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Abstract

Theorizing in ecology and evolution often proceeds via the construc-
tion of multiple idealized models. To determine whether a theoretical
result actually depends on core features of the models and is not an
artifact of simplifying assumptions, theorists have developed the tech-
nique of robustness analysis, the examination of multiple models look-
ing for common predictions. A striking example of robustness analysis
in ecology is the discovery of the Volterra Principle, which describes
the effect of general biocides in predator-prey systems. This paper de-
tails the discovery of the Volterra Principle and the demonstration of
its robustness. It considers the classical ecology literature on robust-
ness and introduces two individual-based models of predation, which
are used to further analyze the Volterra Principle. The paper also
introduces a distinction between parameter robustness, structural ro-
bustness, and representational robustness, and demonstrates that the
Volterra Principle exhibits all three kinds of robustness.

1 Introduction

Complex biological phenomena rarely admit of single, fully unified theoreti-
cal treatments. For various reasons, theorists often study biological systems
by investigating a family of different but related mathematical models. One
motivation for investigating a family of related models is that it is a strategy
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to thank those audiences as well as Patrick Forber, Ken Waters, Deena Skolnick Weisberg,
Uri Wilensky, and Bill Wimsatt for many helpful comments. Special thanks to Giacomo
Sillari for his assistance in translating Volterra’s original paper and his insightful thoughts
about Volterra’s aims and methods. Some of the research in this paper was supported by
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for coping with highly idealized scientific theory. Biological theory routinely
incorporates simplifying assumptions, such as the assumptions that a pop-
ulation is infinite in size or has non-overlapping generations. Such assump-
tions are convenient ways to deal with limited computational resources, and
to make theory compact and intelligible. The drawback of idealized models
is that theorists must confront the problem of determining “whether a result
depends on the essentials of the model or on the details of the simplifying
assumptions” (Levins, 1966). Are the results generated by a model reliable,
or are they artifacts of the analysis?

Another motivation for investigating a family of related models is that
it is a strategy for understanding the generality of a result. Biologists often
value results that are general—for example, a theoretical treatment of a
system that remains true under many possible states of the system, or a
result that applies to a wide range of different systems. Recognizing that any
body of theory will depend on some set of assumptions, biologists possessing
a general result will often want to know whether it will continue to apply
under differing assumptions about the system.

To address these issues raised by the continuing investigation of multi-
ple models, theorists have developed the technique of robustness analysis.
This technique involves studying a number of similar, but distinct models
of the same phenomenon, trying to find common predictions among them.
These models may highlight different causal features, may be formulated at
different levels of abstraction, or even may employ different mathematical
frameworks in their representations of biological systems. In his famous dis-
cussion of robustness analysis, Richard Levins describes what happens when
the same prediction is made using multiple models.

[I]f these models, despite their different assumptions, lead to
similar results, we have what we can call a robust theorem that
is relatively free of the details of the model. Hence, our truth is
at the intersection of independent lies. (1966, 20)

There is a small, but growing philosophical literature about robustness
analysis. Starting from the pioneering work of Levins (1966) and William
Wimsatt (1981), recent discussions have clarified the aims and methods
of robustness analysis, discussed whether robustness analysis has a role in
confirmation, and exactly what this confirmation-theoretic role consists of.1

1Despite several authors addressing the confirmation-theoretic role of robustness, there
has been little consensus among them. Orzack and Sober (1993) have argued that robust-
ness analysis can play no non-redundant role in confirmation. Odenbaugh (ms.) argues
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Despite having a schematic for robustness analysis and despite the im-
portant discussions of robustness analysis’ possible confirmation-theoretic
role already in the literature, the philosophical literature has few if any de-
tailed discussions of the actual robustness analyses carried out by scientists.
Thus the primary purpose of this paper is to explain in detail the analy-
sis and justification of an important biological principle called the Volterra
Principle by robustness analysis. We will discuss how the Volterra Principle
was discovered, why ecologists believe it to be true, and conduct some fur-
ther robustness analysis by introducing two novel, individual-based models
of predation. In addition, we will introduce a distinction between parameter
robustness, structural robustness, and representational robustness and show
that the Volterra Principle exhibits all three kinds of robustness. Taken
together, these three kinds of robustness analysis are a powerful way of
demonstrating that a particular modeling result is not dependent on the
particular assumptions or idealization embodied in a model or family of
models.

2 The Lotka-Volterra Model of Predation

Predation is a much studied ecological phenomenon.2 It is of great interest
to ecologists because it often represents a force that keeps populations below
their environment’s carrying capacities. It is also a factor which can account
for oscillation and other periodic dynamics of populations in which there is
no external stimulation such as in unchanging environments. (Ricklefs &
Miller, 2000) Theoretical ecologists are interested in studying how predation

that robustness analysis allows us to discharge idealizations, showing that the model would
make similar predictions if more realistic assumptions had been included. Weisberg (2006)
argued that robustness analysis plays a role in confirmation, but the discovery that a the-
orem is robust is not a form of non-empirical confirmation. Rather, robustness analysis
allows theorists to isolate particular properties or behaviors that will be present whenever
a particular causal structure is instantiated. Forber takes a different tack, arguing that
robustness plays a role in culling down possibilities before empirical testing takes place.
(Forber, in preperation) Our discussion is not primarily about the confirmation-theoretic
role of robustness, although we will comment on the issue in various places. While our
view of robustness analysis’ confirmation-theoretic status is closest to the one articulated
in Weisberg, 2006, we believe that this analysis is only part of the story. The focus of this
paper is robustness analysis’ role in showing which modeling assumptions are central and
which are irrelevant for the production of a modeling result.

