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Abstract

Using four examples of models and computer simulations from the history of

psychology, I discuss some of the methodological aspects involved in their con-

struction and use, and I illustrate how the existence of a model can demonstrate the

viability of a hypothesis that had previously been deemed impossible on a priori

grounds. This shows a new way in which scientists can learn from models that

extends the analysis of Morgan (1999), who has identified the construction and ma-
nipulation of models as those phases in which learning from models takes place.
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1 Introduction

Models of various sorts play an essential role in psychology. Leaving aside the study
of animals as models for human beings, four different artificial models that were in-
troduced in the 20th century are presented in this paper: Hull’s psychic machines,
Grey Walter’s tortoises, Newell and Simon’s classical symbolic systems, and Rosen-
blatt’s perceptrons with their extension to multi-layered connectionist networks (Sec-
tion 2). The first two are mechanical models, the others are computational models or
computer simulations.1 Mary Morgan has argued convincingly that scientist can learn
from models in two distinct phases, namely during the construction of the models and
afterwards by using them (Morgan 1999).2 She has illustrated, on the one hand, that

∗Presented at Models and Simulations, Paris, June 12–13, 2006. I would like to thank Uljana Feest,
Michael Hallett, Brian van den Broek, and an anonymous referee for many valuable comments on this
paper.

1The term “computer simulation” is used differently in psychology than in other disciplines (see
Section 3).

2This analysis is also mentioned approvingly in (Hartmann and Frigg 2005, 745).
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setting up an adequate model requires the identification of key components, and that
it involves interpretation, conceptualization, simplification, approximation, and inte-
gration in various degrees. Using a model, on the other hand, involves representation,
autonomous functioning, and manipulation. A closer look at the four models from the
history of psychology supports this analysis (Section 3.1). Moreover, it reveals that in
the construction of a model a researcher can focus on replicating most accurately some
given data or behavior, or on getting the most out of a certain set of basic mechanisms
that underlie the functioning of the model. These two methodological approaches are
commonly referred to as analytic and synthetic, and they are discussed in Section 3.2,
with particular attention to the close relationships between analytic computer simu-
lations and theories, and between synthetic models and agent-based models. While
the case studies presented in this paper confirm Morgan’s claims that researchers can
gain valuable insights during the construction of the models as well as through ma-
nipulations, each of these models was also employed in arguments that refute claims
about necessary conditions for certain types of behavior or in support of claims about
the internal mechanisms that produce certain behavior. These two kinds of arguments
are related to the methodological distinction between analytic and synthetic models.
In all of these arguments for the validity of a particular claim or the viability of an ap-
proach, which were often made in direct response to a previously formulated claim of
the contrary, the bare fact that any of these models was exhibited was a significant con-
tribution to scientific progress (Section 3.3). This shows how scientists can learn from
the existence of models, and thus extends Morgan’s analysis of learning from models.
That the above examples are all drawn from the history of psychology should not de-
tract from the fact that this use of the existence of models in scientific argumentation is
nevertheless very general.3

2 Physical and computational models in psychology

2.1 Hull’s psychic machines

In reaction to the strong mechanistic tendencies in late 19th century physiology (e. g.,
Helmholtz), the early 20th century saw a revival of vitalism, in particular in biology,
but also in psychology. Driesch, for example, argued forcefully against ‘association’
and ‘mechanics’ and in favor of ‘soul’ and ‘entelechy’ as fundamental concepts of psy-
chology (Driesch 1925, 267). It was against this background that the young American
psychologist Clark L. Hull began building and studying machines that were aimed at

3See, e. g., semantic consistency proofs and the notion of ‘proof of concept’ (Section 3.3).
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simulating certain aspects of human behavior. Early in life he had already constructed
various mechanical devices and had developed a mechanistic view of the world (Hull
1952). In his “idea books”4 Hull writes that

it has struck me more than once that so far as the thinking processes go,
a machine could be built which would do every essential thing that the
body does (except growth) so far as concerns thinking, etc. And [. . . ] to
think through the essentials of such a mechanism would probably be the
best way of analyzing out the essential requirements of thinking [. . . ] (Hull
1962, 820; entry dated March 1, 1926; see also p. 839)

A year after he wrote this passage Hull learned about Pavlov’s discovery of the phe-
nomenon of the conditioned reflex and he became convinced that this was the fun-
damental mechanism underlying learning. Together with collaborators Hull designed
and implemented in the course of the next four years mechanical devices to simulate
the behavior observed by Pavlov. They experimented with various realizations until
they settled for an electric circuit with “polarizable cells and mercury-toluene regula-
tors” (Hull and Baernstein 1929).5

At the outset of a classical Pavlovian experiment on conditioning, presenting food
to a dog causes it to salivate (reflex), whereas the sound of a bell has no such effects.
However, after having been presented repeatedly with both food and the sound of a
bell at the same time (conditioning), the sound of the bell alone suffices to cause the dog
to salivate (conditioned reflex). Hull simulated this series of events with a machine that
had two switches as inputs and a light bulb as output. In the initial state, only one of the
switches caused the light to turn on (reflex), while switching on the other had no visible
effect whatsoever. But, turning on both switches charged the polarizable cell, which
could then later be discharged to the light bulb by turning on only the second switch.
Thus, after having repeatedly switched on both switches simultaneously (conditioning),
also the second switch, if turned on by itself, caused the light bulb to glow (conditioned
reflex). Further aspects of Pavlov’s experiments were also reproduced by Hull’s device,
e. g., that the strength of the conditioned reflex depends on the number of simultaneous
stimulations of the inputs, and that the conditioned reflexes decay if the stimuli are not
presented together for a longer period of time.

