
 1

Bohr’s Theory of the Atom: Content, 

Closure and Consistency 
 

Peter J. Vickers 
April, 2008 

 

 

For the first time, we have been given a consistent theory 

to explain the arrangement and motion of the electrons 

in the outer atom. 
Rutherford, 1923 

 

 

ABSTRACT 

 

How exactly does the much-discussed inconsistency in Bohr’s theory of the atom 

manifest itself? A close look at the suggestions made so far in the literature suggests 

that the theory may not be inconsistent at all. The answer depends on (i) what exactly 

we take the content of ‘Bohr’s theory’ to be, and (ii) what we take to follow from that 

content (how we ‘close’ the theory). In lieu of inconsistency, alternative 

characterisations of the relevant conceptual problems are possible. Looking briefly at 

the later Bohr theory, I conclude that the theory was only inconsistent after the 

introduction of the quantum adiabatic principle in 1917. 
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1. Introduction 
 

Bohr’s theory has been controversial from the beginning. At the height of its 

success in 1914 Einstein is reported as stating, ‘The theory of Bohr must then 

be right.’ The same month, and aware of the same successes of the theory, 

von Laue flatly asserted, ‘This is nonsense!’1 The first goal of this paper is to 

demonstrate that this disagreement has its counterpart today at the 

philosophical level. Ever since Jammer (1966) and Lakatos’s seminal paper 

of 1970 which describes it as ‘a research programme progressing on 

inconsistent foundations’, Bohr’s theory has been widely cited as the example 

par excellence of an internally inconsistent theory. But when it comes to 

identifying the specific scientific content which constitutes the inconsistency 

important disagreements arise, and this despite the fact that most papers are 

rather noncommittal regarding details. We can add to this a different type of 

disagreement: Bartelborth (1989a) and Hendry (1993) claim to demonstrate 

the consistency of the theory, and Hettema (1995) follows suit. In addition at 

least some of those working at the time thought the theory to be consistent, as 

the epigraph testifies. It is now thirty years since Feyerabend wrote, 
 

There hardly ever existed a view so incoherent and at the same time so fertile 

as this strange and still not too well understood research programme. (1978, 

p.158) 

 

It would seem that the theory is little better understood in 2008. 

Disagreements about consistency follow from miscommunication on two 

main fronts. On the one hand there is little or no connection between the 

logical definition of ‘inconsistent’ and the use made of it to describe Bohr’s 

theory. Instead of providing an ‘A&~A’ as a theorem (say) an appeal is made 

to the reader’s intuition. On the other hand each author appears to have his or 

her own take on the content of the theory. In the absence of a consensus on 

the criteria for theory membership a philosopher is somewhat free to shape 

                                                 
1 Cited in Pais 1991 (p.154) and Jammer 1966 (p.86). 
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the content to fit his or her preferred conclusion. That this is crucial to 

consistency is clear—with one extra assumption, or an assumption stated in a 

slightly different form, we may well move from a consistent theory to an 

inconsistent one. Such a small difference in the presentation of the theory 

means the difference between a theory which couldn’t be true in any possible 

world, and a theory which might be true of this world. 

These will be the main issues as I proceed to provide an answer to the 

question ‘Was Bohr’s theory inconsistent?’ I begin in §2 by introducing the 

theory and the consistency debate. I present three different foci of 

inconsistency which have been proposed, and provide reasons to doubt each 

claim. In §3 I turn to the ‘closure’ of the theory, by examining the connection 

between the logician’s conception of inconsistency and its use to describe 

scientific theories. This leads me to an attempt to prove the consistency of the 

theory courtesy of Bartelborth (1989), which is then assessed in §4. Here the 

content of the theory is examined in more detail, and I argue that the doubts 

expressed in §2 are justified. With the consistency of the early theory thus-

argued, §5 introduces various alternative ways in which the relevant 

conceptual problems of the theory might be characterised. §6 turns briefly to 

the later Bohr theory, and draws on the tools developed to argue that we do 

finally find inconsistency here. §7 is the conclusion. 

 

 

2. Three foci of alleged inconsistency 
 

It should be noted first of all just what a shock it was to find that the classical 

picture, as developed up to the end of the 19th century, was fundamentally 

flawed. At this time Lord Kelvin spoke for a large proportion of physicists 

when he claimed that all that remained for physics was a certain amount of 

‘mopping up’ work, with all the big ideas already in place. Despite the 

success of his famous constant in 1900, Planck refused for ten years to accept 

that a fundamental shift in perspective was required. For many Einstein’s 

‘photon’ of 1905 was just another development in the classical wave versus 
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particle understanding of light. Other developments were more difficult for 

the classical program, but nothing was to prepare the community for Bohr’s 

famous postulates of 1913. He described the atom as follows: 

 
(P1) Electrons orbit the nucleus analogously to planets orbiting the sun, 

swapping the gravitational attraction for a Coulomb attraction. 

(P2) The only possible orbits are those for which the energy of the 

electron takes a value
2n

hREn = , for some integer n and with R the 

Rydberg constant (or, equivalently, for which the angular momentum 

of the electron is an integer multiple of h/2π). 

(P3) Radiation is only emitted when an electron jumps from one orbit to 

another (a ‘quantum transition’). The relation between the energies 

of the electron orbits and the frequency of the radiation is ΔE=hν. 

 

As Kramers et al. wrote in 1923, ‘[T]he impossibility of retaining 

[electrodynamics] in its classical form was presented in a much clearer way 

than ever before.’ (1923, p.117). 

Putting Bohr’s theory in its historical context, then, claims of external 

inconsistency are to be expected. That is, Bohr’s theory conflicted with many 

dearly held and longstanding beliefs, and for many this in itself was a great 

downfall. This attitude was widespread at the time:  

 
This is nonsense! Maxwell’s equations are valid under all circumstances, an 

electron in an orbit must radiate. (von Laue 1914, cited in Jammer 1966, 

p.86) 

 

[The theory is] in greater or less contradiction with ordinary mechanics and 

electrodynamics. (Schott 1918, p.243). 

 

But the external inconsistency of Bohr’s theory is not what this paper is about. 

The more serious claim, and what allegedly makes Bohr’s theory so 

philosophically important, is that it is internally inconsistent or self-

contradictory. 
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There are two main features of the theory, expressed in postulates (P2) 

and (P3), which are repeatedly at the centre of such an inconsistency claim. 

These are, 

 

(a) The mysterious ‘quantum transitions’. 

(b) The non-emittance of radiation from a charged, orbiting particle. 

 

Drawing on these, the claim is made that the theory is incoherent in its own 

right, regardless of any assumption or hypothesis external to it. Priest’s 

attitude is typical: ‘Bohr’s theory … included both classical electrodynamic 

principles and quantum principles that were quite inconsistent with them.’ 

(2002, p.122f.). This time it is clear that the inconsistency is meant to be 

internal. But how exactly does it manifest itself? 

