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Abstract: We continue in this article the abstract algebraic treatment of quan-
tum sentential logics [39]. The Notions borrowed from the �eld of Model Theory and
Abstract Algebraic Logic - AAL (i.e., consequence relation, variety, logical matrix,
deductive �lter, reduced product, ultraproduct, ultrapower, Frege relation, Leibniz
congruence, Suszko congruence, Leibniz operator) are applied to quantum logics. We
also proved several equivalences between state property systems (Jauch-Piron-Aerts
line of investigations) and AAL treatment of quantum logics (corollary 18 and 19).
We show that there exist the uniquely de�ned correspondence between state property
system and consequence relation de�ned on quantum logics. We also signalize that
a metalogical property - Lindenbaum property does not hold for the set of quantum
logics.
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1. Introduction

Quantum logics (just like classical logic) can be considered as a kind of propositional
logic. A set of formulae of quantum sentential logics constitutes a complete formal descrip-
tion of physical systems. They describe the quantum entity in the terms of its actual and
potential properties �or dually �in terms of its states [1].
The general idea of quantum logics is based on the isomorphism relation between the

set of self-adjoint projection operators de�ned on a Hilbert space and the set of properties
of physical system. The set of all self-adjoint projection operators de�ned on a Hilbert
space form �in the algebraic terms �the orthomodular lattice. Above idea can be traced
back to the work of von Neumann and G. Birkho¤ [2]. In our considerations concerning
the foundations of quantum mechanics, we will follow the approach developed by Geneva-
Brussels School of quantum logic.
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There exist two di¤erent and competitive ways of understanding the notion of logic.
Historically speaking, the old style is to understand a logic as a set of valid formulae
(these formulae are also forced to satisfy certain presupposed conditions, for instance the
invariance under substitutions). In this case one can identify a logic S with a set of
theorems [20]. The second manner of conceiving logic S is to de�ne this concept as a
consequence relation between sets of formulae and the formula denoted by `S . In this case,
a set of formulae is also forced to ful�ll a set of certain speci�c conditions, for example
the invariance under substitutions or �nitarity. The consequences of the empty set of
assumptions are called theorems and they constitute a logic in the old style. Above sketched
second de�nition of logic is called Tarski style and belongs to the heritage of Lvov-Warsaw
School of Logic [20]. This view constitutes the basis for the development of the so-called
Abstract Algebraic Logic [21] . This kind of research is preferred especially by algebraically
oriented logicians. In this paper, we follow this path of investigations.
Modern scientists �mainly theoretic physicists � are interested not only in one de-

scription of quantum (or cosmological) phenomena, but they are going to construct a
whole set of possible models which correspond to possible pathway of the evolution of the
investigated system. This model-theoretic approach is widespread among contemporary
scientists and is advised by methodologists and philosophers of science [14, 15]. Basing
on above hints concerning the qualitative face of investigations, one can get the complete
knowledge indicating the possible ways of the evolution of the investigated physical system.
Above methodological requirements prompted us to use the model-theoretic approach in
the investigating of the realm of quantum logics.
This article tries to explore the models of quantum logics. In case of classical logic, and

more popular and widespread non-classical logics (e.g., intuitionistic, modal and many-
valued logics), the model-theoretic problems are well understood and deeply elaborated.
However in the case of quantum logics, our knowledge concerning the possible models of
this sentential logics is very poor [39]. This article is planned to bridge this gap.
Firstly, we de�ne quantum sentential logic as an absolutely free algebra (section 2). We

also de�ne structural consequence operations on this algebra (section 2). The main results
of this paper are included in section 3� 7 where we construct several models of quantum
logics and give main theorems characterizing these models. The section 8 is devoted to
concluding remarks.

2. Preliminary Remarks.

All algebras which are considered in this paper have the signature hA;�;\;[;0;1i
and are of similarity type h2; 2; 1; 0; 0i. All abstract algebras, such as algebraic structures,
are labeled with a set of boldface complexes of letters beginning with a capitalized Latin
characters, e.g., A;B;Fm; ::: and their universes by the corresponding lightface characters
A;B; Fm; :::. All our classes of algebra are varieties (varieties of algebras are de�ned as
an equationally de�nable classes of algebras closed under formation of Cartasian products,
ultraproducts, subalgebras and homomorphic images [3]). The fact that the given class of
algebras K is equationally de�nable means that there exists a set of equations � which are
satis�ed by all members of the class K [21].
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De�nition 1. An orthomodular lattice is an algebraic structure U = hA;�;\;[; (:)0;0;1i
if it satis�es the following conditions:
1) hA;�;\;[;0;1i is a bounded lattice with the least element 0 and the greatest

element 1.
2) (:)0 is a unary antitone and an idempotent operator called (orthocomplementation)

on A which satis�es the following conditions:
a) for any x 2 A; x00 = x
b) for any x; y 2 A;if x � y then y0 � x0
c) for any x 2 A; x \ x0 = 0
3) for any orthomodular law.

We also supposed that all orthomodular lattices considered here are complete. When
one removes the orthomodular law from the above de�nition, one gets the de�nition of
ortholattice. All classes of algebras we mention here are varieties being subvarieties of
OL (the variety of all ortholattices). One can symbolically depict the relation between
algebraic structures which are mentioned in this paper as follows:

BA �MOL � OML � OL:

Above abbreviations mean: BA � the variety of all Boolean algebras, MOL � the
variety of all modular ortholattices, OML �the variety of all orthomodular lattices, OL
�the variety of all ortholattices.
Undoubtedly, one can de�ne many other subvarieties of OL, but these algebraic struc-

tures are not mentioned here.
In our investigations, we work in the frame of binary orthologic introduced by Gold-

blatt [24]. The de�nition of binary orthologic corresponding to the OL variety can be
found in our previous paper [39]. The reader can also �nd there the listed axiom schemes
and inference rules for this logic. The de�nitions of orthomodular logics (OML) and the
modular orthologic (MOL) are also included in [39].
In our investigation of di¤erent models of quantum propositional logics, we follow the

path taken by algebraically oriented logicians. We use the de�nition of the sentential lan-
guage as an absolutely free algebra [38, 40, 41, 39]. Fm denotes the algebra of formulae
which is supposed to be absolutely free algebra of type L over a denumerable set of gener-
ators V ar = fp; q; r; :::g. The set of free generators is identical with the in�nite countable
set of propositional variables. Inductive de�nition of formula describing quantum entities
can be found in [39].
The algebra of terms Fm is endowed with �nitely many �nitary operations (in sentential

language �connectives) F1; F2; :::; Fn. The structure Fm = hFm; F1; F2; :::; Fni is called
the algebra of formulae �or equivalently �the algebra of terms [40, 41, 21]. It was stated
explicitly in our previous paper that the notion of quantum logic can be identi�ed with
the structural consequence operation [29, 39]. The concept of logic or �more generally
� the concept of deductive system in the language of type L is de�ned as a pair S =
hFm;`Si where Fm is the algebra of formulae of type L, and `S is a substitution-invariant
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consequence relation on Fm. More precisely, the consequence relation is de�ned as a:
`S P(Fm) � Fm satisfying the formal conditions stated in [38, 40, 41, 39]. (P(Fm)
denotes the power set of Fm ). We also explicitly postulate that for every X � Fm and
every � 2 Fm, the subsequent equivalence holds:

X `Cn � i¤ � 2 Cn(X):

In our paper it is supposed that all considered logics are �nite, i.e., structural conse-
quence operations are �nitary [39].
By a model for quantum sentential logics we mean a couple M = hA; F i where A

is an algebra of the same similarity type as the algebra of terms of a given propositional
language, and F is a subset of the universe of the algebra A, i.e., F � A, and F is
called the set of designated elements ofM. The structureM = hA; F i is termed logical
matrix and can be understood as a semantical model of the given sentential logic. The
notion of logical matrix is regarded as a fundamental notion of Abstract Algebraic Logic
[38, 40, 41, 21]. Every logical matrix consists of an algebra which is homomorphic with
the algebra of formulae of a considered propositional logic. Logical matrices adequate (see
part 5) for quantum logics are formed of a variety of OL or OML. These varieties are
considered as canonical classes of homomorphic algebras forming logical matrices. To every
formula ' of the language of quantum logic, one can ascribe a unique interpretation in the
algebra A which depends on the values in A that are assigned to variables of this formula
[38, 40, 41].
Since Fm is absolutely free algebra freely generated by a set of variables (i.e., the set of

free generators) and A is an algebra of the same similarity type as Fm, then there exists
a function f : V ar ! A and exactly one function hf : Fm ! A which is the extension of
the function f , i.e., hf (p) = f(p) for each p 2 V ar. Above function is the homomorphism
from the algebra of the terms into the algebra A constituting logical matrixM = hA; F i
[40, 41, 21].
Using logical matrix as a basic tool in the algebraic treatment of logic, one can identify

the interpretation of a given formula ' of Fm with h(') where h is a homomorphism from
Fm to A that maps each variable of ' into its algebraic counterpart, i.e., into its assigned
value. If we represent a formula of quantum logic in the form '(x0; x1; :::; xn�1) in order to
indicate that each of its variables occur in the list x0; x1; :::; xn�1 then 'A(a0; a1; :::; an�1)
denotes the algebraic translation of this formula for a given homomorphism h(') such that
h(xi) = ai for all i < !. Considering a quantum logic S in the language of the type L, we
can say that matrixM = hA; F i is a semantic model of S i¤ for every h 2 HomS(Fm;A)
and every � [ f'g:

If h[�] � F and � `S ' then h(') 2 F:

In this case, the set F is called a deductive �lter of the logic S �or alternatively �
Sasaki deductive �lter of this logic [35, 38, 40, 41, 4]. By h 2 HomS(Fm;A) we mean a
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homomorphism from the algebra of formulae into the variety of algebra constituting logical
matrix for quantum logics. For a given quantum logics one can de�ne a whole set of Sasaki
deductive �lters. This set is partially ordered (by the set-theoretic relation of inclusion)
and is denoted by FiSA. The class of logical models (i.e., logical matrices) for quantum
propositional logics is denoted byModS [21, 39].
As a starting point of our investigations in this paper we assume the corollaries included

in [39]. The strong version of the consequence operation is determined by the class of models
of quantum logics as follows [24]:

� `S ' i¤ 8A 2 OML;8h 2 Hom(Fm;A);8a 2 A if a � h(�);8� 2 � then a � h('):

Corollary 2. The class of matrices:

ModS = fhA; [a)i : A 2ModS; a 2 Ag:

is a matrix semantics for the strong version of quantum logic. [a) is a principal �lter
of the form fx 2 A : x � ag [24].

In this paper our attention will be focused mainly on above de�ned Sasaki deductive
�lters. If it is not stated otherwise F denotes Sasaki deductive �lter of the form [a) =

fx 2 A : x � ag [29, 39].
Corollary 3. The class of matrices:

ModS= f hA; f1gi : A 2ModSg:

is a matrix semantics for the weak version of quantum logic [26, 29, 39].

The Sasaki deductive �lters de�ned by these versions of quantum logics are one-element
subsets of OML, i.e., F = f1g [26]. This kind of Sasaki deductive �lters will be mentioned
only occasionally.

3: Simple Models for Quantum Sentential Logics.