4Hull kept extensive notebooks, which he called “idea books” and in which he recorded his thoughts
and research ideas. From the days of his graduate studies in 1916 to the end of his life in 1952 he
completed at least one such book every year, 73 in total. Passages of these books have been published,
with an introduction, in (Hull 1962).

5See also (Baernstein and Hull 1931) and (Krueger and Hull 1931); for a detailed analysis of Hull’s
machines, see (Cordeschi 1991).
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In their presentation of the above results Hull and Baernstein emphasize two points.
First, that the existence of such a machine shows that “mental processes are indepen-
dent of the material substance,” and second, that to build such a machine one has to
identify the “essential functions” of the behavior that is being modeled. The second
point fits exactly Morgan’s observation that the building of a model can lead to impor-
tant insights (Morgan 1999), while the first point is an example of how the existence
of a model can teach us something about the necessary and sufficient conditions for
certain behavior. More on this later.

For being able to compare human behavior with that of the model, certain parts
of the organism, e. g., sense organs, responding system, and nervous system, must be
represented by corresponding components of the model, but Hull refuses to make the
additional claim that the underlying mechanisms of the model “are duplicates of the
corresponding organic processes” (Baernstein and Hull 1931, 99). Indeed, Hull is very
careful to point out which of the characteristics of conditioned reflexes that Pavlov had
determined experimentally are reproduced by his machines and which are not (e. g.,
delayed reflexes). For the latter, he expresses the hope that further research with more
elaborated machines might eventually lead to their successful simulation. Encouraged
by his early successes of imitating very simple learning behavior Hull also envisages
the possibility of simulating more complex cognitive functions, such that “at a not very
remote date the concept of a ‘psychic machine’ may become by no means a paradox”
(Baernstein and Hull 1931, 106)6 as was the view of the proponents of vitalism.

2.2 Grey Walter’s tortoises

Two decades after Hull’s work on psychic machines the neurophysiologist William
Grey Walter became one of the most well-known builders of mechanical models in
Britain.7 After having achieved groundbreaking results in his research on electroen-
cephalography (EEG), he turned his attention in the early 1950s to the internal work-
ings of the brain. At the time it was common to assume that the brain’s performance
depends essentially on the number of its neurons. Thus, due the vast number of brain
cells, an approach based on modeling seemed to be completely out of reach. To over-
come this difficulty, and in stark contrast to the received view, Grey Walter hypothe-
sized that it is not so much the number of units, but the richness of their interconnec-
tions that is responsible for generating complex behavior, and he set out to test this
claim by building a model with a minimal number of components.

6See also the entry of 2 July 1930 in Hull’s idea books, where he refers to “manuscripts or ideas about
the actual design of psychic machines” (Hull 1962, 839).

7For more background on Grey Walter, see (Hayward 2001).
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Grey Walter succeeded in devising an autonomous robot with only two functional
units, each of which simulated the behavior of a single brain cell. He built two of these
machines, which moved on three wheels and consisted only of pairs of tubes, relays,
condensers, batteries, and motors (one for moving, the other for steering), and used
a photoelectric cell and an electrical contact as inputs. To everybody’s surprise these
machines were able to exhibit complex and “remarkably unpredictable” animal-like
behavior (Grey Walter 1950, 44), such as finding a light source in a room and moving
towards it while getting around obstacles on their path. These machines were built
to continuously explore the environment and Grey Walter referred to them as Machina
speculatrix, or “tortoises” (Grey Walter 1950). Spurred by the success of these models,
Grey Walter went a step further and tried to endow his machines with the ability to
learn from previous experiences. Like Hull, he considered Pavlov’s conditioned reflex
to be the basic mechanism of learning, and he implemented this in a similar type of
machine, Machina docilis, which was also equipped with an additional microphone. Its
learning unit, CORA (conditioned reflex analogue), was a small electrical circuit con-
sisting of a handful of amplifying and discharging tubes, condensers, and resistors. At
first, the sound of a whistle did not provoke any reaction from the machine, but by
repeatedly blowing the whistle at the same time that a light source was shown, the
robot would associate the sound and the occurrence of light, such that it eventually
became attracted to sound even in the absence of light (Grey Walter 1951). Grey Walter
considered his models as genuine tools for scientific inquiry, and he emphasized that
they generated unforeseen behavior (e. g., learning of defensive reflexes) that was nev-
ertheless typical of the animal behavior they were intended to simulate (Grey Walter
1953, 179–181).