First I will consider (a), the quantum transitions. Certainly these were the 

subject of severe criticism at the time. Rutherford wrote to Bohr in 1913, ‘It 

seems to me that you have to assume that the electron knows beforehand 

where it is going to stop.’ (Pais 1991, p.153). Later, Einstein was to ask how 

the light quanta ‘know’ in which direction to emanate (Ibid.). But how does 

an inconsistency, as opposed to mere incompleteness, arise from these 

difficulties? 

Brown (1992) points to the classical nature of the electron trajectories in 

the stationary states, writing, 

 
Bohr’s approach provided limited classical descriptions of the stationary 

states, but no account of transitions between them… This combination of 

classical and non-classical principles was a logically risky game… The 

principles are inconsistent with each other. (p.399) 

 

And da Costa and French pick upon this passage, writing, 

 
Brown emphasises the point that classical mechanics was taken to apply to 

the dynamics of the electron in its stationary state, while quantum theory was 

brought into play when the transition between discrete states was 
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considered—this discreteness contradicting classical physics, of course. 

(2003, p.91) 

 

But still we may ask what it is about the juxtaposition of ‘transitions’ with the 

behaviour of electrons in orbits which brings about inconsistency. One 

thought is that the conflict lies with the continuous orbits and the 

discontinuous ‘jumps’. But even if the jumps truly were thought of as 

discontinuous,2 it still isn’t obvious that we have inconsistency. 

The point here is that the classical principles are confined to the orbital 

trajectories, and the quantum principles are confined to the transitions. As 

Bohr said explicitly, 

 
[T]he dynamical equilibrium of the systems in the stationary states is 

governed by the ordinary laws of mechanics, while these laws do not hold for 

the passing of the systems between different states. (1913, p.874) 

 

If such a contextualisation of mutually conflicting principles did not in 

general prevent inconsistency, many theories we now consider to be 

consistent would have to be reassessed. For example, mutually inconsistent 

principles are used in thermodynamics for certain gases above and below a 

certain ‘critical pressure’. There is of course no conflict here because the 

different principles are confined to their contexts. Whether or not we know 

the underlying reason for the difference—in this case changes at the 

molecular level—is irrelevant so far as consistency is concerned. Even before 

we know about the molecular change, we may simply stipulate that different 

principles operate above and below some given pressure. 

These thoughts are summed up in the first of three general objections to 

inconsistency claims: 

 

                                                 
2 It might well be objected that no break of continuity was intended by the ‘jumps’. 
Cf. Rutherford, above. 
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Division of contexts objection: A theory with apparently contradictory 

principles is not inconsistent if it stipulates mutually exclusive contexts of 

application for those principles. 

 

With Bohr’s theory, as the contexts are clearly specified and are mutually 

exclusive, the division of contexts objection dictates that the theory is not 

inconsistent in this regard. 

The more common focus of an inconsistency claim involves what I called 

feature (b), the non-emittance of radiation from a charged orbiting particle. 

Rather than the orbits acting as classical counterparts to quantum transitions, 

their non-classical nature is noted. The orbiting electrons are accelerated, 

charged particles, and according to Maxwell-Lorentz electrodynamics they 

are required to emit a constant stream of radiation, as opposed to the 

intermittent quanta of Bohr’s theory. Most seriously there should be no 

state—the ‘ground state’—where the amount of energy emitted is a 

maximum. On the classical picture the electrons should continue to emit 

radiation, causing a loss of energy and a consequent suicidal spiral trajectory 

into the nucleus. 

Several authors highlight this aspect of the theory as the focus of an 

internal inconsistency. From the quotation given above da Costa and French 

continue, 

 
However it is not only in the discreteness of the states that we have conflict 

between quantum and classical physics but also in … the assertion that the 

ground state was stable, so that an electron in such a state would not radiate 

energy and spiral into the nucleus as determined by classical physics. This is 

the central inconsistency. 

 

In his 1970 paper Lakatos’s discussion, although ambiguous in places, can 

plausibly be taken as making this same point. This is how Bartelborth (1989, 

p.221) understands Lakatos, and it is this aspect which he also focuses on. 

At this point the importance of the previous discussion distinguishing 

internal and external inconsistency becomes clear. In a recent paper Bueno 



 8

notes this same aspect of the theory, but writes, ‘Bohr … articulated an 

inconsistent proposal, given the accepted theories at the time.’ (2006, p.76, 

my emphasis). But if Bohr’s proposal was internally inconsistent, that surely 

shouldn’t depend on the content of another theory accepted at the time. What 

is required for internal inconsistency, recall, is an argument that the relevant 

classical assumptions were a part of Bohr’s model. And yet none of the noted 

authors provide such an argument.3 

Now it is of course true that classical physics is used to characterise the 

electron orbits. They are assigned an angular momentum, and taken to follow 

a smooth, periodic trajectory; they are taken to be charged particles which are 

held in their orbits by a Coulomb attraction to the nucleus. So if we are going 

to claim that there is no internal inconsistency we need to be able to logically 

separate classical electrodynamics (CED) into parts, only some of which 

feature in the theory. 

This is precisely Bartelborth’s approach, in what is apparently the only 

paper which argues for the consistency of the theory.4 He writes, 

 
[T]he only necessary theory-element from classical electrodynamics for 

Bohr’s theory is quasi-electrostatics for point particles, because what Bohr 

really needed from classical electrodynamics was the concept of electric 

charge and Coulomb’s law. (1989a, p.221) 

 

In other words we consider classical physics as coming in independent 

chunks, such as ‘quasi-electrostatics’, from which we may pick and choose 

without contradiction. 

That this characterisation is faithful to Bohr’s theory is supported by 

Bohr’s original wording. As seen above, he writes, ‘[T]he dynamical 

equilibrium of the systems in the stationary states is governed by the ordinary 

laws of mechanics’ (my emphasis). In referring here only to the equilibrium a 

                                                 
3 Shapere for one refers to ‘classical electricity’ and ‘classical mechanics’, insofar as 
Bohr’s theory was concerned, as theory-external ‘background information’ (1977, 
p.561). 
4 Although Hendry puts forward essentially the same argument, independently of 
Bartelborth, in chapter 3 of his thesis (1993). 
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selective use of classical theory is intended. The classical physics necessary to 

establish the ‘dynamical equilibrium’ need not include the classical physics 

which is contradicted concerning the nature of radiation emission. 

It remains to justify the division of CED into independent ‘theory-

elements’. Bartelborth here draws on his meta-theoretical preferences, 

assuring us that the fact that CED is divisible and has independent parts ‘is 

proven by many structuralist reconstructions of physical theories.’ (Ibid., 

p.222). These structuralist reconstructions may be controversial, but this is 

usually because they are seen to be scientifically artificial, unrepresentative of 

real science. As a logical possibility the required division of theory is surely 

unobjectionable.5 

This discussion can be summed up in a second general objection to 

inconsistency claims which I now articulate: 

 

Division of theory objection: Bodies of assumptions are not indivisible. A 

theory may take on board certain assumptions, without thereby committing to 

other, independent assumptions, whatever the reason for the original 

grouping. 

