorentz’s derivation
of the Fresnel drag coefficient from the expression for local time for Einstein’s
path to special relativity. As both Einstein and Poincaré recognized, the x-
dependent term in Lorentz’s expression for local time reflects the relativity
of simultaneity. This is the only effect that matters in Laue’s derivation of
the Fresnel drag coefficient. To derive the addition theorem of velocities in
full generality, one also needs to take into account the effects of time dilation
and length contraction, but those are effects of second order in v/c while the
validity of the Fresnel drag coefficient is restricted to first order.

Consider light moving through a medium moving at velocity v, both in the
(positive) x-direction. For an observer moving with this medium, the light has
velocity u′ = c/n. Let ∆x′ be the distance covered by the light in the time ∆t′

from the point of view of the co-moving observer. In other words,

u′ ≡ ∆x′

∆t′
=

c

n
. (10)

What is the velocity u of the light with respect to the medium for an observer
with respect to whom the medium is moving at velocity v in the x-direction?
To order v/c, the two observers agree on the distance covered: ∆x = ∆x′.
However, they do not agree on the time it takes to cover this distance. This is
because they disagree about the synchronization of the clocks at the end points
of the interval ∆x = ∆x′. ∆t′ in Eq. (10) is determined on the assumption
that these two clocks are properly synchronized according to the co-moving
observer. For the other observer, as follows from Eq. (4), the clock on the left
is fast compared to the clock on the right by an amount of (v/c2)∆x. This
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amount needs to added to the time ∆t′ reported by the co-moving observer.
According to the observer with respect to whom the medium is moving, the
velocity u of the light with respect to the medium is thus given by:

u ≡ ∆x

∆t
≈ ∆x′

∆t′ + (v/c2)∆x′
=

u′

1 + (v/c2) u′
. (11)

If c/n is substituted for u′, this reduces to (cf. Eq. (8))

u ≈ c/n

1 + (v/nc)
≈ c

n
− v

n2
. (12)

It follows that, to order v/c, the light has velocity (cf. Eq. (9))

u + v =
c

n
+
(
1− 1

n2

)
v (13)

with respect to the observer for which the medium is moving at velocity v in
the x-direction. This concludes the proof that the Fresnel drag coefficient is a
direct consequence of the relativity of simultaneity.

Laue’s 1907 derivation of the Fresnel drag coefficient is mathematically equiv-
alent to Lorentz’s 1895 derivation (compare Eqs. (10)–(13) to Eqs. (5)–(9)).
Laue’s derivation, however, clearly brings out the meaning of the x-dependent
term in Lorentz’s local time in terms of the relativity of simultaneity. It also
shows, in the unkind glare of hindsight, that it was a mistake to look for a
dynamical explanation of the extra velocity component that Fresnel showed
was needed for a satisfactory account of refraction in moving media (cf. Eqs.
(1)–(3)). Ketteler, Veltmann, and Mascart were right in the 1870s to use Fres-
nel’s formula but to ignore its dynamical explanation in terms of ether drag.
And physicists in the 1890s were wrong to count Lorentz’s dynamical expla-
nation of 1892 as further evidence for his impressive electrodynamical theory
of refraction and dispersion. The Fresnel drag coefficient did not call for a new
dynamics but for a new space-time kinematics.

2.4 Drawing the line between kinematics and dynamics in accounting for the
Fresnel drag coefficient

The Fresnel drag coefficient was introduced in 1818 to ensure that refraction
in a medium moving through the ether obeys Snell’s law of refraction from the
point of view of a co-moving observer. Fresnel and, nearly thirty years later,
Stokes tried to derive the drag coefficient from dynamical models in which a
moving medium drags along at least some of the ether inside of it. The problem
with these models was that the moving medium would have to drag along
different amounts of ether for different colors because of the phenomenon of
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dispersion. The models for moving media inherited this problem from models
for media at rest in ether in which the index of refraction was interpreted
in terms of ether density. To account for dispersion, a medium at rest would
have to contain different amounts of ether. This problem for media at rest
was solved by the development of a new generation of dynamical models in
which the index of refraction was interpreted in terms of oscillators inside the
medium. Mechanical versions of this model emerged in the 1870s and Lorentz
proposed an electromagnetic version of it in 1892. He also produced a model
for moving media. This model involved no actual ether drag and avoided the
absurdities of the models of Fresnel and Stokes. Lorentz, however, could have
saved himself the trouble of producing a separate model for moving media. In
modern terms, his model for a medium in motion is simply the Lorentz-boosted
version of his model for a medium at rest. The features of the model for a
medium in motion, including the Fresnel ‘drag’ effect, follow from the Lorentz
invariance of the model for a medium at rest. This model was Lorentz invariant
because it was based on Maxwell’s equations. In fact, any Lorentz-invariant
model for a medium at rest that reproduces Snell’s law of refraction entails the
Fresnel ‘drag’ effect in a medium in motion. The effect is thus kinematical in
the broad sense of being independent of the details of the dynamics. Lorentz,
in effect, showed this in 1895 when he derived the Fresnel drag coefficient from
(i) the assumption that it is possible to derive from a Lorentz-invariant theory
like Maxwell’s that light has velocity c/n in a medium at rest (where n is the
index of refraction) and (ii) the expression t − (v/c2)x for local time in his
theorem of corresponding states.

The kinematical nature of the Fresnel drag coefficient (both in the broad and
in the the narrow sense) was emphasized by Einstein in his popular book on
relativity. After presenting Laue’s derivation of the drag coefficient from the
relativistic addition theorem of velocities, he wrote:

a theory of this phenomenon was given by H. A. Lorentz [1892a] long before
the statement of the theory of relativity. This theory was of a purely elec-
trodynamical nature, and was obtained by the use of particular hypotheses
as to the electromagnetic structure of matter (Einstein, 1917, p. 41).

In another passage in the book (to which I shall return in sec. 3.5), Einstein
explicitly stated that special relativity gives the Fresnel drag coefficient “with-
out the necessity of drawing on hypotheses as to the physical nature of the
liquid” (ibid., p. 51). As Norton suggests, Einstein may have had an ulterior
motive in mentioning Lorentz’s derivation of 1892 on several occasions but
not his derivation of 1895 (see sec. 2.2): “Einstein may have wanted to con-
trast Lorentz’s dynamical derivation of 1892 with the kinematical derivation
in special relativity, conveniently passing over Lorentz’s 1895 result” (Norton,
2004, p. 91). Norton disparages Lorentz’s 1892 derivation as “quite unillumi-
nating, demonstrating only that a rather cumbersome and opaque application
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of Maxwell’s equations to the propagation of electromagnetic waves in mov-
ing media yields the Fresnel drag,” while praising the 1895 one as “a much
simpler, essentially kinematical derivation” (ibid.). 10

Laue’s derivation of the Fresnel drag coefficient shows that the drag effect
is also kinematical in the narrow sense of reflecting default spatio-temporal
behavior. Contrary to what its origin in the analysis of refraction and aberra-
tion suggests, the Fresnel drag coefficient carries no information whatsoever
about the physics of light in transparent media other than that it is in ac-
cordance with the general rules for the spatio-temporal behavior of systems
inhabiting/carrying Minkowski space-time. More specifically, the Fresnel drag
coefficient reflects that the velocities involved when light propagates through
a moving medium add the way all velocities add in special relativity.

3 The Kaufmann experiments and the velocity dependence of elec-
tron mass

3.1 The velocity dependence of electron mass and the absence of ether drift

By the late 1890s it appeared increasingly unlikely that any experiment, no
matter how accurate, would ever detect ether drift. Lorentz (1899, sec. 9) thus
explored how the treatment of negative results of first-order optical ether-
drift experiments in the Versuch (Lorentz, 1895) could be extended to higher
powers of v/c. The centerpiece of this extension was an exact version of the
Versuch’s theorem of corresponding states. In modern terms, this theorem
is just the statement that Maxwell’s equations are invariant under Lorentz
transformations. In 1899, Lorentz only considered the source-free equations
and the equations for a few special charge distributions. Moreover, the trans-
formations he considered still contained an overall scale factor ε, which is an

10 I essentially agree with Norton’s assessment, but I do want to register a few reser-
vations. First, I want to emphasize that Lorentz’s (1892a) by Norton’s lights equally
“cumbersome and opaque” application of Maxwell’s equations to the propagation
of electromagnetic waves in media at rest in the ether in Ch. VI of his treatise was a
milestone in the checkered history of dispersion theory. Moreover, even Ch. VII on
moving media was of considerable value. In this chapter Lorentz showed for the first
time in nearly three quarters of a century that a coherent account of the physics be-
hind the Fresnel drag coefficient was possible. That he did not recognize right away
that his was only one possible account hardly diminishes this achievement. Finally,
I find it hard to believe that Einstein would pass over Lorentz’s 1895 derivation in
silence if that derivation really was as important as Norton conjectures it was for
Einstein’s path to special relativity.
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undetermined function of v. Following the systematic exposition of the theory
in (Lorentz, 1904b), I shall use l ≡ 1/ε instead.

For the purposes of this paper, the theorem of corresponding states can be
stated as follows: 11 if an electromagnetic field configuration, described by
the electric field E′ and the magnetic field B′ as functions of the space-time
coordinates (x′, t′), is a solution of Maxwell’s equations, then what up to the
scale factor l is just the Lorentz-boosted version of this configuration, described
by E and B as functions of (x, t), is also a solution. In accordance with this
formulation of the theorem in terms of active transformations, both primed
and unprimed coordinates refer to a frame of reference at rest in the ether.
Lorentz referred the boosted configurations to a co-moving frame related to
the frame at rest in the ether via a Galilean transformation (cf. sec. 2.2). For
a Lorentz boost with velocity v in the x-direction, (x, t) and (x′, t′) are related
via

ct = (γ/l)(ct′ + βx′), x = (γ/l)(x′ + βct′), y = y′/l, z = z′/l, (14)

with β ≡ v/c and γ ≡ 1/
√

1− β2. Lorentz (1899, p. 439) stipulated somewhat
arbitrarily that l can only differ from unity by a quantity of order v2/c2. This
ensures that corresponding field configurations at rest and in motion with
respect to the ether have the same spatial dimensions to first order in v/c.
The fields at corresponding points in the two situations are related via:

E = l2diag(1, γ, γ)(E′−v×B′), B = l2diag(1, γ, γ)(B′+(1/c2)v×E′), (15)

where diag(a, b, c) is shorthand for a diagonal matrix with diagonal elements
a, b, and c. One obtains the inverse transformations by interchanging primed
and unprimed quantities and by replacing v by −v and l by l−1. For l = 1 the
transformation is completely symmetric. This observation provides a simple
argument for setting l = 1. Both Einstein (1905a) and Poincaré (1906) availed
themselves of variants of this argument. Lorentz (1904b) decided on l = 1 on
the basis of a roundabout dynamical argument (see sec. 3.3).

Applied to the source-free Maxwell equations, the theorem of corresponding
states by itself does not predict that optical experiments cannot detect uniform
motion with respect to the ether. This is because the equations only cover
the patterns of brightness and darkness associated with the electromagnetic
field configurations, and not the optical components with which such patterns
are created and observed (lamps, mirrors, lenses, gratings, slits, diaphragms,
screens etc.). It follows from Eq. (14), that the dimensions of a pattern of
brightness and darkness in a frame at rest in the ether must be divided by γl
in the x-direction and by l in the y- and z-directions to obtain the dimensions

11 For more careful historical discussions, see, e.g., (Janssen, 1995, Ch. 3) or (Janssen
and Stachel, 2004).
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of the corresponding pattern of brightness and darkness in a frame in motion
through ether with velocity v = (v, 0, 0). Similarly, the periods of the light
waves in the situation at rest must be multiplied by γ/l to obtain the periods
in the corresponding situation in motion. For l = 1, these are the familiar
length-contraction and time-dilation effects of special relativity.

A co-moving observer should be able to detect these differences unless the
dimensions and periods of the material systems interacting with the elec-
tromagnetic field in these experiments depend on v in the same way as the
dimensions and periods of the patterns of brightness and darkness do. To pre-
dict in full generality and to all orders of (v/c) that a moving observer cannot
detect ether drift with an optical experiment that ultimately boils down to
the observation of a pattern of brightness and darkness, Lorentz thus had to
add a far-reaching physical assumption to his mathematical theorem about
Maxwell’s equations. He had to assume that a material system producing a
particular field configuration at rest in the ether would automatically turn
into the system producing the corresponding state of that field configuration
in a frame moving through the ether if it were carefully and slowly acceler-
ated to the velocity of that frame. 12 In conjunction with the exact theorem
of corresponding states, this new assumption does predict that a broad class
of optical experiments will fail to detect ether drift. As Lorentz (1899, p. 440;
1904b, p. 22) recognized, the new assumption was a generalization of the con-
traction hypothesis he and FitzGerald had introduced several years earlier
to explain the negative result of one such experiment, that of Michelson and
Morley. Elsewhere I have therefore dubbed it the ‘generalized contraction hy-
pothesis’ (Janssen, 1995, 2002b). As Brown (2005, pp. 49–50) emphasizes, it
would be better to talk about “deformation” hypotheses. It is only for l = 1
that the only deformation will be a contraction in the direction of motion.
In relativistic terms, the generalized deformation hypothesis amounts to the
assumption that the laws effectively governing material systems are Lorentz
invariant (modulo l), just as the laws (i.e., Maxwell’s equations) governing
the electromagnetic fields with which they interact. Hence, by adopting the
generalized deformation hypothesis, Lorentz implicitly decreed a number of
exemptions to the Galilean-invariant laws of Newtonian mechanics that were
supposed to have jurisdiction over matter in his theory.

Contrary to the strictures of Newtonian mechanics, lengths, periods, forces,
and masses in Lorentz’s theory all acquire the velocity dependence now famil-

12 Lorentz tacitly made this same assumption in applications of his first-order theo-
rem of corresponding states in 1895. The assumption was much more innocuous in
that context because it did not require any deviations from the laws of Newtonian
mechanics governing the material systems. Most deviations are of order v2/c2 and
in the kind of situations Lorentz considered deviations of order v/c (such as the
term distinguishing local time from real time) played only a minor role.
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iar from special relativity. For lengths and periods this can be seen directly
from Eq. (14). In the case of forces and masses it calls for additional argu-
ments. Lorentz (1899, pp. 440–442) considered the electrons—or “ions” as
he still called them—generating light waves. He compared their oscillations
in a system at rest in the ether to those in a corresponding state in a sys-
tem moving through the ether. As part of a plausibility argument for the
Lorentz-FitzGerald contraction, Lorentz (1892b, 1895) had already made the
assumption that all forces are affected by motion through the ether the same
way Coulomb forces are (Janssen, 1995, sec. 3.2). In relativistic terms, he thus
assumed that all forces transform as Coulomb forces under Lorentz transfor-
mations (modulo l). The force F on an electron moving through the ether with
velocity v in the x-direction is related to the force F′ on that same electron in
the corresponding state at rest in the ether via (Lorentz, 1899, p. 441; 1904b,
p. 18, Eq. (21)):

F = l2 diag(1, 1/γ, 1/γ)F′. (16)

Lorentz also found a simple relation between the corresponding accelerations.
From a relativistic point of view, he only took into account the effects of length
contraction and time dilation (modulo l). Lorentz (1899, p. 441; 1904b, p. 27,
Eq. (33)) thus arrived at:

a =
d2x

dt2
=

(1/l) diag(1/γ, 1, 1)

(γ/l)2

d2x′

dt′2
= l diag

(
1

γ3
,

1

γ2
,

1

γ2

)
a′. (17)

In general, the relativity of simultaneity complicates matters, but Lorentz’s
simple relation (17) carries over intact to special relativity as long as the
velocity with which the electron is oscillating is negligible compared to the ve-
locity v with which the system as a whole is moving through the ether. Planck
(1906a) was the first to derive the general transformation law for acceleration
in special relativity (Zahar, 1989, sec. 7.1). In the system at rest in the ether,
the electron satisfies F′ = m′a′, where m′ is the mass of the electron at rest
in the ether (i.e., in modern terms, m′ is the electron’s rest mass). Using the
inverse of the transformation laws (16) and (17) to write F′ = m′a′ in terms
of F and a, one finds:

1

l2
diag(1, γ, γ)F =

1

l
diag(γ3, γ2, γ2) m′a, (18)

which reduces to

F = l diag
(
γ3, γ, γ

)
m′a. (19)

It follows that the electron’s oscillation in the moving frame only satisfies
Newton’s second law if its mass depends on its velocity and if its ‘longitudinal
mass’ (m//), the inertia for acceleration in the direction of motion, differs
from its ‘tranverse mass’ (m⊥), the inertia for acceleration perpendicular to
the direction of motion. More specifically, m// and m⊥ should satisfy (Lorentz,
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1899, p. 442; 1904b, p. 27):

m// = lγ3m′, m⊥ = lγm′. (20)

Both m// and m⊥ increase dramatically as the velocity of the electron ap-
proaches the velocity of light.

