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Selection Does Not Operate Primarily on Genes 

Richard M. Burian 

This chapter offers a review of standard views about the requirements for natural 
selection to shape evolution and for the sorts of ‘units’ on which selection might 
operate.  It then summarizes traditional arguments for genic selectionism, i.e., the 
view that selection operates primarily on genes (e.g., those of G. C. Williams, 
Richard Dawkins, and David Hull) and traditional counterarguments (e.g., those 
of William Wimsatt, Richard Lewontin, and Elliott Sober, and a diffuse group 
based on life history strategies).  It then offers a series of responses to the 
arguments, based on more contemporary considerations from molecular genetics, 
offered by Carmen Sapienza.  A key issue raised by Sapienza concerns the degree 
to which a small number of genes might be able to control much of the variation 
relevant to selection operating on such selectively critical organs as hearts.  The 
response to these arguments suggests that selection acts on many levels at once 
and that sporadic selection, acting with strong effects, can act successively on 
different key traits (and genes) while maintaining a balance among many 
potentially conflicting demands faced by organisms within an evolving lineage. 
 
1. Introduction 

This chapter addresses how selection “acts” on genes, organisms, and lineages of 

organisms and examines how to determine what sorts of “units” are selected.1  I’ll 

start by saying a few things about selection and about genes, and then review 

some traditional arguments about genes as units of selection.  After that, we will 

                                                 
1 The term unit of selection is due to Lewontin (1970), which is a fundamental paper for 
the theory of selection.  A useful anthology of the literature to 1983 on this topic is 
Brandon and Burian (1984); an excellent brief review is Mayr (1997).   
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examine some of Sapienza’s arguments in the companion to this chapter and 

develop some arguments against the view that selection acts primarily on genes. 

2. Four Criteria for Natural Selection 

This is not the place to examine closely what natural selection is or how it works.  

Ever since Darwin (1859) used artificial selection as a model for natural selection, 

it has been important to recognize that natural selection differs in important ways 

from other forms of selection.  The conditions set forth here concern natural 

selection, not selection in general.  It suffices to set out four criteria that, 

according to a wide consensus, must be met for selection to influence the course 

of evolution.  The criteria include (1) variation that (2) affects fitness, and (3) is 

heritable.  Furthermore, (4) environmental conditions must be sufficiently regular 

to permit selection to be cumulative. 

The entities subject to selection must go through iterated generations and 

their properties (traits) must vary from individual to individual.  When a biased 

sample of available variants survives over a series of generations, selection may 

be occurring.  Effective trans-generational selection requires there to be heritable 

variation in fitness (Lewontin, 1970) and conditions permitting cumulative 

selection.  Variation (criterion #1) is required for entities with different properties 

to be present in the next generation(s).  Evolutionarily relevant variation must 

affect fitness (criterion #2), where fitness differences are, by definition, 
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differences in the propensity to survive and reproduce.2  In addition to variation 

and differences in fitness, heritability is required (criterion #3) – i.e., a positive 

correlation, on average, between the trait of the parent(s) and the offspring.  This 

is necessary for differential survival to allow selection to favor or alter certain 

traits of the selected entities within lineages.  If an entity’s traits had no 

correlation with those of its offspring or with the distribution of those traits in the 

next generation, cumulative change over long periods would be extremely 

difficult to achieve and (if it occurred) would probably not be caused by selection.  

Finally, if, the entities in question faced different regimes with the odds of 

survival shifting arbitrarily in direction in every generation, the distribution of 

traits or phenotypes would zigzag with no cumulative effect.  Thus, the 

environment (and environmental cycles) must be sufficiently regular for selection 

to be effective (criterion #4).  The rationale for combining all four conditions is 

nicely presented in Sterelny and Griffiths (1999, pp. 29 ff.).  Their initial example 

of cumulatively effective selection in organisms is the cryptic coloration of a 

ground-dwelling bird living in a reedy marsh habitat.  If the habitat varied rapidly 

enough, cumulative stabilization of the requisite pattern of mottling and barring 

would be most unlikely. 
                                                 
2 The addition of “and reproduce” causes difficulties because conditions increasing the 
likelihood of survival may conflict with conditions favoring reproduction.  Again, exactly 
how should we calculate the number of offspring relevant to reproductive survival?  Take 
a pair of nesting birds: should we count the number of eggs, the number of hatchlings, the 
number of fledglings, or the number of sexually mature offspring?  If some offspring are 
sterile, should that reduce the count? 
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Even without a definition of natural selection, we have set out fairly 

stringent necessary conditions for effective selection to occur:  heritable variation 

of fitness, with sufficient regularity of (environmental) conditions to allow 

cumulative selection to maintain or alter the traits of the organisms (or other 

relevant entities) over a long series of generations.  The four conditions do not, as 

such, exclude natural selection from acting primarily on genes, which reproduce 

over a series of (cellular or organismal) generations.  Although illustrations of 

selection in terms of organisms may prejudice one against selection acting 

primarily on genes, the four conditions set forth above do not, by themselves, 

reinforce that prejudice. 

3. Genes 

The term gene is about a century old.  A Danish biologist, Wilhelm Johannsen, 

coined it in 1909 to stand for something almost wholly unknown (Johannsen, 

1909). He thought, following Mendel, that the only thing known about genes was 

that, when organisms were cross-bred, different variants of a gene caused 

organisms to inherit alternative versions of the affected trait(s) in a “Mendelian” 

pattern.  Because male and female parents typically contributed equally to 

Mendelian traits, something contained in sperm and eggs (and therefore also 

contained in fertilized eggs) caused Mendelian differences between organisms.  

Mendel called the things that differed factors.  When Mendel’s work was 

rediscovered in 1900, many biologists tried to locate Mendel’s factors, in specific 
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ways, in germ cells, and tried to understand them in terms of cytological theories 

(e.g., as parts of chromosomes) or theories of organismal development.  

Johannsen argued that such moves were a mistake:  no one knew what genes are – 

they might, for instance, be properties or states of the relevant cells rather than 

separate entities.  The term gene, therefore, was supposed to be free of theories or 

hypotheses about the material constitution of genes and about the means by which 

they brought about their effects.  The claim that a particular allele (gene variant) 

is present simply summarizes the phenomena; it is another way of stating the 

Mendelian behavior of the trait(s) caused by that variant (Burian, 2000; Carlson, 

1966). 

For the rest of his life, Johannsen argued that we did not know the intrinsic 

properties of genes or how to localize them.  It was not even safe to claim that 

there were two copies of genes in fertilized eggs:  if genes were something like a 

state of the egg or sperm and the fertilized egg was composed of a sperm and an 

egg in the same state, the egg would be in a single state; what we now call 

homozygotes would have a single state of that gene, whereas heterozygotes would 

be fertilized eggs (and organisms) with a mixture of two states of the relevant 

gene – states that separated in the formation of sperm (in males) or eggs (in 

females).  Little wonder that the material constitution of genes was contested well 

into the 1950s; even those who were strongly convinced that genes are material 
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parts of chromosomes did not know whether genes were made of proteins, nucleic 

acids, or some combination of the two. 

Since 1909, there have always been multiple contenders for the definition 

of the gene and every fifteen or twenty years, or so, at least one new contender for 

the definition has been taken seriously by biologists (Burian, 2000, 2005; Carlson, 

1966; Falk, 1986; Portin, 1993; Snyder & Gerstein, 2003; Stadler, 1954).  This 

definitional problem sometimes resulted in sterile terminological debates, but the 

ruckus over defining genes raised major issues – many of which remain to be 

resolved – about the causes of biological inheritance and the extent to which 

specific factors caused inherited traits. 

For the entire century since 1909, there have been intense struggles about 

how to define genes.  A point that deserves immediate attention is that alternative 

definitions of genes always reflected major tension, never fully resolved, between 

attempts to provide structural (e.g., narrowly physico-chemical) and functional 

definitions of genes.  A gene must, in the end, be some sort of material entity that 

performs immensely complex functions.  It follows that structural and functional 

criteria for what should count as a gene are inextricably intertwined. 