 

Of course, just because certain bodies of assumptions can be divided does not 

mean that the community at the time did so divide them. This is the real issue, 

because it is by looking to theories as conceived by the relevant community 

that we learn more about how science works. I will return to the division of 

theory objection and questions of theory-identity in §4. 

There is one more focus of the early Bohr-theory which has been 

proposed as the inconsistency. It turns out that the distinction between 

electron trajectories and transitions is not the only place Brown sees trouble. 

In his 1990 paper he tells us, 

 
[T]he radiation emitted by the atom is assumed to be describable in terms of 

classical electrodynamics (CED), while the emission and absorption 

                                                 
5 Such a possible division is presumed in Norton (2000) and Hendry (1993). 
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processes, as well as the behaviour of electrons in stationary states, are 

accounted for in terms manifestly incompatible with CED. (p.285) 

 

That this is Brown’s preferred focus of inconsistency is signalled by the 

fact that he reiterates this aspect (but not the one noted above) in his 2002 

paper (p.90). Here the stationary states are seen again as non-classical, but 

this time the classical focus is the emitted radiation. In this way, by giving an 

example of the application of CED, Brown threatens to dispel the division of 

theory objection used above by providing some reason to believe that the 

relevant parts of CED are in fact used in the theory, and thus are a part of the 

theory. 

One possibility here is to use the division of contexts objection once 

again. That is, it might be claimed that whereas Bartelborth’s quasi-

electrostatics applies in certain contexts, CED as a whole applies in other 

contexts (although it would be difficult to delineate mutually exclusive 

contexts without overlap). Perhaps truer to the history is to take the classical 

treatment of the emitted radiation merely as a good approximation (‘in the 

limit’) to the use of some as yet unknown, superior laws. There is of course 

no contradiction in taking one law to be fundamental to a phenomenon, and 

another law contradictory to the first to be a good approximation for that 

phenomenon. An approximation to some part of a theory cannot be said to be 

a part of that theory.6 

This approach takes a general form: 

 

Reduced commitment objection: If an assumption of a theory is explicitly 

labelled an approximation or idealisation, then the assumption itself, without 

the qualification that it is an approximation or idealisation, is not a part of the 

theory. 

 

                                                 
6 I distance myself from approaches such as that taken by Frisch (2005), where what 
is widely accepted as an idealisation assumption is made a part of the theory on the 
grounds that the ‘idealisation assumption’ is (nearly) always used by practicing 
physicists. See Vickers (2008). 
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In other words, when approximations and idealisations are involved, instead 

of taking a scientist to have a weakened state of belief in a theory, one takes a 

scientist to have a full belief in a weakened theory (during the process of 

approximation the theory is changed, not the character of the belief). As an 

example, consider the way Bohr came to explain the Pickering spectral lines 

of ionised helium. When he took into account the finite mass of the nucleus, 

this wasn’t perceived as a change in theory, as it would be if the ‘reduced 

commitment objection’ were wrongheaded. The original theory did not state 

that the mass of the hydrogen nucleus was infinite, but rather that it could be 

taken as infinite, that it was approximately infinite relative to the mass of the 

electron.  So when Bohr tackled ionised helium and took into account the 

finite mass of the nucleus he was then merely adding detail to the theory, 

rather than changing it. This will be further elucidated in §4. 

For now let us take stock. We have three different foci of the 

‘inconsistency’ in the Bohr theory of the atom: 

 

I1 The transitions of electrons between discrete orbits, despite 

their continuous trajectories in orbits; 

I2 The fact that in the stationary states (particularly the ground 

state) some but not all the laws of classical physics are 

employed; 

I3 The fact that the orbits are strictly non-classical, but the 

radiation interacting with the atom is treated classically. 

 

These three ‘inconsistencies’ are summed up schematically in the following 

table, with ‘C’ standing for ‘Classical Theory’: 

 

 In orbits Between orbits Radiation 

I1 C ~C  

I2 C and ~C   

I3 ~C  C 



 12

 

The table depicts the way in which I1, I2 and I3 have all been referred to as 

conflicts between the classical and the non-classical. However, calling any 

one of them an ‘inconsistency’ implies a connection with logic which is 

nowhere demonstrated.7 Bridging the gap between science and logic will be 

the primary concern of the next section. 

 

 

3. Inconsistency and science 
 

Let us be strict about the use of the word ‘inconsistent’. It is of course a term 

borrowed from the logician, which can take a syntactic or semantic form. A 

set of sentences Γ is inconsistent iff a contradiction can be deduced or, 

equivalently (usually), no interpretation can make Γ true. But in both cases 

inconsistency is defined for a set of uninterpreted sentences. Do those who 

speak of inconsistencies in science identify scientific theories with 

uninterpreted sentences, then? Surely not, for such an attitude harks back to 

the syntactic ‘received’ view of Carnap et al., a view much criticised for 

entertaining even partially uninterpreted sentences. Many viewpoints in 

vogue today deny any linguistic identification of theories, preferring, perhaps, 

a deflationary or model-based approach. However, there is a strong tradition 

of analysing and representing theories as sets of sentences, albeit interpreted 

sentences, or propositions.8 For example, da Costa and French speak of ‘two 

contradictory propositions within … Bohr’s theory of the atom.’ (1990, 

p.186). 

How might we define inconsistency for a set of propositions? The thought 

underlying both the syntactic and semantic definitions of inconsistency is that 

the set of sentences in question cannot possibly all be true. This is part and 

parcel of the semantic definition, and it follows from the syntactic definition 

                                                 
7 Cf. Hendry (1993, ch.3): ‘There is … no trace of a contemporary “logician’s proof” 
of the inconsistency of Bohr’s atomic model.’ 
8 See van Fraassen (1991, p.30) on scientific axioms based on ‘natural language’. Da 
Costa and French (2003, ch.2, fn.6) make a similar point. 
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if we agree that the logical deduction in question is truth-preserving, and that 

no contradiction can be true. So we might say that a set of propositions are 

inconsistent iff they cannot possibly all be true. One sufficient condition for 

the inconsistency of a set of propositions is then clear: if we can formalise the 

propositions (in first-order logic, say) and the resultant sentences are 

inconsistent by the logical definition, then the original propositions are 

inconsistent. Establishing the ‘only if’ part of the ‘iff’ is much more difficult, 

since there are other ways in which it might not be possible for a set of 

propositions to be true. What is necessary is to establish all the different types 

of truth-preserving inference. Once this is done we might say, 

 
A scientific theory is inconsistent iff a contradiction can be derived by 

employing any truth-preserving inferences. 

 

Logical and mathematical inferences are almost always clearly truth-

preserving, but other types collectively referred to as ‘material inferences’ 

make our job very difficult.9 

Of course, to prove the inconsistency of a set of propositions we only 

need sufficient conditions, so if a contradiction follows from logical or 

mathematical consequence then we have our inconsistency. The difficulty 

with the ‘only if’ part just goes to show that inconsistency is usually easier to 

prove than consistency. Thus the majority of this paper is dedicated to 

questioning the kinds of claim made in §2, rather than attempting to prove the 

theory’s consistency directly. 