2.3 Classical symbolic systems

Soon after digital computers became available at research institutions psychologists
realized that these could be used as a new tool for simulating behavior.8 Thus, in the
late 1950s the first theories of cognition were developed that could be implemented
as computer programs. Among these the work of Alan Newell and Herbert A. Simon
was most influential. In particular, they introduced a new level of analysis of cognitive
processes, namely that of (symbolic) “information processes” (Newell et al. 1958). They
argued that both computers and human beings can be interpreted as information pro-
cessing systems, and that the behavior of a particular information processing system is

8In fact, the computer itself became a popular model for the organization of the brain (e. g., von
Neumann 1958).
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“explained” by a computer program that produces the same behavior.
Thus, to investigate human problem solving behavior at the level of information

processes one formulates a computer program and then compares the output gener-
ated by the program with the behavior of human subjects. Moreover, since the pro-
gram is intended to simulate the entire dynamic reasoning process and not just its final
outcome, Newell and Simon compared the computer output during various stages of
the simulation with verbal thinking-aloud protocols obtained from the subjects while
they were solving given problems.9 Finally, if the program was able to simulate hu-
man behavior over a wide range of situations Newell and Simon proposed to regard
the program itself as “a theory of the behavior” (Newell and Simon 1961a, 2012):

Only when a program simulates the entire sequence of behavior—for ex-
ample, makes the same chess analysis as the human player—do we have
any assurance that we have postulated a set of processes that is sufficient to
produce the behavior in question. (Newell and Simon 1961a, 2016)

Given the fact that their program, called the General Problem Solver, had fared quite
well in imitating how subjects solved various logic problems (Newell and Simon 1961b),
they took this as a validation of the fundamental assumption underlying their ap-
proach, i. e., that it “provides an unequivocal demonstration that a mechanism can
solve problems by functional reasoning” (Newell and Simon 1961a, 2014). Later, con-
vinced by a large number of successful simulations, they formulated their famous phys-
ical symbol system hypothesis, namely that “the necessary and sufficient condition for a
system to be capable of thinking” is that it is able to perform certain symbolic processes
(Simon 1993, 640).10

2.4 Perceptrons and neural networks

At the same time when Newell and Simon were analyzing cognitive processes at the
information processing level, a radically different approach emerged that took recent
findings in neuroscience about the internal workings of the brain as its starting point.
Here, highly idealized analogues of neurons and their interconnections are modeled as

9The following is an excerpt of such a protocol, where the task was to transform a logical expression
into another using a set of given rules (clarifying questions from the experimenter are in italics): “I’m
looking at the idea of reversing these two things now. Thinking about reversing what? The R’s . . . then I’d
have a similar group at the beginning but that seems to be . . . I could easily leave something like that ’til
the end, except then I’ll. . . Applying what rule? Applying, . . . for instance, 2. That would require a sign
change. Try to keep talking if you can. Well . . . then I look down at rule 3 and that doesn’t look any too
practical” (Newell and Simon 1961a, Figure 3).

10For the classic exposition of this hypothesis, see (Newell and Simon 1972).
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neural networks (or, without the emphasis on the physiological analogy, as connectionist
systems) consisting of interconnected layers of nodes, each of which having a number
of input connections and a single output connection. Depending on the values of the
inputs, the output can either be activated or not, thus imitating the firing of a neuron.
Due to their close structural similarity to parts of the brain, neural networks have been
considered to offer “a reasonable basis for modeling cognitive processes in general”
(Rumelhart and McClelland 1986, 110).

The first models of this kind were put forward by Frank Rosenblatt, who named
them perceptrons. He aimed at “investigating the physical structures and neurody-
namic principles which underlie ‘natural intelligence.’ " (Rosenblatt 1962, v–vi). He
considered perceptrons to be brain models, by which he meant “any theoretical system
which attempts to explain the psychological functioning of a brain in terms of known
laws of physics and mathematics, and known facts of neuroanatomy and physiology”
(Rosenblatt 1962, 3). Perceptrons consist of only three layers of nodes: input, hidden,
and output units. Using Rosenblatt’s ‘perceptron convergence procedure’ to update
the connection strengths between nodes, a perceptron can be trained to associate inputs
with certain desired outputs. Moreover, Rosenblatt proved that if the input-output re-
lation could be learned at all by a perceptron, then this algorithm would eventually
yield the necessary connection strengths. Although perceptrons were originally de-
veloped as theoretical models, Rosenblatt held that “a brain model may actually be
constructed, in physical form, as an aid to determining its logical potentialities and
performance” (Rosenblatt 1962, 3), without this being one of their essential features,
however. He investigated both physical models (“hardware systems”) and computer
simulations (“digital simulations”) of perceptrons himself for testing and comparing
their behavior, since mathematical analyses of the more complex systems were lack-
ing. Thus, for Rosenblatt physical models and computer simulations are on par from
a methodological point of view, differing only in regard to practical matters: he notes
that in comparison with hardware systems, computer simulations are more versatile,
but much slower.