As it turns out, there is considerable advantage in combining structural and 

functional criteria for identifying genes.  One can use criteria of each sort to help 

correct mistakes on the other front.  This has been valuable ever since 

Johannsen’s day, as geneticists and others worked to specify the factors that cause 
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inherited traits.  An easy example comes from the early stages of the 

chromosomal theory of the gene.  Work on this theory with the fruit fly 

drosophila began with T. H. Morgan’s discovery in 1910 of a sex-linked mutation 

for white eyes in the fruit fly drosophila.  He showed, in effect, that the mutant 

gene is inherited together with the X, i.e., a sex chromosome. 

In drosophila, males have one X and females two Xs.  Mutations carried 

on the X chromosome are therefore not recessive on males, so mutations are 

easily detected.  X chromosomes could be followed from grandfather to grandson.  

By crossbreeding X-carrying males with the daughters of fathers with the same X, 

one can increase knowledge of the mutations it carries (by testing the effects on 

both homozygous and heterozygous females) and of how the mutation is 

transmitted.  Cytological aberrations, such as an attached fragment of a foreign 

(previously tested) X chromosome allowed additional predictions and tests.  

Standard histories of the Morgan group’s contributions to Mendelian genetics 

follow the development of this line of work.3 

Morgan and others in his laboratory quickly developed techniques for 

locating genes on specific chromosomes.  Once genes were closely associated 

with particular positions (loci) on chromosomes, two genes with identical-

seeming effects located on different chromosomes were assumed to be different 
                                                 
3 Darden (1991) provides a particularly useful philosophical treatment of the importance 
of cross-disciplinary interactions between cytological study of chromosomes, genetic 
study of mutations, and the co-association (linkage) between mutations when they are on 
the same chromosome. 
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structures that played a distinct role in the development or economy of the 

organism.  This was verified fairly quickly by finding biochemical and other 

detailed differences in the effects of some genes yielding a common visible 

phenotype.  A famous example concerns two genes that altered eye color in the 

same way:  vermilion (located on the X chromosome) and cinnabar (located on 

chromosome 2).  After about twenty years, it was shown that the vermilion 

mutation blocked a biochemical step in the formation of brown pigment in the 

drosophila eye and the cinnabar mutation blocked a later step in formation of the 

same pigment.  The twisty path by which this was accomplished, combining 

biochemical, developmental, and genetic tools, is sketched in Burian, Gayon, and 

Zallen (1988, 389-400). 

By the 1960s, when molecular biology was far enough developed to begin 

identifying genes with particular sequences of DNA, the traffic back and forth 

between structure and function became much more intimate.  It turned out that 

genes could not be defined simply as sequences of nucleic acid, as lots of 

sequences are too short, too long, or seem to be junk, i.e., to have no known 

function or to perform a non-genetic function (e.g., to serve as spacers; see 

Sapienza’s chapter).  This complexity reflects and supports the fundamental 

commitment retained through most of the history of genetics, namely, that proper 

identification of genes must combine functional with structural criteria.  By now, 

effectively by definition, genes are structures of DNA (or, occasionally, RNA, as 
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in RNA viruses) that are copied across organismal generations and that have some 

additional function(s) in virtue of being transcribed onto RNA that has specific 

potential to enter into, or to affect, additional biological processes.  One 

consequence of this account is that there is no single answer as to what, exactly, 

should count as a gene, for that depends on exactly what parts of the genome 

count as having a function. 

Interestingly, there are those who would retain the word gene only for 

protein-encoding genes.  But this causes problems: for example, it would not 

count sequences of DNA encoding transfer RNAs and ribosomal RNAs as genes.  

Nor would it yield a univocal count of genes, since (by the standard criteria of 

current molecular biology) many plant and animal genes encode a few to 

hundreds of distinct proteins obtained by alternative splicing of their RNA 

transcripts, and some rare proteins are made from pieces assembled from distant 

transcripts of distinct genes. 

4. Genic Selectionism 

With this background, we are ready to turn to the question of whether or not 

selection operates primarily on genes.  To begin, let’s review some important 

early doctrines that influenced the debates about our topic.  A book that 

influenced many philosophers is G.C. Williams’ Adaptation and Natural 

Selection (Williams, 1966), in which Williams argued that group selection plays a 

minor role in evolution, in comparison with individual selection, and that 
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selection acts primarily on genes.  The latter claim is what interests us.  One of 

Williams’ key arguments is that genes can be beneficiaries of selection, but 

organisms cannot because organisms do not survive in evolutionary time, but 

genes do.  Understood as sequences or structures of DNA, genes survive 

recombination, death of the organism, and death of the species.  Thanks to the 

mechanisms by which DNA is copied and by which sequences are maintained, 

genes have the potential to survive indefinitely.  Thus, with an eye to meiosis, in 

which chromosomes may be broken up by “crossing over,” Williams (1966) writes: 

     I use the term gene to mean “that which segregates and recombines with appreciable 

frequency.”  Such genes are potentially immortal, in the sense of there being no 

physiological limit to their survival, because of their potentially reproducing fast enough 

to compensate for their destruction by external agents.  They also have a high degree of 

qualitative stability.  Estimates of mutation rates range from about 10-4 to 10-10 per 

generation…   

     Natural selection would produce or maintain adaptation [of genes] as a matter of 

definition.  Whatever gene is favorably selected is better adapted than its unfavored 

alternatives.  This is the reliable outcome of such selection, the prevalence of well-

adapted genes.  The selection of such genes of course is mediated by the phenotype, and 

to be favorably selected, a gene must augment phenotypic reproductive success as the 

arithmetic mean effect of its activity in the population in which it is selected. (pp. 24-25) 

Mutation is inevitable, but evolved defenses against mutation protect 

organisms (and genes) well enough that when a variant of a gene confers an 

average selective advantage of one extra survivor/104 offspring that variant will 
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normally survive indefinitely.  Although a number of qualifications are needed 

here, they don’t matter for present purposes.  On an evolutionary time scale, 

organisms, populations, groups of organisms, and even species exist for far 

shorter times than the genes (with their evolving variant forms) they contain.  

According to standard textbooks, species of mollusks and clams, which  are 

longer-lived than most land species and are well preserved as fossils, have a half 

life of about 10 million years.  A standard estimate suggests that at most 3-4% of 

the mollusk species extant 35 million years ago are still in existence.  By standard 

criteria, most genes (that is such gene kinds as transfer RNA genes, alcohol 

dehydrogenase genes, etc.), preserving their function through a lineage of descent, 

are far longer lived than that. 

If these are the relevant comparisons, it is the genes that are the 

beneficiaries of selection.  However, I note that once we recognize that we should 

compare lineages of genes with lineages of organisms, it is not clear that these are 

the relevant comparisons; lineages of organisms, like lineages of genes, last until 

extinction. 

In The Selfish Gene, Richard Dawkins (1976, 1982) popularized the above 

argument and expanded the scope of the controversy.  Both Dawkins and David 

Hull (1980, 1981) sharpened the argument by distinguishing between replicators 

and interactors, arguing that replicators are the main unit of selection.  For Hull, a 

replicator is an entity whose structure is passed on fairly directly via a process 
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(replication) that yields one or more reasonably accurate copies of the replicator.  