However, there has been one attempt to prove the consistency of Bohr’s 

theory. Bartelborth favours the Suppesian style of theory-formalisation, which 

has been applied to a number of theories by philosophers in recent years. The 

idea is to translate the relevant mathematics into the language of set-theory, 

with the properties and interrelations of the material terms formally 

expressed. Applying this method to Bohr’s theory, Bartelborth (1989b, p.99f.) 

defines the following material terms: particle (P), mass (m), charge (e), 

position (s), velocity (v), the dialectric constant (k), the stationary states (L), 
                                                 
9 See Kapitan (1982) and Read (1994) for recent work here. 
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Planck’s constant (h), orbital radius (r), time interval (T) and force (F), with 

each allocated some specified set of possible values. Then using only the tools 

of sets, elements and functions, the formal laws of the theory, implicit in (P1), 

(P2) and (P3), are defined. Bartelborth thus translates the following: 

 

(i) Newton’s ‘F=ma’. 

(ii) The Coulomb force equation. 

(iii) The equation for quantised angular momentum. 

(iv) The equation relating energy states of electrons to the frequency 

of radiation emitted. 

 

With the theory in this form, its consistency can be proven by providing just 

one set-theoretical structure of the form <P,m,e,s,v,k,L,h,r,T,F> which 

satisfies the constraints (i)-(iv).10 

Inevitably when translating a set of propositions into the language of set-

theory something is lost in translation. However, it might be claimed that we 

don’t lose what is relevant for consistency. But then this isn’t going to be the 

point of contention here. Rather, I take it that nobody would question the 

consistency of the set of propositions Bartelborth selects to formalise. What is 

controversial is the claim that these propositions represent the content of 

Bohr’s theory in the first place. As we will see in the next section, this content 

can be questioned on three different grounds, one for each of the objections 

defined in §2. 

 

 

4. Three questions of content 
 

How do we establish the content of a scientific theory? There has been much 

discussion of ‘Bohr’s theory of the atom’ since its demise in the 1920s, but 

what is everyone talking about? Paradoxically enough, by ‘Bohr’s theory’ we 

hardly ever mean the theory Bohr himself had, including all his claims about 

                                                 
10 Cf. Suppes (2003, pp.30-33), and Muller (2007, p.255). 
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molecules and so on; instead we mean to refer to that part of it which became 

accepted within the community. And it is only in this latter context that 

inconsistency is really interesting, because it isn’t so surprising that one 

individual can fail to see or appreciate an inconsistency in their commitments. 

It is much more interesting, and much more relevant to how science works in 

general, if we can find an inconsistency in a set of assumptions to which a 

large scientific community committed. But where should we draw the line 

between what makes it into the theory and what doesn’t? Is Bartelborth 

justified in selecting such a small subset of Bohr’s claims as ‘the theory’? 

Bartelborth makes his case in terms of empirical success: 

 
From the thus reconstructed theory it is now also possible to derive the line 

spectrum of the hydrogen atom, which probably represents the most 

important foundation of the empirical test of Bohr’s theory. (1989b, p.100, 

my translation) 

 

In addition, one can derive the Pickering lines of ionised helium by doubling 

the charge on the nucleus. It was upon the prediction of the Pickering lines 

that Einstein made the remark already stated in §1, ‘The theory of Bohr must 

then be right.’ Certainly it was these predictions which drew the attention of 

the wider scientific community, and encouraged others to work with Bohr’s 

theory. But just because Bartelborth’s axioms can reproduce the relevant 

predictions, should we call them ‘the theory’? 

The important question to ask is, would these axioms have been seen as 

representative of the theory at the time? Because if not then what Bartelborth 

is presenting is really a modern reconstruction, a subset of the commitments 

of the early quantum theorists from which the predictions of interest can be 

reproduced. The claim would then be that Bohr and others were committed to 

more than they ought to have been, but we cannot say that the theory really 

was the given subset of commitments. 

In an ideal world theorists would never be over-committed, and certainly 

there is a close link between the success-fuelling constituents of a theory and 

the commitments of a community. Some of Bohr’s claims were adopted by 
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the community because they led to successful predictions and explanations; 

other claims, for example concerning molecules, were ignored because no 

such success was forthcoming. But often a community commits to more than 

is strictly necessary. What is controversial about Bartelborth’s focus is that he 

utilises the concept of electric charge and the Coulomb force equation, but 

ignores the rest of electrodynamics. Bartelborth shows that the community 

only needed the tools he provides, but weren’t they nevertheless committed to 

the rest of CED? Or, to put it another way, is the division of theory objection 

introduced in §2 a legitimate objection here? 

Some evidence was presented in §2, above, that Bohr was never 

committed to more than electrostatics in the atomic domain. What about the 

rest of the community? A natural divide between theory and non-theory in 

Bohr’s original papers presents itself in the fact that Bohr summarised the key 

points of his theory in the form of a set of postulates (Bohr 1913, p.874f.). 

The community following him then usually merely re-stated or paraphrased 

these postulates, as I have done in §2, above. Therefore, if the postulates 

themselves suggested a restriction to electrostatics, then that should be taken 

as the theory. The attitude of the community is well represented by Millikan, 

in his presentation of Bohr’s theory in 1917: 

 
Bohr’s first assumption … when mathematically stated takes the form: 

man
a
eE 2

2 )2( π= , in which e is the charge of the electron, E that of the 

nucleus, a the radius of the orbit, n the orbital frequency, and m the mass of 

the electron. This is merely the assumption that the electron rotates in a 

circular orbit… The radical element in it is that it permits the negative 

electron to maintain this orbit or to persist in this so-called ‘stationary state’ 

without radiating energy even though this appears to conflict with ordinary 

electromagnetic theory. (Millikan 1917, p.211f., former emphasis added) 

 

The point is clearly made: the theory doesn’t include the parts of 

electrodynamics which give rise to the self-radiation of accelerated charged 
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particles. In fact, the equation given by Millikan is easily expressed using the 

material of Bartelborth’s formalisation, as stated above. 

One finds a similar story in any other textbook on Bohr’s theory from that 

time. Electrodynamics is explicitly rejected, at least in the atomic domain. As 

Jeans (1924, p.36) writes, ‘The complete system of dynamics, of which it [the 

quantum theory] is a part, has not yet been found.’ With this attitude in place 

the division of theory objection finds historical justification.11 

However, even if we agree on the content, precisely how that content is 

represented may still be a point of contention. In particular, the distinction 

between the material and the logical may not be clear. The division of 

contexts objection introduced in §2 stated that if the contexts of application of 

conflicting principles are made clear and are mutually exclusive, then the 

theory is not inconsistent. But could we take the attitude that the theory is 

inconsistent in such a case, but that the inconsistency is managed by 

introducing the contexts via some paraconsistent logic?  