The generalized deformation hypothesis thus forced a serious departure from
Newtonian mechanics. In Lorentz’s theory, the one Newtonian mass, the con-
stant ratio of force and acceleration, bifurcates into two velocity-dependent
quantities. Lorentz (1899) admitted that this move “seems very startling at
first sight” (p. 442). “Nevertheless,” he added, “we need not wholly reject it.
Indeed, as is well known, the effective mass of an ion depends on what goes on
in the aether; it may therefore very well be altered by a translation and even
to different degrees for vibrations of different directions” (ibid.). Lorentz did
not provide any references to the literature at this point, but (J. J.) Thomson
had suggested as early as 1881 that the inertia of a charged sphere increases as
a result of the interaction with its self-field, a result elaborated and improved
on by Heaviside in 1889 and Searle in 1897 (Miller, 1981, p. 43).

This idea, born in Victorian England, was about to be pursued vigorously
by several prominent physicists on the continent. Inspired by the successes of
Lorentz’s electromagnetic theory and by experiments confirming that the mass
of the electron does indeed increase with velocity, they set out to develop an
electromagnetic account of this velocity dependence. Although they brought
their own unanticipated rewards, these efforts turned out to be misguided. As
Einstein (1905a, sec. 10) first suggested, Eqs. (20) for l = 1 simply give the
generic velocity dependence of mass in a new relativistic mechanics. 13 They
provide no insight whatsoever into the origin of the electron’s mass.

3.2 The velocity dependence of electron mass, the electromagnetic view of
nature, and the Kaufmann experiments

In a Festschrift for Lorentz, Wien (1900) proclaimed what would come to be
known as the electromagnetic view of nature (McCormmach, 1970). To put
Wien’s proposal in terms of a pair of admittedly anachronistic slogans: every-
thing is made of electromagnetic fields and Maxwell’s equations are the theory
of everything. Abraham, a Privatdozent in Göttingen at the time and a for-
mer student of Planck, emerged as the leader of this electromagnetic program

13 Instead of using Eq. (16), Einstein set F = F′ and found that m⊥ = γ2m′. Planck
(1906a) adopted Eq. (16) and found m⊥ = γm′. When his 1905 paper was reprinted
in 1911, Einstein added a footnote conceding that this definition of F is preferable
to his own (Einstein, 1905a, p. 63).
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(Goldberg, 1970). The reduction of inertia to the interaction of charges with
their self-fields became its central problem. (For the strict adherent to the pro-
gram the charges themselves were nothing but singularities in the field.) The
touchstone for success in this reduction program was whether the predictions
for the velocity dependence of the electron’s mass agreed with experiment.

Abraham showed that the electromagnetic mass of a given charge distribution
can be derived either from the energy or from the momentum of its self-
field (Janssen and Mecklenburg, 2007, sec. 2.2). Electromagnetic energy is the
integral over all of space of the electromagnetic energy density uEM(x, t): 14

UEM(t) =
∫

uEM(x, t) d3x =
∫ (

1

2
ε0E

2 +
1

2
µ−1

0 B2
)

d3x, (21)

where ε0 and µ0 are constants, which satisfy c = 1/
√

ε0µ0. I use the letter U for
energy, reserving the letter E for the electric field. Likewise, electromagnetic
momentum, a concept introduced by Abraham (1902a, 1903), is the integral
over all of space of the electromagnetic momentum density pEM(x, t):

PEM(t) =
∫

pEM(x, t) d3x =
∫

ε0(E×B) d3x. (22)

Like Lorentz in 1899, Abraham distinguished between longitudinal and trans-
verse mass. In fact, this terminology is his (Abraham, 1903, pp. 150–152).
Both can be computed from the electromagnetic momentum. The transverse
mass is given by:

m⊥ =
PEM

v
; (23)

the longitudinal mass by:

m// =
dPEM

dv
. (24)

The latter can also be derived from the electromagnetic energy:

m// =
1

v

dUEM

dv
. (25)

Note that if the Newtonian expressions for momentum and kinetic energy,
p = mNv and Ukin = 1

2
mNv2, are substituted for PEM and UEM, respectively,

Eqs. (23)–(25) simply reproduce the Newtonian result m⊥ = m// = mN.

Abraham (1902a,b) also proposed a concrete model of the electron. In this
model, the electron is a rigid spherical surface charge distribution. It always
retains its shape regardless of its state of motion with respect to the ether.
So Abraham, despite his avowed ambition to reduce Newtonian mechanics to
electrodynamics, tacitly accepted the Newtonian concepts of space and time.
Calculating the longitudinal and transverse mass for this model with the help

14 I use SI units throughout this paper.
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of Eqs. (23)–(25), he found expressions far more complicated than Lorentz’s
(see Eq. (20)) but qualitatively similar in that the two components of the
electron’s mass increase sharply with velocity.

In 1901, Kaufmann, one of Abraham’s colleagues in Göttingen, had started a
series of experiments in which he used combinations of electric and magnetic
fields to deflect electrons produced by β-decay. 15 He found that the (trans-
verse) mass of electrons in β-radiation, which reach velocities of over 90% the
speed of light, was much greater than the mass of electrons in cathode rays,
which never reached velocities greater than about 30% the speed of light. He
interpreted this velocity dependence as a sign that at least part of the elec-
tron’s mass is due to interaction with its self-field. By 1902, probably under
the influence of Abraham, he was claiming that his data showed that the en-
tire mass of the electron was of electromagnetic origin (Miller, 1981, p. 51).
Kaufmann continued to find agreement with the predictions based on Abra-
ham’s electron model, even after his move to Bonn in 1903 ended the close
proximity between theorist and experimentalist.

By 1905, measurements of the velocity dependence of the mass of the elec-
tron were supposed to help decide between two different programs in physics,
Abraham’s electromagnetic program on the one hand and Lorentz’s electron
theory and Einstein’s relativity theory on the other. The theories of Lorentz
and Einstein were conflated in this context, not only because they led to
the same formulae for the velocity dependence of mass, but also because the
main concern of both Lorentz and Einstein was that their theories do justice
to the observed relativity of uniform motion, whereas Abraham’s main con-
cern was to stay true to his electromagnetic vision. As no single theory met
both objectives, a choice had to be made between them. Planck reflected on
this predicament in the discussion following a talk he gave on Kaufmann’s
latest results at the Naturforscherversammlung of 1906. He contrasted Abra-
ham’s electrodynamical postulate with the relativity postulate of what was
then commonly called the Lorentz-Einstein theory, and stated his preference
for the latter. Most of the physicists assembled in Stuttgart considered this
the conservative option, as evidenced by the fact, recorded in the published
transcript of the discussion, that Sommerfeld’s quick retort to Planck’s mus-
ings brought the house down: “I suspect that the gentlemen under forty will
prefer the electrodynamical postulate, while those over forty will prefer the
mechanical-relativistic postulate” (Planck, 1906b, p. 761). At 38, Sommerfeld
was ten years Planck’s junior. Einstein was not in attendance in Stuttgart and
it appears that Sommerfeld had not yet read (Einstein, 1905a) when he made
this quip (Janssen and Mecklenburg, 2007, p. 113).

15 For discussion of these experiments, see, e.g., (Cushing, 1981), (Miller, 1981, secs.
1.11–1.12, 7.4, and 12.4), and (Hon, 1995).
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3.3 The velocity dependence of electron mass and the electron model of Lorentz
and Poincaré

In his last major paper on the electrodynamics of moving bodies before Ein-
stein’s (1905a) celebrated paper on the topic, Lorentz (1904b) systematically
elaborated the theory he had outlined in the final section of (Lorentz, 1899).
Following Abraham’s lead, Lorentz (1904b, sec. 9) proposed a purely electro-
magnetic electron model of his own. In this model, the electron is a small
spherical surface charge distribution, which undergoes a microscopic version
of the Lorentz-FitzGerald contraction when it is set in motion with respect
to the ether. If the undetermined factor l in Eqs. (14)–(15) is set equal to 1,
the electromagnetic momentum of this contractile electron gives formulae for
transverse and longitudinal mass of exactly the same form as the ones Lorentz
had found in 1899. Lorentz thus killed two birds with one stone. He produced
a concrete model of the electron with the velocity dependence needed to help
render ether drift invisible and he fixed the value of l (Janssen and Mecklen-
burg, 2007, sec. 4).

Using Lorentz’s theorem of corresponding states, one finds that the energy of
the self-field of Lorentz’s contractile electron moving through the ether with
velocity v is given by:

UEM = l

(
4γ

3
− 1

3γ

)
U ′

EM, (26)

where U ′
EM is the energy of the self-field of the electron at rest in the ether.

Its momentum is similarly given by:

PEM =
4

3
γl

(
U ′

EM

c2

)
v. (27)

Inserting this expression for PEM into Eqs. (23) and (24) for transverse and
longitudinal mass, one arrives at:

m⊥ =
PEM

v
= lγm′, m// =

dPEM

dv
=

(
lγ3 + γv

dl

dv

)
m′, (28)

with

m′ =
4

3

U ′
EM

c2
. (29)

For l = 1 these relations have the exact same form as those in Eq. (20):
m⊥ = γm′ and m// = γ3m′. As soon as dl/dv 6= 0, the formula for m// in Eq.
(28) gets more complicated. This then provided Lorentz (1904b, p. 27) with
the dynamical argument alluded to in sec. 3.1 for setting l = 1.

To modern eyes, the factor 4/3 in the mass-energy relation (29) immediately
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makes this model look suspicious, but Lorentz proposed it the year before
Einstein (1905b) introduced E = mc2. Abraham (1905, p. 204), however,
soon spotted this ‘4/3’-problem, albeit in a different guise: in Lorentz’s model
energy and momentum give different expressions for the moving electron’s lon-
gitudinal mass: (1/v)(dUEM/dv) 6= dPEM/dv. This problem is related to that
of the stability of Lorentz’s contractile electron. What prevents the Coulomb
forces from blowing up the surface charge distribution constituting Lorentz’s
electron?

In 1906, Poincaré solved the stability problem and the ambiguity problem in
one fell swoop, albeit at the price of compromising the electromagnetic purity
of Lorentz’s model. What stabilizes Lorentz’s electron, Poincaré (1906) sug-
gested, is a kind of suction by the ether inside of it. This ether suction came to
be known as Poincaré pressure or Poincaré stress(es). This stabilizing mecha-
nism also removes the ambiguity in the electron’s longitudinal mass. Poincaré
assumed that the ether exerts a negative pressure of −1

3
(U ′

EM/V ′) on the elec-
tron, where V ′ is the volume of the electron at rest (Janssen and Mecklenburg,
2007, sec. 5). The energy associated with this is minus the product of pressure
and volume. At rest, U ′

pres = 1
3
U ′

EM and the total energy is:

U ′
tot = U ′

EM + U ′
pres =

4

3
U ′

EM. (30)

When the electron is moving with velocity v, its volume is V = V ′/γ and
Upres = U ′

EM/3γ. This is just the opposite of the second term in the expression
for UEM in Eq. (26) for l = 1. So the total energy of a moving electron is just
the first term in this expression:

Utot = UEM + Upres =
4γ

3
U ′

EM = γU ′
tot. (31)

The Poincaré pressure does not affect the electron’s momentum. So Ptot is
equal to PEM in Eq. (27) for l = 1 and can be rewritten as:

Ptot = γ

(
U ′

tot

c2

)
v = γ m′v, (32)

with m′ ≡ U ′
tot/c

2. The puzzling factor 4/3 in the mass-energy relation (29)
has disappeared.

When Poincaré pressure is taken into account, the expression for the longitu-
dinal mass derived from the electron’s electromagnetic energy agrees with the
expression derived from its electromagnetic momentum. Substituting the ex-
pressions for Utot and Ptot in Eqs. (31)–(32) for UEM and PEM in Eqs. (23)–(25),
one finds:

m// =
dPtot

dv
=

1

v

dUtot

dv
= γ3m′, m⊥ =

Ptot

v
= γm′. (33)

29



Lorentz and Poincaré had thus produced a model of the electron with ex-
actly the velocity dependence of mass necessary to account for the absence
of signs of ether drift. I suppose they can be forgiven for interpreting this as
strong evidence that electrons really are contractile spherical surface charge
distributions held together by ether suction.

Unfortunately, Kaufmann’s data still seemed to favor the formula for the
velocity dependence of the electron’s transverse mass based on Abraham’s
model of a purely electromagnetic rigid electron. At the annual Naturforscher-
versammlung in Cologne in 1908, however, Bucherer reported results of simi-
lar experiments favoring what by then was being referred to as the Lorentz-
Einstein formula. Even though special relativity is completely agnostic about
nature and structure of the electron, it gives the same formula for the trans-
verse mass of a moving electron as Lorentz’s model. With Bucherer’s results
the experimental tide began to turn in favor of the Lorentz-Einstein for-
mula. By 1915, additional experiments by Schäfer, Neumann, Guye, Lavanchy,
Hupka, and others had produced a broad consensus that the data agreed with
the Lorentz-Einstein formula and not with Abraham’s.

Reanalysis of the data decades later showed that none of these experiments
were accurate enough to distinguish between the different predictions for the
velocity dependence of the electron mass. Abraham, Lorentz, and Einstein all
paid lip service to the importance of these experiments, especially when the
data seemed to favor their own theories (see, e.g., Einstein, 1917, p. 51), but
it is not clear how seriously they really took them. I suspect that it was not
so much the experimental data but theoretical arguments that eventually led
to the acceptance of the Lorentz-Einstein formula and eliminated Abraham’s
model from serious contention. In the discussion following Bucherer’s presenta-
tion of his data in 1908, for instance, Minkowski ridiculed his young Göttingen
colleague Abraham for assuming space-time to be Newtonian in pursuing his
electromagnetic program. “Approaching Maxwell’s equation with the concept
of a rigid electron,” he sneered, “seems to me the same thing as going to a
concert with cotton in your ears” (quoted from Miller, 1981, p. 330). It was
at this same congress in Cologne that Minkowski (1909) gave his now famous
lecture introducing the relativistic space-time named after him. By 1915, even
proponents of the electromagnetic program, such as Mie, accepted that space-
time is Minkowskian rather than Newtonian and is no place for Abraham’s
rigid electron.
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3.4 The velocity dependence of mass as a generic feature of relativistic sys-
tems

The main point of measuring the velocity dependence of electron mass in the
first two decades of the 20th century was that it seemed to provide information
about the nature and structure of the electron. It was only gradually realized
that this was an illusion. The illusion becomes particularly transparent if the
electron model of Lorentz and Poincaré is analyzed in terms of relativistic
continuum mechanics.

This new framework for a physics of fields rather than particles grew out of
the electromagnetic program’s new “electromagnetic mechanics,” to use Abra-
ham’s (1903, p. 109) own phrase. Although Abraham no doubt would have
disagreed, one can argue that the development of this framework compensated
for the ultimate failure of the program. Minkowski (1908) put Abraham’s ap-
proach on a solid relativistic basis. In sec. 3.5, I shall argue that Minkowski
(1909) also deserves to share the credit with Planck (1908) for freeing the
approach from its roots in electrodynamics and recognizing its broader ap-
plicability. The new mechanics outlined by Planck was completed by his for-
mer student and assistant Laue (1911a,b). Laue, a Privatdozent in Munich at
the time, could also build on the elaboration of Minkowski’s four-dimensional
formalism by Sommerfeld (1910a,b), Laue’s senior colleague in Munich. In
Laue’s relativistic continuum mechanics, the (stress-)energy-momentum ten-
sor for spatially extended systems takes center stage and the vanishing of the
four-divergence of the sum of the energy-momentum tensors for all compo-
nents of a closed system replaces Newton’s second law as the fundamental law
of dynamics. The famous review article on relativity by Sommerfeld’s young
student Pauli (1921) contains what to this day remains one of the best ex-
positions of relativistic continuum mechanics. By the time Pauli wrote his
article, however, this joint effort of Abraham, Lorentz, Einstein, Minkowski,
Planck, Sommerfeld, Laue, and others had already been overshadowed by the
development of general relativity and, more importantly, the old quantum the-
ory, which, through Bohr’s correspondence principle, gave the old Newtonian
particle mechanics a new lease on life.