Evolutionarily relevant replicators must meet criteria of longevity, fecundity, and 

fidelity.  The relevant form of longevity is preservation of structure in the form of 

copies.  Hull’s example makes the point clear:  atoms of gold, structurally, are 

very similar to each other and quite long-lived; but because atoms of gold are not 

made by a copying process from previous atoms of gold, they do not count as 

replicators and are not subject to evolutionary processes like those affecting 

organisms and other biological entities.  Dawkins’ version of replication is more 

stringent; he requires nearly exact copying and, for relevance to selection, focuses 

on “active germ-line replicators,” i.e., those that play an active role in favoring 

their own replication across organismal generations.  Thus, on Dawkins’ account, 

since organisms reproduce not by a process of copying, but by (re)constructing 

most of the materials (e.g., proteins) and structures out of which they are 

constituted, organisms are not replicators, not even single-celled asexual 

organisms.  On Hull’s less stringent account, single-celled asexual organisms are 

normally close copies of the parent from which they are produced, so they are 

perfectly good replicators.  In spite of this difference, Dawkins and Hull agree 

that genes are exemplary replicators since their structure is preserved across 

enormous numbers of generations by means of the copying mechanisms that 

replicate DNA structure.  Williams’ (1966) definition of a gene as “that which 

segregates and recombines with appreciable frequency” is, effectively, a 
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definition of a replicator.  It is non-committal, at least on the surface, about the 

structure or function of genes as units, and Williams explicitly points out that this 

definition treats as genes what, by more conventional criteria, might be counted 

differently, e.g., as several linked genes or as no genes at all. 

Hull’s (1980) term for the other principal sort of unit, interactor, is 

preferable to Dawkins’ term, vehicle.  An interactor “is an “entity that interacts as 

a cohesive whole with the environment in such a way that replication is 

differential” (p. 318).  Dawkins’ vehicles are explicitly restricted to entities within 

which genes (and perhaps other replicators) are contained. Organisms are the 

main entities that fit this description, but mitochondria and other DNA-containing 

organelles and groups and populations of organisms may also qualify.  There are 

no exact boundaries for either replicators or interactors; they come in degrees of 

exactness of replication, and of cohesiveness plus relevance to differential 

replication.  Still, organisms are built anew in each generation by an interactive 

process with the environment, not by a copying mechanism.  This makes 

Dawkins’s distinction between replicators and interactors quite rigid:  replicators 

are made by copying, while interactors are made by some kind of construction.  

(Construction is my term: the classical embryological term is epigenesis, a 

process in which the entity is built rather than copied.)  Hence, organisms cannot 

be replicators.  Something is a vehicle for Dawkins only if it contains (and is built 

from, or by) replicators.  A vehicle is evolutionarily important only insofar as its 
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properties bias the likelihood of its replicators making it into the next generation.  

For Hull, too, an integrated whole counts as an interactor because its properties or 

behaviors affect the likelihood of replicators making it into the next (organismal) 

generation, but only some interactors contain the replicators in question. 

The take-home message of these arguments is that replication involves 

entities beyond the replicators themselves, and that evolution is the result of 

interactions that bring about transgenerational replication of sufficient exactness 

to enable construction or reconstruction of organisms and other evolving entities.  

All this is supposed to be required for evolution via natural selection.  Orthodox 

evolutionary theory holds that genes are generally the primary replicators and that 

organisms interact as unitary beings with each other and with the rest of their 

environments in such a way as to affect their likelihood of reproducing and 

transferring copies of the genes within them into the next generation.  As Hull 

insists, replication and interaction are distinct processes; both are required for 

evolutionary processes.  But the boundaries of these processes may overlap.  

Thus, on Hull’s view, the same entity – e.g., an asexual single-celled organism 

when it divides – can be correctly considered to have replicated or to have 

reproduced. 

5. Three Traditional Arguments 

 We are ready to present arguments that show that genes are not the primary units 

(targets or beneficiaries) of selection.  Sapienza argues that selection can and (at 
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least sometimes) does act on genes.  He is right.  But that’s not our main question, 

which is whether selection acts primarily on genes.  Nor does the question 

whether selection benefits individual genes or organisms solve our problem.  

Selection does not benefit individual copies of genes (gene tokens) any more than 

it benefits individual organisms.  And successful lineages of organisms are just as 

long-lived as successful lineages of genes, so a surviving lineage of organisms is, 

as such, just as much or as little a beneficiary of selection as a surviving lineage 

of genes is.  Given this, I will leave the issue of beneficiaries behind and 

concentrate on whether selection acts primarily on (lineages of) organisms or 

genes. 

The arguments considered here apply directly to sexual organisms, 

especially multicellular eukaryotes, i.e., organisms whose cells have true nuclei 

containing chromosomes that are complexes of histones and DNA.  On this score, 

the differences between prokaryotes and eukaryotes are important largely because 

of the specialized regulatory processes affecting the development and evolution of 

eukaryotes, and because the relationships between genes and their products, and 

between genes and functional traits, are much more indirect in eukaryotes than in 

prokaryotes.  These features of eukaryotes make the argument easier and more 

decisive, but similar issues can be raised for prokaryotes. 

(1) The first argument focuses on the causal processes involved in 

selection.  Selection acts on marginal differences between organisms with 
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systematically different traits in the actual ecological and competitive 

circumstances faced by actual organisms.  It “acts” when some heritable 

genotypic or phenotypic traits increase the probability of reproductive survival.  

The conditions for this are already familiar:  heritable variation in fitness plus a 

fairly consistent selective regime.  As Sapienza argues, genetic differences 

(almost) always underlie trait differences when these conditions are met, so 

favoring a trait typically favors some constellations of genes over others.  

However, this cannot be universally true since genetically identical organisms 

(e.g., identical twins) do not have strictly identical fitness-affecting traits and 

since, quite generally, all kinds of environmental differences and learned 

responses alter the course of development, the response repertoire, and even the 

anatomy of organisms.  Not all heritability is genetic! 

Thus, as a matter of bookkeeping, selection favoring a trait within a 

population favors not only that trait on average, but also some genes or gene 

combinations.  Sometimes this may turn out to be one gene that is closely 

correlated with the selected trait.  William Wimsatt (1980) offered a complex and 

influential argument that, in general, we should treat genetic changes that reflect 

phenotypic selection as a way of bookkeeping.  The bookkeeping works because 

genetic changes track trait changes in evolutionary time – but not because changes 

of the individual genes, as such, yield a correct causal explanation of the 

evolutionary trajectory followed by the lineage of organisms. 
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One of Wimsatt’s examples makes the point clearer.  The case involves 

frequency-dependent selection involving simultaneous variation of two different 

genes, in which the selective effect of a given allele depends on the proportions of 

alleles present in the population at both loci.  In such circumstances, whether 

selection favors or disfavors a given allele may depend on the frequencies of the 

alleles present at the other locus.4  The result is a dynamic system driven by trait 

relations to ecological circumstances and by causal interrelations involving two 

genes and their products or effects; but it does not, in general, allow selection to 

favor any one gene variant across the full range of available environments and 

population distributions.  Since seasonal and sporadic changes may dramatically 

affect the proportion of alleles at the other locus, no prediction of evolutionary 

outcome can be made from the selective advantage for a particular allele in a 

given situation in which the population has a particular composition.  Although 

this only sketches the complexities involved, it makes the key points:  without a 

clear and correct account of genotype-phenotype relationships and the relevant 

selective regime, one cannot determine, from the local fitnesses of alleles plus the 

specific trajectory of the genome in the lineage, whether the individual alleles that 

gained in frequency were the primary targets of selection.  In general, then, even 

granting strong genetic causation of traits, it does not follow that gene-by-gene 

                                                 
4 Concrete examples of such situations are well known; Wimsatt includes one in his 
paper. 
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analysis suffices to explain the evolutionary trajectory of the organisms in 

question.  Genes (and their alternative alleles) have the effects they do as part of a 

system of tightly integrated interactions.  This is the stumbling block at the heart 

of the issue we are debating. 

(2) In a classic paper, Elliott Sober and Richard Lewontin (1982) present a 

second, related, argument using the familiar example of sickle cell anemia.  The 

sickle cell allele of a gene for hemoglobin is prevalent in populations exposed to 

mosquitoes carrying the malaria parasite.  Without medical intervention, which 

only recently became feasible, individuals homozygous for this allele nearly 

always suffer excruciating death before reaching puberty from sickle cell anemia.  

Nonetheless, the allele is maintained at fairly high frequencies in malarial regions 

because it provides human heterozygotes with considerable resistance to malaria.  