Brown (1992) considers the theory to be inconsistent in this way. By use 

of a non-adjunctive logic he aims to provide, 

 
[A]n appropriate closure relation on the set of principles accepted by Bohr to 

replace the trivial closure relation we get from classical logic. (p.405) 

 

Clearly, for Brown, a contradiction can be derived with classical logic from 

the set of statements constituting the theory. Looking back to §2, and the 

feature I labelled I1, the statements in question might be ‘electrons have 

continuous worldlines’ and ‘electrons move discontinuously’. If we adopted a 

non-adjunctive logic, however, from these statements if wouldn’t necessarily 

be the case that we could derive a contradiction, since from ‘A’ and ‘~A’ we 

couldn’t automatically infer ‘A&~A’. In other words, Brown provides a 

logical mechanism which establishes the contexts of application of the 

                                                 
11 The restriction to electrostatics is also the norm in modern reconstructions. Norton 
(2000, p.84) writes, ‘Bohr retained … the electrostatic model of electron orbits, so 
that stationary states are possible.’ (my emphasis). 



 18

principles (in orbits and between orbits), instead of these contexts being a 

material part of the theory. 

The distinction between the material and the logical is an ongoing point 

of contention, as the discussion in §3 indicates. Brown’s suggested distinction 

is surely a departure from the status quo, but that would be OK so long as 

there was something to be gained from the change. However, Brown himself 

continues to refer to ‘Bohr’s theory’ in a more traditional way. For example, 

in the above quotation Brown claims to be considering the ‘set of principles 

accepted by Bohr’. But we have already seen that in Bohr’s postulates the 

contexts of application are made clear. And Brown sometimes explicitly 

states that the contexts are included ‘in the theory’: 

 
[Old quantum theory] included explicit conditions restricting the application 

of the conflicting principles. (1992, p.404) 

 

Da Costa and French conclude that in Brown’s account the ‘contexts’ are 

‘structurally incorporated within Bohr’s model.’ (2003, p.89). But if a 

paraconsistent account is necessary then clauses delineating the contexts of 

application cannot be a part of the theory. 

Other philosophers who discuss context-defining clauses also see them as 

a material part of a theory rather than part of the logic. Priest and Routley 

(1983) agree with Brown that inconsistent scientific theories should be 

handled by a paraconsistent logic. But when it comes to contexts of 

application—what they call ‘exceptive clauses’ (p.177)—they insist that after 

their introduction there is no longer an inconsistency (cf. p.187). Smith (1988, 

p.438f.) provides a more formal approach. If a theory appears to make two 

assertions which can be formalised as M(x) and ~M(x), then what might in 

fact be the case is that there are certain circumstances in which M(x) holds, 

and others in which ~M(x) holds. So in fact what we have is Y(x) → M(x) 

and ~Y(x) → ~M(x), for some uninterpreted ‘Y’. Smith actually applies this 

method to Bohr’s theory (p.438, fn.30): 
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Bohr was prepared to accept that there were certain microscopic states, so 

called stationary states… At first, the distinction between ‘stationary’ and 

‘non-stationary’ states … was purely verbal, tantamount to using ‘Y’ and 

‘not-Y’ 

 

In other words Bohr did not know what the basis for the division of contexts 

was, but he was able to make a distinction nonetheless. Here ‘Y(x) → M(x)’ 

and ‘~Y(x) → ~M(x)’ stand for, roughly, ‘If electrons are in a stationary state 

then they necessarily have continuous worldlines’ and ‘if electrons are not in 

a stationary state then they don’t necessarily have continuous worldlines’. 

And to achieve consistency we don’t have to know what grounds this 

distinction, what it is about a ‘stationary state’ which does the work, but 

simply state that it does. (Smith does find the later Bohr theory to be 

inconsistent, which will be considered in §6.) 

In Bartelborth’s reconstruction of the theory the contexts I have been 

discussing find expression. They are formalised in his set-theoretical 

presentation in the fact that the position, s, of an electron can take any real 

valued number, but the stationary states, L, take natural valued numbers. So in 

this respect, too, the content of the theory he focuses on finds justification, 

and we can say that the division of contexts objection is also a warranted 

objection. 

Does it follow, then, that Bartelborth’s claims that the theory is consistent 

go through? Well, if we assume that I1, I2 and I3 are the only inconsistency 

claims then yes. However, there is one more way in which we may question 

the content of Bartelborth’s reconstruction. The question which remains to be 

asked is, what consequences follow for Bartelborth’s reconstruction from 

what I have called the reduced commitment objection? 

I want to argue that there is an important respect in which postulate P2, 

and equally Bartelborth’s axiom for the quantisation of angular momentum, is 

not representative of Bohr’s theory. Recall that the reduced commitment 

objection dictates that an assumption stated as an approximation or 

idealisation is only a part of a theory as an approximation or idealisation. In 

other words we don’t have partial belief in the assumption; instead we have 
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full belief in the assumption weakened by an appropriate clause (the theory is 

weakened rather than the belief). This is certainly more representative of real 

science. P2 just was taken as an approximation by the community at the time; 

it was not stated absolutely as P1 and P3 were. But this status is often lost in 

reconstructions such as Bartelborth’s. 

This characteristic of theories is evident in the present context. Bohr made 

it clear that the stationary states defined by his postulates were not meant to 

be the only possible states. He writes, 

 
There may be many other stationary states corresponding to other ways of 

forming the system. (1913, p.22) 

 

In particular Bohr was thinking of elliptical orbits here (cf. p.875). And he 

also notes that he has ‘assumed that the velocity of the electrons is small 

compared with the velocity of light.’ The extra details would have to wait 

until Sommerfeld’s efforts in 1916. But it is telling that nobody considered 

Bohr’s theory superseded when Sommerfeld derived a quite different 

equation for allowed energy states. Rather, Sommerfeld’s derivations were 

considered as part of Bohr’s theory. 

Thus it is my suggestion that Bartelborth’s formalisation is a misleading 

construal of Bohr’s theory is this respect. Because Bohr and those following 

him intended P2 as an approximation, then by the reduced commitment 

objection it (stated absolutely) was never a part of the theory, just as the 

assumption of the infinite mass of the nucleus was not a part of the theory. 

Turning to what Bohr and others were actually committed to, P2 needs to be 

watered down to give something like the following: 

 

(P2*) Only certain orbits are possible, and
2n

hREn =  gives at least a good 

approximation to at least some of them. 

 

The famous explanations and predictions can still be recovered using this 

axiom (although the predictions will have to be qualified as ‘at least good 
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approximations’). But now we also have a statement which the community 

actually signed up to in those early years of the theory. And P2* is also 

compatible with the developments courtesy of Sommerfeld—these 

contributions can be understood as additions, additional detail, rather than as 

changes to the underlying theory, in line with the use made by scientists and 

philosophers of science alike of the term ‘Bohr’s theory’. 