2For a comprehensive review of the classical literature, see T. Royama, 1971. For more
contemporary discussions including the history of predator-prey modeling, see Berryman,
1992; Hanski, Henttonen, Korpimaki, Oksanen, & Turchin, 2001; Briggs & Hoopes, 2004;
Jurrell, 2005.
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leads to these phenomena. They construct models to study those factors that
control the maximum population size as well as the phase, amplitude and
frequency of oscillations in populations. Naturally, some of these factors
must be determined empirically, but there is also much that can be learned
by analyzing clusters of models.

We have chosen to focus our discussion on predation because it provides
an especially striking example of a robust theorem called the Volterra Prin-
ciple. This principle was discovered by Vito Volterra, one of the founders
of mathematical biology, and has been subsequently discussed by many key
figures in contemporary mathematical ecology including Robert MacArthur
(1966), John Maynard-Smith (1974), Joan Roughgarden (1979, 1997), and
Robert May (2001). These theorists do not always use Levins’ term ‘ro-
bust theorem,’ but their discussions of predation, biological control, and the
Volterra Principle make it clear that they believe the principle is robust.
Before investigating this principle, we begin by discussing the model from
which the principle was first discovered.

Volterra (1926a, 1926b) and Alfred Lotka (1956) independently proposed
the first model of predator-prey interactions that we will discuss. This is
probably the simplest possible model of predator-prey interactions, but even
this simple model already displays rich dynamics as well as the property
of greatest interest to us in this project. Volterra was explicit about the
grounds for constructing such a simple model. He wrote:

As in any other analogous problem, it is convenient, in order
to apply calculus, to start by taking in to account hypotheses
which, although deviating from reality, give an approximate im-
age of it. Although, at least in the beginning, the representation
is very rough . . . it is possible to verify, quantitatively or, pos-
sibly, qualitatively, whether the results found match the actual
statistics, and it is therefore possible to check the correctness
of the initial hypothesis, at the same time paving the way for
further results. Hence, it is useful, to ease the application of cal-
culus, to schematize the phenomenon by isolating those actions
that we intend to examine, supposing that they take place alone,
and by neglecting other actions. (Volterra, 1926b, translation G.
Sillari)

To understand these remarks and the ways that the Lotka-Volterra model
is a very simple way of representing predation, it is useful to think along
the lines of a modeler approaching the problem for the first time. We ask:
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“What are the essential quantities and interactions that our model needs to
keep track of in order to represent predation?”

If we are going to treat predation as a population-level phenomenon as
Lotka and Volterra did, the primary quantities to keep track of are the size
of the predator and prey populations. Alternatively, we can keep track of
the population density, a quantity more easily measured empirically. We
will refer generically to these measures as species abundance.

The next step in thinking about the structure of the model is to describe
the intrinsic population dynamics of each species, or how the abundance of
each species changes over time. Because the two species interact, their pop-
ulation dynamics are coupled together in the following way: The predators
decrease the population of prey by eating them, while the prey increase the
population of predators by providing food. Abstractly, the relationship is
one of negative feedback. Predators are negatively coupled to the prey, but
prey is positively coupled to the predators. (Maynard Smith, 1974)

In order to construct simple, population-level models of predation, we
have six things to keep track of: the predator growth and death rates, the
prey growth and death rates, the effect of predation on the population of
prey, and the effect of prey capture on the population of predators. If we
set up our model in terms of rates of increase and decrease, we can collapse
intrinsic growth and death rates in to a single growth rate for the prey and,
a bit less realistically, a single death rate for the predators. This will give
us four quantities to keep track of.

Let V stand for the size of the prey population and P for the size of the
predator population. If we express these basic relationships with coupled
differential equations then we get the following basic equations:

dV

dt
= [prey birth rate]− [prey capture rate per predator] (1)

dP

dt
= [predator births per capture]− [predator death rate] (2)

(after Roughgarden, 1979)

These equations provide a template for a large but tightly linked family
of models. Starting from the simple possibilities, the prey growth rate could
be linear, exponential, geometric, or logistic. The most typical death rate
of the predators in predation models is constant, implying an exponential
decay in the absence of prey. More complicated rate expressions are also
possible, including functional dependence on environmental parameters and
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logistic decay when multiple sources of food are present. For the sake of
simplicity, we will only consider examples where the predator death rate
is constant, but we can modify the form of the intrinsic prey population
growth rate.

Of greater biological interest, at least when considering predator-prey
interactions, are the second term in equation (1) and the first term in equa-
tion (2), called the functional response and numerical response respectively.
(Holling, 1959) As we can see from the equation template, the functional
response is a rate, specifically the rate of prey capture per predator. The
simplest possible assumption is that the functional response is linear, or
that the number of prey capture increases linearly with increasing numbers
of prey. This simple assumption may be actually true over some ranges
(Korpimäki & Norrdahl, 1991) or when one is considering filter-feeding or-
ganisms, but more often than not is simply an approximation. Increasing
numbers of prey can create additional ecological interactions, not to mention
changing the foraging behaviors of the predators. More realistic assumptions
about the functional response have the rate of capture per predator decreas-
ing with increasing number of predators. Even under this assumption, there
are several different possibilities. For example, when prey are very abun-
dant, predators will eventually become satiated. Another possibility is even
more realistic: With very low numbers of prey, predators will lack the ex-
perience to be efficient hunters. With increasing numbers of prey, predators
will become more efficient at hunting. Ultimately, there will be a number
of prey beyond which the predators simply become satiated. (Tinbergen,
1960; Papaj & Lewis, 1993)

Finally, the numerical response term correlates predator births to the
number of prey captured. Because of this, the numerical response is itself
a function of the functional response. Specifically, the numerical response
depends on how many prey are in the population, how good the predators
are at capturing them, and how much energy from the prey captures can
be allocated to the production of new offspring. Naturally, this is a very
complex question and will depend on other environmental variables, other
stresses on the predator population, the energetic cost of offspring, etc.
Ecologists almost always collapse most of this complexity in to a single
parameter and represent the numerical response as a constant multiplied by
the functional response.