In most common ecological circumstances, one copy of the normal allele 

produces blood cells with enough normal hemoglobin to prevent them from 

sickling and enables them to carry enough oxygen for carriers of the allele to be 

unharmed, but the amount of oxygen carried is low enough to reduce the rate at 

which the malaria parasite can reproduce.  In spite of the terrible cost of killing 

off homozygotic ‘sickler’ children before they reproduce (roughly ¼ of the 

offspring of matings between heterozygotes), the net effect of carrying the allele 

in severely malarial environments is more favorable than not having this 

protection against the disease.  Thus, in favoring resistance to malaria, selection 
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has the most unfortunate side effect of carrying sickle cell anemia along with that 

resistance. 

The sickle cell story is actually more complex than this exposition 

suggests, but the complications don’t affect the point.  We have here, 

approximately, a simple case of heterozygote advantage.  What we need to 

determine is whether selection acts primarily on the sickle cell allele.  According 

to Sober and Lewontin, the answer is no:  in malarial environments, selection 

favors heterozygotes, penalizes homozygotes drastically, and does not act on the 

allele as such.  The allele has an average effect, of course, in a given mixture of 

environments (this is Wimsatt’s bookkeeping!), but selection acts on the effect of 

the distribution of different hemoglobins in blood cells in environments with 

varying degrees of malarial severity.  The hemoglobins in blood cells of 

homozygous normals favor malaria; the hemoglobins in homozygous sicklers 

alter blood cells so that they block capillaries and cause lethal oxygen starvation, 

those in heterozygotes allow blood cells to function well enough and yet weaken 

the malaria parasite.  These are the differences on which selection acts.  Sober and 

Lewontin argue that if it acts on any genetic entity, it is the genomic states of 

being homozygous normal, heterozygous for sickling, or homozygous for 

sickling.  That is, genetically speaking, the conditions causally relevant to the 

phenotypic states that influence survival are the combinations of alleles, not the 
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alleles themselves or their frequencies in the population.  If so, at the genetic 

level, selection acts primarily on the genotypes, not the genes. 

From this perspective, selection acts on populations to increase the 

frequency of causally relevant genetic complexes in the population over time.  

What this means in general depends on how genes or genotypes correlate with 

phenotypes.  To get the causal story right, as the case of heterozygote advantage 

makes clear, one must examine the genotypes available in the populations and the 

dynamics of genotypic and phenotypic change over time. 

Changes in the distribution of organismal genotypes will, of course, be 

tracked by changes in gene frequency, but the use of frequencies of individual 

genes, taken one at a time, as a surrogate for genotype frequencies ends up 

misrepresenting the actual causes of genetic change.  This is made even clearer in 

a recent paper by Brandon and Frederik Nijhout (2006).  They argue that genic 

selectionists must offer a false account of the causes that maintain a dynamic 

equilibrium when the sickle cell and normal alleles are maintained at a stable 

frequency.  Baldly expressed, the correct causal account is based is on balancing 

selective pressures favoring the heterozygote and strongly disadvantaging the two 

homozygotes.  However, since genic selectionists treat alleles (rather than 

combinations of alleles) as what is selected, they must view selection of alleles in 

this sort of case as frequency dependent – and when the alleles are at an 

equilibrium frequency, there is no selective pressure acting to change the 
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frequency of the alleles!  This is obvious, because at equilibrium the average 

fitnesses of the normal and mutant alleles are equal:  there is no net force acting 

to increase or decrease the frequency of either allele!  In fact, however, selection 

is acting.  It acts on heterozygotes (who are moderately susceptible to malaria, but 

otherwise undamaged) and, more harshly, on homozygotic normals (who are 

highly susceptible to malaria) and homozygotic sicklers (who die from sickling of 

blood cells).  Thus, in cases of heterozygote advantage genic selectionists are 

forced to offer a drastically false account of the effective selective forces in a 

dynamic balanced equilibrium.  More generally, when the allele or the gene is 

used as the unit of analysis and interaction effects alter heterozygote fitness non-

additively, calculating allele-by-allele yields a mistaken calculation of how 

selection acts. 

(3) A more diffuse literature concerning complex life histories provides a 

third argument.  Take a relatively straightforward example:  aphids.  Here is a 

simplified account of a typical annual aphid life cycle (Ragsdale, 2002).  Most 

species of these plant-sucking insects live in temperate climates and go through a 

kind of alternation of generations.  During early spring, the offspring of an 

overwintering female, who mated at the end of the previous summer, are all 

females.  These females yield a series of all-female generations that typically live 

3-4 weeks and reproduce parthenogenetically (without fertilization).  The females 

just described are viviparous, that is, they do not lay eggs, but produce free-living 
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daughters, already containing embryos.  Even though these females and their 

daughters are genetically identical, what they eat can alter the size, morphology, 

and fertility of their daughters and granddaughters (Stadler, 1995).  For example, 

it can determine whether those offspring are winged (and seek another host plant) 

or wingless (and stay on the same host).  At the end of the summer, triggered by 

light, nutritional, and temperature signals, some of the females produce winged 

males and sexual females.  Those females are oviparous, not viviparous, and lay 

overwintering eggs.  The eggs that hatch in the spring produce stem females, who 

produce both winged and wingless parthenogenetic daughters and start the cycle 

anew. 

Many organisms have yet more complex life cycles than those of aphids.  

Here are two major points to be taken from these sorts of cases.  (A) Ecological 

(or nutritional, etc.) circumstances determine major features of offspring produced 

from organisms with a given set of genes.  Indeed, in general, the traits of the 

offspring of an organism are co-determined by environmental and genetic causes.  

(B) Selection is episodic, but how it acts must be calculated over entire cycles of 

the right scale.  This is part of the reason for the requirement that there must be 

suitable conditions permitting cumulative selection for natural selection to be 

effective.  For example, the timing of environmental cycles must be short enough 

to be “visible” to selection, or selection cannot act to take them into account.  
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Annual cycles work, 10,000 year cycles probably do not (even for redwood trees) 

and million year cycles certainly do not. 

Major genetic changes in aphids occur approximately once a year, during 

the sexual generation.  That is when recombination and most other germ-line 

changes occur.  The cumulative effect of many selective episodes on a lineage 

will be expressed, in part, by the robustness and the fecundity of the sexual female 

and the overwintering eggs she produces.  And those properties of the female are 

affected by the circumstances encountered by the all-female lineage that preceded 

her for an entire season.  There is, no doubt, a net average effect of the seasonal 

success and failures within her lineage on the female and a net average effect of 

the successes and failures of the clone within its local habitat, but there will be 

cases in which a key selective episode that affected one of the great, great,... 

grandmothers of a sexual female is a key determinant of some features of her 

offspring.  Thus, certain seemingly genetic traits – e.g., the fecundity of the sexual 

female or what proportion of the daughters of a parthenogenetic female have 

wings – may be determined less by her genes (which determine her capacities in 

these respects), than by her nutritional status and that of her maternal lineage 

during the current season. 

Generalizing over the life histories of organisms that succeed in 

reproducing and about the ways in which selection manages to take account of 

what happens on regular cycles over long periods of time (which is a major part 
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of what is at stake in evolution), selection normally ‘acts’, not as a single force on 

an isolated gene or trait, but as a balancing device in response to situations 

affecting multiple traits in scattered episodes over extended periods of time.  In 

consequence, a balance of selective pressures affecting multiple traits is the norm, 

not a single force affecting an isolated gene (or trait).  Successful lineages must 

cross all of the distinct thresholds that recur regularly during the relevant long 

cycles that arise over multiple years and/or generations.  This result shows why it 

is necessary to analyze the conditions for cumulative selection with great attention 

to long cycles affecting life history patterns.  If all this is right, systematic devices 

for handling diverse difficulties – at once, and in series – are typically involved in 

selective processes.  For this reason, the genic selectionists’ claim that selection 

acts primarily on single genes is prima facie implausible.  The burden is on them 

to show how selection can work over such long periods in such complex ways by 

acting gene by gene in the manner described in Sapienza’s contribution to this 

volume. 

