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“Fadem sunt quorum unum potest substitui alteri salva veritate”. This fa-
mous dictum was stated by Gottfried Wilhelm Leibniz in his "Discourse on
Methaphysics" and is now termed Leibniz Law of the Identity of Indiscernibles
(PII) after him. This principle is a fragment of Leibniz’s analytical ontology.
A version of Leibniz Law can be written in a second order language as:

VF(F(a) < F(b)) —a=b

where a and b denote individuals and F' is a variable running over properties
of an individual. Also in a second order logic one can state the converse of this
principle, to arrive at the so-called the Principle of Indiscernibility of Identicals
(II), namely:

a=b—VYF(F(a) < F(b)).

The conjunction of these two principles gives Leibniz Law. The meaning of
this law is ordinarily understood to mean that identity (i.e., being the same
object, symbolically a = b) is defined by way of indiscernibility (i.e., agreement
with respect to all properties).

In classical logic and mathematics we are forced to deal with the indistin-
guishability relation in the framework of certain structures whereby the relations
and functions available within this structure can not individuate between two
distinct objects. In the domain of these relational systems it means that such
structures are not rigid, i.e., there are automorphisms defined on these struc-
tures other than the identity functions. As a simple example of such a structure
we can consider the additive group of integers Z =(Z,+) where one can not
distinguish between two integers n and —n since the function f(z) = —x is a
automorphism of this structure other than identity. But there is a theorem of
Z FC stating that any non-rigid structure can be extended to become a rigid
one. For instance, Z = (Z,+) can be extended to Z' = (Z’,+, <) where one
can surely distinguish between —n and n (i.e., —n < n). Generalizing the above
considerations one can assume that the indiscernibility of the objects is an in-
ternal property of the given relational structure, i.e., two distinct objects are
indiscernible inside this structure but from outside of this structure they can be
distinguished by the adequate added predicate. In the whole well-founded set-
theoretical universe ¥V = (V, €) every object is an individual thing and Leibniz’s
Law is applicable to it. Hence, any two distinct things a and b can be individu-
ated by the property “being the identical to x” (where z = a or = b) namely
a = ()N, (x) where N, (.) is a naming predicate "to be an a”. Denoting the
truth of a proposition A by 1 < A and its falsity by A < 0 we can define the
so-called "uniqueness property” for any naming predicate:

1 < Ny(a) AVd' (Ny(a') — a=d').



Using Russell’s theory of definite description one can introduce Russell’s
formula for any other predicate B, i.e.,

B(a) = 3z {N,(z) A B(x) AVyN,(y) — = =y}.

In the algebraic approach to logic (mainly developed by the Lvov-Warsaw
School of Logic) we may define the sentential language as an absolutely free
algebra. Fm denotes the algebra of formulae (F'm being the universe of this
algebra) which is supposed to be absolutely free algebra of type L over a de-
numerable set of generators Var = {p,q,r,...}. The set of free generators is
identical to the infinite countable set of propositional variables. The algebra of
terms Fm is endowed with a finite number of finitary operations (counterparts
of connectives) Fy, Fy, ..., F},. The structure Fm = (F'm, Fy, Fs, ..., F,) is called
the algebra of terms. The concept of logic or - more generally - the concept of
deductive systems with the language of type L is defined as pair § = (Fm,Fgs)
where g is a substitution-invariant consequence relation on Fm. Since Fm
is absolutely free algebra, freely generated by a set of variables and its alge-
braic semantics, i.e., algebra A (in the case of classical propositional language
(-CPL) is a two element Boolean algebra) is a structure of the same similar-
ity types as Fm then there exists a function f : Var — A and exactly one
function A/ : Fm — A which is the extension of f, i.e., h/(p) = f(p) for each
p € Var. This function is the homomorphism from the algebra of terms to
the algebra A constituting the algebraic models of sentential language. Using
these tools one can identify the interpretation of a given formula ¢ € Fm with
h(p) where h is a homomorphism from Fm to A mapping each variable of ¢
into its assigned value. If a formula of propositional language is represented
in the form ¢(xg,x1,...,2,—1) indicating that each of its variables occur in the
list 29,1, ..., 2,1 then ¢ (ag,ay,...,a,_1) denotes the algebraic translation
of this formula for a given homomorphism h(p) such that h(z;) = a; for all
1 < w. Alternatively speaking, such homomorphisms from Fm to A are a pos-
sible semantic correlate functions of the sentential language. The universe of A
is assumed to be a set of possible semantic correlates of sentences. On Fm one
can define a binary relation 6 having all formal properties of the congruence re-
lation being a counterpart of the indistinguishability relation. This congruence
is compatible with each theory 7 defined in this language, i.e.,

for all a,b € Aif (a,b) € anda €7 thenbe 7.

Every algebraic model of a given language has the largest congruence called
the Leibniz congruence of this model and is denoted by 247 . This congruence
is a first order analogue of Leibniz’s second-order definition of identity:

(a,b) € QAT iff for every ¢(z,x9, 21, ...,2,) € Fm and all ¢y, c1,...,cnm1 € A

o™ (a,co,C1y s Cn1) € T iff @2 (b,co 1, cn1) €T.