Now that we have considered how the basic template could in principle
be filled in, let’s return to the Lotka-Volterra (L-V) model itself and to
Volterra’s justification of it. As we said earlier, the L-V model is probably
the simplest way to make a population level predator-prey model because
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Figure 1: Lotka-Volterra Model’s Oscillation

we are going to fill in (1) and (2) with the simplest functions.
In our representation of the L-V model, r stands for the growth rate

of the prey population and m stands for the death rate of the predators.
The functional response is linear, expressed as a constant a multiplied by
V . Similarly, the numerical response is a linear function of the functional
response so the whole numerical response expression can be written as a
parameter b multiplied by the functional response, or b(aV ). The L-V model
is thus described with the following differential equations:

dV

dt
= rV − (aV )P (3)

dP

dt
= b(aV )P −mP (4)

These equations describe a model which predicts one result: the predator
and prey populations will oscillate indefinitely, out of phase with one an-
other. Although for every set of parameter values with species coexistence,
there exists one equilibrium where the populations do not oscillate, this equi-
librium is unstable and hence the model populations continue to oscillate if
it is perturbed even slightly off of these equilibrium values.

Figure 1 plots the result of this oscillation for a set of parameter values
and initial conditions. Qualitatively, it can be described as follows: As the

7



0 500 1000 1500 2000 2500 3000 3500
0

20

40

60

80

100

120

140

Prey Abundance

Pr
ed

at
or

 A
bu

nd
an

ce

Figure 2: Phase-plot of Lotka-Volterra Model

prey population increases, the predator population increases as well, lagging
behind. However, eventually, the predators begin to overtake the prey by
continual feeding, which eventually begins to drive the prey population down
in size. This results, in turn, in the predator population being driven down
in size, and then the cycle repeats again. This undampened oscillation is the
first important property of the L-V model that we will test for robustness
in this paper. Before doing so, let us consider several more properties.

A second important property of the L-V model is neutral stability. The
model exhibits neutrally stable oscillations, which means that perturbations
away from the current oscillation amplitude will result in a new oscillation
beginning from the point to which the oscillation was perturbed. There is no
restoring force to bring the population back to the initial amplitude of the
oscillations. This can be seen by plotting several trajectories, corresponding
to different initial conditions, in the phase space of the model (see figure
2). Each loop is closed, corresponding to a stable oscillation. Perturbation
results in the formation of a new loop, corresponding to a new, neutrally
stable oscillation.

The third and most important property of the L-V model is what we
will call the Volterra Property, which is the key component of the Volterra
Principle. The Volterra Property states that a general biocide, any sub-
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stance which has a harmful effect on both predators and prey, will increase
the relative abundance of the prey population. To see this, we first need
to solve for the equilibrium abundances of the species by setting each dif-
ferential equation to zero. After some algebra, we find that the equilibrium
values are:

V̂ =
m

ab
(5)

P̂ =
r

a
(6)

These are unstable equilibria; however, they correspond to the average abun-
dance of the predator and prey species over indefinitely long time periods.

We can derive the Volterra Property from the L-V model by first express-
ing the ratio of the average size of the predator population to the average
size of the prey population ( P̂

V̂
) as ρ. Decreases in ρ will correspond to

increases in the relative size of the predator population.
From equations (6) and (5) we can see that

ρ =
rb

m
(7)

The next step is to consider how a general biocide affects the model pop-
ulations. We can represent the introduction of a biocide as corresponding
to changes in r and m. Specifically, biocides decreases the prey growth rate
(r) and increases the predator death rate (m). Inspecting ρ, the expression
for the ratio of average densities, we can see that ρ(biocide) < ρ(normal).
(May, 2001; Roughgarden, 1979, 439) Since smaller values for ρ mean a
larger relative size of the prey population, the population of prey will in-
crease relative to the number of predators when a biocide is applied. This is
the Volterra Property: the general biocide increases the relative size of the
prey population.

The Volterra Property is a key component of the Volterra Principle,
the ecological theorem alleged to be robust. The second component of the
Volterra Principle concerns a particular kind of causal structure: negative
coupling. A predator species and a prey species are negatively coupled just in
case increasing the abundance of predators decreases the abundance of prey
and increasing the abundance of prey increases the abundance of predators.

The full formulation of the Volterra Principle connects this core causal
structure to the robust property as follows:
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Ceteris paribus, if a two-species, predator–prey system is nega-
tively coupled, then a general biocide will increase the abundance
of the prey and decrease the abundance of predators.3

The Volterra Principle has great ecological significance. One very prac-
tical consequence of it is that pesticides will often increase unwanted pests,
such as the effect DDT had on citrus groves in southern California in the
1950s. When it was used as a treatment against scale insects, orchardists
learned that DDT makes the pest problem worse. The cottony cushion
scale insect (Icerya purchasi) population increased upon the application of
DDT because along with the scale insects, the DDT killed the Vedalia bee-
tle (Rodolia cardinalis), a predator species keeping the scale insect under
biological control (Catagirone & Doutt, 1989; Elton, 1958).

The principle also has a deeper theoretical significance. It provides a
vivid example of how ecologically coupled systems can behave in unexpected,
non-linear ways. Interventions in such systems are difficult and, without due
care, can have the opposite effect of what was intended.

3 Parameter and Structural Robustness

The three key properties of the Lotka-Volterra model — undampened oscil-
lations (1), neutral stability (2), and the Volterra Property (3) — are very
interesting and would be of great ecological relevance if they were gener-
ally true of real populations. One way to ask whether these properties hold
generally would be direct empirical investigation. We could go out in to
the field or design a laboratory experiment and see if these predictions are
close to what really happens. But there is another approach to answering
the question, one that is often conducted prior to or in conjunction with
direct empirical investigation. This approach is robustness analysis. If we
investigate related but distinct models, do we continue to see these three
properties?