6. Response to Sapienza’s Arguments: 1. What Does Selection Act On? 

Let’s start with hearts.  Nearly everyone agrees that the function of a heart is to 

pump blood.  (For an exception, see Cummins & Roth, this volume.)  It must do 

so (in the absence of human intervention) for the animal’s entire life.  In every 

extant lineage animals have almost certainly faced recurrent contingencies 

affecting hearts.  When they present significant challenges to the heart (as do 
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malaria and drought for example), the lineage is likely to have evolved some 

provisions to deal with, or avoid, those challenges.  As an engineering matter, one 

cannot simultaneously optimize all of the traits of an organ to meet all expectable 

contingencies.  If optimizing blood pressure causes increased risk of myocardial 

infarction, selection must act in a way that balances the resulting trade-off.  And 

since ecological and seasonal cycles present various stresses and demands that 

hearts must meet, the heritable properties of hearts must permit or enable them to 

adjust to the full range of circumstances that recur sporadically or regularly over 

tens or, even, hundreds of generations.  The penalty for failure to do so is simple, 

but drastic:  extinction.   

In game-theoretic terms, selection does not optimize traits or organs, it 

satisfices (does at least well enough to get by).  For our example, heart designs 

must make (or at least allow) trade-offs adequate to meet the expectable tasks and 

challenges posed over a long series of generations.  Organisms in a lineage must 

overcome (at different times) the effects of muscular and nutritional stress, low 

blood pressure, high blood pressure, blocked blood vessels, changes in oxygen 

supply, specific infections, drought, floods, temperature extremes, and so on, 

indefinitely.  Lineages like ours, in which individuals grow hearts somewhat 

differently depending on ecological conditions and life histories (e.g., altitude, 

nutritional limitation, a sedentary life, or a life of long distance hunting), do not 

have rigidly fixed genetic programs that determine all the traits of their hearts, for 
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developing hearts respond differently to differing circumstances encountered in 

different ecologies, situations, and thanks to different life habits.  Such phenotypic 

plasticity conflicts with rigid genetic control of traits.5 

Two of Sapienza’s claims about hearts are hard to reconcile unless they 

are carefully circumscribed.  These are (1) that the variation in blood pressure 

between different individuals can be explained, in large part, by differences in 

genotype and (2) that the phenotypes under selection are controlled by a small 

number of genes.  Take the first:  variation in blood pressure can also be 

explained by variation in life styles (e.g., amount of exercise, daily hours of 

sleep), ecology (altitude and climate, availability of meat), and social and cultural 

factors (cf. correlations between heart health and various life styles).  If Sapienza 

means (as is unlikely) that genotypic differences explain high blood pressure in 

general, independently of these other factors, the evidence is against him.  Since 

we know that the blood pressure of most individuals can be altered considerably 

by controlling diet and exercise, and that early life styles and circumstances can 

have life-long effects on heart function, the claim I just ascribed to him is initially 

implausible and needs to be supported by specific evidence.  If, instead, he means 

merely that the blood pressure has high (genetic) heritability, then he is right, but 

all that shows is that genetic variation has important effects on blood pressure, 
                                                 
5 Many biologists have taken up phenotypic plasticity recently:  Massimo Pigliucci 
(2001) and Mary Jane West-Eberhard (2003) published important books on the topic that 
is philosophically sophisticated, and Brandon (1985) put forward an early argument 
showing its importance for human genetics. 
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which is consistent with considerable environmental influence on it as well.  

Turning to the second claim, high heritability does not, as such, provide evidence 

that the phenotype in question is controlled by a small number of genes.  Height is 

highly heritable, but it is not controlled by a small number of genes. 

I believe that most organs and quantitative traits examined to date are like 

height in being controlled by a large number of genes.  All in all, Sapienza’s 

claim that blood pressure is controlled by a small number of genes is initially 

implausible.  And since selection has been acting for many millennia to keep 

blood pressure within the bounds required by adequate health for reproductive 

survival, the fact that so much heritable variation is still available within human 

populations makes it likely that this phenotype, in particular, either is involved in 

trade-offs along the lines suggested above or is not controlled by a small number 

of genes.   

This argument does not prove that Sapienza is wrong.  Nor does it 

establish what claims in this neighborhood are right.  Rather, it shows that 

specific and detailed knowledge of the relevant genotype-phenotype map is 

required to settle the matter.  To argue more than this without going into serious 

molecular detail is, I think, hand-waving.  Now that we can study such issues at 

the molecular level, their resolution requires successful analysis of the relevant 

genotype-phenotype relations. 
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Meiotic Drive.  Professor Sapienza’s remaining examples don’t bring us 

any closer to a resolution of our debate.  I shall deal with them briefly and then 

close by taking up a more general issue.  Sapienza is entirely right that selection 

can act directly on genes.  His example of meiotic drive in DDK mice illustrates 

the point nicely.  Here, selection acts primarily on a particular allele because the 

relevant variation is between chromosomes containing the allele and 

chromosomes containing alternative alleles.  Since the probability of the allele 

(and its chromosome) getting into the next organismal generation is altered by the 

direct effects of the allele itself, specifically its effect on the likelihood that its 

chromosome will make it into the egg, selection acting primarily at the level of 

the gene and not on other phenotypic traits of the organism secures the 

representation of this allele in the next organismal generation. 

However, our main issue is not whether selection can act in this way, but 

whether it typically does so.  And comparison with the heart example shows why 

this example of meiotic drive is not typical.  The selectively relevant properties of 

hearts are not typically like the distribution of alleles or chromosomes into egg 

cells or polar bodies; they include such organ-level properties as the rate of 

pumping blood, the robustness of the organ, and its ability to operate continuously 

and withstand stress.  In this connection, selection acts primarily on properties 

relevant to the demands of organismal survival imposed by the ecology and by 

competitors.  In favoring organisms with more robust hearts, ability to maintain 
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blood pressures within a suitable range, etc., it alters genomic organization and 

the content of genes over generations, but it does so secondarily, for it acts, in the 

first instance, on heritable phenotypes.  As Sapienza explicitly grants, meiotic 

drive and organismal selection often favor different outcomes; selection on 

multiple levels requires a difficult balancing act.6  Since selection does not act 

purely at one level, one needs to know the balance of selective pressures at 

different levels to calculate the net selective forces acting on (and net fitness of) a 

gene, genotype, or trait.  Such a calculation complicates (and I think will 

ultimately defeat) all attempts to treat selection as acting primarily on genes. 

Robertsonian Translocations.  This way of thinking, in terms of multiple 

levels and units of selection, carries over to the examples of Robertsonian 

translocations and G-proteins, both of which can be turned against the claim that 

selection acts primarily on genes.  As Sapienza indicates, reproductive isolation of 

populations is a major step in speciation.  Robertsonian translocations enforce 

reproductive isolation because members of a population that differ by a 

Robertsonian translocation cannot produce viable or fertile offspring.  Where 

there is contact (or recontact) between populations separated by such a 

translocation, selection acts within each population to sharpen and tighten any 

other isolating mechanisms that reinforce the separation of the populations (e.g., 
                                                 
6 A classic paper by Lewontin and L. C. Dunn provides a beautiful demonstration of 
selection acting simultaneously in different ways at three different levels in house mice.  
The mice experience meiotic drive, organismal selection, and group selection between 
small demes in a relatively closed environment. 
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by preference for mates from their own population), or to reduce the competition 

between them.  If contact is maintained in the absence of additional isolating 

mechanisms, it is likely that members of one or the other population will 

eventually be eliminated (at least locally) by competitive exclusion or by 

reproductive failure. 

I argue that Sapienza has not yet shown that the chromosomal variation 

and allied phenomena are, as he claims they are, “examples of direct selection at 

the level of the gene.”  He assumes, but does not argue, that when a change in 

centromere affinities causes a chromosomal mismatch that leads to a 

Robertsonian translocation, selection is responsible for the chromosomal 

differences or acted to favor the allele(s) that favored the centrosomal change.  