By a simple model for quantum sentential logics we mean an ordered pairM = hA; F i
where A denotes variety of algebra associated with algebra of formulae of quantum logics,
i.e., the variety of OL or OML, and F denotes the Sasaki deductive �lter of this algebra
(also called a deductive �lter). It was mentioned in the previous section that by a logic
one can understand a structural consequence operation. This is a purely logical de�nition
of a deductive system. Nevertheless, in case of quantum logics (identi�ed with structural
consequence operations de�ned on an algebra of formulae expressing properties of a given
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quantum system), there exists also the physical interpretation of such conceived notion of
logic (i.e., the structural consequence operation).
In the realm of quantum mechanics, the rays of a Hilbert space are understood as

a mathematical representation of (pure) states of a physical system [18]. In this paper
we supposed that there exists a bijection between rays of the Hilbert space (formal rep-
resentation of quantum entity) and the structural consequence operations de�ned on a
corresponding orthomodular lattice (i.e., the lattice of the properties of quantum entity).
Basing on the excellent paper of K. Engesser and D. M. Gabbay, [18] one can assume that
the physical state of a quantum system can be understood as a �state of provability� or
more adequately as a �state of experimental provability�. Such conceived correspondence
between the logical notion of structural consequence operation and physical concept of
state can be simply illustrated. Let x denote pure state, A and B denote two observ-
ables, for instance energy and momentum of an elementary particle. It is not supposed
that observables must be �sharp�in x: It is said that a given observable with a value �
in the state x is sharp if a measurement yields the value � with probability equal 1. Our
considerations are conducted in the language containing atomic formulae which have the
following meaning: A = �;B = �; :::. It is supposed that observable A is not sharp in state
x. By � we denote the proposition A = �, and by � the proposition B = �. We measure
A and the outcome is equal �. If we end up our measurement (experiment), then the

quantum entity is in a state y (x A! y) in which observable A is sharp (projection postulate
of quantum mechanics). In the state y, observable B is sharp with value � (subsequent
assumption). Shortly, it can be said �if in the state x a measurement of A yields �, then,
after measurement, the system is in a state in which observable B is sharp with value ��
[18]. Symbolically it can be expressed: � `x �.
The relation `x is considered as a consequence relation since it has all formal properties

of consequence operator (the whole example is borrowed from [18]).

4. Model-Theoretic Operations on Single Models.

As it was explained in the �rst part of this article, by a simple model for quantum
sentential logics we mean an ordered pairM = hA; F i where A is a homomorphic algebra
with regard to a quantum sentential language, and F is a Sasaki deductive �lter of this
algebra. Basing on the classical results from Model Theory obtained by Tarski, Malcev,
Robinson, ×ós, Chang, Keisler and other ([38, 28, 36, 27, 7]) one can de�ne several di¤erent
constructible models adequate for quantum sentential logics and operation on them.
LetM = hOML; F i and N = hOML; Gi be similar matrices. Suppose that F and G

are two Sasaki deductive �lters. A mapping h :M!N is called a matrix homomorphism
fromM into N , symbolically h 2 HomS(M;N ), when:

if a 2 OML and a 2 F then h(a) 2 G:

One-to-one matrix homomorphisms are called isomorphic embeddings. When an iso-
morphic embedding h is onto, then h is termed an isomorphism. If h 2 HomS(M;N ) is
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onto, then N is called a matrix homomorphic image under h. We use the notationM�= N
when matricesM and N are isomorphic.
LetM =



OMLM; F

�
and N =



OMLN ; G

�
be similar matrices. M is said to be a

submatrix (submodel) of N (in symbolM� N ) if OMLM is a subalgebra of OMLN and
M = OMLM \N .
Let Mi = hOMLi; Fii, i 2 I, be a family of similar matrices. By the direct product

of matrices Mi, i 2 I, we understand the matrix
Y
i2I
Mi = hOML;F i where OML =Y

i2I
OMLi is the direct product of algebras , i 2 I, and F =

Y
i2I
Fi, i.e., is the direct product

of Sasaki deductive �lters. The elements of the set
Y
i2I
OMLi are denoted by hf(i) : i 2 Ii,

hg(i) : i 2 Ii if all matricesMi are the same, then
Y
i2I
Mi is called a direct power ofM. It

is denoted byMI .
Considering classes of algebras and classes of logical matrices we may introduce the

standard class operator symbols I, H,
 �
H , S, P, PS, PU , PR;PRm. They means, respectively,

for the formation of isomorphic and homomorphic images, homomorphic counterimages,
subalgebras, direct and subdirect products, and ultraproducts. PR , PR� stand for the
reduced products and ��reduced products, respectively, where � is a regular cardinal
number [34]. The class of all matrix/algebraic homomorphic counterimages of member of
K (i.e., the class of algebras or logical matrices) is de�ned:

M2
 �
H (K) i¤ there exists a matrix N 2K and a matrix homomorphism h :M!N :

Additionally, the class operator U =UV ar is de�ned:

U(K) = fA : every subalgebra of A generated by � jV arj free generators belongs to Kg :

De�nition 4. The class of OML algebras is termed ISP�class if it is closed under I,
S and P [40, 41, 34].

ISP-class is termed a UISP-class if it is closed under U. This is a quasivariety if it
is closed under PU and a variety if it is closed under H. For every class OML of the
orthomodular algebras it follows that:

ISP(OML) � UISP(OML) � ISPPU(OML) � HSP(OML)

These symbols stand for the smallest ISP-class, the smallest UISP-class, the smallest
quasivariety and the smallest variety containing OML, respectively.
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Applying the standard procedure of the models�construction, one can also de�ne re-
duced products of elementary matrices. If fMigi2I is an indexed family of matrices of the
same type, Mi = hOMLi; Fii and r is a �lter (proper �lter) over the set of indexes I,
then the reduced product of matrices fMigi2I modulo r is denoted byY

i2I
Mi=r

More precisely, the matrix
Y
i2I
Mi is de�ned in the following manner. On the Cartesian

product C =
Y
i2I
OMLi , we de�ne the relation =r of r-equivalence by the condition: for

f; g 2 C, f =5 g i¤fi 2 I : f(i) = g(i)g 2 r. The relation ofr-equivalence is a congruence
of the algebra

Y
i2I
OMLi. It follows from the de�nition that

Y
i2I
Mi=r = hOMLr; Fri

where OMLr =
Y
i2I
OMLi=r and Fr =

Y
i2I
F=r. The members of

Y
i2I
Mi are denoted

by fr; gr or hf(i) : i 2 Iir ; hg(i) : i 2 Iir. If Mi = M for all i 2 I, then the reduced
product may be written

Y
i2I
M=r or simply MI=r and is called the reduced power of

fMigi2I modulo r.
If �lterr is an non-principal ultra�lter over I, denoted by U , then

Y
i2I
Mi=U is termed

the ultraproduct of matrices fMigi2I . IfMi =M for all i 2 I, then the ultraproduct may
be written

Y
i2I
M=U or simplyMI=U . We suppose that this ultra�lter is non-principal and

countably incomplete. The ultra�lter U de�ned on the set of natural numbers is termed
countably incomplete if there is a sequence of elements of U satisfying for every J 2 U :

J1 � J2 � ::::;
1\
k=1

Jk = ?:

Theorem 4 (cf. [40, 41]). For each standard consequence operation de�ned on the
quantum sentential language, the class Matr(C) is closed under I, S, P, H, HC , PR and
PU .