Note that exchanging P2 for P2* gives us a weaker theory, since P2* 

follows from P2, but P2 does not follow from P2*. So if Bartelborth’s 

reconstruction is consistent then so is ‘Bohr’s theory’ as propounded here. 

 

 

5. Conceptual problems 
 

So far I have noted several ways in which the Bohr theory has been 

considered inconsistent, and have given several reasons to doubt the claim. 

But if the theory is not inconsistent, then a serious question arises. Just what 

was wrong with it? 

Theoretical problems are often split into two categories: empirical 

problems and conceptual problems. That Bohr’s theory of the atom was 

ridden with the former, especially in its later life, is universally accepted. 

However, when we are asking questions about the consistency of the theory, 

we appear to be squarely on the ‘conceptual’ side of the fence. For one thing 

we may note that criticisms of the theory were in full swing from the very 

beginning, when it was making exciting predictions and many of the 

empirical anomalies were yet to be demonstrated. For another we may note 

the nature of the criticism—Alfred Landé recalls scientists in 1914 stating, ‘If 

it’s not nonsense, at least it doesn’t make sense.’ Bohr himself is reported as 

saying that the theory was ‘philosophically not right.’ And Ehrenfest, in 1913, 

spoke for many when he remarked, ‘If this is the way to reach the goal I must 

give up doing physics.’12 Thirdly, as we shall see shortly, consistency and 

                                                 
12 For these and further quotations see Pais (1991, pp.152-155), Klein (1985, p.278) 
and Jammer (1966, p.86f.). 



 22

related concepts are usually dubbed ‘conceptual’ issues in the philosophy of 

science literature (e.g. Laudan 1977, p.49). This all suggests that, if I am 

going to argue for the consistency of Bohr’s theory, I need a different take on 

the manifest conceptual difficulties. It won’t do to follow Hettema here, who, 

upon declaring the theory to be consistent (following Bartelborth), singles out 

only the empirical anomalies as the ‘problems’ and ‘shortcomings’ (1995, 

p.322f.). 

In fact, the literature on conceptual problems offers several lines of attack. 

These come under such headings as: 

 

1. Incompleteness 

2. Vagueness 

3. Incompatibility with well-grounded background assumptions 

4. Ad hoc-ness 

5. ‘(Un)smoothness’ 

6. ‘(Un)systematicity’ 

 

First of all we might note that Bohr’s theory was radically incomplete, in the 

sense that, for every question it answered, it immediately gave rise to a host of 

unanswered questions. However, incompleteness is only a bad thing in certain 

circumstances, as has been emphasised by Darden (1991, pp.201-202), and 

Shapere writes, ‘That a theory is incomplete … is no ground for rejecting the 

theory as false.’ (1977, p.560, his emphasis). If an understanding of the 

‘degree of seriousness’ of an incompleteness is possible (Darden, p.257) then 

this remains to be demonstrated.13 

Moving to ‘2’, we might note that Bohr’s theory was also rather vague, 

particularly when it came to the stationary states. The latter have been 

described as ‘uninterpreted’, ‘imperfectly understood’ and ‘not understood at 

all.’ (Smith 1988; French 2003). However, once again, we may question just 

how harmful such vague notions are for newly formed theories. Darden, 

                                                 
13 We might draw here on Laudan’s claim that the age of a conceptual problem is 
important to its seriousness (1977, p.65f.), but this doesn’t explain the perceived 
problems with Bohr’s theory in the early years. 
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drawing on genetic theory, has stated that, ‘the criterion of clarity should not 

be imposed too early in the stages of theory development.’ (1991, p.260), and 

‘New scientific concepts … are often fuzzy in their early stages. Too much 

rigor in the early stages may not be possible or desirable.’ (p.189). In fact he 

recommends ‘beginning with a vague idea and successively refining’ as a 

good methodological strategy (p.256). 

‘3’ comes in various forms, depending on how we read ‘background 

assumptions’. Shapere calls CED and special relativity ‘background 

assumptions’, whereas the term is often reserved for metaphysical beliefs 

(Newton-Smith 1981) or methodological preferences (Laudan 1977). More 

research is required in this area, but at the least we can say that background 

assumptions are usually regarded as external, and thus are not internal 

problems for Bohr’s theory. 

Perhaps the focus should be on the context defining clauses. I have noted 

that it is not the existence of the contexts which is a problem, since one can 

point to examples from accepted science where mutually inconsistent 

principles are contextualised. But perhaps there is something unpalatably ad 

hoc about the contextualisation. That is, Bohr could be seen as introducing the 

contexts without any grounds except to save consistency. However, it isn’t 

clear that this kind of move is always unscientific, and thus something to 

reject. Leplin (1975) discusses several cases of apparently ad hoc moves 

including Pauli’s postulation of the neutrino ‘just to save conservation of 

energy’ (p.338). As Darden notes, ‘It may not be easy to find good methods 

for distinguishing between illegitimate ad hoc additions to [a] theory and 

good, newly added theoretical components.’ (p.264). 

This leaves us with ‘smoothness’ and ‘systematicity’, which unfortunately 

haven’t enjoyed much attention as yet in the literature. The definitions given 

in Newton-Smith (1981, p,228) and Darden (1991, p.259) are somewhat 

preliminary, and there appears to be some crossover. Newton-Smith tells us, 

‘If a theory is smooth… it means that there is something systematic about its 

failures,’ (my emphasis). Perhaps this is touching on the problems with 

Bohr’s theory, as indeed it does seem to need ‘a diverse range of different 

unrelated auxiliary hypotheses to explain the failures.’ (Ibid.). 
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However, it ought to be emphasised just how successful Bohr’s theory 

was in its early years. It immediately gave novel predictions which were in 

agreement with experiment to five significant figures (Pais 1991, p.149), and 

in addition accounted qualitatively for the size of an atom and various 

empirical laws such as Whiddington’s law and Bragg’s law (Hettema 1995, 

p.312ff.). But it is sometimes forgotten that it continued to produce results as 

years progressed. In 1916 Epstein (upon explaining the Stark effect) wrote, 

‘We believe that the reported results prove the correctness of Bohr’s atomic 

model… It seems that the potentialities of quantum theory … are almost 

miraculous.’ (Jammer 1966, p.108). 

Given such achievements, it is somewhat perplexing that the theory was 

so derided. It falls to the philosopher of science to explain this phenomenon. 

So if the theory is not inconsistent, it is slightly embarrassing that we are still 

in the dark about the apparent conceptual problems underlying the criticism. 

However, could it be that we are already aware of all the conceptual 

problems, and that the sorry state of the theory, with the helping hand of 

historiography, has in fact been overstated?   