Special relativity turns the energy and the three components of momentum
into the four components of four-momentum:

P µ =
(

U

c
,P
)

. (34)

For a spatially extended system, such as an electromagnetic field, the four-
momentum is constructed out of the energy-momentum tensor T µν for the
system. This tensor combines the energy density (T 00), the energy flow density
(cT 0i), the momentum density (T i0/c), and the stresses or momentum flow
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densities (T ij). 16 Under the standard definition, the components of the four-
momentum of a system described by T µν are the space integrals:

P µ ≡ 1

c

∫
T µ0d3x. (35)

Under this definition, as we shall see below, only the four-momentum of a
closed system, i.e., a system for which ∂νT

µν
tot = 0, 17 transforms as a four-vector

under Lorentz transformations. The Lorentz-Poincaré electron—its electro-
magnetic field and its Poincaré pressure—is an example of a closed system.

Suppose the four-momentum of some closed system at rest is:

P ′µ = (U ′/c, 0, 0, 0) . (36)

For a Lorentz boost in the x-direction with velocity v, the transformation
matrix Λµ

ν is given by (cf. Eq. (14) for l = 1):

Λµ
ν =



γ γβ 0 0

γβ γ 0 0

0 0 1 0

0 0 0 1


. (37)

The four-momentum of the closed system moving at velocity v = (v, 0, 0) is:

P µ = Λµ
νP

′ν =

(
γU ′

c
, γ

U ′

c2
v

)
= (γm′c, γm′v), (38)

with m′ = U ′/c2. Substituting U = γm′c2 and P = γm′v for UEM and PEM in
Abraham’s Eqs. (23)–(25), one recovers the relations which were first found
by Lorentz (1899) (for l = 1) and satisfied by the concrete electron model
proposed by Lorentz (1904b) and fixed up by Poincaré (1906):

m// =
dP

dv
=

1

v

dU

dv
= γ3m′, m⊥ =

P

v
= γm′. (39)

This derivation of these relations shows how generic they are. They give the
velocity dependence of the mass of any closed system described by Lorentz-
invariant laws. Other than that, they reveal nothing about the system. It is
because the electron model of Lorentz and Poincaré is closed and Lorentz

16 I follow the standard convention that Greek indices take on the values 0, 1, 2,
and 3, corresponding to ct, x, y, and z, while Latin indices only take on the values
1, 2, and 3.
17 As usual, identical upper and lower indices are summed over; ∂ν is shorthand for
∂/∂xν .
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invariant, that their contractile electron obeys these relations; it is because
Abraham’s model is not Lorentz invariant, that his rigid electron does not.

That the mass of a system obeys the relations in Eq. (39) does not even
guarantee that the system is closed. There is an alternative definition of the
four-momentum of spatially extended systems, which yields a four-vector re-
gardless of whether the system is open or closed. And, as should be clear from
Eqs. (36)–(39), any four-momentum that transforms as a four-vector under
Lorentz transformations leads to the same velocity dependence of mass. The
freedom one has in defining the four-momentum of spatially extended systems
in special relativity will play a central role in the analysis of the Trouton-Noble
experiment in the next section, which makes it necessary to look into this issue
in some detail.

Both the standard and the alternative definition can be seen as special cases
of the following general definition:

P µ
Σ(nρ,τ) ≡

1

c

∫
δ(ηαβxαnβ − τ) T µνnν d4x. (40)

In this equation, ηµν is the standard Minkowski metric diag(1,−1,−1,−1);
δ(x− a) is the Dirac delta function, defined through

∫
δ(x− a)f(x)dx = f(a);

and Σ(nρ, τ) is a spacelike hyperplane fixed by (i) the timelike unit vector
nρ orthogonal to it (in the sense of the standard Minkowski inner product)
and (ii) its orthogonal distance τ to the origin O of the xµ-coordinate system
(τ is the proper length of a timelike line segment in the direction of nρ that
begins in O and ends on the hyperplane). The delta function picks out all
points and only those points that lie on this hyperplane and thus turns the
four-dimensional integral into a three-dimensional one.

One arrives at different definitions of the four-momentum of spatially ex-
tended systems by adopting different conventions for choosing a family of
hyperplanes {Σ(nρ, τ)} in Eq. (40). Fig. 2 illustrates two of the three basic
options. The third is not to privilege any hyperplanes and to accept that
the four-momentum of a spatially extended system is a hyperplane-dependent
quantity (Fleming, 2000). Fig. 2 shows a two-dimensional Minkowski space-
time with two sets of space and time axes, one for the frame of some observer,
one for the rest frame of some spatially extended object, such as the Lorentz-
Poincaré electron. The shaded region represents the world sheet of this object.
The standard convention is to pick hyperplanes for which nρ is in the time di-
rection in the frame of the observer. This vector, nρ

obs, is different in each frame
but it has the same components (1, 0, 0, 0) in all of them. Integrals of T µνnν

over Σ(nρ
obs, τobs) will consequently be ordinary space integrals of T µ0 in all

frames. The general definition (40) thus reduces to the standard non-covariant
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Fig. 2. Different conventions for picking hyperplanes in defining the four-momentum
of spatially extended systems

definition (35):

P µ
stan ≡ P µ

Σ(nρ
obs

,τobs)
=

1

c

∫
T µ0d3x. (41)

The alternative convention is to pick hyperplanes for which nρ is in the time
direction in the rest frame of the object under consideration. This vector, nρ

obj,
is the same in every frame even though it will have different components
in each of them. It is not always possible to define the rest frame uniquely,
but this is not a problem for systems that are static except for a constant
velocity of the system as a whole, such as the Lorentz-Poincaré electron or the
capacitor in the Trouton-Noble experiment examined in the next section. With
this alternative convention, the general definition (40) turns into a covariant
definition:

P µ
cov ≡ P µ

Σ(nρ
obj

,τobj)
. (42)

This alternative definition was first proposed by Fermi (1921, 1922), forgot-
ten, rediscovered several times, and finally broadly disseminated by Rohrlich
(1960, 1965). Some of the discussion in the literature over which of these two
definitions is preferable may suggest that one is right and the other is wrong. 18

Since the difference between the two is a convention about choosing a family
of hyperplanes, this cannot be the issue. At most, one might want to argue
that one definition is more convenient, more elegant, or more natural than the
other.

18 See, in particular, the ‘Boyer-Rohrlich controversy’ discussed in (Campos and
Jiménez, 1986). I am grateful to Nico Giulini for drawing my attention to this
paper.
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The two definitions coincide in the rest frame, but, in general, give different
results in frames in which the system under consideration is moving. Under
the covariant definition (42), the four-momentum of a moving system is always
the Lorentz transform of the four-momentum in its rest frame: P µ

cov = Λµ
νP

′ν
cov.

Under the standard definition (41), this will, in general, not be case: P µ
stan 6=

Λµ
νP

′ν
stan. It is easy to see why. P ′µ

stan (= P ′µ
cov) is an integral over a hyperplane

of simultaneity in the system’s rest frame. Its Lorentz transform, Λµ
νP

′ν
stan (=

P µ
cov), remains an integral over that same hyperplane, which is not a hyperplane

of simultaneity in the new frame. However, if the system is closed, i.e., if
∂νT

µν = 0, the results of integrating over different hyperplanes are always the
same (barring pathological behavior as the spatial coordinates go to infinity).
This follows from a straightforward application of the obvious generalization
of Gauss’s theorem from three to four dimensions. 19 For closed systems, four-
momentum therefore does transform as a four-vector, even under the standard
definition. In summary: for closed systems, definitions (41) and (42) coincide
in all frames; for open systems, they only coincide in the rest frame.

It will be instructive to relate the four-momentum, under the standard def-
inition, of the electromagnetic field and the Poincaré pressure of a moving
Lorentz-Poincaré electron to the four-momentum of field and pressure of the
same electron at rest. Unprimed quantities refer to the former situation,
primed ones to the latter. In pre-relativistic terms, motion and rest are to
be understood here with respect to a frame at rest in the ether. In special
relativity, it can be with respect to any inertial frame. The transition from
primed to unprimed quantities can be interpreted either as an active or as a
passive transformation. So far, the discussion has been in terms of active trans-
formations: the comparison has been between two different situations, that of
an electron at rest (primed) and that of an electron in motion (unprimed) in
the same frame (a frame at rest in the ether). But a passive interpretation is
also possible: in that case the comparison is between two different perspec-
tives on the same situation, an electron viewed from its rest frame (primed)
and from a frame in which it is moving (unprimed). For continuity with the
ether-theoretic discussion so far, it is best to proceed in terms of active trans-
formations.

The energy-momentum tensor for the field of a static charge distribution at
rest is:

T ′µν
EM =

u′EM 0

0 −T ′ij
Max

 , (43)

19 For details, see (Rohrlich 1965, pp. 89–90 and appendix A1-5), (Janssen 1995,
sec. 2.1.3), or (Teukolsky 1996, p. 1105).
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where T ′ij
Max is the Maxwell stress tensor, which is this case is given by:

T ′ij
Max = ε0E

′iE ′j − δiju′EM (44)

(with δij ≡ diag(1, 1, 1) the Kronecker delta). The energy-momentum tensor
for the Poincaré pressure on the electron at rest is (Janssen and Mecklenburg,
2007, sec. 6):

T ′µν
pres =

1

3

(
U ′

EM

V ′

)
ηµνϑ(R− r′), (45)

where R is the radius of the electron at rest, r′ ≡
√

x′2 + y′2 + z′2, and ϑ(x) is
a step-function that ensures that the pressure is constant inside the electron
and vanishes outside (ϑ(x) = 0 for x < 0 and ϑ(x) = 1 for x ≥ 0). Field and
pressure together form a closed system:

∂′ν(T
′µν
EM + T ′µν

pres) = 0. (46)

This can readily be verified for an electron at rest. Since Eq. (46) is a tensor
equation, it is also true for an electron in uniform motion. From the point of
view of relativistic continuum mechanics, Poincaré pressure is nothing but the
piece that needs to be added to Lorentz’s purely electromagnetic electron to
turn it into a closed system. This is physically much more transparent than the
way in which Poincaré originally introduced this quantity. Since the system is
static, the (ν = 0)-component of Eq. (46) vanishes no matter what function of
x′ is chosen for T ′00

pres. So Poincaré’s solution to the ambiguity problem and the
stability problem of Lorentz’s purely electromagnetic electron is not unique
(Janssen and Mecklenburg, 2007, p. 120, note 52).

Using the standard definition (41) of four-momentum along with expression
(43) for T ′µν

EM and the standard rules for the transformation of this tensor under
the Lorentz boost (37), one finds that the four-momentum of the electromag-
netic field of the moving electron is given by:

P µ
EM =

1

c

∫
Λµ

ρ Λ0
σ T ′ρσ

EM d3x =

((
4γ

3
− 1

3γ

)
U ′

EM

c
,
4

3
γ

(
U ′

EM

c2

)
v

)
. (47)

Because the system is static, the integral over a hyperplane of simultaneity
in the unprimed frame can be replaced by an integral over a hyperplane of
simultaneity in the primed frame. One can thus replace the volume element
d3x by d3x′/γ and use that

∫ 1
2
ε0E

′2
i d3x′ = 1

3

∫
u′EMd3x′ = 1

3
U ′

EM. This was
done in the last step in Eq. (47). This equation combines Eqs. (26) and (27)
(both for l = 1) for UEM and PEM. For the four-momentum of the Poincaré
pressure in the moving electron, one similarly finds:

P µ
pres =

1

c

∫
Λµ

ρ Λ0
σ T ′ρσ

pres d3x =

(
1

3γ

U ′
EM

c
, 0, 0, 0

)
. (48)
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Adding these two four-momenta and setting U ′
tot = 4

3
U ′

EM, one recovers Eqs.
(31) and (32) for the total energy and momentum of the moving electron:

P µ
tot = P µ

EM + P µ
pres =

(
γ
U ′

tot

c
, γ

U ′
tot

c2
v

)
. (49)

So, under the standard definition (41), the total four-momentum of the elec-
tron, a closed system, transforms as a four-vector under Lorentz transforma-
tions, but the four-momenta of its open subsystems (electromagnetic field and
Poincaré pressure) do not. Under the alternative definition (42), the four-
momentum of the system as a whole and the four-momenta of its two open
subsystems considered separately all transform as four-vectors. The devia-
tions from Λµ

ν P ′ν
EM and Λµ

ν P ′ν
pres in Eqs. (47) and (48) for P µ

EM and P µ
pres—the

puzzling factors 4/3 and 1/3 in particular—are artifacts of the non-covariant
standard definition of four-momentum.

3.5 Drawing the line between kinematics and dynamics in accounting for the
velocity dependence of mass

Lorentz (1899) showed that the mass of particles interacting with electromag-
netic fields in his theory has to depend on velocity in a particular way to
help account for the absence of signs of ether drift. If the undetermined scale
factor l is set equal to 1, this is the same velocity dependence that Einstein
(1905a) and Planck (1906a) showed is required by the postulates of special rel-
ativity. The relativistic derivation is mathematically equivalent to Lorentz’s
derivation for l = 1. Both derivations show how mass, defined as the ratio of
force and acceleration, transforms in a world governed by Lorentz-invariant
laws in which Newton’s second law holds in a particle’s rest frame. Lorentz,
understandably, was not impressed with the relativistic reincarnation of his
1899 derivation. For him, this derivation was only a first step. It showed that
his theory required a non-Newtonian concept of inertia. The next step was to
explain how such inertia could arise. To this end, Lorentz (1904b), following
Abraham (1902a,b) and with help from Poincaré (1906), developed a concrete
electromagnetic model of the electron with exactly the required velocity de-
pendence of mass. Referring at least in part to the transformation law for mass,
he wrote in the final section of a book based on lectures at Columbia Univer-
sity in 1906: “Einstein simply postulates what we have deduced, with some
difficulty and not altogether satisfactorily, from the fundamental equations of
the electromagnetic field” (Lorentz, 1915, pp. 229–230). 20

20 The element that Lorentz explicitly identifies in this passage as something Ein-
stein “deduces . . . from the relativity principle itself” is the relativistic transforma-
tion law for charge density needed to complete the proof of the Lorentz invariance of
Maxwell’s equations in for arbitrary charge distributions, which had eluded Lorentz
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This remark is indicative of Lorentz’s general attitude toward special relativ-
ity. In an article in the London Times, Einstein (1919) later declared special
relativity to be a “principle theory,” like thermodynamics, rather than a “con-
structive theory,” like the kinetic theory of gases. This distinction can be used
to capture the way in which Lorentz saw the difference between Einstein’s the-
ory and his own. I use the principle-constructive distinction in the following
sense (I shall have more to say below about Einstein’s own use of it). 21 To set
up a principle theory for a certain class of phenomena, one raises some observed
regularities about these phenomena to the level of postulates. The only thing
a principle theory says about the underlying reality is that all phenomena it
gives rise to are in accordance with the postulates. To set up a constructive
theory covering the same class of phenomena, one posits a specific model for
the reality behind them. A principle theory for these phenomena will constrain
such modeling but offers no grounds for preferring one model satisfying the
constraints over another. Lorentz looked upon his own theory as providing a
concrete model of a world in accordance with the postulates of special relativ-
ity. In this sense, Lorentz’s constructive theory thus complements rather than
contradicts Einstein’s principle theory.

Special relativity, however, is not a principle theory in this very strict sense
and Einstein never intended it to be one. For one thing, he clearly wanted to
reject any constructive theory that posits an ether, even one as bare bones as
Lorentz’s, or that singles out the inertial frames at rest in it, even if it is im-
possible to pick out such preferred frames empirically. Even if it were stripped
of these two objectionable elements, however, Lorentz’s theory would still be
at odds with Einstein’s theory. The principle-constructive distinction is a red
herring in the end. By focusing on it, Lorentz missed a much more impor-
tant difference between his own theory and Einstein’s, namely the difference
between kinematical and dynamical accounts of a whole class of phenomena.
It was for a reason that Einstein called the first half of his 1905 paper “The
kinematical part.”