The first step in answering this question is to examine a representative
sample of the models described by equations (3) and (4). One does this
by evaluating the behavior of the model under different parameter settings.

3We know of no canonical formulation of the principle and there is considerable varia-
tion in the ecological literature. Our formulation is more general than the one in Weisberg
(2006), which restricted the principle to systems where the abundance of predators is con-
trolled mostly by the growth of the prey and the abundance of the prey controlled mostly
by the death of predators. We believe that the principle holds more generally and only
requires negative coupling between the two species.
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This analysis ensures that there is no special dependence of an interesting
result on some particular set of initial conditions. We call this kind of anal-
ysis parameter robustness analysis, because it shows us whether the model’s
behavior is dependent on any particular set of parameters. Parameter ro-
bustness analysis is also known as sensitivity analysis in the modeling lit-
erature.4 Conducting parameter robustness analysis generates equivalence
classes of parameter values that yield the same, or appropriately similar
results.

Although we will not detail the analysis here, the three key properties of
the L-V model are stable under wide ranges of parameter values for the L-V
equations. In fact, as far as we know from surveying the literature and our
own analyses, these three properties are robust across all parameter values
where the two species coexist.

Parameter robustness can be applied alone when a theorist has good
reason to believe the basic structure of her model is adequate for her pur-
poses, but remains uncertain about the values that should be assigned to the
parameters. A second kind of robustness analysis relevant to our discussion
of the Volterra Principle, is what we call structural robustness analysis. In
this kind of robustness analysis, the theorist considers changes to the causal
structure of the system being modeled by analyzing models with a different
mathematical structure. For example, in our model we might start with the
L-V model, but add in terms representing predator satiation, the ability of
prey to seek cover, multiple sources of food for the predator, or even com-
plex adaptive behaviors such as learning. Any ecological interaction could
in principle be added to the model.

Structural robustness analysis allows the theorist to address a differ-
ent set of uncertainties than the ones addressed with parameter robustness.
Using this approach, the theorist can probe which parts of the causal struc-
ture represented by her model are really essential for the production of an
observed behavior of the model.5 This can take the form of adding new
components to the causal structure, where one starts from a very minimal
model such as the L-V model and adds new causal interactions. It can also
involve removing factors, such as when one starts with a complex model, cal-
ibrated to a particular system, and removes factors to see which ones really

4There is an extensive literature on sensitivity analysis in population biology and mod-
eling more generally. The basics are discussed in chapter 9 of Grimm and Railsback 2005.
More extensive discussions of biological applications of sensitivity analysis can be found
in Dreschler, 1998 and Bartell, Breck, Gardner, & Brenkert, 1986. For more general
discussions, see Saltelli, Tarantola, Campolongo, & Ratto, 2004; Vose, 2000; Rose, 1989

5This aspect of robustness analysis is discussed especially clearly by Odenbaugh (ms.).
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make a difference. Structural robustness thus helps theorists isolate which
components are necessary for the production of an important property, and
which ones produce less robust properties.

In the next section, we describe one kind of structural robustness analysis
of predation models. We consider a density-dependent version of the L-V
model, which builds in an environmental resource that limits population
growth. This model makes a major structural change to the L-V model, but
keeps the core negative coupling intact. We focus on this robustness test
because density dependence has played a particularly important role in the
development of predation theory.

4 Predator-prey Model with Density Dependence

While considerations of structural robustness could lead us to add any addi-
tional function to the predator-prey equations, a natural ecological addition
would be to add a carrying capacity to the growth rate of the prey. If the
predators did not exist, this carrying capacity indicates the maximum size
to which the prey can grow, typically limited by resources in the environ-
ment. Adding a form of carrying capacity can be accomplished by making
the prey population growth density dependent. A logistic growth term of
the form dV/dt = r(1 − V/K) is substituted for the first term in the prey
equation (Leslie, 1948; Roughgarden, 1979; Berryman, 1992), yielding the
following equations:

dV

dt
= r(1− V

K
)V − (aV )P (8)

dP

dt
= b(aV )P −mP (9)

In the model described by these equations, there are three equilibria,
which correspond to the three possible outcomes in the long run. The first
equilibrium is extinction of both species. The second equilibrium involves
predator extinction, but the prey continues to survive and grow to its car-
rying capacity. The third equilibrium is of most interest to us and says that
both species can coexist. Solving these equations for this third, coexistence
equilibrium, we get the following expressions:

V̂ =
m

ab
(10)

P̂ =
r

a
(1− m

abK
) (11)
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Figure 3: Density-dependent Lotka-Volterra Model with K=750

Several things are worth noting about this equilibrium point. First and
most importantly, it is a stable equilibrium; there are trajectories leading
from the points in the vicinity of this equilibrium to this equilibrium. Once
the populations settle on this point, they will not fluctuate in size unless
they are perturbed. Population sizes in the vicinity of the other equilibrium
values (full extinction or predator extinction) will likewise settle down to
their respective equilibrium values.

The stability of this equilibrium can be demonstrated both analytically
and graphically. Analytically, we can see that the equilibrium is stable by
computing the eigenvalues of the Jacobian matrix. For all parameter sets
that bring the population to the third equilibrium, the eigenvalues have
a real part and the real part is negative. This corresponds to a stable
equilibrium point. (Roughgarden, 1979; May, 2001)

A graphical analysis is shown in figures 3 and 4, which are graphs of
the phase space for the density-dependent model with different values of
K. In the figure 3, all of the trajectories can be seen leading in to the
equilibrium point. In figure 4, the trajectories spiral in to the point. The
difference between these graphs is controlled by the magnitude of K. For
smaller values of K, there is no oscillatory tendency in the approach to the
equilibrium point. When K is larger, such as in figure 4, the trajectories
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Figure 4: Density-dependent Lotka-Volterra Model with K=1500

have an oscillatory tendency as they approach the equilibrium point. The
oscillatory tendency increased in magnitude as K is increased. As K →∞,
the model becomes the L-V model and, as we would expect, the oscillations
become undampened.