The Leibniz congruence Q47 is the synonymy relation defined on the sen-
tential language S = (Fm, Fg) relative to the theory T. Thus

a = B(QAT) « Vo € FmVp € Var(p)(e(p/a) € T « p(p/B) € T)

where = is an indiscernibility relation, Var(yp) is the set of all variables
occurring in ¢ and @(p/«) is the results of simultaneously substituting the
variable p € ¢ by the sentence a.

On an ontological level, the Leibniz congruence is interpreted as the rela-
tion of indiscernibility. Given a model for a first order propositional language
S =(Fm,Fgs) one can say that two objects of its domain a and b are indis-
cernible relative to the predicates expressible in this language, without using
the equality symbol, even without necessarily being the same. Hence, two ob-
jects a and b are ontologically indiscernible if {(a, b) € Qa7 . Hence two sentences
are synonymous if they possess the same semantic correlates which are elements
of QA7 . Such sentences are interchangeable in any propositional context salva
veritate.

Recalling Quine’s thesis that "no entity without identity” we introduce in
this short note the notion of the Quine congruence QAT when the Leibniz
congruence is the identity relation. In this case Qa7 is simply said to be
Quinian. It is always the case that QA7 C Qa7 .

Theorem 1. The structure for sentential language is rigid if the Leibniz
congruence of this structure is equal to its Quine congruence (i.e., QAT =
QAT).

All elements which belong to the Leibniz congruence are called monads.
Hence, Mon(a) = {b| {(a,b) € QAT }. From the definition of a congruence rela-
tion it follows that if (a,b) € QA7 and (b,c) € QAT then (a,c) € QaT.

We introduce the following definition:

Definition 2. The Leibniz congruence is termed compact if there are at
least two such elements that (a,b) € QAT and a # b.

Corollary 3. If the Leibniz congruence is compact then the structure on
which this congruence is defined is non-rigid and hence QAT C QAT (and this
inclusion must be proper).

Algebraically, one can define the lattice of the Leibniz congruences.

Definition 4. The sequence QZH’T C QR 7T of the Leibniz congruences
represents a sequence of still sharper and sharper discernibility criteria leading
to the notion of a discernibility horizon represented by the Leibniz congruence
QAT = ﬂ{QZT :n € N}. The above sequence is called the generating se-
quence of the Leibniz congruence Q4 7T. It can be the case that Qa7 = Qa7 .

Fact 5. The sequence (Qx7T :n € N) is an algebraic lattice.

Theorem 6. The limit %ilr;Q"AT = QA7 (where x is the cardinality of

A i.e., the set of semantic correlates) is equal to the Quine congruence. When
this limit is attained then each object in the universe of discourse can be indi-
viduated by an adequate predicate.

The unique predicate enabling the explicit individuation of each object is
the naming predicate - "to be an z". This predicate can also be constructed



algebraically. Namely, each property of a given object is represented univocally
by the corresponding predicate. The fact that a property (F') can be prescribed

to x is expressed by F(x). The fact that a negation of this property (F') is
prescribed to x is expressed by —F(x). Hence, in the case of a macroscopic
(1) object obeying the classical logic, from the set of all possible properties (F)

or (F) must be ascribed to x. Hence, F(z) or —=F(x). Kant expressed this
simply as "if all possible predicates are taken together with their contradictory
opposites then one of each pair of contradictory opposites must belong to it".
It follows that = has each elementary property either positive (F') or negative

(F). On the metalogical level, the above facts are reflected by the Lindenbaum
theorem stating that any semantically consistent set of terms admits a seman-
tically consistent complete extension. Complete theory (7n.x) is characterized
by the following formal condition:

VB(B € Tmax or = € T) where 8 € Fm.
The Lindenbaum property asserts the following fact:
T g Tmax

Theorem 7. The Lindenbaum property is interpreted on the ontological
level as a fact that each macroscopic object obeying the classical logic possesses
a given property (F) or its negation (F).

Definition 8. The naming predicate "to be an z" corresponding to definite
description of x is an atom in the lattice of all possible predicates. Namely, this
predicate is given by N(*) = Fl(u) A FQ(U) A ANFY) with Fi(v) € {F;,~F;}. The
lattice of all possible predicates is Boolean in the case of classical objects. This
lattice is denoted by Lg.

Corollary 9. The Lindenbaum property is equivalent to the Ultrafilter
Lemma stating that each filter can be extended to the ultrafilter.

Corollary 10. If in the context of a Boolean lattice Lp objects xz; are
represented by definite descriptions, i.e., a; = (Ix)N,y, (x) where N,,(.) are
naming predicates then the Leibniz law holds for these objects as a theorem.
Hence, each object can be individuated uniquely by its naming predicate. It is
the case that for any other predicate A corresponding to the property (A) we
have that:

N < Aor N <-A.

All theorems presented abov will be precisely considered.
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