According to special relativity, as shown in this section, the velocity depen-
dence of mass has nothing to do with the specifics of the dynamics of elec-
tromagnetism, ether pressure, or what have you, but is a generic property of
closed systems in a world in accordance with the postulates of the theory.
The velocity dependence of mass is thus kinematical in the broad sense of
being independent of the details of the dynamics. I shall argue below that this
is because it is also kinematical in the narrow sense of exemplifying default
spatio-temporal behavior. For now I focus on the claim that it is kinematical in

(Janssen, 1995, secs. 3.5.6 and 4.3.2).
21 See (Balashov and Janssen, 2003, sec. 4). Brown and Pooley (2006, p. 73) praise
our characterization of the distinction but prefer a less rigid one themselves (see
also Brown, 2005, pp. 89–90).
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the broad sense. Detailed dynamical considerations, i.e., considerations specific
to the system at hand, do come into play if one wants to account for the origin
of the rest mass m′ of a particular particle. Given E = mc2, this boils down to
the calculation of any and all contributions to the particle’s rest energy with
the help of theories that, as required by the postulates of special relativity, are
all Lorentz invariant. Another option is simply to accept the empirical value
of a particle’s rest mass as a brute fact. Either way, assuming that a parti-
cle is a prototypical closed system, 22 one ends up with the four-momentum
P ′µ = (m′c, 0, 0, 0) in the particle’s rest frame. The four-momentum of the
same particle moving with velocity v will be P µ = Λµ

νP
′ν = (γm′c, γm′v).

The relations m// = γ3m′ and m⊥ = γm′ are direct consequences of this
transformation law (see Eq. (39)). These relations are therefore kinematical
in the broad sense.

Pais (1982) also used the term ‘kinematical’ in this broad sense when he
wrote in his Einstein biography: “Special relativity killed the classical dream
of using the energy-momentum-velocity relations as a means of probing the
dynamical origins of [the electron mass]. The relations are purely kinematical”
(p. 159). By 1920, it had become clear to many physicists that this ‘classical
dream’ had led them on a wild goose chase. In his popular book on relativity,
Einstein (1917) drew a parallel between the velocity dependence of mass of
the electron—or the “law of motion” (p. 50) as he referred to it (see Eq. (19)
for l = 1)—and the Fresnel drag coefficient discussed in sec. 2:

The theory of relativity leads to the same law of motion, without requiring
any special hypothesis whatsoever as to the structure and the behavior of
the electron. We arrived at a similar conclusion . . . with the experiment of
Fizeau, the result of which is foretold by the theory of relativity without the
necessity of drawing on hypotheses as to the physical nature of the liquid
(Einstein, 1917, p. 51).

Lorentz conceded the point in lectures at Caltech in 1922. Compare the fol-
lowing passage to the one quoted above from his lectures at Columbia in 1906:

The formula for momentum was found by a theory in which it was supposed
that in the case of the electron the momentum is determined wholly by
that of the electromagnetic field . . . This meant that the whole mass of an
electron was supposed to be of electromagnetic nature. Then, when the
formula for momentum was verified by experiment, it was thought at first
that it was thereby proved that electrons have no “material mass.” Now
we can no longer say this. Indeed, the formula for momentum is a general
consequence of the principle of relativity, and a verification of that formula

22 If one is happy to use the alternative definition (42) of the four-momentum of
spatially extended systems, one does not even have to assume that much.
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is a verification of the principle and tells us nothing about the nature of
mass or of the structure of the electron (Lorentz, 1927, p. 125).

In 1906, Lorentz, hinting at his own dynamical explanation of the velocity de-
pendence of mass, suggested that Einstein had come up short by not providing
one. In 1922, Lorentz recognized that he himself had overshot the mark. Pauli
addressed the same issue in his review article on special relativity:

It constituted a definite progress that Lorentz’s law of the variability of mass
could be derived from the theory of relativity without making any specific
assumptions on the electron shape or charge distribution. Also nothing need
be assumed about the nature of the mass (Pauli, 1921, pp. 82–83).

Given that he clearly realized that the velocity dependence of mass is kine-
matical (in the broad sense), it may come as a surprise that Pauli, earlier in
his review article, called for a dynamical explanation of length contraction. In
a passage quoted approvingly by Brown (2005, p. 4, p. 118), he wrote:

Should one then completely abandon any attempt to explain the Lorentz
contraction atomistically? We think that the answer to this question should
be No. The contraction of a measuring rod is not an elementary but a very
complicated process. It would not take place except for the covariance with
respect to the Lorentz group of the basic equations of electron theory, as
well as of those laws, as yet unknown to us, which determine the cohesion
of the electron itself (Pauli, 1921, p. 15).

Pauli here conflates solving a difficult problem and appealing to an automatic
corollary of its solution. The problem is how to construct a Lorentz-invariant
model of a physical system at rest that can serve as a measuring rod. The
model would have to be quantum-mechanical as classical theories cannot ac-
count for the stability of matter. What calls for a dynamical or “atomistic”
explanation, however, is precisely this stability and not length contraction.
Once a stable model of a system at rest is in place, Lorentz invariance guaran-
tees that a contracted version of the same system in uniform motion will also
be stable. This is true for any Lorentz-invariant model. Length contraction,
like the velocity dependence of mass, is thus kinematical, at least in the broad
sense.

Why did Pauli recognize this in one case but not in the other? Part of the
answer, I suspect, is that Pauli was more careful in the case of mass because
it had tripped up several of his elders. The search for a dynamical explanation
of the velocity dependence of mass had seduced them into making completely
unwarranted inferences about the nature of the electron and the nature of
mass in general. As I mentioned in the introduction, it is exactly because
explanation is routinely used as a guide to inference that it matters—or should
matter—to scientists and not just to philosophers to get their explanatory
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stories straight. Pauli would presumably have been more careful in the case of
length contraction as well, had his contemporaries been in the habit of making
bold leaps from length contraction to shaky yet Lorentz-invariant theories of
the stability of matter.

My diagnosis of the error in Pauli’s comments on length contraction also serves
as a rebuttal of Brown’s (2005) provocative claim that Einstein himself “never
fully made the transition from the old dynamics to the new kinematics” (p. vii,
p. 114). Brown borrows this formulation from Pais (1982, p. 167), who used it
to pass judgement on Lorentz’s attitude toward special relativity. To support
his claim, Brown (2005, pp. 113–114) quotes several passages from Einstein’s
writings in which he concedes the need for dynamical models of systems that
can be used as rods and clocks. What originally prompted these remarks by
Einstein was Weyl’s (1918) attempt to unify gravity and electromagnetism. 23

Unlike the young Pauli, however, Einstein never mistook this for a dynami-
cal explanation of length contraction or time dilation. Those phenomena, to
reiterate, are direct consequences of the Lorentz invariance assumed from the
get-go in the construction of any acceptable dynamical model of rods or clocks.
They are thus purely kinematical, at least in the broad sense.

Length contraction, time dilation, and the velocity dependence of mass are also
kinematical in the narrow sense of exemplifying standard spatio-temporal be-
havior in special relativity. The Lorentz invariance that can be derived from
the postulates of special relativity (in conjunction with the assumption that
space and time are homogeneous and isotropic) finds its natural interpreta-
tion in terms of the geometry of Minkowski space-time. This interpretation
amounts to the constructive-theory version of special relativity. It says that
the space-time component of any acceptable model of a world in accordance
with the postulates is Minkowski space-time. Lorentz’s theory was a compre-
hensive constructive theory of matter and fields in a Newtonian space-time.
Special relativity did not replace that theory with one of comparable scope,
nor was it ever intended to. Quantum mechanics eventually would. Special
relativity only eliminated certain parts of Lorentz’s theory, notably the ether
and remnants of Newtonian theory. It did this by providing a new interpreta-
tion of Lorentz invariance, which had emerged as an important new property
of physical laws in Lorentz’s theory. In this new interpretation, the property
of Lorentz invariance is no longer accidentally shared by all dynamical laws
governing systems in Newtonian space and time but reflects the structure of
a new relativistic space-time (Janssen, 2002a). There is no need to reify this
space-time structure to the point that Lorentz invariance becomes a property
of a substantival space-time arena, although Norton (2007) may be right that
some reification is unavoidable (cf. my comments in sec. 1.2). Presumably, the

23 For Einstein’s reaction to Weyl’s proposal, see (Einstein, 1918) and his correspon-
dence with Weyl in 1918 (Einstein, 1987–2006, Vol. 8B).
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laws can still be the bearers of the property of Lorentz invariance. The key
point is that this property has nothing to do with electrodynamics per se, nor
with any other Lorentz-invariant dynamical theory one might contemplate.

The interpretation of Lorentz invariance defended here is similar to the one
offered by Minkowski in the conclusion of “Space and time:”

The validity without exception of the world-postulate, I like to think, is the
true nucleus of an electromagnetic image of the world, which 24 discovered
by Lorentz, and further revealed by Einstein, now lies open in the full light
of day (Minkowski, 1908, p. 91).

Earlier in his talk, Minkowski had defined the ‘world-postulate’ (or ‘postulate
of the absolute world’) as: “only the four-dimensional world in space and time
is given by phenomena, but . . . the projection in space and in time may still
be undertaken with a certain degree of freedom” (ibid., p. 83). Following Jon
Dorling (private communication), I used to read Minkowski’s text as endorsing
the view that the Lorentz invariance of Maxwell’s equations explains why
space-time is Minkowskian (Janssen, 1995, sec. 3.5.7). If Maxwell’s equations
are replaced by (perhaps yet to be found) quantum-mechanical dynamical
equations, this is Brown’s view, although he interprets both Minkowski’s text
and Dorling’s exegesis of it differently (Brown, 2005, p. 130). I have come
to prefer the exact opposite reading of Minkowski. On Dorling’s reading, the
“true nucleus” of the electromagnetic program is that Maxwell’s equations
form the theory of everything including, through their Lorentz invariance,
the structure of space and time. On the alternative reading, which was first
suggested to me by Leo Corry, 25 the “true nucleus” is the kernel of truth in a
program that otherwise may or may not pan out. Minkowski’s point, on this
reading, is that the space-time structure reflected in the Lorentz invariance of
Maxwell’s equations is here to stay, whether or not all of physics can ultimately
be reduced to those equations.

On this view—leave aside for the moment whether this was indeed Minkowski’s
or, for that matter, Einstein’s—it is clear that length contraction is purely
kinematical in the narrow as well as in the broad sense. That a system can
serve as a measuring rod in its rest frame will depend on the details of the
dynamics for that system. That this system, when set in motion, undergoes
length contraction is guaranteed by the fact that the dynamics is Lorentz in-
variant, which, in turn, reflects nothing but the space-time structure posited
by special relativity understood as a constructive theory. More concretely, a
contracting rod simply exhibits the default spatio-temporal behavior encoded
in Minkowski space-time. For the velocity dependence of mass, defined as
the ratio of force and acceleration, the situation is a little more complicated.

24 In the German original it is unambiguous that “which” refers back to “nucleus.”
25 Private communication. See also (Corry, 1997).
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These relations depend not just on the transformation laws for length and
time, which suffice to derive the transformation law for acceleration (Eq. (17)
for l = 1), but also on the transformation law for force (Eq. (16) for l = 1). In
relativistic continuum mechanics, force is a derived quantity, which inherits
its transformation properties from the energy-momentum tensor. 26 Relativis-
tic continuum mechanics is tailored to the structure of Minkowski space-time.
The behavior of its general concepts, such as the energy-momentum tensor
or the four-momentum, under Lorentz transformations reflect this space-time
structure. So even though the transformation law for mass cannot be estab-
lished without reference to concepts over and above spatio-temporal ones, the
velocity dependence of mass is still purely kinematical, even in the narrow
sense. 27

To conclude this section, I want to argue that the principle-constructive dis-
tinction not only tripped up Lorentz but Einstein as well. In the process, I
shall highlight the important positive heuristic role that special relativity has
to play—even if conceived of as a constructive theory—in the ongoing search
for acceptable successors to the dynamical theories of Lorentz and Abraham.
I already identified its negative heuristic role, which is to prevent the folly of
developing dynamical accounts for purely kinematical phenomena.

26 In relativistic continuum mechanics, the components of the force F on a system
that is static except for the overall velocity v in the x-direction is defined as:

F i ≡ −
∫

∂jT
ijd3x,

where Tµν is the energy-momentum tensor for the system. The integrand can
be rewritten as Λi

k ∂′jT
′kj (where Eq. (37) gives diag(γ, 1, 1) for Λi

j); the vol-
ume element as d3x′/γ (cf. the discussion following Eq. (47)). It follows that
F = diag(1, 1/γ, 1/γ)F′.
27 Brown (2005, p. 86) states matter-of-factly that this is not a kinematical effect,
probably because the velocity dependence of mass involves Lorentz transformation
equations over and above those for the space-time coordinates. Here is another
example to show that one cannot jump to that conclusion. Consider the electric
field of a charge at rest (or the magnetic field of a magnet at rest). In a frame in
which the charge (or the magnet) is moving, this same field is a combination of
an electric and a magnetic field. This follows directly from the transformation law,
Fµν = Λµ

ρΛν
σF ′ρσ, for the electromagnetic field strength tensor, which combines

the components of E and B. An active reading of this same transformation law
leads to the conclusion that a moving charge (or a moving magnet) produces a
combination of an electric and a magnetic field. This is a purely kinematical effect,
in the narrow and a fortiori in the broad sense. It has the same status as the “effect”
that an electric field in the x-direction has components in both the x- and the y-
direction if the spatial coordinate system and the system under consideration are is
rotated with respect to one another.
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As Einstein (1949, p. 53) made clear in a well-known passage in his auto-
biographical notes, he only resorted to a principle theory in the work that
led to special relativity because he could not find a constructive theory to
replace Lorentz’s comprehensive theory of matter and fields. The principle
theory he eventually came up with certainly provided some useful constraints
on such a constructive theory, but ultimately it was that constructive theory
itself that he was after. In the 1919 Times article in which he introduced the
principle-constructive distinction, he expressed a strong preference for con-
structive theories: “When we say that we have succeeded in understanding a
group of natural processes, we invariably mean that a constructive theory has
been found which covers the processes in question” (Einstein, 1919, p. 228;
quoted in Brown, 2005, p. 113). In a letter of early 1908, he had already ex-
pressed this preference in the specific case of special relativity: “The theory of
relativity is ultimately as little satisfactory as . . . thermodynamics was before
Boltzmann had interpreted the entropy as probability.” 28

I argued above that Minkowski’s lecture “Space and time,” delivered later
in 1908, did for special relativity, understood strictly as a principle theory,
what Boltzmann’s interpretation of entropy had done for the second law of
thermodynamics. It turned special relativity into a constructive theory by
providing the concrete model for the reality behind the phenomena covered by
principle theory. Einstein, however, is reported to have denounced Minkowski’s
work, at least initially, as “superfluous learnedness” (Pais, 1982, p. 152; see
also Janssen, 1995, sec. 3.5.7, note 122). To the extent that Minkowski merely
formalized what Einstein himself had already recognized in 1905, i.e., the
need for a new kinematics characterized by Lorentz invariance rather than
Galilean invariance, this is an understandable assessment. Einstein changed
his mind about Minkowski’s contribution once he recognized its value for the
development of general relativity. Yet, in the Times article, flush with the
success of general relativity in the wake of the British eclipse expeditions, he
still insinuated that a constructive version of special relativity had yet to be
found. I claim that Minkowski had already found it more than a decade earlier.
If Einstein ever came to appreciate this, he certainly never gave Minkowski
credit for it (Brown, 2005, p. 138).

I nonetheless want to maintain, pace Brown, that Einstein’s position was no
different from the one I am defending in this paper. My textual evidence comes
from an oft-quoted letter written the year of his death, but I see no reason to
believe that Einstein’s stance on this particular issue changed much between
1905 and 1955. Let me emphasize that this is not meant as an argument
from authority for my position. That position should be judged on its own
merits, regardless of how close it is to Einstein’s or anyone else’s at one time
or another.