Proof : see [40, 41]. �
In above theorem, the symbol Matr(C) denotes the algebraic semantics for quantum

logics. A good behaviour of a given logic �from semantical point of view �is often indicated
by stipulation that this logic must satisfy the so-called Czelakowski�s theorem ([40, 12]).

Theorem 5 ([12, 40]). Let Cn be a standard consequence operation, and let Cn = CM
for some matrix semantics K. Then:

Matr(C) =
 �
HHSPR�(K):
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Moreover, if Cn is �nitary and � = @0 then

Matr(C) = HCHSPR(K) =
 �
HHSPU(K):

Proof : see [40, 41]. �

5. Adequacy of single logical matrices for quantum logics.

As it was stated in the author�s previous paper, all logical matrices constituting a
model for quantum sentential logics determine not only the set of their own tautologies,
but mainly the so-called matrix consequence operation �CM [39].
For all logical matricesM = hOML; F i and for arbitrary X � Fm and � 2 Fm, the

operation CM is de�ned:

� 2 CM(X)$ (h(X) � F ! h(�) 2 F ) where h 2 HomS(Fm;OML):

Such operator CM can be understood as a structural consequence operation. Basing on
above considerations, one can generalize the notion of CM and introduce the operator CK.
The symbol K denotes the class of matrices. The operator CK is de�ned: for arbitrary
X � Fm and for arbitrary � 2 Fm it is the case that:

� 2 CK(X) i¤ 8M 2 K(� 2 CM(X)):

Above introduced operator CK is named the consequence operator determined by the
class K of matrices. The consequence operators CM constitute the complete lattice. In
the lattice-theoretic term, the operator CK can be de�ned as follows:

CK = inffCM :M2 Kg:

De�nition 6 ([27, 40, 41]). The class K of matrices is termed adequate for sentential
calculus i¤ for arbitrary X � Fm and � 2 Fm subsequent conditions are satis�ed:

� 2 Cn(X) i¤ for every � 2 CK(X):

or shortly:
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Cn = CK

De�nition 7 ([40, 41]). Logical matrix is termed Cn-matrix if for every set of formulae
X � Fm it follows that:

Cn(X) � CM(X):

Such matrix M is called Cn-matrix if the consequence operator determined by this
matrix - CM �is not weaker than consequence operator Cn. Symbolically:

Cn � CM:

In [39] several algebraic and semantical conditions were presented in the form of theo-
rems so that the subsequent equality for quantum logic was satis�ed:

Cn = CM

Such posed question concerning the sentential logics belongs to the core problems of
Abstract Algebraic Logic and was studied from the early beginnings of this branch of logic.
In modern terminology, above sketched problem can be expressed as follows: To give
necessary and su¢ cient conditions (having synctactical and algebraic characters) which
must be satis�ed by a given logic hFm;`Si in order to indicate a single matrix which is
strongly adequate for this logic. A matrix is termed strongly adequate for a given logic if
the following equality is satis�ed:

Cn = CM:

The �rst investigations into the problem of the adequacy of logical matrices for quantum
sentential logics were carried out by Malinowski [29]. Historically speaking, the problem of
the existence of strongly adequate models for a given propositional logics can be regarded
as a generalization of the problem of the so-called weak adequacy for logics. This topic
constitutes the problem of �nding a single matrix � for a given structural consequence
operation Cn �so that the subsequent equality was satis�ed :

Cn(?) = E(M):
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In this notation E(M)is a set of logical tautologies determined by a given logical ma-
trices. Matrix which satis�ed above equality is termed weakly adequate matrix for a given
sentential logic. Every weakly adequate logical matrix for quantum sentential logic deter-
mines the set of tautologies of this logic. The formula which is satis�ed in a matrix under
the given homomorphism is denoted by Sath(M).
In the case of quantum logic, subsequent equalities take place:

� 2 Sath(M)$ h(�) 2 F:

Sath(M) = h�1(F ):

The set of formulae which are satis�ed under the homomorphism h is a counterimage
of a set of designated values (in this case, the only designated value is 1) with regards to
this homomorphism. The tautologies of quantum logics are identi�ed with a set of formu-
lae which are satis�ed for every valuations (i.e., for every homomorphisms) of sentential
variables of the term algebra �Fm. Above set is designated by E(M). The following
equality takes place:

E(M) =
\
h

Sath(M) where h 2 HomS(Fm;OML):

Basing on Geneva-Brussels approach to the foundation of quantum mechanics, the
subsequent theorem can be deduced:

Theorem 8. In the case of quantum sentential logics weakly adequate matrices (i.e.,
the sets of formulae determined by these matrices) can be identi�ed with the so-called trivial
question.

De�nition 9 ([31, 37]). Trivial question in the framework ofGeneva-Brussels paradigm
is identi�ed with the following de�nite experimental procedure:"Do whatever you wish with
the system and assign the response "yes"" [31].

Above experimental situation also encompasses doing nothing with the physical system.
We can call this experimental procedure certain i¤ the physical entity exists. The trivial
question is true always when we are certain of obtaining the positive answer (i.e., �yes�)
were we to perform this question. The only condition �and indeed, ontological (existential)
condition �of the trivial question is that we have a physical system to begin with.