In 1969 Minsky and Papert were able to prove that the tasks that the single-layered
perceptrons could learn belonged only to a restricted class, the ‘linearly separable
problems’. Furthermore, although they did not rule out in principle that Rosenblatt’s
learning algorithm could be extended to more complex networks, they contended that
“[t]here is no reason to suppose that any of these virtues [of perceptrons] carry over
to the many-layered version” (Minsky and Papert 1969, 232). In the wake of these
results research on connectionist models almost came to a halt and attention in cog-
nitive science was redirected to the problem of knowledge representation. In contrast

7



Learning from the existence of models Dirk Schlimm

to the classical computer models where the computational symbols are claimed to be
analogous to mental representations, connectionist models do not have any obvious
localizable representation of information. On the one hand this makes them subject
to criticisms,11 but on the other hand this fact itself indicates a further similarity with
human brains. It was only in the 1980s with the formulation of the ‘generalized delta
rule’ by Rumelhart and his colleagues that the earlier difficulty was overcome and re-
search on connectionist networks was intensified. Indeed, this has been hailed as “one
of the most significant contributions to connectionist research” (Medler 1998, 53)12 and
connectionist models have remained to this day an active field of research.

3 Learning from the existence of models

Some general features that are prominent in the above case studies from the history
of psychology are discussed next, and we shall see that representational capacity and
autonomous functioning enable these models to be used as genuine tools for scientific
inquiry (Section 3.1). For the construction of models psychologists have developed
two methodologies which differ in their focus on either the overall behavior or on
the internal mechanisms that generate this behavior (Section 3.2). However, despite
the differences between the various models and computer simulations under consid-
eration, we shall see that they have played very similar roles in scientific arguments
(the distinction between analytic and synthetic models affecting the particular forms
of these arguments). I will show how the existence of a model can be used to refute ne-
cessity claims and to demonstrate the viability of research programmes (Section 3.3),
which extends the analysis of Morgan, who has identified the construction and manip-
ulation of models as those phases in which learning from models takes place (Morgan
1999).

3.1 Representational capacity and functional autonomy

Hull, Grey Walter, Newell and Simon, and Rosenblatt all emphasize the predictive
power of their models, i. e., their ability to generate unforeseen behavior that the re-
searcher can exploit to formulate novel hypotheses. This is possible because both the
physical and computational models have representational capacities and function au-
tonomously.

11See, for example, the debate on compositionality: (Fodor and Pylyshyn 1988) and replies.
12For a different perspective, see “Prologue: A View from 1988” and “Epilogue: The New Connec-

tionism” in (Minsky and Papert 1988, viii–xv and 247–280).
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Representational capacity is an essential feature of models, since, in order to in-
terpret the model as a model of something, it has to latch on to either theory or the
world, i. e., certain features of the model must represent aspects of what it is intended
to model. In the case of Grey Walter’s tortoises, for example, the photoelectric cell cor-
responds to a sensory organ such as a moth’s eye, and the robot’s wheels correspond
to means of motions such as a moth’s wings. These positive analogues13 allow us to
compare the behavior of the mechanical tortoise to that of a real moth and to conclude
that they resemble each other in the sense that both are attracted by a light source.
Hull’s machines are more primitive in this regard, using switches as input and a light
bulb as output. In the case of computational models the representational units are usu-
ally the various means by which the computer program receives external input and
communicates its output. However, also internal states can serve a representational
function. For example, the state in which Newell and Simon’s program tries to apply a
certain symbolic rule is interpreted as representing the quest of a particular subject to
apply a corresponding logical inference. Indeed, the question of the adequateness of
knowledge representation in terms of symbolic systems and neural networks has been
a source of a long and still unsettled debate between the proponents of the different
computational models.

Using the pendulum model and Prandtl’s model of a fluid with a bounding layer as
case studies, Morrison argued convincingly for a hybrid nature of these models, “nei-
ther theory nor simple descriptions of the world” (Morrison 1999, 45), which gives rise
to their functional independence. This independence in turn forms the basis for their
role as autonomous agents of scientific inquiry. In other words, Morrison has shown
that, despite having significant connections to theory, models are independent sources
of scientific knowledge. The functioning of Hull’s and Grey Walter’s mechanical mod-
els goes beyond the influence of the scientist and his theory, despite their being con-
structed with reliance to theoretical considerations. This autonomy of the models is
the basis for their being able to behave in unforeseen ways, such as displaying partic-
ular aspects of conditioned learning that were not purposely built into them by Hull
and his collaborators, and exhibiting interesting interactive dynamics between more
than one of Gray Walter’s tortoises. Similarly, although the behavior of the computer
models is determined only by the program and the internal logic of the computer and
is thus deterministic, it still is outside the complete control of the modelers since they
are not omniscient with regard to deductive consequences. Indeed, researchers that
devise computer simulations often refer to their work as experiments and thereby em-
phasize the autonomy of their models. Thus, all of the physical models and computer

13See (Hesse 1966).
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simulations discussed above exemplify Morrison’s observation about the functional
autonomy of models.14 This, and their representational capacity enable us to use them
as genuine tools for scientific discovery.