28 Einstein to Sommerfeld, January 14, 1908 (Einstein, 1987–2006, Vol. 5, Doc. 73).
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The key observation that reconciles my interpretation of Einstein’s position
with the well-known passages discussed above is that Einstein’s continued
demand for a constructive theory was for a new constructive theory of every-
thing, for a worthy successor to Lorentz’s discredited comprehensive theory,
and not for the constructive theory that would get at the reality behind the
phenomena covered by special relativity understood strictly as a principle
theory. That theory had already been found. It had identified the reality un-
derlying the relevant phenomena as Minkowski space-time. 29 This space-time
can be thought of in substantival or in relational terms. Special relativity does
not decide which systems get to inhabit or, as the relationist might prefer,
carry Minkowski space-time. All special relativity has to say about such sys-
tems is that their spatio-temporal behavior must obey the rules encoded in
Minkowski space-time. This requirement is automatically met if the system
is governed by Lorentz-invariant laws. Special relativity thus imposes a kine-
matical constraint on all dynamical laws (cf. my remarks in sec. 1.2). So, even
as a constructive theory, special relativity plays the heuristic role of provid-
ing constraints on further theorizing. This heuristic role was the important
feature of principle theories for Einstein. He did not introduce the principle-
constructive distinction to put labels on already established theories. He was
essentially characterizing different strategies for finding new ones—develop a
concrete model (the constructive strategy) or find constraints on such models
(the principle strategy). This makes it perfectly understandable that Einstein
would continue to characterize special relativity as a principle theory long
after the corresponding constructive theory had been found.

A letter to his biographer Seelig of February 19, 1955, yields clear evidence of
Einstein’s views both on what special relativity has to say about the reality
behind the various phenomena Lorentz invariance gives rise to (such as length
contraction and the velocity dependence of mass) and on the heuristic value
of Lorentz invariance in the search for the reality behind all sorts of other phe-
nomena. First, he provided as lucid a formulation of the position defended in
this paper as one could hope for. He explicitly identified the “new feature” of
special relativity in 1905 as “the realization that the Lorentz transformation
transcends its connection with Maxwell’s equations and has to do with the
nature of space and time in general.” He identified its heuristic role as a “fur-
ther new result:” “Lorentz invariance is a general condition for any physical
theory. This was for me of particular importance because I had already found
that Maxwell’s theory . . . could not . . . have general validity.” 30

29 A similar observation applies to general relativity, which Einstein also charac-
terized as a principle theory in his 1919 article. Presumably, to use his famous
metaphor (Einstein, 1954, p. 311), he was calling for a better understanding of the
‘wood’ of the matter on the right-hand side of his gravitational field equations, not
of the ‘marble’ of the geometry on the left-hand side.
30 Both passages are quoted and discussed in (Brown, 2005, p. 73), where the recip-
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4 The Trouton-Noble experiment and its delicately balanced torques

4.1 Detecting ether drift with capacitors: from looking for impulses (Trouton)
to looking for torques (Trouton-Noble)

The Trouton-Noble experiment grew out of the now largely forgotten Trouton
experiment. The object of both experiments was to detect ether drift with
capacitors hanging from the ceiling of the laboratory. Because of this fam-
ily resemblance, the two experiments tend to get conflated, 31 but they were
designed to detect different effects and their negative results likewise call for
different explanations. The Trouton experiment was supposed to detect an im-
pulse upon charging a capacitor moving through the ether; its better-known
sequel a torque on an already charged moving capacitor.

The story of these experiments begins in Dublin in 1900, when FitzGerald
thought of an electrical as opposed to an optical method to detect the earth’s
presumed motion through the ether. Trouton, his assistant, designed and car-
ried out the actual experiment. When the plates of a capacitor at rest in the
ether are connected to the poles of a battery, the battery supplies the energy
for the electric field between the plates. What happens when the capacitor is
charged in a laboratory moving with the earth through the ether? The charges
on the moving plates now constitute two currents, so there will typically be a
magnetic as well as an electric field. Where does the energy for this magnetic
field come from? FitzGerald, for reasons best known to himself, thought that
it could not come from the battery but would have to come instead from the
kinetic energy of the capacitor. In that case, a capacitor freely suspended on
a wire from the ceiling of the laboratory should, upon being charged, experi-
ence a sudden mechanical jolt in the direction of the ether wind. However, as
Lorentz (1904b) put it, “Trouton was unable to observe these jerks” (p. 830).

In 1901, before the final results of the experiment were in, FitzGerald unex-
pectedly died at the early age of 49. Trouton’s (1902) report on the experiment
he had suggested was included in a collection of his scientific papers edited
by Larmor (FitzGerald, 1902). In an editorial note on Trouton’s paper, Lar-
mor (1902) argued that the negative result of the experiment was only to be
expected. From a relativistic point of view, Larmor’s conclusion is obviously
correct but the argument that led him to it is not. By modern lights, he failed

ient of the letter is unfortunately misidentified as Born. Miller (1981, Ch. 6, p. 195)
fittingly uses the same passage as the motto for the chapter on “[t]he relativistic
transformations.” On Einstein’s path to special relativity and the other results of
his annus mirabilis, see (Renn and Rynasiewicz, 2007).
31 See, e.g., (Warwick, 1995, p. 318; Teukolsky, 1996, p. 1104; Brown, 2007, p. 55,
note 48).
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to take into account two insights arrived at in the following years, namely
that electromagnetic fields can carry momentum (Abraham, 1902a, 1903) and
that energy has mass (Einstein, 1905b). When a moving capacitor is charged,
energy is transferred from the battery to the capacitor. According to special
relativity, this is accompanied by a transfer of mass and momentum. The
capacitor’s momentum changes because its mass changes; its velocity stays
the same. So the capacitor does not experience a mechanical jolt upon being
charged. 32

Most of Larmor’s editorial note on the Trouton experiment is devoted to a new
experiment that Trouton had started to work on, possibly at Larmor’s own
instigation. In 1903, Trouton moved to London, where he performed the ex-
periment in collaboration with Noble, one of his students. This Trouton-Noble
experiment involves a charged and carefully insulated plate capacitor hang-
ing from the ceiling on a torsion wire. The following qualitative argument—
sanctioned by the general formula (21) for the energy of an electromagnetic
field—convinced Trouton that the electromagnetic energy stored in a moving
charged capacitor will depend on the orientation of its plates with respect to
its velocity. The charges on the moving plates correspond to currents gener-
ating magnetic fields. If the plates happen to be parallel to the earth’s motion
through the ether, the magnetic field of the charges on the top plate and the
magnetic field of the charges on the bottom plate reinforce one another in the
space between the plates and nearly cancel one another almost everywhere
else. For this orientation of the plates, there will thus be a magnetic field, con-
fined (to a good approximation) to the space between the plates. If the plates
happen to be perpendicular to the earth’s motion, the currents corresponding
to the charged plates cancel one another and there will be no magnetic field.

Suppose the plates are connected to a battery while they are perpendicular
to the ether wind. This only produces an electric field. Then the battery is
disconnected, precautions are taken to prevent charge from leaking off the
plates, and the capacitor is rotated over 90o to put its plates parallel to the
ether wind. This produces an additional magnetic field. Like FitzGerald before
him, Trouton asked where the energy for this magnetic field would come from.
His answer was that it could only come from mechanical energy put into
the system during the rotation. When the plates go from perpendicular to
parallel to the ether drift, he argued, work must be done against a torque
coming from the electromagnetic forces acting on them. When unopposed,
Trouton reasoned, this torque would try to put the plates perpendicular to
their direction of motion, the orientation for which the electromagnetic energy
is at a minimum. The capacitor in the Trouton-Noble experiment should thus
act as a weather vane for ether wind. The effect would only be of order v2/c2,

32 For a more detailed discussion of the Trouton experiment and its relation to
E = mc2, see (Janssen, 2003).
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but Trouton and Noble achieved remarkable accuracy. The famous Michelson-
Morley experiment of 1887 put an upper limit of about 5 km/s on the earth’s
velocity through the ether (the earth’s velocity in its orbit around the sun is
about 30 km/s). Trouton and Noble claimed that they would have detected
any ether drift greater than 1.5 km/s. Of course, as in the Trouton experiment,
they did not find any (Trouton and Noble, 1903).

Fig. 3. Capacitor at rest (left) and same capacitor in motion having undergone the
Lorentz-FitzGerald contraction (right)

The diagrams in Fig. 3 show the electromagnetic forces on a charged capacitor,
the one on the left for a capacitor at rest in the ether with its plates at an angle
ϑ′ with respect to the x-axis, the one on the right for the same capacitor with
its plates at that same angle after it has been set in motion with a velocity v
in the x-direction. The moving capacitor is subject to the Lorentz-FitzGerald
contraction, so the angle ϑ between its plates and its velocity is slightly greater
than ϑ′. First consider the capacitor at rest in the ether. The diagram shows
three pairs of Coulomb forces. First, there are the attractive forces between
the opposite charges on the top and the bottom plate. These forces can be
represented by two resultant forces at the centers of the plates. Then there
are the repulsive forces between the positive charges on the top plate and
the repulsive forces between the negative charges on the bottom plate. These
forces can be represented by pairs of forces at the edges of the plates (Laue,
1912b, p. 175; Pauli, 1921, p. 129). Fig. 3 shows two such pairs in the xy-plane.
There will be similar forces in the z-direction but those need not be taken into
account. As long as the capacitor is at rest in the ether, none of these forces
give rise to a torque.

The electromagnetic forces F on the contracted capacitor moving with v =
(v, 0, 0) through the ether are related to the Coulomb forces F′ on the uncon-
tracted capacitor at rest via (cf. Eq. (16) for l = 1 and note 26)

F = diag(1, 1/γ, 1/γ)F′. (50)
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As Lorentz (1899, p. 432) had already noticed, this transformation law is such
that forces perpendicular to a given surface in a system at rest will be perpen-
dicular to the corresponding surface in the contracted system in motion. The
three pairs of forces shown on the right of Fig. 3 thus exert torques all trying
to align the plates with the direction of motion. Since the Lorentz-FitzGerald
contraction is a second order effect, these torques will only be of order v2/c2.
The direction of these torques is the opposite of what Trouton expected on the
basis of his energy considerations. They try to maximize the system’s electro-
magnetic energy! This immediately tells us that the electromagnetic energy
cannot be the only energy in the moving capacitor that depends on the ori-
entation of the plates. More specifically, it tells us that the energy associated
with the stabilizing forces that prevent the charges from flying off the plates
and the plates from collapsing onto one another must similarly depend on the
orientation of the plates.

This observation is key to Lorentz’s explanation of the negative result of the
Trouton-Noble experiment. 33 For the charged capacitor at rest in the ether
to be a stable system, the Coulomb repulsions and attractions shown in the
diagram on the left in Fig. 3 must be fully compensated. On the assumption
that all forces transform like Coulomb forces, the moving capacitor will then
also be a stable a system and these counteracting forces will exert torques
equal and opposite to the ones coming from the electromagnetic forces. There
will be no net torque on the system. This explanation readily carries over to
special relativity.

In special relativity, these delicately balanced torques are ultimately artifacts
of the standard non-Lorentz-invariant definition (41) of the four-momentum
of spatially extended systems in Minkowski space-time, just as the factor 4/3
in the mass-energy relation (29) for Lorentz’s purely electromagnetic electron.
In the absence of relativistic continuum mechanics, the theoretical analysis
of the Trouton-Noble experiment was particularly challenging. Two of the
leading theorists of the period, Larmor and Lorentz, found conflicting results.
It is a non-trivial task to figure out what lies behind these discrepancies. Sec.
4.2 will give the analysis in terms of energy; sec. 4.3 in terms of momentum.
Under the standard definitions of energy and momentum, there will be equal
and opposite torques coming from the electromagnetic field and the material
part of the moving capacitor, as well as exchanges of energy and momentum
between these two parts whenever the system is rotated. Under the alternative
Lorentz-invariant definitions (see Eq. (42)) there are no such torques and there
is no such flow of energy or momentum. As I shall argue in more detail in sec.
4.4, this is a clear indication that these are all kinematical effects.

33 This explanation is implicit in (Lorentz, 1904b, p. 29) and is made explicit in
(Laue, 1911a) (Janssen, 1995, sec. 1.4).
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4.2 Torques or no torques on a moving capacitor when calculated in terms
of energy

Using Lorentz’s theorem of corresponding states, Larmor (1902) argued that
there is a simple relation between the electromagnetic energy UEM in a capac-
itor moving through the ether at velocity v and the electric energy U ′

EM in a
corresponding capacitor at rest in the ether carrying the same charges as the
moving capacitor but stretched by a factor γ in the direction of motion. This
relation,

UEM = U ′
EM/γ, (51)

forms the basis for a geometrical argument showing that the electromagnetic
forces on a moving capacitor produce a torque if the system is not subject
to the Lorentz-FitzGerald contraction, but that there is no torque if it does
contract. Larmor thus saw the Trouton-Noble experiment as a test of the con-
traction hypothesis and its negative result as a confirmation of the hypothesis.

Consider the two-dimensional representation of the situation in Fig. 3. With
the Lorentz-FitzGerald contraction, the moving capacitor is a parallelogram
the shape of which depends on ϑ, while the corresponding capacitor at rest is
always a rectangle of the same shape—at different angles ϑ′, to be sure, but
orientation makes no difference at rest in the ether. So U ′

EM is independent of
ϑ′. This implies, through Eq. (51), that UEM is independent of ϑ. The energy of
a contracted moving capacitor will not depend on the angle between its plates
and its velocity. Such a capacitor can be rotated without energy entering or
leaving the system. With the Lorentz-FitzGerald contraction, in other words,
there is no torque.

The situation is different if systems set in motion through the ether were to
retain their shape. Without the Lorentz-FitzGerald contraction, the moving
capacitor is a rectangle of the same shape for all values of ϑ, while the cor-
responding capacitor at rest is a parallelogram the shape of which changes
with ϑ. These capacitors of different shapes at rest will have different ener-
gies U ′

EM. According to Eq. (51), the energy UEM of an uncontracted mov-
ing capacitor will then depend on the orientation of its plates. Without the
Lorentz-FitzGerald contraction, in short, there should be a torque.

What is the direction of this torque? When the plates are perpendicular to
the velocity (ϑ = 90o), stretching the uncontracted moving capacitor increases
the distance between the plates, putting the opposite charges on them further
apart. In this case, the stretching increases the potential energy. When the
plates are parallel to the velocity (ϑ = 0o), the stretching does not affect the
distance between the plates but increases the size of both plates, putting the
like charges on them further apart. In this case, the stretching decreases the
potential energy. According to Larmor, the orientation without a magnetic
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field (ϑ = 90o) would thus be more energetic than the orientation with a mag-
netic field (ϑ = 0o). Trouton, understandably, expected just the opposite. In
fact, the experimentalists did not accept the energy considerations of their
theoretical advisor and stuck to their guns in (Trouton and Noble, 1903, p.
165, note). At least, Larmor’s analysis leads to a torque in the same direction
as the analysis directly in terms of forces (see Fig. 3). According to Larmor,
however, there will only be a torque if there is no Lorentz-FitzGerald con-
traction. The analysis in terms of forces leads to the same torque with and
without contraction. 34

The standard definition (21) of the energy of an electromagnetic field gives
a different result for the energy of the field of a moving contracted capacitor
than Larmor’s Eq. (51): 35

UEM = U ′
EM/γ + 2U ′

EMγβ2cos2ϑ′. (52)

As mentioned above, this expression sanctions Trouton’s conclusion that the
electromagnetic energy in a moving capacitor has a minimum when the plates
are perpendicular to their velocity (ϑ′ = ϑ = 90o).