But in principle and, perhaps, in fact, the chromosomal change may, rather, 

present the raw material on which selection may or may not act, acting (if it acts 

favorably) to form a separate population and, ultimately, a new species.  If an 

isolated family, separated geographically from the main population, obtained the 

Robertsonian translocation by mutational accident(s), the new species might have 

been formed by mutation affecting chromosomes and drift alone!  The fewer the 

mutations required and the smaller the initial populations, the harder it is to 

determine whether or not selection was involved.  The role of selection in such a 

case is, thus, an open question.  What is required, once again, is detailed 

knowledge of the relevant genotype-phenotype relations and enough information 
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about the relevant selective regimes.  Knowledge of the relevant properties of 

centrosomes and the distribution of genotypes is crucial, but it is not enough.  We 

also need to know the relevant grounds for the reproductive success of the 

affected organisms of the different genotypes in relation to competitors within and 

between populations before we can decide the issue. 

G-Proteins.  Sapienza’s nicely nuanced account of the limitations 

selection faces in acting gene-by-gene on genes for G-proteins is very helpful.  I 

agree with much of what he writes, but also with part of what he implies that his 

colleague maintains (though not the strong gene selectionism the colleague 

advocates).  Sapienza is almost certainly correct that selection cannot act directly 

on the thirty five genes encoding material used in various proteins to maintain, 

simultaneously, all of the distinct contributions of each gene to the G-proteins 

utilized by animals for recognition of scents, signal detection, and the many other 

functions that those genes affect.  As he argues, the combinatorics for gene-by-

gene selection are prohibitive.  Yet, his colleague is surely correct that an 

adequate theory or mechanism is needed to explain how selection maintains these 

complex relationships.  It is important to figure out the exact explanandum, that 

is, exactly what it is about G-proteins that needs to be explained (and that is not 

obvious!), but the coordination of G-proteins with distinct receptors is clearly the 

result of selection acting in some manner or other on the substrates out of which 

both the receptors and the proteins are manufactured.  The puzzle about how 
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selection can do this has not been removed simply by showing, as Sapienza has 

shown in outline, that it does not do so by acting gene by gene. 

Some important disciplinary differences and differences in background 

assumptions underlie the differences between Sapienza’s and my positions. These 

differences affect which phenomena and explananda we think are most important, 

our divergent accounts of how selection integrates effects from many genetic and 

non-genetic sources, and our views about what sorts of evidence are required to 

decide the issue.  These disagreements are partly on philosophical in character, 

but they are also scientifically productive.  In the examples we have been 

discussing, they can lead us to experimentally concrete problems, potentially 

resolvable by experimental and populational studies. 

7. Response to Sapienza’s Arguments: 2. On the Importance of Epigenetics 

Sapienza is right that biologists ought not (and, I am sure, will not) resort to 

arguments based on irreducible complexity; that would amount to the 

abandonment of science.  But the first step in working toward new explanations in 

new domains is finding regularities that describe thus-far uncharacterized or 

unexplained phenomena.  Recently, some philosophers of science have argued for 

the importance of exploratory experimentation in such contexts.  It was suggested 

as a focal topic in philosophy of science a decade ago (Burian, 1997; Steinle, 

1997) and its role in very recent molecular sciences explored in four recent papers 

(Burian, 2007; Elliott, 2007; Franklin, 2005; O’Malley, 2007).  Given the 



33 
 

 

complex regularities being teased out in post-genomic molecular biology (those 

concerning G-proteins are the tiniest tip of an enormous iceberg), Sapienza’s 

argument serves, I think, as a reductio of classical versions of the position he set 

out to defend – i.e., the position that selection acts primarily on genes.  He 

showed that the combinatorics of gene-by-gene selection are incompatible with 

fine-grained selection of G-proteins or maintenance of matches between G-

proteins and their receptors.  What is sought are alternative mechanisms by which 

selection can act, effectively, to build and maintain complex traits (involving, in 

this case, coevolution of multiple independent complexes of genes).  In this 

closing section, I suggest that new work on epigenetics (and epigenetic 

inheritance) offers the prospect of solving at least some of these problems.  

Sapienza rightly left this possibility open in the concluding section of his paper 

and has explored possibilities along these lines in some of his technical papers 

(e.g., Sandovici et al., 2006). 

Sapienza maintains that when traits are too complex to be maintained by 

selection acting on genes, they must have enormous selective advantage or they 

will be lost.  This would be true if selection acted primarily on genes, but that is 

the very question we set out to debate.  Phenotypic studies establish, I maintain, 

that selection “sees” or acts on complex organismal traits – and that G-proteins 

are a plausible example of a case in which selection maintains traits that can’t be 

explained by (classical) genic selection.  Sapienza argues correctly that we do not 
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yet have a good theoretically-grounded understanding of how complex traits are 

altered and maintained.  At least two lines of research, however, may provide 

serious mechanistic answers to such puzzles. 

The lines of research I have in mind overlap somewhat, but address a 

variety of different mechanisms.  One line concerns RNA regulatory networks, 

the other concerns epigenetics (and specifically the study of epigenetic 

inheritance).  I close with a couple of paragraphs on each to indicate some of their 

promise and hint at how they overlap. 

Recent genomic work has yielded some surprises concerning the amount 

of genetic material that is transcribed and the great variety of regulatory RNAs 

included in genomic transcripts.  John Mattick has published several articles 

summarizing the evolutionary importance of regulatory RNAs in the evolution of 

eukaryotes (e.g., Mattick, 2004).  In mammals, for example, it appears that at least 

80% of the DNA is transcribed (in humans it is probably 97% or more), and that 

much of it forms regulatory RNAs that enter into complex networks.  These play 

a major role in regulating development and determining what products will be 

made from which genes in which circumstances.  In eukaryotes, the 

correspondence between genes and gene products is not 1:1:  most protein-

encoding genes make several (and some make up to several hundred) products by 

alternate splicing and/or by contributing to products by splicing of RNAs from 
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distant parts of DNA.7  Many of the controls that regulate which products are 

made in which cells and at which stage of development are located in RNA 

regulatory networks.  These controls deal with everything from nutritional 

switching to responding to infectious agents, from switching cell type in 

differentiation to coordinating responses to heat or cold or infectious agents.  

There are at least a dozen major types of RNA involved in these networks, some 

of them very short – e.g., short interfering RNAs and microRNAs, each about 21-

22 nucleotides long and capable of rapid response.  Such controls alter the protein 

content of a cell and its descendants by interfering with mRNAs or altering the 

regulatory signals contained in mRNAs to regulate the developmental stage at 

which they are translated.  These controls also respond to nutritional state of the 

organism, the presence of specific toxins or pathogens, the entry of signal 

molecules into the cell, and so on.8 

Some mechanisms deployed to regulate development in RNA regulatory 

networks coordinate gene expression for large numbers of genes.  For example, a 

developmental switch that coordinates the transition from maternal to zygotic 

mRNAs in the zebrafish (a standard model organism for such work) is a 

microRNA, labeled miR-430 (Schier & Giraldez, 2006).  Expression of miR-430, 

                                                 
7 There are many other regulated devices that alter the correlation between coding DNA 
and the products derived therefrom.  Examples include RNA editing and post-
translational modification and splicing of polypeptides. 
8 For a review of work on microRNA pertaining to the issues of this paper, see Burian 
(2007). 
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itself produced in large numbers at a specific moment in embryonic development, 

blocks a regulatory region in the untranslated regions of at least 700 maternal 

mRNAs in somatic cells or the embryo, thereby ensuring that they are degraded 

quickly rather than slowly over an extended period.  It does so by base pairing 

with its target while attached to a protein complex that that then disrupts the target 

mRNAs.  The disruption occurs coordinately in all somatic cells of the embryo.  