The task here is to appraise Bohr’s theory as it stood in 1913 and the 

years immediately following. This is a delicate historical matter, and little or 

no consideration of the fate of the theory should enter the debate. Consider the 

following quotations from Darden, 1991: 

 
In retrospect, we can see that they [the incompletenesses] were not fatal 

unsolved problems for the theory…, although some critics at the time saw 

them as such. (p.204) 

 

[For some] the theory was too narrowly focused and did not seem to provide 

a basis from which a general theory … could be constructed. (p.208) 

 

Here Darden is in fact discussing genetic theory. We can now look back at 

this theory and see that the conceptual problems of the early theory of the 

gene would dissolve in time. And yet the two quotations discuss conceptual 

problems which are often cited as downfalls of the early Bohr theory. In fact, 
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a great deal of the philosophical side of Darden’s book reads like an analysis 

of the old quantum theory (OQT), except for the fact that the problems 

dissipate and the theory is not superseded. Thus we see a very different take 

on many of the ‘problems’ discussed here to what we find in the Bohr 

literature. In theory appraisal hindsight can sometimes be less of a benefit, 

and more of a historical barrier. 

To sum up, then, it must be noted that much work, both historical and 

philosophical, remains to be done if we are to properly appraise Bohr’s theory 

of the atom either in its early or later years. Ought it to have been said with 

confidence from the outset (as some did) that the theory was no good? Or did 

it in fact have problems very similar to the early genetic theory, problems 

which feasibly (OQT) or actually (genetic theory) would dissipate? And if the 

problems are as serious as most of the literature would have us believe, then 

how do they manifest themselves? Can we get a better grip on ‘smoothness’, 

‘systematicity’ and the other nebulous conceptual problems? Here lies an 

important project. 

 

 

6. Consistency of the later theory 
 

So far I have focused almost exclusively on the early Bohr theory. This is 

usually where the attention vis-à-vis inconsistency is placed. But as Bohr’s 

theory developed new theory elements surfaced which the community 

deemed successful enough to deserve a place within the theory. In this final 

section I consider briefly this later theory, utilising some of the preceding 

discussion. I turn first to the correspondence principle, which features in an 

inconsistency claim courtesy of Smith (1988) and then to the adiabatic 

principle which led to ‘forbidden’ predictions in 1926, and where we finally 

find genuine inconsistency. 
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The Correspondence Principle 

 

There is good reason to include the correspondence principle in an account of 

at least the later Bohr theory. Kramers and Holst wrote in 1923, 

 
The correspondence principle has … given rise to important discoveries and 

predictions which agree completely with the observations… It has made 

possible a more consistent presentation of the whole theory, and it bids fair to 

remain the keystone of its future development. (p.141)  

 

But despite the success, Smith claims that the introduction of the principle to 

Bohr’s theory (in 1918 according to Smith) brought about an inconsistency. 

He declares, 

 
The fact that the correspondence principle was an inherent part of Bohr’s 

research programme was undoubtedly the reason that Lakatos referred to it as 

progressing on inconsistent foundations. (1988, p.441) 

 

The focus is the prediction of the intensities of spectral lines, where a 

classical understanding was invoked despite the explanation of the frequency 

of emitted radiation in terms of quantum transitions. Now the inconsistency 

was in fact resolved, Smith suggests (p.443), when Bohr postulated an 

‘uninterpreted mechanism’ in 1924. The pattern is meant to follow that of the 

stationary states (see §4, above) where a blank placeholder ‘Y(x)’ stands for 

‘whatever it is which separates the conflicting principles into separate 

contexts’. Earlier we saw this used to represent the stationary states, and so 

dissolve I1. Here Smith takes Y(x) to represent the noted ‘uninterpreted 

mechanism’. 

I will give just one reason to doubt this logical reconstruction, focusing on 

the definition of the correspondence principle. It was of course a method by 

which classical ideas could be ‘safely’ applied amidst quantum ones. But how 

do we express its content? To provide details in a rigorous way is notoriously 

difficult to do, as was noted at the time: 
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It is difficult to explain in what it [the correspondence principle] consists, 

because it cannot be expressed in exact quantitative laws. (Kramers et al. 

1923, p.139) 

 

This is confirmed by the fact that authors disagree markedly in dating the 

introduction of the principle. Heilbron and Kuhn (1969, p.268) say it was 

already used in a primitive form in 1913. Many have said it arrived properly 

formed in either 1917 or 1918, but Bohr first called it the ‘correspondence 

principle’ in 1920, and Eisberg and Resnick (1985, p.117) tell us that it was 

‘enunciated by Bohr in 1923’. Crucially for Smith, most authors don’t 

consider OQT to tell us anything about transition probabilities/spectral line 

intensities. Eisberg and Resnick write, ‘The theory … does not tell us how to 

calculate the intensities of spectral lines.’ (1985, p.119) and Shapere is very 

clear:  

 
[T]he Bohr theory offered no way to account for the intensities and 

polarizations of the spectral lines… Use of the correspondence principle as a 

basis for calculating the polarizations of the lines is not considered here as a 

‘part of the theory.’ The principle was not, in any case, very successful with 

regard to the intensities. (1977, p.559) 

 

If, as has been suggested, success generation is an important factor for theory 

membership, Smith has much work to do to convince that the correspondence 

principle, in a form which includes the calculation of line intensities, is a part 

of the theory. As it stands Smith’s ‘inconsistency’ appears to be based on a 

somewhat biased understanding of the content of the correspondence 

principle. 

Is Smith supported by Lakatos, as he claims? In fact Lakatos refers to the 

correspondence principle as an ‘ad hoc stratagem’, which helps to ‘conceal 

the graft [mixing of principles]’, and in so doing ‘reduce[s] the degree of 

problematicity of the programme’ (1970, p.144). It appears that the theory 

was already inconsistent in Lakatos’s eyes, and the introduction of the 
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correspondence principle helped to accommodate the inconsistency somehow. 

This is, then, something like the opposite of what Smith claims. 

 

The Adiabatic Principle 

 

Despite what has been said there should be no doubt that scientific theories 

can be inconsistent. What is required is for the three objections noted in §2 to 

fail to apply, and for a contradiction to follow by acceptably truth-preserving 

inferences, whether logical or material. It is convenient that this can be 

demonstrated by turning to the later Bohr theory, after the introduction of the 

quantum adiabatic principle by Paul Ehrenfest. Making use of the adiabatic 

principle, a contradiction was derived in 1926. 

First, a few quotations should suffice to show that the adiabatic principle 

was a part of the theory. Ehrenfest finally brought it to the attention of the 

scientific community in a 1917 paper. At first it wasn’t clear how it could be 

used in specific calculations, but this soon changed. As Brown notes, ‘With 

its help, he [Ehrenfest] was able to determine quantization rules for a wide 

range of systems, given only a rule for one of them.’ (1992, p.402). 

Sommerfeld, at first sceptical, wrote of the predictive power of the principle 

in 1919 (see Klein 1985, p.291). And its explanatory value at the time is 

undeniable: Jammer writes, ‘The adiabatic principle … revealed the mystery 

of the quantum conditions.’ (1966, p.101). The ‘wide and ingenious use Bohr 

had made of the adiabatic principle’ might also be noted (Bergia et al. 2000, 

p.28). In short we have prediction, explanation, ubiquitous use and 

widespread endorsement from the physics community. It is surely right to say 

that, ‘from 1917, Ehrenfest’s adiabatic principle remained strictly linked with 

the development of OQT.’ (Bergia et al., p.10). 