Both Eq. (51) and Eq. (52) look odd from a relativistic point of view. If the
energy were to transform as the first component of a four-vector (see Eq. (38)),
the relation between UEM and U ′

EM for a Lorentz boost setting the system in
motion in the x-direction with velocity v would be:

UEM = γU ′
EM. (53)

Where do the discrepancies between Eqs. (51), (52), and (53) come from? To
answer this question, it will be helpful to reconstruct Larmor’s derivation of
Eq. (51). 36 Larmor set the energy UEM equal to the work needed to charge the
moving capacitor. This is the integral from q = 0 to q = Q of the work dW (q)
needed to add the infinitesimal charge dq to the plates when there already is

34 In the stretched capacitor at rest corresponding to an uncontracted moving capac-
itor, the resultant forces at the centers and at the edges of the plates will not always
be perpendicular to the plates and parallel to the plates, respectively (Janssen, 1995,
sec. 1.2.2).
35 The electric field in the capacitor at rest is perpendicular to the plates (cf. Fig.
3): E′ = E′(sinϑ′,− cos ϑ′, 0). There is no magnetic field: B′ = 0. The energy of this
electromagnetic field is: U ′

EM =
∫

1
2ε0E

′2d3x′. The field in the moving capacitor is
the Lorentz transform of this field (see Eq. (15) for l = 1): E = E′(sinϑ′,−γ cos ϑ′, 0)
and B = E′(0, 0,−γ(v/c2) cos ϑ′). Inserting these expressions into Eq. (21) and using
that the volume element d3x can be replaced by d3x′/γ (cf. the discussion following
Eq. (47)), one arrives at Eq. (52).
36 For discussion of the relevant rather cryptic passage in (Larmor, 1902) and a more
detailed version of the derivation, see (Janssen, 1995, sec. 1.3; sec. 1.4; and sec. 2.4,
note 75).
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a charge q on them (+q on one, −q on the other):

UEM =
∫ Q

0
dW (q). (54)

The integrand can be written as

dW (q) =
∫ top

bottom
F(q) · ds, (55)

where F(q) is the force exerted on dq by the electromagnetic field produced
by the charge q already on the plates as dq is transferred from one plate to the
other along some arbitrary path s (with infinitesimal segments ds). Larmor
related the work dW (q) done in the moving capacitor to the work dW ′(q) done
in a stretched capacitor at rest in the ether when dq is transferred along the
corresponding path s′. The segments of these two paths will be related to one
another via ds = diag(1/γ, 1, 1)ds′. Using Eq. (50) to relate the forces in these
two situations, one finds a simple relation between dW (q) and dW ′(q):

dW (q) =
∫ top

bottom
diag(1, 1/γ, 1/γ)F′(q) · diag(1/γ, 1, 1) ds′ = dW ′(q)/γ. (56)

Inserting this result into Eq. (54), one recovers Larmor’s Eq. (51):

UEM =
∫ Q

0
dW ′(q)/γ = U ′

EM/γ. (57)

From a relativistic point of view, Larmor failed to take into account that
the energy of the electromagnetic field of a moving capacitor has mass and
momentum, just as he failed to take this into account in his analysis of the
Trouton experiment. To put it differently: he neglected the kinetic energy of
the extra mass in motion. This kinetic energy is equal to the work WPEM

needed to build up the electromagnetic momentum of the moving capacitor:

WPEM
=
∫ Q

0

dPEM(q)

dt
· ds =

∫ Q

0

d

dq

(
PEM(q) · ds

dt

)
dq = PEM(Q) · v. (58)

This energy needs to be added to the right-hand side of Eq. (57). If the en-
ergy and momentum of the electromagnetic field of the capacitor are defined
in such a way that they transform as the components of a four-vector un-
der Lorentz transformations, the momentum of the electromagnetic field of a
moving charged capacitor is given by:

PEM = γ(U ′
EM/c2)v. (59)

In that case,
WPEM

= γβ2U ′
EM, (60)

which, when added to the right-hand side of Eq. (57), leads to the relativistic
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relation (53):

UEM = U ′
EM/γ + γβ2U ′

EM = γU ′
EM. (61)

This new expression is still independent of ϑ, so the correction to Larmor’s for-
mula (51) does not affect the argument on the basis of which he concluded that
the electromagnetic forces on a moving charged capacitor do not give a torque
as long as the capacitor is subject to the Lorentz-FitzGerald contraction.

If (UEM/c,PEM) form a four-vector, one can actually pinpoint and correct the
error in Larmor’s Eq. (51) making use only of the transformation properties
of four-vectors. Once again, consider the Lorentz boost setting the system
moving with velocity v in the x-direction (cf. Eqs. (14) and (37)). As Lorentz
routinely did with his theorem of corresponding states (cf. sec. 2.2), one can
do this in two steps, first going to a system of Galilean-transformed quantities
(ct′,x′ → ct̂, x̂) and then to the system of Lorentz-transformed quantities
(ct̂, x̂ → ct,x). The non-trivial parts of these transformations are given by

ct̂ = ct′, x̂ = x′ + βct′, (62)

and

ct =
ct̂

γ
+ γβx̂, x = γx̂, (63)

respectively. Composition of the two reproduces the familiar equations for the
Lorentz boost (ct′,x′ → ct,x) (Eq. (14) for l = 1). If energy and momen-
tum (UEM/c,PEM) transform the same way as the time and space coordinates
(ct,x), one has, in analogy with the first relation in Eq. (63):

UEM

c
=

1

γ

ÛEM

c
+ γβP̂EMx . (64)

Larmor’s Eq. (51) is obtained when P̂EMx is set equal to zero. Pre-relativistically,
before it was realized that moving energy has momentum, this was a natural
thing to do. In analogy with the second relation in Eq. (62), however, one has

P̂EMx = P ′
EMx

+ β
U ′

EM

c
= β

U ′
EM

c
. (65)

Since the primed system is at rest in the ether, P ′
EMx

= 0, which was used in

the second step in Eq. (65). Note that the momentum P̂EM in the ‘Galilean-
boosted’ system is just the product of the rest mass (U ′

EM/c2) and the velocity
v. Substituting β(U ′

EM/c) for P̂EMx into Eq. (64) along with ÛEM = U ′
EM, the

analogue of the first relation in Eq. (62), one recovers the standard relativistic
Eq. (53) (cf. Eqs. (60)–(61)).

This standard relation, however, only obtains if the energy and momentum of
the electromagnetic field of the capacitor transform as a four-vector. Under
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the standard definitions (21)–(22) they do not. For the electromagnetic field
of a moving charged capacitor (see note 35), Eq. (22) gives:

PEM = 2(U ′
EM/c) β cos ϑ′(γ cos ϑ′, sin ϑ′, 0). (66)

While the momentum PEM in Eq. (59) is in the direction of motion, regardless
of the orientation of the plates of the capacitor with respect to its velocity, the
momentum PEM in Eq. (66) is roughly in the direction of the plates (to order
v/c, γ = 1 and ϑ′ = ϑ). According to Eq. (58), the amount of work needed to
build up the momentum in Eq. (66) is:

WPEM
= 2U ′

EMγβ2cos2ϑ′. (67)

Adding this to the right-hand side of Larmor’s Eq. (51), one recovers Eq. (52)
based on the standard definition of the energy of an electromagnetic field.

Eq. (52) can be rewritten as:

UEM = U ′
EM(γ − γβ2sin2ϑ′ + γβ2cos2ϑ′). (68)

Following the general treatment of moving stressed bodies in (Einstein, 1907b,
pp. 373–377), one can connect the ϑ′-dependent terms that distinguish this ex-
pression from expression (53) directly to the relativity of simultaneity (Janssen,
1995, sec. 2.4). Consider Fig. 4, which has two pairs of electromagnetic forces

Fig. 4. Electromagnetic forces on a capacitor in its rest frame.

on a capacitor in its rest frame, consolidating the two pairs in Fig. 3 at the
edges of both plates into one pair in between. Assume that the plates of the
capacitor in its rest frame are squares with sides a′ that are much larger than
the distance d′ between the plates. The larger the ratio a′/d′, the better the
approximation that the field is constant and confined to the space between
the plates. In that approximation the size of the resultant forces at the centers
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of the plates is U ′
EM/d′ and the size of the forces at the sides of the capacitor

is U ′
EM/a′. The forces at the centers are perpendicular to the plates, those at

the sides are parallel to the plates. So the forces at the rear (R) and the top
(T ) are given by: 37

F′R =
U ′

EM

a′
(−cos ϑ′,−sin ϑ′, 0), F′T =

U ′
EM

d′
(sin ϑ′,−cos ϑ′, 0). (69)

The forces at the front (F ) and the bottom (B) are the opposite of those at
R and T , respectively. On the assumption that the capacitor is charged in
its rest frame, these four forces are switched on simultaneously in that frame.
This means, as Einstein (1907b) pointed out, that they are not switched on
simultaneously in other frames, such as the one in which the capacitor is
moving at velocity v in the x-direction. In this frame there will be a delay of
∆tRF = γ(v/c2)∆x′RF between the moment FR is switched on and the moment
FF is switched on, where ∆x′RF = a′cos ϑ′ is the distance between R and F
in the rest frame (cf. Eq. (4)). There will likewise be a delay of ∆tTB between
the forces at T and B being switched on:

∆tRF = γ(v/c2) a′ cos ϑ′, ∆tTB = γ(v/c2) d′ sin ϑ′. (70)

During the short period of time that the forces at R and T are not compensated
by those at F and B, an amount of work

∆W = FR
x v ∆tRF + F T

x v ∆tTB (71)

is done at the expense of the energy of the system. According to the trans-
formation law (50) for forces, Fx = F ′

x. Inserting Eqs. (69) and (70) into Eq.
(71), one finds that the energy ∆U ′

EM = −∆W associated with this effect is
exactly equal to the ϑ′-dependent terms in Eq. (68). The forces compensating
the electromagnetic forces are subject to this same effect and contribute an
amount of energy equal and opposite to ∆U ′

EM. The total energy of the system
will thus be independent of ϑ′.

These considerations provide an exhaustive answer to the question where the
discrepancies between Eqs. (51), (52), and (53) for UEM come from. To re-
cap: the problem with Larmor’s Eq. (51) is that it fails to take into account
the energy needed to build up the electromagnetic momentum in the moving
capacitor. This problem can be solved either with the help of the standard def-
inition (41) for the momentum of spatially extended systems or with the help
of the alternative covariant definition (42). Adopting the standard definition,
one finds Eq. (52). Adopting the alternative definition, one finds Eq. (53). The

37 These values result if the expression (78) below for the Maxwell stress tensor for
the electromagnetic field of the capacitor in its rest frame is inserted into the general
expression F ′i = −

∫
∂′jT

′ijd3x′ for the components of the force on a static system
in its rest frame (cf. note 26).
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difference between Eqs. (52) and (53) can be interpreted directly in terms of
the relativity of simultaneity (see Eqs. (68)–(71)), as one would expect since
the only difference between the standard definition and the alternative defi-
nition is that one involves hyperplanes of simultaneity in the observer’s rest
frame while the other involves hyperplanes of simultaneity in the capacitor’s
rest frame.

4.3 Torques or no torques on a moving capacitor when calculated in terms
of momentum

Lorentz (1904b) analyzed both the Trouton and the Trouton-Noble experi-
ment in terms of electromagnetic momentum. In both cases, his conclusions
differed from Larmor’s. I focus on the Trouton-Noble experiment. 38 Accord-
ing to Lorentz, the electromagnetic forces on a charged moving capacitor form
a torque, whether or not the moving capacitor contracts. However, only if it
does contract, Lorentz argued, will the torque coming from the electromag-
netic forces be compensated by a torque coming from the stabilizing forces
that keep the charges on the plates and prevent the plates from collapsing onto
one another. This compensating torque arises because the contraction hypoth-
esis requires that these stabilizing forces transform as Coulomb forces under
Lorentz transformations. So Lorentz and Larmor agreed to the extent that the
explanation of the Trouton-Noble experiment calls for the Lorentz-FitzGerald
contraction hypothesis. They disagreed about the role of the hypothesis in the
explanation.

Lorentz’s derivation for the formula of the torque of the electromagnetic forces
on a moving capacitor makes use of results presented in detail in (Lorentz,
1904a). In analogy with the momentum of the electromagnetic field of a ca-
pacitor, one can define its angular momentum:

LEM =
∫

x× pEM d3x. (72)

The integral is evaluated in a frame at rest in the ether. The torque exerted
on the capacitor is minus the time derivative of this quantity:

TEM = − d

dt

∫
x× pEM d3x. (73)

For a system such as a capacitor and its electromagnetic field that is static
except for an overall constant velocity v, this reduces to:

TEM = PEM × v, (74)

38 See (Janssen, 2002a, appendix; 2003) for discussion of the case of the Trouton-
experiment.
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where PEM is the electromagnetic momentum in the standard definition (22).
As can be seen from Eq. (66), this momentum is roughly in the direction
of the plates of the capacitor. The torque (74) tries to pull the plates into
the direction of motion. In special relativity, Eq. (74) holds for the spatial
part of the four-momentum of any system that is static but for an overall
constant velocity v. In particular, it holds for the momentum Pstab of the
stabilizing mechanism, the analogue of the Poincaré stresses, which in this
case is provided by the material part of the capacitor rather than by some
mysterious ether suction. It can even be shown (Janssen, 1995, sec. 2.2.5) that
Eq. (74) continues to hold for all such systems if the standard definition (41)
of the four-momentum of spatially extended systems is replaced by definition
(42).

The two definitions coincide for closed systems, such as the capacitor and
its electromagnetic field. Since the total four-momentum, P µ

tot, transforms as
a four-vector under Lorentz transformations, its spatial part, Ptot, is in the
direction of motion and there will be no net torque:

Ttot = Ptot × v = 0. (75)

Under the covariant definition (42), the momenta Pcov
EM and Pcov

stab of the open
subsystems are also in the direction of motion and there will be no torques
whatsoever:

Tcov
tot = Tcov

EM = Tcov
stab = 0. (76)

Under the standard definition, neither PEM nor Pstab are in the direction of
motion and there will be two equal and opposite torques:

Tstan
tot = 0, Tstan

EM = −Tstan
stab 6= 0. (77)

The standard relativistic treatment of the Trouton-Noble experiment, which
is due to Laue (1911a,b) and which is the one presented by Pauli (1921, sec.
44) and most subsequent authors, is based on the standard definition of four-
momentum and thus involves these delicately balanced torques. On the face
of it, this relativistic explanation is not much different from Lorentz’s ether-
theoretic explanation.

Unlike Lorentz, however, Laue clearly recognized that these opposing torques
are a generic feature of closed systems in motion that can somehow be di-
vided into open subsystems. 39 Laue (1912a) pointed out, for instance, that

39 Einstein (1907a) had already sensed the same thing when Ehrenfest (1907) sug-
gested that a moving electron would experience a torque if an electron at rest were
an ellipsoid rather than a sphere. Einstein’s position was that the electron would
behave exactly the same regardless of its shape. This position was vindicated by
Laue’s work a few years later. For discussion of the exchange between Einstein and
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the physics of a thought experiment proposed by Lewis and Tolman (1909)
involving a torque on a moving bent lever is essentially the same as the physics
of the Trouton-Noble experiment. 40 It was only after Rohrlich’s work in the
1960s, that it was recognized that one can eliminate the delicately balanced
torques in Laue’s accounts of the Trouton-Noble capacitor and the Lewis-
Tolman bent lever altogether by adopting the alternative definition (42) of
the four-momentum of spatially extended systems in Minkowski space-time
(Butler, 1968; Janssen, 1995; Teukolsky, 1996). There has been some debate
in the literature on the Trouton-Noble experiment—as there has been in the
far more extensive literature on the classical electron model (see sec. 3.4)—
over what the correct definition is. 41 Since the difference between the two is
merely a convention about the choice of spatial hyperplanes in the general def-
inition (40), this cannot be a matter of right or wrong but only of whether one
definition is perhaps more convenient, more elegant, or more natural than the
other. The analysis in sec. 4.2 of different expressions for UEM makes it doubt-
ful that one can even claim that much on behalf of one or the other. After all,
expressions (52) and (53) for UEM, based on definitions (41) and (42) of P µ,
respectively, could both be given perfectly sensible physical interpretations in
terms of the work done in charging a moving capacitor.