3.2 Analytic and synthetic models

The construction and use of models can focus on either the internal mechanisms or on
the overall behavior of the model. This distinction also plays a role in how the existence
of models is used in arguments about the viability of particular research programmes,
which addressed in the next section. The methodological distinction between ana-
lytic and synthetic models15 is orthogonal to that between physical and computational
models. For example, there are striking similarities between Hull’s use of mechanical
models of animal behavior of the 1930s and Newell and Simon’s research based on
computer programs that simulate cognitive processes of the 1960s, despite the obvi-
ous technical differences between them.16 Both approaches take certain data that is
to be reproduced (animal behavior and verbal protocols of problem solving) as their
starting points, which is the characteristic feature of analytic, or data-driven, models.
In this connection it is interesting to notice that the methodological considerations for-
mulated by Hull and by Newell and Simon are indeed very similar, in particular their
expressed agnosticism about whether or not the particular implementations of their
models exactly replicate the mechanisms that generate the behavior that is simulated.
An alternative methodological approach, which is exemplified by Grey Walter’s robots
and by research on neural networks, is referred to as synthetic. Here, the researchers
take certain basic building blocks, whose functioning is well understood, and their
configurations as the starting point for the construction of models.17 Thus, we get the
following classification of the discussed models:

Physical Computational
Analytic Hull’s psychic machines Newell and Simon’s symbolic systems
Synthetic Grey Walter’s tortoises Perceptrons and neural networks.

14See also (Morrison and Morgan 1999), where this autonomy is employed to characterize models as
instruments.

15See (Dawson 2004), in particular pp. 3 and 98–100 for a discussion of motivations for these ap-
proaches.

16Incidentally, one of the other psychologists who showed an interest in the use of computers for
modelling cognitive processes in the 1960s was Hovland (Hovland 1960), who had collaborated two
decades earlier with Hull (Hull et al. 1940).

17One also finds the term “synthetic models” to be used for artificial models in general, but this is not
the sense intended here.
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Complexity and understanding. The behavior of an agent typically depends in part
on its internal mechanisms and in part on the environment. A researcher who wants
to analyze the agent’s behavior is faced with the problem of determining exactly how
much of it is due to the internal structure. Unfortunately, experience has shown that
“when we analyze a mechanism, we ted to overestimate its complexity” (Braitenberg
1984, 20).18 Grey Walter’s tortoises provide a compelling illustration of this claim,
since, when they were exhibited for the very first time in public, the audience was
extremely surprised after it was informed about the internal simplicity of the robots.
This observation explains a general difficulty that analytic models (and theories) of
behavior face, namely, that in order to account for a wide range of behavior they tend
to become quickly very complex. Indeed, it is often the case that each new aspect of
behavior that is to be simulated leads to an ad hoc extension of the current model. An
illustration of this is provided by historical development of Hull’s theory of adaptive
behavior, which he turned to after his work on psychic machines, and which “just
broke down in its enormous detail, with all the exceptions to it” (Baars 1986, 113).
(This commonality between analytic models and theories is taken up again below.)

This methodological difficulty of analytic models is overcome, at least prima fa-
cie, by synthetic models, since they are built from very simple and well-understood
parts (e. g., simple electronic components and connectionist units) and thus promise
to lead to simpler theories. Nevertheless, complexity is often introduced through the
back door, because often very many of these building blocks must be organized into
a single system (e. g., a neural network), whose overall behavior is again difficult to
analyze despite the fact that the behavior of the components is easily understood. In
the end, computational models, be they analytic or synthetic, can become as complex
as the process they are trying to simulate, thus yielding no immediate advance in un-
derstanding.19 However, while this difficulty has serious implications on the epistemic
value of these models, it only bears very little on how we can learn from the existence
of models, which is discussed in the next section.

Analytic simulations as theories. It is a noteworthy observation that the use of ana-
lytic computer simulations in cognitive psychology blurs the distinction between mod-
els and theories. In the literature computer simulations are often described as being

18Dawson refers to this observation as the “law of uphill analysis and downhill synthesis” (Dawson
2004, 3).

19This well-known problem is also referred to as Bonini’s Paradox (Dutton and Briggs 1971, 103); it is
discussed, for example, in (Churchland and Sejnowski 1988), (Lewandowsky 1993), and (Dawson 2004,
17–18).

11



Learning from the existence of models Dirk Schlimm

based on an underlying well-developed theory.20 However, there was no such un-
derlying theory that supported the introduction of classical symbolic models in psy-
chology. Instead, the simulations themselves have been regarded as theories, for ex-
ample, by Newell and Simon, who explicitly draw an analogy between theories that
are expressed by computer programs and by mathematical equations, and they at-
tribute the same epistemological status to computer programs and mathematical for-
mulas (Newell and Simon 1961a, 2013). In fact, their methodology is in accord with
that of mathematical modeling in psychology, where the models result from cycles of
theory construction from given data, deduction of consequences by logical and math-
ematical operations, and verification or refutation on the basis of newly collected data
(Dawson 2004, 35).

Synthetic models in other sciences. The synthetic models of the psychologists are
closely related to the agent-based or individual-based models that are mainly used in the
social sciences, where the behavior of an entire population is modeled via interactions
of its individuals. Schelling’s tipping model is a well-known early example, where an
artificial society is modeled in which an agent would stay put if more than one third of
its neighbors are of the same color and would move to another location on a two-
dimensional grid otherwise. These simulations show that even though each agent
is somewhat tolerant segregated neighborhoods are formed the long run (Schelling
1978).21 In these kinds of models

there is no overarching model of the social system, only rules governing
the interaction of the individuals comprising the system. [. . . ] Phenomena
often emerge within these models at the macro level that are the result of
multiple interaction at the micro level, these macro phenomena being un-
foreseen when the individual-level analysis begun. (Humphreys 2004, 131)

The analogy to neural networks is striking: Each node in the network corresponds
to an individual and the entire network corresponds to the population. The lack of an
overarching model for the system corresponds to the lack of a well-developed under-
lying theory, and the ability of networks to recognize input-output patterns emerges
from the interactions of the single nodes, whose behavior is clearly specified.