We are now in the position to make two comparisons between the density
dependent model and the L-V model. The first property of the L-V model
was undampened oscillations. In regions of state space where the density
dependent model predicts coexistence, the model shows either no oscillations
at all or dampened oscillations, all leading to a stable equilibrium. Even an
arbitrarily small amount of density dependence will destroy the undampened
oscillation. Thus the first property of the L-V model is not structurally
robust and cannot be formulated as part of a robust theorem. Since the
first property is not robust, the second property — neutrally stability in the
oscillations — cannot be robust either.

To examine the third property of the L-V model, the Volterra Property,
we once again express the co-existence equilibrium values as the ratio ρ,
yielding:

ρ =
P̂

V̂
=
r(abK −m)

aKm
(12)
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Since r is in the numerator and m in the denominator, we can see that
the Volterra Property, and by extension, the Volterra Principle holds for
this model. If we increase the death rate of the predators and decrease the
growth rate of the prey, this corresponds to smaller values of ρ, meaning
the relative size of the prey population increases. In fact, in this model
the Volterra Principle has an even more direct interpretation. In the L-
V model, the equilibrium values corresponded to the average size of each
population. However in the density-dependent model, the terms in ρ are
the actual equilibrium abundances of the two populations. Decreasing ρ
will have a direct effect on the equilibrium size of the populations, not the
average size over time.

Further structural robustness analysis would consider other changes to
the causal structure represented in the model drawn from the kinds of eco-
logical factors known to be relevant to population dynamics and predation.
While any change to the basic structure is a kind of structural robustness
test, ecologists are most interested in the ones that are potentially eco-
logically realizable. When a robust property survives all or some range of
structural robustness tests, then we can say that the property is structurally
robust to such and such changes to the causal structure of the system. If
these changes sample a sufficiently broad set of ecologically plausible circum-
stances, then ecologists will often simply refer to a phenomenon as robust.

5 Representational Robustness

Testing the structural robustness of a theorem is a matter of iteratively vary-
ing the basic assumptions of a model to see whether the theorem continues
to hold. We could make many other modifications to the density-dependent
predator-prey model to test the structural robustness of the L-V model. For
example, we might examine other equations for the functional and numer-
ical responses, examine the effects of population stochastically, include the
possibility of predator satiation, and add terms describing the prey’s ability
to hide from the predators. These possibilities were explored and shown to
be robust in the classical ecology literature about predation.6 Instead of
following those analyses here, we now turn to a different kind of robustness
which varies what we will call the representational framework of the model.

Mathematical models can be thought of as being composed of state vari-
ables, which are variables that represent the properties (states) of interest
to the modeler and transition rules, the rules that govern how the states

6See Roughgarden (1979) for a review of some of the key classical models.
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change through time. (Lewontin, 1963) The representational framework of
the model is a general description of the type of state variables and the
type of transition rules the model employs. For example, the variables in
a biological model might represent individuals or populations. They might
also represent more abstract properties of target systems such as energy or
nutrients, or even pathways by which these properties flow. Transition rules
can be deterministic, probabilistic, or stochastic. They can also be discrete
or continuous with respect to time.

The models we have considered so far use population densities as their
state variables and have deterministic transition rules that are continuous
with respect to time. Thus they were formulated using a set of differential
equations. Versions of these models could very easily be generated that
use difference equations, which would make them discrete with respect to
time but hold the other aspects of the representational framework constant.
Further changes can be made by adding in probabilistic transition rules or
changing the perspective of the state variables from populations to energy
flows or to individual organisms.

Parameter and structural robustness analysis vary assumptions about
the target phenomena to see how the emergence of the phenomenon is sen-
sitive to these assumptions. Representational robustness analysis lets us
probe a different feature of our models. It holds these assumptions fixed,
but analyzes whether or not the way these assumptions are represented make
a difference to the production of a property of interest.

Recent ecological literature has been especially concerned with the rep-
resentational robustness of classic population based models when they are
reconstructed in an individual-based framework, where the state variables
are attached to individual organisms. (Grimm & Railsback, 2005) In the
next sections, we illustrate representational robustness analysis by consid-
ering two novel individual-based models of predation with which we tested
the Volterra Principle for representational robustness.

6 Individual-based Predator-prey Models

The models considered so far have treated predation as a population-level
phenomenon. These models aggregate the properties of many organisms
and represent them using just a handful of population-level state-variables.
They contain no explicit representation of individuals or their properties,
only the statistical aggregates of those properties. In contrast, individual-
based models (IBMs) explicitly represent individuals and their properties.
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An IBM includes a set of state variables for each individual within the model
population. It also include assumptions about how individuals in the pop-
ulation behave, develop, and interact over time. Since IBMs often contain
thousands of variables, their dynamic consequences are usually investigated
via computational simulation rather than mathematical analysis.

Population-level models are often more elegant and amenable to math-
ematical analysis than IBMs, but their very simplicity can be limiting.
Ecological systems have rich structure that is not readily visible from a
population-level perspective. Organisms within a population generally dif-
fer in their properties and life histories. Interactions between organisms
are local, involving a few individuals at a particular place and time. IBMs
are effective at capturing this individual-level detail because they explicitly
represent the properties of each organism in a population, and because in-
dividuals can be set up to interact in small numbers on a spatial lattice.
When one wants to test whether individual variability or local interactions
affect the robustness of a generalization, one can build an IBM.