Proof of the theorem 8 . From the de�nition of weakly adequate matrices it follows that
for all � 2 Sath(M)$ h(�) 2 F for all � 2 Sath(M) ! h(�) 2 F for all
h 2 HomS(Fm;OML). Now, consider two arbitrarily chosen Sasaki deductive �lters

determined by the strong version of quantum logic, i.e., they have the form:
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F1 = [a1) = fx1 2 OML : x1 � a1g and F2 = [a2) = fx2 2 OML : x2 � a2g (Corollary
2). From these de�nitions of �lters it is obvious that they must have at least one common
element, i.e., top element of OML. This top element is identi�ed with 1. Hence, in
order to be sure that a given formula is always true we choose such homomorphisms
h 2 HomS(Fm;OML) that h(�) = 1 2Fi for arbitrary i. Such de�ned formula � is a
trivial question in the sense of de�nition 9. �
Theorem 10.There must exists at least one quantum entity.

Proof : Above theorem belongs to the so-called ontological presuppositions of quantum
logics. The tautologies (i.e., Cn(;) = E(M)) of classical logic are satis�ed even in the
empty domain. Since tautologies of quantum logics are satis�ed under the presuppositions
that there exists at least one quantum entity to answer the trivial question positively, i.e.,
h(�) 2 F . �

The problem of ontological assumptions of quantum logics will be discussed in full
elsewhere.
In this article it is only signalized that such model-theoretic constructions as reduced

products and ultraproducts can be used to describe not only separated quantum entities
but also entangled ones.

6. Pasting of Single Models of Quantum Logics.

Subsequent model-theoretic construction useful in the studying of quantum sentential
logics is the so-called f0; 1g-pasting (Bruns and Kalmbach 1971, 1972, Ptak and
Pulmannova 1991, Miyazaki 2005)[5, 6, 33, 30].

De�nition 11 ([30]). Let A = hA;�;\;[; (:)0;0A;1Aiand B = hB;�;\;[;0B;1Bi are
two non-trivial orthomodular lattices. By f0; 1g-pasting of these lattices one
understands the structure A+B = h(A [B)=�;�;\;[;0;1i where � is an equivalence

relation de�ned �=df f(x; x) j x 2 A [ Bg [ f(0A, 0B); (0B;0A); (1A;1B ); (1B;1A)g:The
relation of order � and other operations \;[; (:)0 are inherited from original orthomodular
lattices A and B.
In the literature one can �nd two alternative concepts naming this construction: f0; 1g-

pasting ([5, 6]) and the term �horizontal sum� ([33]). It is a well known facts, from the
theory of orthomodular lattices that f0; 1g-pasting of Boolean algebras is an orthomodular
lattice [30]. The horizontal sum of �nitely or in�nitely many ortholattices or orthomodular
lattices -

X
Ai �is de�ned in a similar way. Basically, for given orthomodular lattices

A and B, f0; 1g-pasting A + B is an orthomodular lattice where 0A and 0B are identical
to the new smallest element 0A+B and 1A and 1B are identical to the new largest element
1A+B. Other elements are the same as in the original lattices A and B.
From the de�nition of variety it does not follow that variety must be closed with regards

to the operation of f0; 1g-pasting. In fact, there are varieties which are closed under this
operation and varieties which are not closed with regards to horizontal sum.

Observation 12 ([30]). The variety OML is closed under f0; 1g-pasting. As it can be
deduced from the �gure below, neither variety MOL nor BA is closed under f0; 1g-pasting.
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Figure 1. f0; 1g�pasting of two Boolean algebras ([30]).

7. Congruences of Orthomodular Lattices and State Property System.

The set of all congruences of an algebra A is denoted by CoA. Considering the set of
all congruences of the orthomodular lattices CoOML it is stated that this set constitutes
a distributive and Brouwerian lattices [8].

De�nition 13 ([12, 22]). Let � 2 CoOML and F � OML. It is de�ned that � is
compatible with F , symbolically �compF when for all a; b 2 F; if ha; bi 2 � and a 2 F then
b 2 F . The set CoOML is a distributive and Brouwerian lattice.
The congruence � is compatible with F i¤ F is a union of equivalence classes of �

[12, 21, 22]. Above relationship can be also expressed using the projection mapping � :
OML ! OML=�, it is the case that �compF i¤ F = ��1[G] for some G � A=� [21, 22].
Congruences of an algebra OML compatible with F are also termed congruences of the
matrix M = hOML; F i (or alternatively �the strict congruences of M = hOML; F i).
Above introduced the projection mapping � is canonical surjective homomorphism. When
� is compatible with F it can be assumed that:

F = fa=� : a 2 Fg :

The largest congruence of OML which is compatible with F can be always indicated.
This congruence is called the Leibniz congruence of the matrix M = hOML; F i and is
denoted by 
OMLF (the notion of the Leibniz congruence belongs to the �eld of Abstract
Algebraic Logic and is also used when other algebras (logics) are considered) [12, 21, 22].
In the general case, the Leibniz congruence is denoted by 
AF . The congruences of the
matrix constitute the principal ideal of the lattice CoOML generated by 
OMLF . The
matrixM = hOML; F i is called reduced �or Leibniz reduced �when its Leibniz congruence
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is the identity on OML, i.e., 
OML = id. For an arbitrary matrix M = hOML; F i its
reduction is equivalent to its quotient by its Leibniz congruence, i.e., the matrix of the form
M� = hOML=
OMLF; F=
OMLF i. The de�nition of the Leibniz congruence is absolutely
independent of any logic (i.e., structural consequence operation). It is intrinsic to OML
and F [12, 21, 22].
The class of reduced matrix models of a logic S is symbolized by Mod�S. The class

of algebraic reducts of the reduced models of S i.e., the class of algebras that is associated
with a logic S is denoted by OML�S (in a general case : A lg� S) [12, 21, 22]. Formally,
the class OML�S can be de�ned as follows:

OML�S = fOML : 9F 2 FiSOML and 
OMLF = id g :

The subsequent useful tool to study logical matrices for quantum logics is a Frege
relation of a matrixM = hOML; F i relative to the logic S [12, 21, 22]. This relation is
denoted by �OML

S F and is de�ned on OML by:

�OML
S F = fha; bi 2 OML�OML : 8G 2 FiSOML; F � G! (a 2 G$ b 2 G)g :

Above relation means that ha; bi 2 �OML
S i¤ a and b belong to the same Sasaki deduc-

tive �lter of an algebra OML which include F . Alternatively, it can be expressed:

ha; bi 2 �OML
S F i¤ FiOML

S (F [ fag) = FiOML
S (F [ fbg):

One can also introduce the notion of the Suszko congruence of the matrix M =
hOML; F i relative to S �it is the largest congruence included in �OML

S F . The Suszko con-

gruence is denoted by
�


OML

S . Formally, the Suszko congruence for every Sasaki deductive
�lter F on the algebra OML is de�ned:

�


OML

S F =
\
f
OMLG : G is a Sasaki deductive �lter of OML and F � Gg :

Contrary to the Leibniz congruence, the notion of Suszko congruence is not intrinsic
to OML and F but it depends on the whole logic S, i.e., all Sasaki deductive �lters
embracing a given F [12, 13, 21, 22]. Explicitely, it can be expressed that the Suszko
congruence relative to a logic S of a matrix hOML; F i 2ModS depends not only on the
Sasaki deductive �lter F but also on the whole family of these �lters which include F :

[F )S = fG 2 F iSOML : F � Gg :
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This collection of the Sasaki deductive �lters is a closure system (or closed-set system)
on the universe of OML. The Suszko congruence can be conceived as a function of the
family of models for the quantum logics, i.e., fhOML; Gi : G 2 [F )Sg ;or equivalently of
the pair hOML; [F )Si [21, 22].
In the operational approach to algebraic logic, the notion of Leibniz operator is in-

troduced [12, 21, 22]. The Leibniz operator 
 is a function which assigns to each Sasaki
deductive �lter the largest congruence � of the term algebra compatible with F . Compat-
ibility of the largest congruence of OML with arbitrary Sasaki deductive �lter is de�ned
as a congruence of OML such that for all a 2 OML we have:

either a=� � F or (a=�) \ F = ?:

.
If two elements a; b 2 OML are orthogonal (written a ? b), i.e., a � b0, then they can

not simultaneously belong to the same Sasaki deductive �lter. Alternatively, there does
not exist deductive �lter (i.e., S�theory) which embraces these two elements.

Theorem 14. Let a; b 2 OML: It follows that:

if a ? b then :9F such that a; b 2 F where F is an arbitrary Sasaki deductive �lter.

In words, there does not exist the deductive �lter i.e., the logical theory, which simulta-
neously realizes two orthogonal properties.

Proof: Simple, from de�nitions. If a ? b then there does not exist congruence relation
� such that ha; bi 2 � and � would be compatible with F . �
In the considerations of the foundation of quantum mechanics the problem of the or-

thogonal states arises. In the operational approach to orthogonality relation developed
mainly in the Geneva-Brussels School the following de�nition can be formulated ([1]):

De�nition 15 [37]. Two quantum states p; q 2 � are orthogonal, written p ? q, if
there exists a de�nite experimental project � such that � is certain for p and impossible
for q.

In the seminal works of Aerts it was stated explicitly that the complete description
of the quantum particle (the quantum entity) can be identi�ed with the so-called state
property system, i.e., the ordered triple (�;L; �) [1]. In this notation, � denotes the set of
states, L is a set of properties (the so-called property lattice) and � is a function from � to
P(L). Conceptually, a state is an abstract name for a singular realization of the particular
physical system [31]. Equivalently, a state (or more precisely a state of provability or a
state of experimental provability, cf. section 3 of this article) can be identi�ed with the
consequence operation de�ned on the property lattice. Above equivalence can be deduced
from the fact that according to the Geneva-Brussels School, a state is a dual notion with
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regards to the concept of property. To each state p we can associate the family �(p) of all
of its actual properties, and conversely, to each property a we can associate the family �(a)
of all states in which this property is actual. In order to formulate above sketched duality,
one can introduce the mapping � : � �! P(L). The set of all properties which are actual
in a given state p 2 � are denoted by � (p) 2 P(L). Dually, if (�;L; �) is a state property
system, then its Cartan map is the mapping � : L ! P(�) de�ned ([1]):

� : L ! P(�) : a! �(a) = fp 2 � j a 2 �(p)g :

Theorem 16. If the property lattice L is atomistic and orthomodular, then to each
state p 2 � one can attribute the unique Sasaki deductive �lter (of above lattice). The
mapping between the de�nite state p and F de�ned on the property lattice is injective.

Proof and comments : Basing on the mapping � : � �! P(L) in the Geneva-Brussels
School notation, it can be deduced that a given state p 2 � is identi�ed with the unique
subset of property lattice, i.e., with the set of all properties which are actual in this state -
�(p). In our terminology, the set of all actual properties (or more precisely �their algebraic
counterparts in orthomodular lattices) is identi�ed with the Sasaki deductive �lter de�ned
on L. Hence, for the de�nite state p 2 � there exists the unique Sasaki deductive �lter of L.
Above de�ned correspondence is not surjective since not all possible Sasaki deductive �lters
must be realized by the considered quantum entity T . The injectivity of this correspondence
derives form the fact that there does not exist two non-equivalent states p1; p2 such that
p1 6= p2 and �(p1) = �(p2). �
Corollary 17. Any state p of the quantum entity T can be uniquely represented as a

particular Sasaki deductive �lter F de�ned on L. Equivalently, any state p can be identi�ed
with a particular Sasaki deductive �lter F de�ned on a term algebra. It can be expressed

by the following equality:
�(p) = F � OML:

Let us recall that a S-theory of quantum logic is an arbitrary set of sentences describing
the quantum entity of the �xed language. If this set is closed under a consequence operation
C, i.e., if X = C(X), or equivalently if X = C(Y ) for some Y , then X is called a S-theory
of C [38, 39]. In equivalent terminology, C(X) is also called a deductive system or, simply,
a system of C. C(X) is the least S-theory of C that contain X and C(?) and is the system
of all logically provable or - equivalently speaking - logically valid sentences of C: It can be
stated that :

if ' 2 C(X) then ' 2 X:

One can say that the deductively closed set C(X) is termed a S-theory. The set of all
S-theories of a given quantum logic is denoted by ThS. This set of all S-theories de�ned
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on one given logic is ordered by set-theoretic inclusion and it constitutes a complete lattice
ThS=

D
ThS;

\
;
[E

[38, 12, 11, 39]. Considering an algebraic semantics for this quantum

logic (i.e., logical matrices - M = hOML; F i) it can be stated that any S-theory has its
algebraic counterpart in the form of Sasaki deductive �lters fFigi2I de�ned on OML, i.e.,
property lattice L. The di¤erent S-theories correspond to di¤erent Sasaki deductive �lters.
Hence, if F has the form [a) = fx 2 OML : x � ag (corollary 2) then it corresponds to
one S-theory C(X) de�ned in an orthomodular quantum logic S. The set of all Sasaki
deductive �lters is denoted by FiSOML and if these �lters have the form [a) then their set
constitute a complete lattice. If X � OML then one can always indicates the least Sasaki
deductive �lter of OML which contains X. This �lter is generated by X and is denoted by
FiOML
S (X). The largest S-theory is the set Fm of all formulae - and dually - the smallest

S-theory is the set of all S-theorems (i.e., the formulae ' such that `S , where `Smeans
that ? `S '). For any two S-theories T ;S we have T [ S =

\
fR 2 ThS : T [ S � Rg.

So it is possible to de�ne a deductive system as the pair hFm;ThSi .

Corollary 18. The lattice of all S-theories ThS =
D
ThS;

\
;
[E

de�ned on Fm

(i.e., on the term algebra describing quantum entity) is isomorphic to the lattice of all
Sasaki deductive �lters FiSOML.
Summing up above considerations (sections 3 and 7) one can claim that every quantum

state (p) can be identi�ed with the particular set of its actual properties i.e., �(p). These
sets of actual properties are proper subsets of the property lattice L. By an identi�ca-
tion of L with an algebraic semantics for orthomodular quantum logics, i.e., OML, one
can deduce that above proper subsets of L are exactly the Sasaki deductive �lters of an
algebra constituting above mentioned algebraic semantics for these logics. The deductive
�lters in Abstract Algebraic Logic (AAL) correspond to the deductively closed sets named
S�theories. Every deductively closed set, i.e., every S�theory, corresponds to a quantum
consequence operation C de�ned on a term algebra of quantum logics S deeply studied in
[24, 18, 29, 39]. An algebraic treatment of logical systems gives a general and uniform un-
derstanding of the deductive relationship between di¤erent terms and between sets of these
terms [38, 28, 40, 41, 19, 21, 12, 39].

Hence, there exist the well-de�ned one-to-one correspondence between the di¤erent con-
sequence operations de�ned on OML (which determine the Sasaki deductive �lters - corol-
lary 1 and 2) and the di¤erent S�theories (i.e., di¤erent deductively closed sets on OML).
Any structural consequence operation can be understood as a separate sentential logic. It
brings about that one can say that there exist plenty of quantum logics on the same OML.
Any quantum logic is identi�ed with a separate deductive Sasaki �lter. A consequence op-
eration C de�ned on OML is additionally termed a structural consequence operation if C
also satis�es the following condition:

e(C(X)) � C(e(X)) for X � Fm:
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Here, e denotes any substitution in the universe of the term algebra Fm. From a purely
algebraic point of view a substitution in quantum logic can be regarded as a function:

e : V ar ! Fm:

Based on above fact and assuming that the algebra of terms is the free algebra this
function e can be extended to an endomorphism:

he : Fm! Fm:

Or under assumption that there exist the set of homomorphisms h : Fm ! OML one
can introduce a composition of two functions namely h � e which is de�ned:

h � e : Fm! OML:

In the author�s opinion the process of identi�cation of a single quantum state with one
consequence operation on OML- or alternatively - with one Sasaki deductive �lter (or with
one S�theory) is a fundamental concept bringing together the logical notion of provability
or deducibility with the physical notion of a quantum state. One can see that there exist the
uniquely determined one-to-one correspondence between the Geneva-Brussel approach to
the foundation of quantum theory and the above algebraic treatment of quantum sentential
logic. In a common opinion the notion of logic understood as a structural consequence
operation is the most important logical concept. Regarding logic as a structural consequence
operation is the contribution of Lvov-Warsaw school of logic and initiates the development
of the so-called abstract algebraic logic (AAL) and model theory of propositional logic.

One can states two following theorems:

Corollary 18. A logical matrix (i.e.,a logical model) constituting of OML and of
Sasaki deductive �lter F , i.e.,M = hOML; F i, can be understood as a particular realiza-
tion of one quantum state p2 � :
Corollary 19. Following conditions are equivalent:
a) there is a one-to-one correspondence between the set of all quantum states � which

are allowed for one quantum entity T and the family of all logical matricesMi = hOML; Fii
(where i 2 I) adequate for quantum logic describing this entity.
b) the family of all Sasaki deductive �lters fFigi2I is in a one-to-one correspondence

with the set of all quantum states � which are allowed for this quantum entity T .
c) the set of all theories of quantum logic S denoted by ThS is in a one-to-one corre-

spondence with the set of all quantum states � which are allowed for this quantum entity
T .
d) the set of all theories of quantum logic S denoted by ThS is in a one-to-one corre-

spondence with the closed set system de�ned on the property lattice L.
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e) if there exist a sequence (�nite or in�nite) of quantum states p1; p2; p3; ::: describing
the evolution of quantum entity then there exist the corresponding sequence of logical matri-
ces (i.e., the models) M1 = hOML; F1i ; M2 = hOML; F2i ;M3 = hOML; F3i ; :::which
di¤er by their Sasaki deductive �lters.
f) the lattices FiSOML and ThS =

D
ThS;

\
;
[E

are isomorphic.