It will be instructive to derive the expressions for the four-momenta of the
electromagnetic field and the stabilizing mechanism under the standard defi-
nition (41). As in the case of the Lorentz-Poincaré electron (see sec. 3.4), the
starting point will be the energy-momentum tensor for the electromagnetic
field in the system at rest. The electron at rest is spherically-symmetric. The
capacitor is not, which complicates matters. It will be convenient to start with
a capacitor at rest with its plates parallel to the xz-plane (ϑ′ = 0 in Fig. 3).
As before (cf. Fig. 4), it will be assumed that the area of the plates (l′2 if
they are squares with sides l′) is very large compared to the distance d′ be-
tween them (l′ � d′). If the top plate carries the positive charge, there will
be an electric field pointing in the negative y-direction, which, to a very good
approximation, will be homogeneous and confined to the space between the
plates: E′ = (0,−E ′, 0). The energy density will similarly have the constant
value u′EM = 1

2
ε0E

′2 inside the capacitor and vanish outside. The Maxwell
stress tensor (44) for this field is given by:

T ′ij
Max = diag(−1, 1,−1) u′EM Θ(x′, y′, z′), (78)

where Θ(x′, y′, z′) is shorthand for some combination of step-functions such
that Θ = 1 inside and Θ = 0 outside the capacitor. The energy-momentum

Ehrenfest, see (Miller, 1981, sec. 7.4.4).
40 This connection with the Lewis-Tolman bent lever is mentioned in (Pauli, 1921,
p. 128). For discussion of the example of the bent lever, see, e.g., (Norton, 1992,
sec. 9) or (Janssen, 1995, sec. 2.5.1).
41 See, especially, the rebuttal by Singal (1993) of (Butler, 1968).
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tensor for this field is (cf. Eq. (43)):

T ′µν
EM =

u′EM 0

0 −T ′ij
Max

 = diag(1, 1,−1, 1) u′EM Θ(x′, y′, z′). (79)

The corresponding four-momentum is

P ′µ
EM =

1

c

∫
T ′µ0

EM d3x′ = (U ′
EM/c, 0, 0, 0). (80)

If the appropriate energy-momentum tensor for the stabilizing mechanism is
added to the energy-momentum tensor for the field, the four-divergence of
their sum will vanish, indicating that the combined system is closed:

∂′ν
(
T ′µν

EM + T ′µν
stab

)
= 0. (81)

This equation (and the assumption that T ′µν
stab → 0 for |x| → ∞) uniquely

determines the ij-components of T ′µν
stab whatever the exact nature of the sta-

bilizing mechanism may turn out to be. Since the system is static, the i0-
and 0i-components must be zero. The 00-component can be any function of
(x′, y′, z′) as long as the total energy density T ′00

tot remains positive definite. It
will be convenient to set this component to zero as well. 42 One thus arrives
at:

T ′µν
stab = diag(0,−1, 1,−1) u′EM Θ(x′, y′, z′). (82)

Since T ′µ0
stab = 0, it follows that P ′µ

stab = 0 as well.

Now rotate the plates of the capacitor around the z-axis over an angle ϑ′

and set the whole system in motion with velocity v in the x-direction. The
transformation matrix for this rotation-followed-by-a-boost is:

Λµ
ν =



γ γβ 0 0

γβ γ 0 0

0 0 1 0

0 0 0 1





1 0 0 0

0 cos ϑ′ −sin ϑ′ 0

0 sin ϑ′ cos ϑ′ 0

0 0 0 1


. (83)

42 Cf. Schwinger’s alternative definition of T ′µν
pres for the Lorentz-Poincaré electron in

note ??.
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Proceeding as in Eqs. (47)-(48), using Eqs. (79) and (83), one finds

P µ
EM =

1

c

∫
Λµ

ρ Λ0
σ T ′ρσ

EM d3x =
U ′

EM

c



γ + γβ2cos2ϑ′ − γβ2sin2ϑ′

2βγ cos2ϑ′

2β cos ϑ′ sin ϑ′

0


(84)

for the four-momentum of the capacitor’s electromagnetic field. Eq. (84) com-
bines Eq. (68) for the energy UEM of the field of the capacitor and Eq. (66)
for its momentum PEM. Using Eqs. (82) and (83), one similarly finds

P µ
stab =

1

c

∫
Λµ

ρ Λ0
σ T ′ρσ

stab d3x =
U ′

EM

c



γβ2sin2ϑ′ − γβ2cos2ϑ′

γβ sin2ϑ′ − γβ cos2ϑ′

−2β cos ϑ′ sin ϑ′

0


(85)

for the four-momentum of the stabilizing mechanism. These four-momenta
are clearly not the Lorentz transforms of P ′µ

EM and P ′µ
stab. For every angle ϑ′,

however, their sum, P µ
tot = P µ

EM + P µ
stab, is the Lorentz transform of P ′µ

tot:

P µ
tot =

1

c

∫
Λµ

ρ Λ0
σ

(
T ′ρσ

EM + T ′ρσ
stab

)
d3x =

(
γ
U ′

EM

c
, γ

(
U ′

EM

c2

)
v

)
. (86)

This is not surprising given that the field and the stabilizing mechanism to-
gether form a closed system.

The only contribution to the integral in Eq. (86) comes from T ′00
EM. From Eqs.

(79) and (82) one sees that T ′ij
EM + T ′ij

stab = 0. A weaker result that nonetheless
has the exact same effect on P µ

tot holds for arbitrary closed static systems. For
any such system, the integral over all of space of the sum of all stresses in the
rest frame will vanish. 43 If T µν = T µν

1 + T µν
2 with ∂νT

µν = 0, then∫
(T ′ij

1 + T ′ij
2 ) d3x′ = 0. (87)

This was first shown by Laue (1911a, p. 152) and the result is sometimes
referred to as ‘Laue’s theorem’ (Miller, 1981, p. 352). It guarantees that
the four-momentum of a closed static system (under the standard defini-
tion (41)) transforms as a four-vector. It also shows that deviations from
(γU ′

EM/c, γ(U ′
EM/c2)v) in Eq. (84) for P µ

EM and all of P µ
stab in Eq. (85), the

43 A non-trivial example is provided by T ′ij
EM 6= −T ′ij

pres in Eqs. (44) and (45) for the
Lorentz-Poincaré electron.
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components of which are equal and opposite to those deviations, can be
traced to stresses in the rest frame. Under the standard definition (41) of
four-momentum, it is a general rule that stresses in the rest frame give rise
to momentum in a frame in which the system is moving. Such momentum is
typically not in the direction of motion. This is about as bizarre as a pin in a
bowling alley falling over sideways after being hit head-on by a bowling ball.
It is also what gives rise to torques (see Eq. (74)).

Laue (1911b, p. VI; 1912b) wanted to put this odd feature of relativistic me-
chanics, encoded in the transformation properties of four-momentum (under
the standard definition), on a par with the way in which the inertia of energy
is encoded in the energy-momentum tensor. As Planck (1908) had pointed
out, if T µν is symmetric, the momentum density T i0/c is equal to the energy
flow cT 0i divided by c2. In hindsight, it is clear that these two features do not
have the same status. The peculiar relation between stresses and momentum
found by Laue is an artifact of the standard definition of four-momentum.
Laue’s relation is on a par, not with E = mc2, but with length contraction
and time dilation. Still, Laue deserves credit for recognizing that the effect
has nothing to do with the particulars of the Trouton-Noble experiment or
the Lewis-Tolman bent lever but is a generic feature of open subsystems of
closed static systems in Minkowski space-time.

The ϑ′-dependence of the four-momenta (84) and (85) is an element that is
new compared to the analogous case of the Lorentz-Poincaré electron. Because
of the spherical symmetry of the electron in its rest frame, all momentum in
the moving frame is in the direction of motion, both the momentum associated
with the Maxwell stresses in the rest frame and the momentum associated with
the Poincaré stresses in the rest frame (see Eq. (47) and note ??). To order
v/c (in which case ϑ′ = ϑ and γ = 1), the momentum of the moving capacitor
associated with the Maxwell stresses is:

PEM ≈ 2m′
EMv cos ϑ(cos ϑ, sin ϑ, 0), (88)

where m′
EM ≡ U ′

EM/c2. This deviates sharply from the simple expression
PEM ≈ m′

EMv that would obtain if P µ
EM were to transform as a four-vector.

In the case of of the Lorentz-Poincaré electron, the only discrepancy was the
factor 4/3 (cf. Eq. (47)). In the case of the capacitor, the discrepancy is much
more pronounced. As shown in Fig. 5 for ϑ = 30o and ϑ = 60o, PEM is a vector
parallel to the plates, which has a maximum length of 2m′

EMv for ϑ = 0o and
ϑ = 180o and vanishes for ϑ = 90o and ϑ = 270o. In the same first-order
approximation, the spatial part of Eq. (85), the momentum associated with
the stresses of the stabilizing mechanism, is

Pstab ≈ −m′
EMv(cos 2ϑ, sin 2ϑ, 0). (89)

This is a vector of constant length m′
EMv in the direction 180o + 2ϑ, as shown
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in Fig. 5 for ϑ = 30o and ϑ = 60o. 44

Fig. 5. Momentum of electromagnetic field and stabilizing mechanism in moving
capacitor for two different values of ϑ.

To bring out the peculiar features of these ϑ-dependent expressions for energy
and momentum more vividly, imagine that the moving capacitor is set rotat-
ing around the z-axis (i.e., the angle ϑ varies). Since there is no net torque,
the capacitor will continue to rotate indefinitely without any further input of
energy. An observer with respect to whom the capacitor is moving at veloc-
ity v in the x-direction will conclude from Eqs. (84)–(85) and Eqs. (88)–(89)
that, as the capacitor is adiabatically spinning around, energy and momen-
tum flow back and forth between the electromagnetic field and the stabilizing
mechanism. These exchanges of energy and momentum are puzzling until one
realizes that, like the delicately balanced torques on the moving capacitor,
they are simply artifacts of the convention for choosing spacelike hyperplanes
that leads to the standard definition (41) of the four-momentum of spatially
extended systems in Minkowski space-time. Unlike the flow of energy and mo-
mentum from the battery to the capacitor in the Trouton experiment, the flow
of energy and momentum in this variation on the Trouton-Noble experiment
can simply be defined out of existence.

4.4 Drawing the line between kinematics and dynamics in accounting for the
Trouton-Noble experiment

The detailed account of what happens in the moving capacitor strongly de-
pends on how one defines the four-momentum of spatially extended systems.
On the standard definition (41), only the four-momentum of closed systems

44 The diagrams for ϑ = 120o and ϑ = 150o are obtained by taking the mirror images
in the xz-plane in Fig. 5 of the diagrams for ϑ = 60o and ϑ = 30o, respectively.
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transforms as a four-vector under Lorentz transformations. On the alternative
definition (42), championed by Rohrlich and others, this is true for all systems,
closed or open. The difference between the two definitions lies in a convention
for the selection of spacelike hyperplanes (cf. Fig. 2). There does not seem to
be any compelling reason to prefer one convention over the other.

If one opts for the standard convention—picking hyperplanes of simultaneity
in the rest frame of the observer—the account of what happens in the moving
capacitor in the Trouton-Noble experiment involves a number of peculiar ef-
fects. The lack of covariance of the four-momentum of the open subsystems of
the closed static system studied in the experiment manifests itself in various
ways. The energy of the electromagnetic field and the energy of the stabiliz-
ing mechanism depend on the orientation of the capacitor with respect to its
velocity but their sum remains constant. The equal and opposite stresses in
the capacitor’s rest frame result in equal and opposite momenta in a frame
in which it is moving. These momenta are typically not in the direction of
motion and give rise to two delicately balanced torques. None of these effects
are specific to the Trouton-Noble experiment. They have the same kind of uni-
versality as length contraction, time dilation, and the increase of mass with
velocity. One would find all three effects in any closed static system that can
be divided in one way or another into static open subsystems. So the effects
are kinematical in the broad sense. This is nicely illustrated by the obser-
vation, first made by Laue (1912a), that the capacitor in the Trouton-Noble
experiment can be seen as a physical instantiation of a thought experiment of
Lewis and Tolman (1909) involving a bent lever.

The three effects are also kinematical in the narrow sense of exemplifying
the standard spatio-temporal behavior of special relativity. This follows from
the observation that none of these effects occur if one opts for the alterna-
tive definition of four-momentum—picking hyperplanes of simultaneity in the
rest frame of the capacitor. This suggests a more general sufficient condition
for identifying relativistic effects as kinematical in the narrow sense: if an ef-
fect can be defined away by a mere change of convention about how to slice
Minkowski space-time, then that effect is purely kinematical. The torques in
the standard account of the Trouton-Noble experiment are kinematical by this
criterion, as are length contraction and time dilation. In the case of length con-
traction, this can be seen directly in Fig. 2. Define the length of the arbitrary
object shown in this figure as the length of some cross-section of its world
sheet. The standard convention is to consider the intersection of the world
sheet with hyperplanes of simultaneity in the observer’s rest frame. In that
case, the object moving at velocity v is a factor γ shorter in the direction of
motion than the same object at rest. If, however, one adopts the alternative
convention and considers the intersection of the world sheet with hyperplanes
of simultaneity in the object’s rest frame, there is no length contraction. This
would seem to be a particularly compelling way to argue that length contrac-
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tion is a kinematical effect. If one wants to accord it the status of a dynamical
effect, one has to privilege the standard convention for slicing world sheets.
This is as true for the peculiar effects one encounters in the standard account
of the Trouton-Noble experiment as it is for length contraction.

Ether theorists like Larmor and Lorentz, in effect, did privilege the standard
convention. They adhered to Newtonian absolute simultaneity, which in rel-
ativistic terms amounts to privileging the hyperplanes of simultaneity of an
observer at rest in their immobile universal ether. Faced with the contrac-
tion of the moving interferometer in the Michelson-Morley experiment or the
delicately balanced torques on the moving capacitor in the Trouton-Noble
experiment, they did not have the option of defining these effects out of ex-
istence by slicing space-time differently and understandably treated them as
dynamical effects. Once the ether has been jettisoned along with Newtonian
space and time, there no longer is a preferred convention. Applying the general
criterion formulated above, one is then driven to the conclusion that the con-
tractions, torques, and other contortions in the standard relativistic accounts
of the Michelson-Morley experiment and the Trouton-Noble experiment are
all purely kinematical effects.

5 Kinematical explanations and Minkowski space-time

The analyses in secs. 2–3 follow a simple pattern. Dynamical considerations
specific to the physical system at hand are brought in to account for some
feature(s) of the system at rest—be it with respect to the ether, as in Lorentz’s
theory, or with respect to some arbitrary inertial frame, as in Einstein’s special
theory of relativity. Once this task has been accomplished for the relevant
feature(s) and to the desired level of specificity, an appeal to the Lorentz
invariance of the laws and models used in these accounts suffices to account
for any associated features of the same system in uniform motion. In Lorentz’s
theory, Lorentz invariance is a symmetry of all dynamical laws but not of the
space-time structure posited by the theory. 45 In special relativity it is both.
Switching from an active to a passive reading of the Lorentz transformation
for a moment, the relativist can thus look upon the boosted version of the
situation at rest simply as a redescription of the same situation from the
vantage point of an observer with respect to whom the system is moving. This
observation makes it clear that the relevant features of the moving system
do not call for a dynamical explanation in special relativity. They are purely
kinematical in the sense that the moving system is just exhibiting default
spatio-temporal behavior. In Lorentz’s theory, they are kinematical only in

45 Lorentz’s theory thus violates Earman’s (1989, p. 46) symmetry principle ‘SP2.’
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the broad sense of being independent of the details of the dynamics (even
though Lorentz did not recognize this right away in all cases).

In sec. 2, the system at rest is some transparent medium and what calls for a
dynamical account is the value of n, its refractive index. The Lorentz invari-
ance of that account guarantees that, if the medium is moving with velocity
v, light propagating through it in the direction of motion will have velocity
(c/n) + fv, where f ≡ 1 − 1/n2 is the Fresnel drag coefficient. This Fres-
nel “drag” is thus a purely kinematical effect. The Lorentz-invariant classical
account of refraction and dispersion in (Lorentz, 1892a) was eventually super-
seded by a quantum-mechanical account, but, since that account is Lorentz
invariant too, it likewise yields the Fresnel drag coefficient. As Laue (1907)
showed, the drag coefficient provides an example of how velocities add in spe-
cial relativity. It tells us nothing about the way in which light propagates
through transparent media. Physicists in the 1890s were therefore mistaken
in thinking that it is further evidence for Lorentz’s theory of refraction and
dispersion that it yields the Fresnel drag coefficient.

In sec. 3, the ‘system’ at rest is the classical electron of Lorentz and Poincaré
and the task is to account for its inertia (the scare quotes serve as a reminder
that electrons cannot be modeled the way Lorentz and Poincaré envisioned).
This task amounts to finding all contributions to its rest energy. In modern
physics, one simply takes the rest mass m′ of the electron as a primitive pa-
rameter. Either way, one arrives at the expression P ′µ = (m′c, 0, 0, 0) for the
four-momentum of the electron at rest. An electron moving with velocity v
then has four-momentum P µ = (γm′c, γm′v), the Lorentz-boosted version of
P ′µ. If one defines mass as the ratio of momentum and velocity (as is customary
nowadays), the mass of a moving electron is γm′. If one defines it as the ratio
of force and acceleration (as was customary around 1905), the electron has
two different masses depending on whether the acceleration is in the direction
of the velocity or perpendicular to it. These two masses are the longitudinal
mass, m// = γ3m′, and the transverse mass, m⊥ = γm′, respectively. Either
way, the increase of mass with velocity given by these expressions is a purely
kinematical effect. Contrary to what physicists thought around 1905, the ve-
locity dependence of the electron’s mass tells us nothing about the nature or
structure of the electron, but only about the behavior of the four-momentum
of a closed system—any closed system—under Lorentz transformations (secs.
3.4–3.5). In other words, it is no evidence for the Lorentz-Poincaré model of
the electron that this model exhibits the generic velocity dependence of mass
in special relativity.