IBMs are also useful because they integrate our understanding of the
different levels in the biological hierarchy. Ecologists gather data about or-
ganisms, populations, and communities. IBMs help reconcile these multiple
levels of data, because assumptions about organisms and their interactions
enter into an IBM, and the population or community consequences of these
assumptions result from running IBM simulations. IBMs are thus informed
and constrained by ecological data at multiple levels. In contrast, the points
of contact between population-level models and data are all at the popula-
tion and community levels. Such models include assumptions about popula-
tions, but they are either silent or ambiguous concerning assumptions about
individuals. This can be a strength when we want to remain agnostic about
those assumptions, but it can also be a liability. In many cases, we may
want to vary those assumptions and understand their consequences.

In recent years, IBMs have become increasingly common within ecology
and among the sciences more generally. (See also Donalson & Nisbet, 1999;
Grimm & Railsback, 2005; DeAngelis & Mooij, 2005) They are not a substi-
tute for population-based models, but they can be used to relax assumptions
made by generating population-based models. As such, each of these frame-
works may be more or less appropriate depending on the purpose at hand.
Indeed, for the purpose of testing the robustness of a generalization, one
ought to examine as many representational frameworks as possible.

To test the representational robustness of the three key properties of the
L-V model, we will translate its variables, parameters, and other assump-
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tions into individual-based terms.7 In our discussion of the L-V model, we
showed how the model makes assumptions about the growth and death rates
of the predator and prey populations and about the interaction between
these populations in the form of predation. Any individual-based version of
this model must re-conceive these processes in terms of individuals; it must
make assumptions about the births and deaths of discrete predator and prey
individuals, and the interactions between these discrete individuals in the
form of predation.

In our first IBM version of the L-V model, we assume that individuals
move about on a 30x30 toroidal lattice composed of 900 cells. Each individ-
ual has three variables: a binary variable denoting whether the individual
is predator or prey, and two integer variables denoting a vertical and hori-
zontal position on the lattice. Time is discrete; a global clock advances one
tick at a time. For each tick of the global clock, all individuals execute a
fixed set of rules that determine how they move on the lattice, reproduce,
die, and interact with others. The rules for predators are as follows:

Movement rule: Move one step in a random direction.

Predation rule: Check if there are any prey on the current cell. If so,
select one at random, catch it, and pick a random number from 1 to
100. If this number is less than or equal to the parameter predator-
conversion then reproduce.

Death rule: Pick a random number from 1 to 100. If this number is less
than or equal to the parameter predator-death-probability then repro-
duce.

These rules, when executed by each predator on the lattice, correspond
roughly to assumptions made in the L-V model, but notice that these rules
are not determined by that model. To translate any population-based model
into individual-based terms, we must make explicit assumptions about in-
dividuals that were either implicit or undefined in the population-based
version. This means that there is typically no uniquely correct way to carry
out the translation from population-based to individual-based models.

The IBM assumes that predators move randomly on a two dimensional
toroidal lattice. The L-V model, on the other hand, makes no assumption

7The models described using this section and the next were developed in NetLogo v.
3.0.2. (Wilensky, 1999) The source code for the models is available as an appendix to the
preprint of this paper at the PhilSci archive, http://philsci-archive.pitt.edu/. Our models
have some similarities to another NetLogo model called ‘Wolf Sheep Predation’ (Wilensky,
1998). For more information on ‘Wolf Sheep Predation,’ see Wilensky & Reisman (2006).
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about movement at all. It is consistent with the assumptions that all indi-
viduals move, that some individuals move, or even, strictly speaking, that
no individuals move. It places no explicit constraints on what intrinsic or
environmental factors determine movement or even whether the predator
and prey move in a probabilistic or deterministic fashion.

Moreover, the IBM assumes that predators catch prey by randomly se-
lecting one prey individual from all that are located on the same cell. Once
again, this is one of the many possible assumptions we could have made
to develop an IBM analogue of the L-V model. We could have represented
predation without using a spatial lattice, where predators randomly choose
prey individuals from the whole prey population. We could also have used
a different predation rule on a lattice. For example, the predation rule
could have stated “if a predator is within 1 cell of a prey, then the prey is
consumed.” The L-V model does not strictly correspond to any of these par-
ticular assumptions. A modeler who wishes to construct an IBM, however,
must make an explicit decision about them.

The rules for the prey are as follows:

Movement rule: Move one step in a random direction.

Reproduction rule: Pick a random number from 1 to 100. If this number
is less than or equal to the parameter prey-reproduction-probability
then reproduce.

Death rule: Check if I have been caught by a predator. If so, then die.

Together, the predator and prey rule-sets comprise one possible IBM
interpretation of the L-V model. Notice that, as with the L-V model, this
IBM defines a negatively coupled predator-prey system. Ceteris paribus,
increasing the abundance of predators in the IBM will increase the chance
that prey are captured, and thus decrease the expected number of prey.
Ceteris paribus, increasing the abundance of prey will increase the chance
of a predation instance. Since each such instance has a fixed probability
of resulting in predator reproduction, increasing the abundance of prey will
increase the expected number of predators. It is critical that the IBM does
indeed define a negatively coupled system, because negative coupling is a
necessary condition for a system to demonstrate the Volterra Principle.

To understand the dynamic consequences of this model, we set up a com-
putational representation of a lattice, place predator and prey individuals on
the lattice, iteratively execute the predator or prey rules for each individual,
and observe how the system evolves over time. In the initial state used in
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Figure 5: Simple Individual-based Model Corresponding to the Lotka-
Volterra Model. In this trial, both species go extinct.

our simulations, there are V prey and P predators positioned randomly on
the lattice.

After observing many simulations with differing parameter sets and ini-
tial conditions, we concluded that this IBM does not exhibit stable oscilla-
tions in the numbers of predators and prey, the first property of the L-V
model.8 There are sets of parameters which initially result in oscillations,
but these oscillations are unstable, increasing in amplitude over time until
either both species have gone extinct (figure 5), or else the predators have
gone extinct and only the prey remain (figure 6). Because this is a prob-
abilistic model, the same parameter set and initial conditions sometimes
results in two-species extinction and sometime results in the prey surviving.
Figures 5 and 6 correspond to this situation: both used the same parameter
set and initial conditions.