However, in the germ cells, the same microRNA protects the maternal mRNAs 

from degradation.  Thus, the regulation is highly specific and coordinates the 

timing or loss of expression of immensely complex batteries of gene products 

(and, apparently, gain of expression of their zygotic replacements as well) in cell-

specific and stage-specific ways (Schier & Giraldez, 2006).  This example 

illustrates coordinate regulation of immensely complex traits and processes that 

can be regulated in many fine-grained ways by changing only a few nucleotides 

or a relevant environmental variable, e.g., by altering the timing of the expression 

of miR-430, by altering its sequence, or by altering the relevant regulatory 

sequences (and hence the mRNAs) of the genes of affected maternal proteins one 

at a time.  We do not understand this or related mechanisms in detail, but it is 

immediately obvious that they provide strong controls of complex coordinated 

batteries of genes.   

It has been experimentally demonstrated that such controls can be 

modulated in fine-grained ways to alter the timing of developmental changes, the 
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number of genes affected, and the size of the effect.  The combinatorics of such 

regulation, unlike those of G-proteins proceeding allele by allele, appear to be 

tractable and their flexibility quite extraordinary.  The connection with the second 

line of research, on epigenetics, is straightforward.  Many changes in RNA 

regulatory networks are heritable, some of them genetically (e.g., by mutation of 

the DNA from which microRNAs are constructed), some of them epigenetically. 

The term epigenetic goes all the way back to Aristotle (see the papers in 

Van Speybroeck, Van De Vijver, & De Waele, 2003).  The historical use that fits 

most readily with present usage contrasts the theory of predetermination of 

embryos (which held that the fertilized egg already contains, in miniature, the 

“form” of the adult or all of the major organs of the embryo) and the theory of 

epigenetic development of embryos (which held that the fertilized egg does not 

contain the form of the adult, nor all or its organs, but that these are built by a 

series of developmental changes requiring internal and external resources in an 

extended developmental process).  In the last few decades, the term has acquired a 

new meaning.  An epigenetic change is a heritable change independent of any 

change of nucleotide sequence in the DNA (or genetic RNA) of the organism in 

question.  A clear example of epigenetic change in development is provided by 

gene or chromosome silencing.  For example, methylation of chromosomes 

(particularly at CpG sites – i.e., DNA sites at which the nucleotides cytosine and 

guanine are linked by a phosphate) can alter the conformation of the DNA in such 
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a way as to prevent transcription of that region.  This is one way of achieving so-

called genomic imprinting, in which chromosomal regions are silenced by 

epigenetic mechanisms.  Genomic imprinting is a crucial control of gene 

expression in development, required, for example, for proper differentiation of 

secondary sexual characteristics.  In mammals, it is now well established that 

many chromosomes are imprinted differentially according to whether they come 

from the male or female parent, and that imprinting is epigenetically inherited 

(see, e.g., Sandovici et al., 2006; Wood & Oakey, 2006).  There is a large 

literature establishing that imprinting is removed from chromosomes very early in 

embryonic development, but various marks that serve as cues for reestablishing 

imprinting are left, that this process involves no change of DNA sequences, that 

one of the major mechanisms involved is methylation of CpG sites, and that 

‘correct’ or nearly ‘correct’ imprinting is required for normal development. 

I mention this example for a particular reason.  At the close of his chapter, 

Sapienza cites the work of the Decode Consortium on differences in reproductive 

rates in Icelandic families and their finding that the women with the highest 

reproductive rates are those had the highest rates of meiotic recombination.  

Another of their findings suggests that there may be some connection with 

epigenetic inheritance involved in this result.  The single genomic marker with 

highest correlation with a high rate of recombination was the fraction of the 

genome with a CpG motif, i.e., with the markers for methylation and silencing of 
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chromosomal regions.  Like some of the work in Sapienza’s lab (Sandovici et al.), 

this suggests, but does not provide definitive evidence, that epigenetic inheritance 

may play a role in the mechanisms affecting recombination rate.  I do not 

understand these mechanisms and do not pretend to know whether this suggestion 

will pan out, but it is a nice illustration of the range of open questions still to be 

faced before we can reach a definitive answer about the mechanisms underlying 

selection of complex phenotypic traits.  It also is a marker of the fact that an 

adequate case for selection acting primarily on genes has not yet been made. 

One more example of an epigenetic process illustrates the power of 

epigenetic change to release hitherto hidden phenotypic potential of the organism 

and then to “lock in” the altered phenotypic properties of the survivor.  This 

concerns the research on heat shock protein 90 (Rutherford, 2003; Rutherford & 

Lindquist, 1998; Wagner, Chiu, & Hansen 1999).  In barest outline, the story goes 

like this:  hsp90 is a ‘chaperone’ protein that marks cells to be killed if they have 

certain abnormal proteins.  Experiments with mice and fruit flies have shown that 

if hsp90 is depleted by a heat shock early in embryonic development, it allows 

molecular variants with strong phenotypic effects to survive the molecular 

controls that normally would kill cells with those abnormal proteins.  The result is 

unusual phenotypic variation in the surviving animals.  Since hsp90 recognizes 

normal proteins by the conformation of the relevant proteins present in the earliest 

stages of development and the altered proteins are transmitted maternally, they are 
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present during early development of the offspring.  Thus, the surviving conformal 

variants of the affected proteins are processed as normal in the offspring of the 

heat shocked animals, so the standards employed at the molecular level for 

recognizing normal proteins have been inherited epigenetically with significant 

phenotypic consequences.  As I understand it, this outline is correct – but the 

details matter immensely and a great deal of important research must be examined 

with great care before it is clear whether an account like the one given here can be 

generalized to resolve significant puzzles of the sort raised by Professor Sapienza. 

Postscript: Counterpoint 

Like Professor Sapienza, I begin the postscript by pointing out some points of 

agreement.  He is correct that selection ‘acts’ directly on genes that are able to 

spread themselves within genomes over organismal generations.  Among such 

‘selfish’ genes are those that produce meiotic drive or produce transposable 

copies that incorporate themselves in the genome.  He is right that the importance 

of such phenomena has not been adequately appreciated and needs to be carefully 

assessed – the high prevalence of ‘ghosts’ of retrotransposition events in the 

human genome provides ample evidence of that!  It will be particularly important 

to evaluate the impact of retrotransposition on genome organization, genome 

evolution, and the evolution of organisms.   

Given this, I have no doubt that, as he argues, selection acting directly on 

genes has had important effects on evolution and evolutionary history.  So far so 
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good.  But our core issue concerns the centrality of such phenomena in evolution.  

In this connection, his arguments do not establish that selection acts primarily on 

genes (or on DNA).  In spite of the important genetic findings and mechanisms he 

uses to suggest difficulties for some of my arguments, the fundamental points I 

made are not touched by those difficulties.  The key issue is the balancing act that 

is required when selection acts at several levels over periods of time sufficient for 

evolutionary shaping of genomes and organisms.  Genes and DNA are as 

susceptible to this problem as any other traits that are affected by natural 

selection.  My counterarguments in this brief reply illustrate this point as well as 

shortcomings in some of Sapienza’s key arguments. 