Two systems are adiabatically related if the second can be achieved by 

taking the first and changing a certain parameter infinitely slowly and 

smoothly (see Scerri (1993)). For present purposes there is no need to go into 

the details of the principle; it is enough to note that it was a way to proceed 

from knowledge of a familiar quantum system to knowledge of a new 

quantum system. Pauli, in 1926, published a paper applying the principle to 
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the hydrogen atom. It showed that ‘allowed’ orbits (according to the theory) 

could be transformed into what he called ‘forbidden’ orbits. He concluded 

that, 

 
An escape from this difficulty can be achieved only by a radical change in 

the foundation of the theory. (quoted in Mehra et al. 1982, p.509) 

 

The question now is, why are the resultant orbits ‘forbidden’? If they are 

forbidden because in contradiction with another claim of the theory, then we 

have our inconsistency—two contradictory theorems of the same set of 

accepted assumptions. 

This is exactly what we find. In 1916 Sommerfeld further modified 

Bohr’s quantum condition by introducing a third quantum number, the 

‘magnetic’ quantum number m, in order to explain the normal Zeeman effect 

(see Pais 1991, p.199). In the process he had to make a decision regarding so-

called ‘pendulum orbits’. These were ‘orbits’ where, instead of going around 

the nucleus, an electron would head straight for the nucleus, apparently travel 

through it, and then after coming to a halt reverse its steps and repeat the 

process. Still convinced that the orbits were truly physical Sommerfeld made 

such ‘pendulum orbits’ theoretically impossible, by stating within the new 

quantum condition that the magnetic quantum number couldn’t be zero: 

‘m≠0’.14 But ‘m=0’ is precisely what Pauli derived in 1926. 

Since I am only interested in the theory insofar as it represents the 

commitments of a large community, Sommerfeld’s particular beliefs are not 

enough to establish my claim. We must ask whether others were convinced 

that the orbits were real, and thus convinced that m≠0 was a necessary part of 

the theory. Simply put, the fact that Sommerfeld’s introduction of elliptical 

and relativistic orbits had been so successful convinced nearly everyone, 

although there were some notable objectors. Debye (who independently 

explained the Zeeman effect in the same way as Sommerfeld in 1916) was 

                                                 
14 As Darrigol puts it, ‘Bohr and Sommerfeld excluded the value m=0 on the grounds 
that the corresponding orbit is adiabatically connected to an orbit passing through the 
nucleus.’ (1992, p.188). See also Lindsay (1927, p.413). 
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one such objector. When Stern and Gerlach tested the explanation of the 

Zeeman effect in 1921 Debye wrote, ‘But you surely don’t believe that the 

[spatial] orientation of atoms is something physically real; that is [only] a 

prescription for the calculation, a timetable for the electrons.’ (quoted in 

Rigden 2003, p.105). However, the results of the experiment seemed to go 

against Debye’s scepticism (Ibid., p.106f.), providing further evidence for 

‘orbit-realism’. If not the whole community, then at least a large proportion 

made a serious commitment to Sommerfeld’s m≠0 during those years. 

This particular inconsistency is unaffected by the three objections 

introduced above. The ‘division of contexts objection’ fails because both 

Sommerfeld’s quantum condition and the adiabatic principle were explicitly 

meant to apply to the hydrogen atom, which was the subject of Pauli’s 

calculation. The conditions which had to be satisfied for the adiabatic 

principle to be applicable to a system were very carefully specified by the 

community, as follows: 

 

(i) The introduction of external forces should not alter the degree of 

periodicity of the system; 

(ii) The system should be simple-periodic or multiple-periodic (not 

aperiodic). 

 

The hydrogen atom satisfies these conditions (as explained by Scerri 1993, 

p.52). The ‘division of theory objection’ doesn’t get off the ground—the 

relevant assumptions were explicitly made part of the theory by practicing 

scientists. And the ‘reduced commitment objection’ also fails—the adiabatic 

principle certainly wasn’t meant as an approximation, and however 

Sommerfeld’s quantum condition was meant to be approximate (for example 

because it ignored electron spin) his stipulation that m≠0 was absolute. 

Finally then we can conclude that, from roughly 1917 to 1926, it was possible 

to derive a contradiction from what counted as ‘Bohr’s theory of the atom’, at 

least according to a majority of the relevant community. 

Of course there was no reason to doctor Bohr’s theory in the face of the 

inconsistency, since by 1926 Heisenberg’s matrix mechanics and 
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Schrödinger’s wave mechanics were changing the landscape dramatically. 

But it is interesting to note that, absent these new developments, the 

consistency of the theory could have been recovered without the ‘radical 

change’ that Pauli supposed was necessary. In fact, a suggestion made by R. 

B. Lindsay in 1927—although not motivated by Pauli’s result—would have 

done the trick. First, m≠0 should be ejected from the theory, which seems to 

admit the unpalatable ‘pendulum orbits’. Lindsay then provides a way 

forward: 

 
[T]he idea of the passage of the electron through the nucleus may be 

distasteful to some. There is a possible way of avoiding this, namely, by the 

introduction of a repulsive force (in addition to the inverse square attractive 

force) operative only in the immediate vicinity of the nucleus. (1927, p.415) 

 

Thus the electron would not travel through or collide with the nucleus, but 

would bounce back with the newly introduced repulsive force. However, with 

so many empirical problems facing the theory, including the anomalous 

Zeeman effect and the line spectra of elements heavier then Hydrogen, the 

recovery of the consistency of the theory would hardly have been much of a 

comfort. 

 

 

7. Conclusion 
 

It has been argued that, despite a tradition to the contrary, the early Bohr 

theory is not inconsistent, at least according to what is usually meant by 

‘Bohr’s theory’ and ‘inconsistent’. Only the later Bohr theory is genuinely 

inconsistent, but this went unnoticed for roughly nine years, from 1917 to 

1926, when Pauli finally derived the contradiction. This version of events 

obviates the awkward necessity traditionally encountered of explaining why 

scientists put up with an inconsistent theory for so long. On my analysis 

scientists never put up with a theory that they knew to be inconsistent. On the 
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contrary, Pauli demanded a ‘radical change in the foundation of the theory’ 

when he uncovered a contradiction. 

Perhaps the most important general conclusion is that more care should be 

taken before inconsistency is predicated of a scientific theory. Often this is the 

easy option, which apparently explains the failure of a theory at a stroke. 

Unfortunately this can, as in the case of Bohr’s theory, obfuscate the more 

complicated real explanation as to why the theory fails. In any case of alleged 

inconsistency two questions must be asked: (i) ‘What exactly should we take 

to be the content of the theory?’, and (ii) ‘Does a contradiction follow from 

that content by acceptably truth-preserving inferences?’ A scientific theory is 

inconsistent if, and only if, the answer to the second question is ‘Yes’. 
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