Regardless of the parameters, one or both species invariably goes extinct.
8The model was analyzed in the following ranges of parameter values and initial con-

ditions: All runs had pred-conversion-prob = 0.5, prey-conversion-prob =0.2 and ran until
the predators died out (always fewer than 3000 cycles). We varied the following parameters
prey-reproduction-prob varied between 0.05 and 0.15, pred-death-prob varied between 0.05
and 0.09, pred-inital-number varied between 50 and 500, and prey-inital-number varied
between 50 and 500.
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Figure 6: Simple Individual-based Model Corresponding to the Lotka-
Volterra Model. In this trial, only the predators go extinct.

This result suggests that stable oscillations, or even stable coexistence, is
not a representationally robust feature of predator-prey systems. Since the
IBM does not exhibit stable oscillations, it clearly will not exhibit property
2 of the L-V model, neutrally stable oscillations.

Finally, since the IBM does not exhibit coexistence of species, even in the
short or medium term, it cannot exhibit the Volterra Property. Testing this
property requires examining the effect of a biocide on average abundances,
which are either P̂ = 0 and V̂ = ∞ or P̂ = 0 and V̂ = 0 for this model.
Coexistence of predator species is a precondition for the Volterra Principle
to hold. To test the representational robustness of this property and the
Volterra Principle itself, we must begin with a predator-prey model which
has quasi-stable behavior for a reasonable length of time.

Since we would like to test for the robustness of the Volterra Principle,
we need to find an IBM that exhibits coexistence of the two species. In the
next section, we describe a modification that does stabilize the populations.
It achieves this stabilization by adding density-dependence.
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7 Density Dependent IBM

One source of instability in the previous model is the lack of limits on popu-
lation growth. The population oscillations tend to become more pronounced
with each successive cycle until the population of one or both of the species
falls too low and the species goes extinct. This suggests that if we introduce
a carrying capacity to limit the upward amplitude of the oscillations in this
model, extinction will be less likely.

How can we impose a carrying capacity on the model? The most direct
way is to assume a fixed global limit on the number of predators and prey,
yet this is not in the spirit of individual-based modeling; it is a top-down
assumption about populations, rather than a bottom-up assumption about
individuals. A bottom-up alternative is to impose a limited resource into
the model, such as space. For example, we might assume that at most one
predator can occupy any cell in the lattice at a given time.9 Another type
of limited resource is food for the prey population. For example, if the prey
are herbivores, the limited availability of edible foliage in the environment
imposes a natural carrying capacity on the prey.

In our density-dependent IBM, we assume that the size of the prey pop-
ulation is limited by availability of food in the environment (for convenience,
we will call the food “foliage,” but it could represent any naturally available
resource). We assume that each cell of the lattice either contains a unit of fo-
liage or not. When eaten by a prey individual, the unit of foliage disappears,
and it then has a certain probability (set by the parameter foliage-growth-
prob of reappearing at any subsequent tick. These assumptions suggest a
revised rule-set for prey with a new foliage rule and a revised death rule:

Movement rule: Move one step in a random direction.

Foraging rule: Check if there is foliage on the current cell. If so, eat it,
and pick a random number from 1 to 100. If this number is less than
or equal to the parameter prey-conversion-probability then reproduce.

Death rule: Check if I have been caught by a predator. If so, then die.

The rule-set for predators remains the same.
Does this modified IBM, with density-dependence, display any of the

three basic properties of the L-V model discussed earlier? After investigat-
ing many different initial states and parameter sets, we concluded that there

9A limitation to this assumption is that carrying capacity would be directly linked
to the size of the lattice, so there would be no independent way to vary lattice size and
carrying capacity.
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is a wide range of parameter conditions for which this model does exhibit
oscillations in the numbers of predators and prey for very long periods of
time.10 The amplitude of the population oscillations tends to vary stochasti-
cally over time, but both species do persist and oscillate for long runs of the
model.11 Thus, the density-dependent IBM exhibits an analogue of prop-
erty 1 of the L-V model; for very long time intervals, it exhibits undampened
oscillations.12

The model does not appear to exhibit property 2, neutrally stable oscil-
lations. Under all the conditions we examined which result in stable oscil-
lations, the average abundance of predators and prey did not depend upon
initial conditions or prior population sizes. After perturbing the populations
away from their equilibrium temporal average sizes, the populations would
always return to their former averages. This suggests that property 2 of the
L-V model is not representationally robust.

To check whether the model exhibits the Volterra Property, we must
somehow simulate the effect of a general biocide that would elevate the death
rate of both the predators and of the prey. Since there are no parameters
in the model that correspond directly to these rates, we must manipulate
them indirectly. Fortunately, the individual-based framework makes it easy
to simulate the dispersion of a general biocide into our model system. We
performed the following perturbation: First, initiate a typical simulation of
the predator-prey system and wait long enough for the temporal average
size of each population to reach a steady state. Next, randomly select some
cells on the lattice to become “poisonous,” so that any predator or prey that
lands on the cell will die. Since movement is random, predators and prey
are equally likely to die as a result of landing on poisonous cells and the
result is an increase in the death rate of both populations. Finally, wait for
the temporal average size of each population to reach a new equilibrium.

After performing this perturbation over a broad range of parameter set-
tings13, we found that introduction of a general biocide tended to increase
the average size of the prey population and to decrease the average size of

10The same parameter sets were investigated for this model as in the non-DD IBM. We
set the foliage-growth-probability to 0.05 for these simulations.