Because of their similarity, the dangers that have been identified for the agent-based
modeling approach, like the return to a priori science and the need for a justification

20See, e. g., (Humphreys 2004, 107–108) and (Hartmann and Frigg 2005, 745). Also Morrison mentions
the common view that model building starts with a background theory in (Morrison 1999, 51).

21For an overview and discussion of these kinds of models, see (Axelrod 1997).
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of the basic mechanisms that goes beyond their ability to simulate the desired phe-
nomena, carry over to synthetic models. Due to the autonomy of computer simu-
lations and the ease in which they can be developed and tested, it is easily possible
to sever the contact to the empirical basis that motivated their development. In par-
ticular, synthetic models can be built and studied without any reference to empirical
data and completely independently of what they are later be said to be models of. In
fact, connectionist networks are also studied by computer scientists as an instance of
“machine learning” techniques (Mitchell 1997). The synthetic psychologists discussed
above were indeed painfully aware of the need of independent justifications of their
basic assumptions and they often cited experimental results to show that there are good
reasons to hold that the mechanisms they postulated did in fact correspond to genuine
features of the systems under investigation. For example, the importance of electricity
for brain functions was demonstrated by Grey Walter’s own research on EEGs, and the
functioning of connectionist units was explicitly motivated by independent findings in
neurophysiology.22

3.3 Existence of models in scientific argumentation

In the early development of a scientific discipline one regularly encounters claims
about certain necessary conditions and about what is possible or not, of the form “H is
a necessary condition for G,” “it is impossible to obtain G without H,” or “¬H cannot
cause G.” In the case of psychology, claims of this kind have been: “vis viva is a neces-
sary condition for intelligent behavior,”23 “it is impossible to have intelligent behavior
by purely mechanical means,” “symbolic processes alone cannot generate intelligent
behavior,” “complex mechanisms are necessary to generate complex behavior,” and
“connectionist networks can only accomplish very simple tasks.” For H to be neces-
sary for G is logically equivalent to the claim that whenever you have G, you also have
H, or, formally, ∀ x (Gx → Hx).24 To refute such an assertion one has to exhibit an in-
stance of Gx that is not also an instance of Hx,25 in other words, an instance, say a, that
makes Ga & ¬Ha true. Incidentally, such an instance also establishes that Gx and ¬Hx
are consistent with each other. Under the assumption that ’purely mechanical’ is the
contrary of ’containing some form of vital force’, a device a that exhibits some intelli-
gent behavior (i. e., Ga holds) and is purely mechanical (i. e., ¬Ha holds), thus, refutes
the claim that ‘to contain some form of vital force is necessary to exhibit some form of

22See (Grey Walter 1950, 42–43), (Rosenblatt 1962, 3), and (Rumelhart and McClelland 1986, 110).
23‘Intelligent’ is meant here to include typical animal-like and human-like behavior.
24For the analysis of these simple forms of argument, the use of modal logic can be dispensed with.
25To emphasize that G and H are predicated of something, I shall write Gx and Hx from now on.
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intelligent behavior’ (i. e., that Hx is necessary for Gx). In other words, exhibiting the
existence of a model of a certain kind is all that is required to falsify a necessity claim of
the form under consideration, and it is precisely in this sense that scientists can learn
something just from the bare existence of models.

The move from talk about models, be they physical, computational, or otherwise,
to talk about models in a logical sense, i. e., that interpret the primitive terms of a lan-
guage and that can satisfy statements of that language, should not be taken as an en-
dorsement of Suppes’ claim that the logical notion of model “is the fundamental one
for the empirical sciences as well as in mathematics” (Suppes 1962, 252). Rather, for
the sake of this discussion we only need to accept that any model can be understood as
a model in the logical sense, where the notion of a logical model is suitably extended
to include physical objects. Since every model has certain representational capacities,
we can easily consider these to interpret particular terms in our language. For exam-
ple, the term ‘auditory organ’ is so interpreted that the microphone of Grey Walter’s
tortoise counts as one.

These considerations are closely related to the use of models for semantic consis-
tency proofs and independence proofs in mathematical practice. Here models, usu-
ally conceived as abstract mathematical structures, are also understood to interpret the
primitive terms of a theory. In particular, if a model for a theory can be exhibited one
can conclude that the theory is consistent, i. e., that it cannot lead to contradictions,
since otherwise these contradictions would be reflected in the model, too. Thus, the
bare fact that a model exists can constitute an important advance also in mathematics.
Famous examples of this use of models are the models for non-Euclidean geometries
put forward by Beltrami and Klein, which established beyond doubt that the geome-
tries investigated by Bolyai and Lobachevsky were consistent (in other words, that
Euclid’s parallel postulate is independent of his other axioms) and thus of genuine
mathematical interest.26