Using above sketched formalism the theorem characterizing the orthogonal quantum
states can be formulated (cf. de�nition 15):

Theorem 20. If two quantum states p; q 2 � are orthogonal (i.e., p ? q) then two
Sasaki deductive �lters Fp and Fq which correspond to these states have at most one com-
mon element. It means that their intersection constitute of a one-element set. This one-
element set is 1 - the top element of OML lattice. Formally,

Fp \ Fq = f1g :

Proof: Two Sasaki deductive �lters which correspond to the orthogonal quantum states
have the form Fp = [ap) = fxp 2 OML : ap � xp � 1pg and Fq = [aq) = fxq 2 OML : aq � xq � 1qg
where 1p and 1q are the maximal elements of these �lters. Basing the Zorn lemma it is
obvious that 1p = 1q: It means that these two quantum states answer in the same manner
to de�nite experimental project consisting only of a trivial question. �

The orthogonality relation is symmetric and antire�exive [1, 37]:

If p ? q then q ? p and p 6= q.

It can be easily observed that a physical condition of symmetricity of this relation
can be translated into the language of quantum logics in the form of a �lter distributivity
property of these deductive systems. The �lter distributivity property is a metalogical
property deeply investigated in AAL [12, 21, 22].

Proposition 21. If the orthogonality relation between two di¤erent states is symmetric
then two Sasaki deductive �lters corresponding to these states commutes. It can be alterna-
tively stated that the lattice of all Sasaki deductive �lters (FiSOML) which can be de�ned
on the same OML is distributive. The logic with this property is termed a �lter-distributive
logic.

The class of the �lter-distributive logics is very wide and includes also all orthomodular
quantum logics. This property is shared by all those logics which have a disjunction. The
fact that the lattice FiSOML is distributive has its purely algebraic counterpart in the
observation that OML has the property of congruence-distributivity.
The Lindenbaum property states that any semantically consistent set of terms admits

a semantically consistent complete extension [23]. It is well known that a S�theory in
AAL can be equivalently considered as a set of non-contradictory formulae. A complete
S�theory is characterized by the following formal condition:
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8�(� 2 T or :� 2 T ).

The Lindenbaum property asserts that any S�theory can be extended to a complete,
maximal non-contradictory S�theory. Formally:

T � Tmax:

In [23] it was proved that the orthomodular quantum logics does not satis�es the Lin-
denbaum property. It means that there does not exist a complete, maximal S�theory
formulated in the quantum logic language. Here we give an alternative proof for this fact.
Basing on the previous corollaries it is known that any S�theory can be equivalently

represented as a Sasaki deductive �lters de�ned on OML. Supposing that any formula of
quantum logic is uniquely represented as a single element of OML, formally:

h(') = a 2 OML where h 2 HomS(Fm;OML):

then a complete, maximal S�theory of quantum logic is represented as a Sasaki de-
ductive �lter which is an ultra�lter.

Claim 22. In the case of the orthomodular quantum logics the Lindenbaum property
is equivalent to the Ultra�lter lemma.

The Ultra�lter lemma asserts that every �lter on a set X can be extended to some
ultra�lter on X.
Basing on the claim 22 it can be deduced that a complete, maximal S�theory onOML

is represented by a Sasaki deductive ultra�lter on OML.

Theorem 23. In the orthomodular quantum logics the Lindenbaum property does not
hold - or equivalently - there does not exist the Sasaki deductive ultra�lters on OML.

Proof and comments: From the de�nition of an ultra�lter U de�ned on a setX it follows
that if A is a subset of X then either A or XnA is an element of U . In the language of AAL
it is equal to the fact that for any formula ', ' or :' has its algebraic counterpart, i.e.,
a or a0, belonging to U de�ned on OML. Formally, if S�theory is complete and maximal
then

8'(' 2 T or :' 2 T ).

Algebraically such S�theory corresponds to an ultra�lter U de�ned on OML. Suppose

that if h(') = a where h 2 HomS(Fm;OML) then

a 2 OML or a0 2 OML:
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From the theorem 14 concerning the orthogonal properties we know that if a ? b are two
orthogonal properties represented by two elements a; b 2 OML then there does not exist
the Sasaki deductive �lter embracing these two elements (a and a0 are trivially orthogonal).
Now choose such a; b 2 OML which are in the relation of non-trivial orthogonality, i.e.,
a ? b and a0 6= b then there does not exist the Sasaki deductive ultra�lter embracing these
two orthogonal elements, i.e.,

: U such that if a ? b then a; b 2 U where a0 6= b.

Undoubtedly, if a and b are trivially orthogonal, i.e., a0 = b, then it is trivially true that
there does not exist such U that a; a0 2 U . �

Subsequent property which can be expressed in the language of AAL applied to quan-
tum logics is the property of equivalent quantum states:

De�nition 24. We call states p; q 2 � equivalent and denote them by p � q i¤
�(p) = �(q).

In the AAL treatment we know that any quantum state may be identi�ed with a single
Sasaki deductive �lter (corollary 19), i.e., �(p) = Fp � OML.
Hence, if we suppose that two states are equivalent, i.e., �(p) = �(q), then their Sasaki

deductive �lters must be equivalent, i.e., Fp = Fq. From the fact that a deductive �lter
correspond to a deductively closed set of formulae we obtain the following relationship:

if p � q then C(Xp) = C(Xq):

Above equality means that two set of terms Xp; Xq 2 Fm describing the properties of
quantum entity are equivalent with respect to a given logic C if their closures, i.e., C(Xp)
and C(Xq) are equal.

8. Concluding Remarks.

Contrary to other non-classical logics (just like many-valued logics, modal logics and
intuitionistic logics) quantum logic is not well elaborated from the view point of Abstract
Algebraic Logic (AAL). This article constitutes a author�s second attempt to applying a
machinery of AAL and Model Theory to quantum logic and inference rules encountered
in this logic [39]. We also shown that there exist a one-to-one correspondence between
approach based on the notion of state property system (Jauch-Piron-Aerts line of investi-
gations) and our attitudes which use the sophisticated tools derived from two core branches
of modern mathematical logic �AAL and Model Theory.
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