11Since this is a stochastic model, both species will go extinct in the long run with
probability one. However, we examined the model for very long runs (1 × 106 ticks)
and observed oscillations. If the frequency of the oscillations is calibrated to the famous
Lynx-Hare predator prey system, then this is equivalent to about 100,000 years.

12Technically, these oscillations are called long-lived transient oscillations.
13Again, we used the same set of parameter settings, but ran the simulation for 3000

cycles, with the “poison” interval between cycles 1001 and 2000. We set biocide-abundance
to 0.018 for these simulations.
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Figure 7: Density-dependent Individual-based Predation Model with Bio-
cide perturbation.

the predator population (figure 7). Thus, this revised IBM does exhibit
the Volterra Property. Moreover, since this model also defines a negatively
coupled predator-prey system, it satisfies the Volterra Principle. In other
words, despite moving from a population to an individual-based framework,
and despite altering various assumptions of the L-V model, the Volterra
Principle still held up. This suggests that it is representationally robust.

The analyses in this paper show that the Volterra Principle exhibits
three kinds of robustness. Naturally, the scope of the Volterra Principle’s
robustness is not a settled matter. Analysis could continue with different
and more realistic models. For example, we might investigate a model where
reproduction and death are tied only indirectly to food consumption via the
introduction of rudimentary elements of metabolism.14 In fact, tests for
robustness are always an ongoing matter. It is unlikely that a theoretical
community will settle the issue of a theorem’s robustness once and for all.
Rather, ongoing investigation attempts to demonstrate the scope of a robust
theorem.

14We developed such a model and tested it successfully for the Volterra Principle. As
with the other individual-based models, it can be found at the PhilSci archive.

24



8 Conclusions

Volterra discovered the principle which bears his name in 1926. By con-
structing a series of models, all similar but differing in some respects, ecol-
ogists have shown that the Volterra Principle is robust and accurately de-
scribes a real ecological phenomenon — when two species in a negatively
coupled, predator-prey relationship coexist, a general biocide will favor the
prey over the predators. In our discussion of four models of predation, we
have outlined three kinds of robustness analysis which correspond to three
different levels at which a result’s robustness can be determined in modeling.
These are parameter robustness, a result’s surviving changes to the param-
eter set of a dynamical model; structural robustness, a result’s surviving
changes to the mathematical structure of the model; and finally, representa-
tional robustness, a result’s surviving changes to the whole representational
framework in which the model has been framed. Like all of the most im-
portant robust theorems, the Volterra Principle possesses all three kinds of
robustness.

Robustness analyses of the Volterra Principle carried out by the eco-
logical community, as well as the novel representational robustness analysis
carried out in this paper, has several implications. Most importantly, ro-
bustness analysis has shown that the principle is highly general and will
hold under a wide variety of conditions. It is not dependent on idealizing
assumptions made in various models of predation. While any given model
contains idealizing assumptions, analysis across models has allowed us to
control for them and factor them out. The principle is also insensitive to
many other detailed assumptions made in the modeling process (for exam-
ple, concerning the mode of animal movement, reproduction, metabolism,
etc.) This insensitivity to detail helps explain why the Volterra Principle has
been confirmed in widely disparate natural systems, from cottony cushion
scale insects and vedalia beetles to cod, Norwegian lobster, and sharks. In
contrast, robustness analysis has revealed that several other properties of
the original Lotka-Volterra model, including stable oscillations and neutral
stability, are not robust in this respect.

Levins wrote in 1966 that “our truth is at the intersection of independent
lies.” We do not see models, even the highly idealized ones involved in the
robustness analysis of the Volterra Principle as ‘lies,’ yet we think Levins’
point is correct. When studying phenomena as complex and hard to measure
as predation, scientists often have little choice but to build approximate,
idealized models. Finding that some result is robust across these models,
however, is an important step in the process of a theorem’s confirmation.

25



References

Bartell, S. M., Breck, J. M., Gardner, R. H., & Brenkert, A. L. (1986).
Individual parapeter perturbation and error analysis of fish bioener-
getics models. Canadian Journal of Fisheries and Aquatic Sciences,
5, 160–168.

Berryman, A. A.(1992). The origins and evolution of predator-prey theory.
Ecology, 73 (5), 1530–1535.

Briggs, C. J., & Hoopes, M. F. (2004). Stabalizing effects in spatial
parasitoid-host and predator-prey models: A review. Theoretical Pop-
ulation Biology, 65, 299–315.

Catagirone, L. E., & Doutt, R. L. (1989). The history of the vedalia beetle
importation to california and its impact on the development of biolog-
ical control. Annual Review of Entomology, 34, 1–16.

DeAngelis, D. L., & Mooij, W. M.(2005). Individual-based modeling of eco-
logical and evolutionary processes. Annual Review of Ecology, Evolu-
tion, and Systematics, 36, 147–168.

Donalson, D. D., & Nisbet, R. M.(1999). Population dynamics and spatial
scale: Effects of system size on population persistence. Ecology, 80,
2492–2507.

Dreschler, M. (1998). Sensitivity analysis of complex models. Biological
Conservation, 86, 401–412.

Elton, C. S. (1958). The ecology of invasions by animals and plants. New
York: Wiley.

Forber, P.(in preperation). On biological possibility and confirmation.
Grimm, V., & Railsback, S. F.(2005). Individual-based modeling and ecology.

Princeton: Princeton University Press.
Hanski, I., Henttonen, H., Korpimaki, E., Oksanen, L., & Turchin, P.(2001).

Small-roden dynamics and predation. Ecology, 82 (6), 1505–1520.
Holling, C. S. (1959). The components of predation as revealed by a study

of small mammal predation of the european pine sawfly. Canadian
Journal of Entomology, 91, 293–320.

Jurrell, D. J. (2005). Local spatial structure and predator-prey dynamics:
Counterintuitive effects of prey enrichment. The American Naturalist,
166, 354–367.
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