In sec. 4, the system at rest is a charged capacitor and the task is to account for
its stability. It would not be easy to produce a realistic quantum-mechanical
model of the stabilizing mechanism. Fortunately, it suffices to derive the form
of its energy-momentum tensor from the requirement that the capacitor and
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its electromagnetic field taken together form a closed static system. This gives
a Lorentz-invariant model of a charged capacitor at rest, even though the
model does not specify the details of the physics behind the stabilizing mech-
anism. Performing a Lorentz transformation, using the standard definition of
the four-momentum of spatially extended systems, one finds that the deli-
cate balance between electromagnetic field and stabilizing mechanism in the
capacitor at rest translates into a number of peculiar effects in the capaci-
tor in motion. The way in which the total energy, momentum, and angular
momentum is divided between field and stabilizing mechanism in the moving
capacitor depends on its orientation with respect to its velocity. This results
in two equal and opposite torques acting on the system. It also results in a
flow of energy, momentum, and angular momentum between the two compo-
nents of the system every time the system’s orientation is changed. One does
not find any of these effects if one adopt a different convention for choosing
space-like hyperplanes Σ in the definition of the four-momentum P µ

Σ of spa-
tially extended systems (cf. Fig. 2). This is a particularly vivid illustration of
the kinematical character of these effects. The kinematical character of length
contraction and time dilation can be argued for in the exact same way (sec.
4.4).

Lorentz invariance manifests itself in a number of generic features of moving
systems: length contraction, time dilation, a new addition rule for velocities,
the velocity dependence of mass, and delicately balanced torques coming from
open subsystems of closed systems. In special relativity—at least in the stan-
dard version—Lorentz invariance in turn is interpreted as reflecting a symme-
try of Minkowski space-time, the space-time structure posited by the theory.
In several places (Janssen, 1995, 2002a,b; Balashov and Janssen, 2003), I have
presented what I have come to call a common origin inference (COI) from uni-
versal Lorentz invariance to Minkowski space-time. Both in Lorentz’s theory
and in Brown’s alternative interpretation of special relativity (Norton, 2007),
Lorentz invariance is posited separately for different dynamical laws. The sys-
tems studied in secs. 2–4 illustrate this point. They all involve the interaction
between electric charges and electromagnetic fields on the one hand and matter
keeping these charges in place on the other. In these three examples, the role of
matter is played by the transparent medium, the Poincaré ether pressure, and
the capacitor, respectively. Lorentz introduced the Lorentz invariance of the
laws governing the electromagnetic fields and the electric charges through his
theorem of corresponding states. In modern terms, he proved that Maxwell’s
equations, the known laws of electromagnetism, are Lorentz invariant. He then
added what Brown and I call the generalized deformation hypothesis (sec. 3.1),
which is the assumption that the laws governing everything else are Lorentz
invariant as well. In Lorentz’s theory and mutatis mutandis in Brown’s pro-
posal, it is simply a brute fact that these different laws are Lorentz invariant.
In the orthodox version of special relativity this cosmic coincidence is traced
to a common origin, Minkowski space-time.
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The account of the Michelson-Morley experiment in Lorentz’s theory provides
another illustration of how this COI works. It is a direct consequence of the
Lorentz invariance of the source-free Maxwell equations that the Lorentz-
boosted version of any pattern of brightness and darkness is contracted by a
factor γ in the direction of motion compared to the original pattern at rest.
For this contraction to be undetectable for a co-moving observer, it has to
be the case that moving Michelson interferometers and other arrangements of
optical components used to produce and observe patterns of brightness and
darkness experience the same contraction (sec. 3.1). This will be the case if the
laws governing these systems are Lorentz invariant. In the Michelson-Morley
experiment of 1887, the optical components were all mounted on a slab of
sandstone. To account for the negative result of the experiment it thus had to
be assumed that sandstone moving through the ether is subject to the Lorentz-
FitzGerald contraction. In Michelson’s original experiment, the interferometer
was made of brass, so it had to be assumed that brass experiences the same
contraction as sandstone (Janssen, 2002b, p. 498).

Astonishingly, in the years 1900–1905, Morley and a new collaborator, Miller,
performed a series of experiments to test this assumption for other materials
such as pine wood and steel (Swenson, 1972, Ch. 7). These experiments pro-
vide a textbook example of the waste of time and resources that can occur
if experimenters rely on faulty explanations to guide them in their work (sec.
1.1). Morley and Miller were badly out of touch with theoretical developments
when they did these experiments. Even though nobody before Einstein and
Minkowski appreciated that length contraction is kinematical in the narrow
sense of being an example of default spatio-temporal behavior, any competent
theorist in the late 1890s and early 1900s realized that length contraction is
kinematical in the broad sense of being independent of the details of the dy-
namics. By my book, the Morley-Miller experiments are therefore almost as
embarrassing as Miller’s attempts in the early 1920s to repeat the Michelson-
Morley experiment on Mount Wilson, on the argument that the rooms in
which the earlier experiments had been done might have trapped the ether
(Swenson, 1972, Ch. 10). Brown, however, evaluates these Morley-Miller ex-
periments much more positively:

We are now so used to this miracle [that moving systems contract by a
factor γ in the direction of motion regardless of what they are made of]
that it seems mundane, but it is worth recalling that in the early twentieth
century the Michelson-Morley experiment was repeated on several occasions
with different substances making up the rigid support of the interferome-
ter mirrors precisely to test for the universality of the FitzGerald-Lorentz
deformation effect (Brown, 2005, p. 30).

Special relativity traces the “miracle” that brass, stone, steel, wood, and elec-
tromagnetic field configurations all experience the same contraction to the
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structure of Minkowski space-time. As Dorling used to tell me, the univer-
sality of the Lorentz-FitzGerald contraction in special relativity is no more
miraculous than that right-angled triangles cut out of flat sheets of paper,
plastic, and card board all satisfy the Pythagorean theorem of Euclidean ge-
ometry. To avoid misunderstandings, let me emphasize that Brown is quite
right in the sense that it is a highly non-trivial fact about nature that space-
time can be taken to be Minkowskian in a great many situations or, for that
matter, that space can usually be taken to be Euclidean.

Brown and Pooley resist the COI from universal Lorentz invariance to Min-
kowski space-time. COI is a subspecies of IBE. So it is my view that Minkowski
space-time explains Lorentz invariance. For Brown and Pooley, however, Min-
kowski space-time is a “glorious non-entity” that can do no explanatory work.
I already disavowed the notion that Minkowski space-time be a substance with
causal efficacy, so the sense in which Minkowski space-time explains Lorentz
invariance is certainly not causal. I adopted the view, similar to Brown’s,
that Minkowski space-time encodes the default spatio-temporal behavior of all
physical systems in a world in accordance with the laws of special relativity
(sec. 1.2). The challenge of (Brown, 2005) and (Brown and Pooley, 2006) for
my position then is twofold. First, how can Minkowski space-time do any
explanatory work if it is not a substance? As Brown writes commenting on
the statement of the COI to Minkowski space-time in (Balashov and Janssen,
2003): “Here we are at the heart of the matter. It is wholly unclear how this
geometrical explanation is supposed to work” (Brown, 2005, p. 134). Elaborat-
ing on this complaint a little later in the book, he calls this issue the “mystery
of mysteries” (ibid., p. 143). Second, on my own non-substantival conception
of Minkowski space-time, does the statement that space-time is Minkowskian
say anything over and above the statement that all laws are Lorentz invariant?
The two questions can be rolled into one: where exactly does the explanatory
gain come from that I claim special relativity in its orthodox form has both
over Lorentz’s theory and over Brown’s etherless, preferred-frame-less version
of same?

Let me first dispose of one possible answer to the question of explanatory gain.
Special relativity certainly does not explain why space-time is Minkowskian.
That is a brute fact in the theory. It follows that the orthodox relativist also
does not have an answer to the question, which Brown (2005, e.g., p. 14–15, pp.
23–24, pp. 140–142) considers particularly pressing, of why free particles move
on geodesics of Minkowski space-time other than to point out that it is part
and parcel of the claim that space-time is Minkowskian that they do. As many
have argued, Minkowski space-time is a very natural space-time structure,
but such arguments invariably assume other brute facts that would seem to
stand in just as much need of explanation. Dorling (1976), for instance, shows
how one might have arrived at Minkowski’s space-time geometry in antiquity
through a simple modification of one axiom of Euclidean geometry that would
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have to be modified in “any geometry which was intended to embrace time as
well as space” (quoted from the abstract of Dorling’s still unpublished paper).
Minkowski (1909, p. 79) famously remarked that a mathematician might have
arrived at a geometry characterized by the Lorentz group well in advance of
the developments in electrodynamics that historically led to the recognition of
this group’s importance by noting that classical mechanics is invariant under
transformations both of the Euclidean and of the Galilean group.

So what is the explanatory advantage of special relativity over the alternatives
of Lorentz and Brown and how does it come about? Theories like special rela-
tivity that are about the spatio-temporal behavior of physical systems assign
all phenomena to one of two classes, the class of kinematical and the class of
dynamical phenomena. The former contains all phenomena that are simply
examples of the default or generic spatio-temporal behavior posited by the
theory. In special relativity, the set of norms defining this default behavior
is encoded in the geometry of Minkowski space-time. Phenomena assigned to
this class do not call for any further explanation. The only phenomena calling
for further explanation are those assigned to the class of dynamical phenom-
ena. These phenomena involve systems exhibiting spatio-temporal behavior
that is not generic, either because it is system-specific (e.g., why is the speed
of light in this transparent medium c/n?) or because it deviates from the norm
(e.g., why is the trajectory of this particle not a geodesic?). As the examples
discussed in this paper illustrate, many phenomena that were classified as
dynamical in Lorentz’s theory and in Brown’s proposal (the Fresnel drag coef-
ficient in the Fizeau experiment, the velocity dependence of the electron mass
in the experiments of Kaufmann and others, and the torques on the moving
capacitor in the Trouton-Noble experiment) are reclassified as kinematical in
special relativity.

Using this way of capturing the kinematics-dynamics distinction, I can now
give an answer to the question how Minkowski space-time (understood as
encoding the default spatio-temporal behavior of special relativity) explains
such phenomena as length contraction and the velocity dependence of mass. It
explains them by showing they need no explanation. Or, to put it less paradox-
ically, the statement that space-time is Minkowskian explains all of them in
one fell swoop. This then is where that statement goes beyond the statement
that all laws are Lorentz invariant. It commits one to assigning all manifes-
tations of Lorentz invariance to the class of kinematical phenomena. Special
relativity thus achieves its explanatory gain over Lorentz’s theory by redraw-
ing the line between kinematics and dynamics. Since explanation provides a
guide to inference (sec. 1.1), this makes a difference in scientific practice. It
yields a negative and a positive heuristic (sec. 3.5). It tells scientists that
there is nothing more to be learned from the study of specific elements in the
class of kinematical phenomena. The criteria defining the class of kinematical
phenomena, however, provide useful constraints on further theorizing about
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elements in the class of dynamical phenomena.

It does not follow from any of this that it is fruitless to ask why space-time
is Minkowskian and to search for a deeper explanation of Lorentz invariance
and other features it encodes. The COI from universal Lorentz invariance to
Minkowski space-time (again: understood as the geometrical encoding of a
new kinematics) does tell us, however, that it would be an unprecedented
reversal of fortunes in the history of science if the ultimate explanation of
Lorentz invariance would be that all dynamical laws just happen to be Lorentz
invariant. And this is the Lorentz 1899/1904 position that Brown suggests we
return to (albeit sans ether or absolute simultaneity).

Proponents of the electromagnetic view of nature discussed in sec. 3 actually
pursued a more respectable variant of this explanation (Janssen, 2002b, pp.
498–499). Minkowski space-time is not the only possible common origin for
the Lorentz invariance of laws governing different interactions. Another option
is that it is a property of some unified theory for these interactions. This is
what proponents of the electromagnetic view of nature suggested. At first,
the unifying theory was taken to be classical electrodynamics itself. In the
1910s, Mie replaced it by some non-linear generalization of Maxwell’s theory.
By 1920, if not earlier, it was clear that this electromagnetic program was not
panning out. With the program’s demise the alternative common origin for
universal Lorentz invariance was eliminated.

In the two theories combined in today’s standard model, the Weinberg-Salam
theory and quantum chromodynamics (QCD), Lorentz invariance is assumed
from the start as reflecting the common space-time background of these the-
ories. This illustrates how special relativity imposes a kinematical constraint
on dynamical theories, a meta-law in the language of (Lange, 2007). For a
relationist, the laws of these two theories are the bearers of the property of
Lorentz invariance, but this property has nothing to do with the specifics
of the electroweak or the strong interaction. Explaining Lorentz invariance
in terms of such specifics would thus be to misidentify its origin, potentially
sending us off on a wild goose chase. General relativity tells us that Minkowski
space-time, or rather its metric field, is a particular field configuration of the
inertio-gravitational field. This is unlikely to be the final word on the matter.
We can imagine that Minkowski space-time will emerge in the low-energy limit
of some future theory of quantum gravity that does not include any spatio-
temporal notions among its basic concepts. Such a theory would provide an
answer to the question ‘Why Minkowski space-time?’. There is no reason to
think, however, that this deeper theory would require us to move any of the
phenomena in which Lorentz invariance manifests itself from the column of
kinematics to the column of dynamics as established by special relativity. To
the extent that Brown is urging that we keep looking for a deeper explanation
of Lorentz invariance than Minkowski space-time, I have no beef with him at
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all. I hope to have shown in this paper, however, that such a deeper expla-
nation is not to be had by a return to the borders between kinematics and
dynamics as they were before 1905.

This illustrates a general feature of COIs. COIs are often to new taxonomies
of what Laura Snyder has proposed to call “phenomena kinds” (in analogy
with “natural kinds”). Taxonomies arrived at or backed up by a strong COI
tend to be robust enough to survive radical theory change (Janssen 2002b,
p. 492; Snyder, 2006, p. 184). The COI to Minkowski space-time is a case
in point. The inference is not to some substance with causal efficacy (i.e., it
is not a common cause inference) but to a new classification of phenomena
as kinematical and dynamical. This new constraint on how nature can and
cannot be “carved at its joints” is unlikely to be lifted by further theoretical
developments.

To conclude this paper, I want to draw attention to another episode in which
the kinematics-dynamics distinction (in the broad sense) played a crucial role.
Prior to 1905, it had looked as if Maxwell’s dynamical equations were in-
compatible with the relativity principle. Einstein (1905a) showed how a new
space-time kinematics took care of that problem. At the time, it also looked
as if Maxwell’s equations were incompatible with Planck’s black-body radia-
tion law and the wave-particle duality suggested by its implications for energy
and momentum fluctuations in black-body radiation. Jordan showed in 1925
how the new kinematics that Heisenberg (1925) introduced in his Umdeutung
paper (kinematics in the sense of a new general framework for physics) made
that problem go away (Duncan and Janssen, 2007b). As it says in the final
section of the so-called Dreimännerarbeit, in which both terms of Einstein’s
1909 fluctuation formula, the wave and the particle term, are derived for a
simple model of a cavity filled with black-body radiation: “The basic differ-
ence between the theory proposed here and that used hitherto . . . lies in the
characteristic kinematics and not in a disparity of the mechanical laws” (Born,
Heisenberg, and Jordan, 1926, p. 385). As Jordan reiterated triumphantly in
a paper two years later: “We explicitly stuck to the wave theory of light and
only changed the kinematics of cavity waves quantum-mechanically. From this,
however, the characteristic light-quantum effects emerged automatically as a
consequence” (Jordan, 1928, p. 195).
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Energie. Annalen der Physik 23: 371–384. Reprinted as Doc. 45 in (Einstein,
1987–2006, Vol. 2).
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