Let us now revisit the four models presented above with an eye to the way in which
their existence was used in arguments about what is possible and what is not. Hull’s
“idea books” show him becoming more and more convinced of the mechanical nature
of cognitive processes, e. g., he talks about the “human machine” in 1925, refers to his
own views as “mechanistic psychology” in 1927, and mentions “psychic machines” in
1930.27 At the same time, he realized that his own development had been held back
“probably ten or fifteen years at least” by the wide-spread “dogma that an organism
made up of consciousless particles may not possibly manifest consciousness” and he

26For more on the history of these models, see (Bonola 1955) and (Gray 2004).
27See (Hull 1962, 820, 823, 828); see also the quotation from 1926 in Section 2.1 above.
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lamented that “the world is so hypnotized by the ancient animism” (June 16, 1930;
Hull 1962, 837–838). To overcome these views, Hull speculated that he might be most
successful “especially if I construct a series of striking psychic machines to support the
theory” (February 26, 1930; Hull 1962, 833). Finally, Hull explicitly replied in print to
those who argued that behavior, which is characterized as involving a psyche or being
intelligent, cannot be generated by purely mechanical means in his closing remarks of
(Krueger and Hull 1931), in which he presents an electro-mechanical model that imi-
tates Pavlov’s conditioned reflex without any recourse to any ‘psychic’ forces. He posi-
tions his work in direct opposition to the “very widespread and persistent [belief] that
certain complex forms of adaptation cannot take place by any imaginable concatena-
tion of materials without the mediation of some nous, entelechy, soul, spirit, ego, mind,
consciousness, or Einsicht” (Krueger and Hull 1931, 267). Thus, since his mechanical
model does simulate certain aspects of the behavior in question, it refutes the claim that
any of these notions is necessary for producing the behavior that is simulated. More-
over, since Hull’s aim was to reproduce certain patterns of learning behavior, rather
than arguing in favor of some particular underlying mechanism that generates this be-
havior, his methodology is analytic and his refutation does not depend on the specific
implementation of the model he put forward. It is interesting to note that Hull also an-
ticipated that the more successful the proponents of the mechanistic psychology will
be, i. e., the more types of behaviour they will succeed in generating by mechanical
means, the proponents of vitalism “will gradually retreat to more and more inacces-
sible parts of the psychological terrain” (Krueger and Hull 1931, 267), and the later
development of cognitive psychology has vindicated this prediction.

With the help of computers Newell and Simon were able to show that even more
complex forms of behavior, such as solving logical problems, could also be simulated
by mechanical means alone. Like Hull, they also emphasize the mechanical character
of their model and direct this against proponents of vitalism, e. g., in the opening re-
marks of “Computer simulation of human thinking and problem solving”: “It is no
longer necessary to argue that computers can be used to simulate human thinking,”
since, by the various computer simulations “the proof of possibility” of a purely me-
chanical simulation of cognitive processes has been accomplished (Simon and Newell
1961, 137). The notion of proving the practical realizability of an idea by providing an
actual model is also referred to as “proof of concept” and it has become a well-known
technique in various fields of engineering.28

As refutations of the claim that some form of vital force is necessary to produce
certain patterns of behavior, both Hull’s and Newell and Simon’s models only had to

28See, e. g., (Weston 2004, Ch. 7).
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be purely mechanical, regardless of the particular mechanisms they were based upon.
This is different in case of the arguments of Grey Walter and the proponents of con-
nectionist networks. The claim that Grey Walter set out to refute with his autonomous
robots was the widely held belief that complex animal-like behavior must be based on
a large number of internal components. A early mechanical model that supported this
view was W. R. Ashby’s homeostat, which had a large number of different internal states
but exhibited only very rudimentary behavior, “like a fireside cat or dog which only
stirs when disturbed, and then methodically finds a comfortable position and goes to
sleep again” (Grey Walter 1953, 123).29 In direct opposition to this received view, Grey
Walter hypothesized that “the elaboration of cerebral functions may possibly derive
not so much from the number of its units, as from the richness of their interconnection,”
and he noticed that “this speculation had the great advantage that its validity could
be tested experimentally” (Grey Walter 1953, 118; emphasis in original). Such a test
would consist in the construction of “working model that would behave like a very
simple animal” with a minimal number of components (Grey Walter 1953, 125). Thus,
by building his tortoises that consisted of only a very small number of internal com-
ponents, but that exhibited rather complicated patterns of behavior, Grey Walter was
able to demonstrate the correctness of his hypothesis. The fact that the focus of Grey
Walter’s argument is on the mechanisms that generate the behavior and not primar-
ily on the behavior itself, explains his commitment for synthetic methodology for the
construction of his models. This also holds for the computational models of Rosenblatt
and Rumelhart.

Rosenblatt’s perceptrons, which could be trained a range of different tasks, were
the first models that refuted the common view that computers cannot learn associa-
tions between inputs and outputs other than those that have been explicitly included
in their program. Later, after showing the theoretical limitations of these networks that
had only a single hidden layer of nodes, Minsky and Papert speculated that Rosen-
blatt’s learning algorithm could not be extended to multi-layered networks (Minsky
and Papert 1969, 232). When Rumelhart and his colleagues actually came up with an
algorithm that could solve this task they proudly announced: “we believe that we have
answered Minsky and Papert’s challenge and have found a learning result sufficiently
powerful to demonstrate that their pessimism about learning in multilayer machines
was misplaced” (Rumelhart et al. 1986a, 361; emphasis in original). Again, an impossi-
bility claim was refuted by the existence of a model.