The fact that variants of some genes (currently) have disproportionally 

larger selectively relevant effects than variants of other genes on phenotypes of 

interest does not prove very much.  Some of the recent literature on genetic 

influences on human diseases shows that which genes have disproportionate 

influence changes with the ecology.  Our knowledge here is only now being 

developed and is not very secure, but in a couple of examples it is both strong 

enough and suggestive enough that I think it makes the point rather nicely.  One 

example concerns genetic resistance to AIDS.  Recent work, reviewed by Dean et 

al. (2002) has shown that some HIV viruses interact with chemokine receptors to 

enter cells.  The dominant HIV viruses in initial HIV infection are HIV-1 viruses 

that enter solely through the CCR5 receptor.  (These are called HIV-1 R5 strains.)  
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Several groups of humans (mainly with ancestors who lived in northern Europe) 

have a 32-nucleotide deletion in the gene encoding the CCR5 receptor.  (This 

allele is known as CCR5-Δ32.)  Homozygotes exhibit a near (but not quite total) 

resistance to HIV-1 infection and heterozygotes exhibit significantly slower than 

normal progression of AIDS.  Subsequent population genetic studies, yielding 

exceptionally high concordance with the data on the distribution of the CCR5-Δ32 

allele in tested populations, explain the distribution of this allele as the result of 

strong episodic selection favoring this allele because it also produced resistance to 

the black plague (Duncan et al., 2005).  Given very detailed knowledge of the 

timing and incidence of plagues, the expected distribution of the allele matches 

the available data closely; other suggested selection pressures and histories that 

might account for the distribution of the allele do not come close to doing as 

well.9 

Such population genetic data and scenarios, though made plausible by our 

understanding of the specific mechanism of action of both HIV-1 and our (less 

thorough) understanding of its contribution to resistance to black plague, are not 

                                                 
9 In the interest of brevity, I omit a second medical example discussed briefly by Dean et 
al. (2002).  This concerns cystic fibrosis, a genetic disease (or condition) caused by a 
gene that appears to have been strongly selected because it produces to typhoid fever 
produced by Salmonella typhi, as was demonstrated by Pier et al. (1998).  And because 
both the evolutionary issues about CF and AIDS resistance are not tractable to direct 
molecular resolution, I should also cite a paper that has demonstrated at the molecular 
level that severe selection such as that produced by typhoid fever and Black Death can 
produce stably modified populations with novel resistance genes present in high 
proportions.  The paper (Navas et al., 2007) reports experimental evolution of C. elegans 
challenged to survive on food laden with a fatal pathogen. 
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by themselves wholly decisive.  But in this instance they appear to provide the 

best currently-available account of a significant source of genetic resistance to 

HIV infection.  And even though it does not decisively establish the selective 

grounds for the prevalence of CCR5-Δ32 in various populations, it illustrates 

exactly the sort of scenario that I think will prove to be quite common: episodic, 

strong selection, acting sporadically, crucial in maintaining a balance in the arms 

races between hosts and disease vectors, predators and prey, invading 

competitors, and ‘physical’ environmental conditions such as drought, flood, 

climate, change, and the like.  Such sporadic selection will heighten the impact of 

one or another genetic or genotypic variant in a population (especially at 

population bottlenecks) with a sometimes dramatic effect on the genetic and/or 

phenotypic composition of the population.  Just like the ‘ghosts’ of episodes in 

which numerous transpositions occurred, so the ‘ghosts’ of these strong selection 

episodes will remain in affected populations, available for mobilization when 

ecological conditions prove favorable.  Selection must balance the impact of such 

episodes over long intervals of evolutionary time, while maintaining sufficient 

genomic stability, organismic viability, and reproductive capacity for maintenance 

of the lineage.  This is the image of evolution with which I operate.  If it is sound, 

it is not plausible that selection operates primarily on genes. 

I have just argued that to understand selection pressures on key genes we 

often need to understand the history of the relevant ecology/ies.  Although I have 
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no direct evidence bearing on the genes that affect heart function, there is a 

plausible view in the semi-popular medical literature that illustrates the sort of 

issue that needs to be evaluated in connection with Sapienza’s arguments about 

the high selective value of variation of only a few of the genes affecting heart 

function.  It is often suggested that the ecological change that modern agriculture, 

together with increased wealth and food availability in many cultures, has 

radically altered the dietary regime of humans.  Large populations now have 

access to sweets, fats, and an abundance of calories that was extremely rare in 

human history.  (This is combined, of course, with radical changes in public 

health measures, medical care, protection from infection, and much more of the 

sort.)  The increase in longevity, but also in obesity, type II diabetes, 

hypertension, and heart attack are all related to the changes in diet and life styles.  

Heart attacks occur predominantly at an age beyond that to which most humans 

lived until a relatively few centuries ago.  It is not implausible that the selective 

value of the genes that Sapienza discusses, the ones with highly heritable effects 

on hypertension, etc., have altered significantly with the alteration of dietary 

regime, the altered longevity of humans, and the other changes just alluded to.  

Again, the genes that affect hypercholesterolemia surely have other effects than 

their effects on cholesterol levels.  I do not know what these effects are, nor 

whether they are relevant to the long-term selective values of the alleles at issue.  

Before one jumps from the positive impact of the medications blocking excessive 
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cholesterol in medically relevant circumstances to the selective values of certain 

alleles, a vast range of additional information is required.  Such information may 

be available (though I suspect it is not), but until it is presented and subjected to 

careful evaluation, the case has not been made that these medical results suffice to 

determine the selective value of the genes whose action has been blocked.  As 

best I can see, Sapienza’s argument about the relative paucity of overdominance 

in high-throughput tests does not address these points. 

My argument is not decisive.  It does not prove that selection acts 

primarily via multi-level and multi-factorial causation, but neither does 

Sapienza’s argument make a decisive case that selection acts primarily on genes.  

It is, of course, problematic for his view that selection can ‘see’ a relatively small 

number of independent genes bearing on a selectively relevant trait at once, 

caught up as they are in immensely complex networks.  In general, it seems more 

plausible that selection ‘acts’ on some of the specific traits that result from the 

workings of genes and gene control networks and that the chips fall as they may 

for individual genes.  This would be one way in which selection could ‘act’ on 

phenotypes (or intermediate steps toward phenotypes) such as pathogen and 

drought resistance and leave the appearance that much mutation is neutral.  But it 

is also important to recognize (as the case of CCR5-Δ32 suggests) can ‘act’ 

episodically and when it does so, it need not ‘see’ all the genes on which it acts at 

once.  Selection can act sequentially on different genes, during relatively short 
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periods of intense selection when, due to the some salient circumstance (such as 

the flourishing of a major new pathogen) the impact of one allele rather than 

another given the stable configuration of the rest of the network, makes a large 

difference to organismal survival or reproductive success.  It can act on the few 

salient genes in humans that affect hypercholesterolemia rather drastically when 

they lead sedentary lives, overeat drastically, and don’t have the right medical 

remedies available for averting the consequences of doing so.  Similarly, to 

support a point that Sapienza made in his postscript, when a transposable element 

breaks the restraints that have kept its transposition in check or enters an organism 

that has no such restraints, it can spread enormously rapidly until controls on its 

spread are established.  But unless such controls are ultimately established, the 

genomes in which it is spreading will ultimately break down – and when adequate 

constraints to prevent genomic breakdown are established, they will involve a 

balance between organismal and genic factors.  It is precisely the need for such a 

balance that I believe is omitted from Sapienza’s account of the matter. 

Let me return, finally, to Sapienza’s position about the relatively few 

genes that, he suggests, are salient for the maintenance of hearts.  It is a non-

trivial question whether the situation here is more closely analogous to sporadic 

selection altering the genes affecting cystic fibrosis and resistance to AIDS along 

the lines I sketched or to genes affecting height in the manner Sapienza suggests.  

This question is far from closed by our arguments.  My response to Sapienza’s 
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argument is a bit like a just-so story – but with a difference.  I don’t pretend to 

know the truth in this matter.  Rather, I am putting forward a plea for major 

extension of research to determine the balance of circumstances that influence the 

selective values of alleles and other biological factors that affect heart function.  

The research required should take full account of the wide range of relevant 

conditions at many different levels that must be considered before reaching a firm 

conclusion about the balancing act required of selection in cases like this.  

Arguments about the percentage of trait variance that is currently due to a given 

gene or allele don’t carry much weight until they have been put through studies 

that cover relevant intervals of evolutionary time and relevant ranges of 

environments, and until the full range of (presumably pleiotropic) effects of the 

relevant genes have been taken into consideration.  If my argument is correct, 

resolution of such questions requires an integrated examination of selectively 

relevant systems and contingencies at many levels, including the genetic, 

genomic, cellular, organismal, and ecological levels.  Resolution of the debate 

about whether selection acts primarily on genes will remain unresolved unless it 

integrates considerations of life histories, diet, hormonal mechanisms, 

neurological mechanisms, and genetic and epigenetic mechanisms.  But the very 

fact that all these considerations are relevant suggests that selection acts in 

multifarious ways.  It also suggests that although selection ‘acts’ on genes it does 

not act primarily on genes. 
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