29Indeed, Ashby’s model “could be interpreted as supporting the claim that the complexity of the
behavior of whole organisms largely emerges from (1) a large number of internal components, and (2)
the interactions between these components” (Dawson 2004, 83).
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One might object that the above questions were not settled definitively by the mod-
els that were put forward, as some of them are still topics of current debates. This
leads to an important issue in the discussion of the roles of models in science, namely
the question of whether something is indeed a model for what it is claimed to model.
In the present discussion the criteria of adequacy boil down to the question whether
the goal property G is in fact characteristic for the notion that it is intended to capture.
Hull’s model has shown that an electro-mechanical device can be built that exhibits
behavior which is analogous to Pavlov’s conditioned reflex. However, the question
whether that is all there is to learning is thereby not addressed. Even more problem-
atic has been whether solving logic problems counts as genuinely intelligent behavior,
as Newell and Simon contended. Indeed, opponents to the view that computers can
exhibit intelligent behavior can always retreat to the (admittedly dubious) position that
if behavior has been simulated by a computer it cannot be intelligent behaviour.30 A
debate of a different kind is whether physical symbol systems or connectionist models
are the best way to study intelligence. But, also in this debate the presence or absence
of particular models has also often been used to support one position or the other. To
illustrate: On the one hand, Simon uses the lack of concrete simulations of complex
cognitive performances as an argument against neural networks as models for human
thinking (Simon 1993, 640), while researchers on neural networks, on the other hand,
are keen to meet challenges of this kind, by demonstrating that their models do indeed
simulate aspects of human behavior (e. g., Shultz 2003, 221–250).

The fact that the models and simulations did succeed to mirror some aspects of hu-
man behavior is also taken by the modelers as providing some information with regard
to the mechanisms that produce the behavior in question. In general, by providing
models (mechanical or computational) of certain phenomena, a step is made towards
uncovering the underlying mechanisms. Thus, in a sense the phenomena have been
stripped from the veil of mysteriousness that had covered them. This demystifying
role of models is a theme that is often repeated by cognitive psychologists. Hull, for
example, writes that

[i]t is believed that the construction and study of models of the type de-
scribed above will aid in freeing the science of complex adaptive mam-
malian behavior from the mysticism which ever haunts it. (Krueger and
Hull 1931, 267)

In a similar vein, Newell and Simon consider their computational model as

30See Hull’s anticipation of this move in (Krueger and Hull 1931, 267). An excellent overview of the
debate whether computers can exhibit intelligence or not can be found in (Dreyfus 1992).
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a good approximation to an information-processing theory of certain kinds
of thinking and problem-solving behavior. The process of thinking can no
longer be regarded as completely mysterious. (Newell and Simon 1961a,
2016)

The demystification of consciousness through the building of machines is mentioned
again three decades later by the neuroscientist Francis Crick:

If we could build machines that had these astonishing characteristics [of the
brain], and could follow exactly how they worked, we might find it easier
to grasp the workings of the human brain. The mysterious aspects of con-
sciousness might disappear, just as the mysterious aspects of embryology
have largely disappeared now that we know about the capabilities of DNA,
RNA, and protein. (Crick 1994, 256–7)

Finally, a word of caution is appropriate regarding the limits of what can be es-
tablished by the existence of models. Having refuted an alleged claim of necessity by
exhibiting a model a that satisfies Gx & ¬Hx also entitles one to the claim of having
established the statement Ha → Ga. This means that for the instance a, the property of
being a H is sufficient for also being a G, but not that this is the case in general, i. e., that
∀ x (Hx → Gx). In particular, it could be that the property H has nothing to do with
G (this is related to the problem of irrelevance in the context of Hempel’s D-N account of
explanation). Moreover, having shown that the necessity claim ∀ x (Gx → Hx) is false
by exhibiting a model for Gx & ¬Hx, does not in the least amount to the converse ne-
cessity claim ∀ x (Gx → ¬Hx), i. e., that ¬H is necessary for G. This is why Newell and
Simon formulate their later view that the ability of performing certain symbolic pro-
cesses is sufficient and necessary for thinking, which is motivated, but not conclusively
established by their work, only as an hypothesis (Simon 1993, 640).

4 Conclusion

I this paper I illustrated by means of examples of classical and connectionist computer
simulations and of two earlier mechanical models that psychologists have learned cer-
tain lessons (e. g., that learning is independent of vital forces, that few simple compo-
nents can generate complex behavior, that symbolic processing can imitate the problem
solving behavior of human beings, and that networks formed of very simple building
blocks can be trained to solve complex tasks) from the bare existence of these mod-
els. In this respect physical models, computer simulations, and even purely theoret-
ical models can perform an important function in the quest for scientific knowledge,
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namely to demonstrate the viability of a particular approach, to validate or refute cer-
tain hypotheses, and to demystify a domain of inquiry. In addition, I have shown a
close connection between these arguments and the particular methodology (analytic
or synthetic) that is adhered to in the construction of the respective models. Thus, by
taking a closer look at the history and the practice of modeling in psychology, novel
aspects of the use of models and computer simulations in scientific practice have been
brought to light.
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