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Abstract 

Various causal details of the genetic process of translation have been singled out to 

account for its privileged status as a “code”. We explicate the biological uses of coding 

talk by characterizing a class of special causal processes in which topological properties 

are the causally relevant ones.  This class contains both the process of translation and 

communication theoretic coding processes as special cases.  We propose a formalism in 

terms of graphs for expressing our theory of biological codes and discuss its utility in 

understanding biological systems.   
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1. Introduction 

Molecular biology is pervaded by talk of coding and information (Sarkar 1996; Maynard 

Smith 2000). For example, the process of translation⎯the causal process leading from 

RNA to primary protein structure⎯is almost always discussed explicitly in terms of a 

“code,” often because of the special causal role played by RNA in the process. At the 

same time, the particular content of that talk is often deeply ambiguous. In the case of 

translation, a variety of details have been singled out to account for its privileged status. 

Maynard Smith (2000), for instance, suggests that translation is distinguished from other 

causally specific processes by the “arbitrariness” of the correspondence between codons 

and amino acids (though see (Godfrey-Smith 2000a)). In a similar vein, Godfrey-Smith 

(2000a; 2000b) argues that translation is unusual because of two aspects of the causal 

relation. First, the mechanisms by which an mRNA causes a protein to be produced are 

insensitive to any “direct” (Godfrey-Smith 2000a, 204) chemical affinities between 

codons and amino acids; any codon could (in a “chemical possibility” sense) be paired 

with any amino acid given an appropriate tRNA mediator. Second, the specification of 

protein primary structure from the sequence of mRNA monomers is in accord with a 

“combinatorial rule” (Godfrey-Smith 2000a, 204) that functions roughly as a locality 

constraint on the RNA → protein mapping: the primary structure of a segment of protein 

depends only on the structure of a corresponding small segment of RNA. More recently, 

Šustar (2007) has emphasized this locality condition, claiming that the causal role of 

DNA in protein production is privileged because local perturbations of a DNA 

molecule—e.g., a single base substitution—produce strictly local perturbations in the 

primary structure of the protein it causes.  
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All of these proposed conditions are, in important ways, vague. Moreover, even if they 

can be made sufficiently precise, it is unclear whether they offer anything more than a 

redescription of translation; a theory of coding should not simply be a restatement of the 

canonical case of biological coding. And even if one or all of these criteria serve to 

distinguish on independent grounds translation from processes such as glycolysis, no 

account is offered as to why such properties imply that translation is a code. Our central 

goal here is to argue for a particular explication of (at least) the biological uses of coding 

talk that is not subject to these concerns. In particular, we provide a precise 

characterization of a class of special causal processes that contains communication 

theoretic coding processes as a special case, as well as the canonical example of coding in 

molecular biology. 

 

2. Topological Causation 

We focus on biochemical processes that potentially warrant identification with codes, and 

in particular, on processes that result in the production of some macromolecule. In 

general, to say that some property P of an object is causally relevant in a process is to say 

that a potential manipulation of the value of P results in a different effect produced after 

introduction of the object at the start of the causal process under consideration. This 

account of causal relevance is closely related to the interventionist characterization of 

direct causation found in Woodward (2003), but is intended only to pick out one feature 

of causation, not provide a definition of it (see also (Eberhardt and Scheines 2006; 

Woodward and Hitchcock 2003)). The causally relevant properties for biochemical and 
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molecular biological processes typically include such features as molecular mass, charge 

distribution, and geometry.  

 

Code-like processes, however, involve what we call topological causation: a casual 

process in which objects’ topological1 features⎯loosely, the neighborhood relations 

amongst connected subunits⎯are the causally relevant properties. In processes involving 

topological causation, the outcome is influenced by details about adjacencies of distinct 

subunits, but not necessarily by other features of the molecules. In topological causation, 

a specific intervention on the connectedness of distinct molecular subunits in the reactant 

molecule produces a profound change in what, if any, products result. In contrast, 

independently varying (within bounds) the high-level geometrical properties (e.g. shape) 

or physical properties (e.g. mass) of the reactant results in little or no change in the 

outcome of the process. Of course, most biological processes are not based on topological 

causation: in enzyme catalyzed hydrolysis, for example, the details of enzyme mass and 

charge distribution determine which substrate it interacts with and which bonds are 

                                                 
1 This term does not refer to the “rubber-sheet geometry” of algebraic topology, which is 

concerned with the invariant properties of donuts and coffee cups and other continuous 

topological spaces.  By ‘topological properties’ we mean to refer strictly to a relation of 

adjacency that holds amongst a finite, discrete set of elements, particularly things like 

atoms in a molecule.  As early as 1955, Rashevsky was explicitly using “topological” in 

this sense when speaking of molecular structure.  This usage is currently standard in the 

field of chemical graph theory (Pogliani 2000), which is also called “molecular topology” 

(Diudea, Gutman, and Jantschi 2001, 1).  
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cleaved; the “lock and key” model of enzyme action explicitly emphasizes the causal 

primacy of geometry; and so on. We argue, however, that causal dependence upon 

topology is exactly the relevant feature for a process to be potentially a code in 

(something like) the classical communication theory (CT) sense of the term.  

 

As an illustration of topological causation, consider the case of translation. If the 

transcript to be translated is any moderately large mRNA molecule, then it will typically 

fold into a more compact and complex structure than a simple chain. One particularly 

common structure, formed through intramolecular base pairing, is the RNA “hairpin.” In 

a hairpin, two distant segments of a single RNA strand stick together, resulting in the 

formation of a loop between them. Under normal cell conditions, the stability of a typical 

hairpin structure depends on the ambient cytosolic salt concentration. In vitro, the same is 

true; salt concentration determines the conformation of the RNA and one can force either 

the hairpin or chain-like geometry to dominate. In the case of in vitro translation of 

mRNA transcripts using a cell-free system2, salt concentration may be changed (within 

limits) without adversely affecting translation accuracy (though translation rates may 

suffer).  

 

Suppose then that we have an mRNA transcript, M, which causes the production of some 

protein P under conditions in which our in vitro translation system functions “normally” 

(produces consistent polypeptide products, etc.). Suppose further that the transcript M 

                                                 
2 A cell-free system is simply a solution of the components of the translation system 

maintained in a test-tube rather than a living cell. 
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maintains either a hairpin or chain-like conformation depending on salt concentration. 

We can now test the assertion that the set of neighborhood relations of distinct codons 

(and not molecular geometry) is the causally relevant factor determining the precise 

protein product of the process. If we make an appropriate3 change in a single base of M 

(by substitution) we can, for a moderately sized hairpin, create a new molecule M’ that is 

effectively identical in geometry to the original M. However, the polypeptide product will 

be P’, a protein differing from P by a single amino acid. An intervention on neighborhood 

relations alone produces a different outcome. Now suppose that we instead raise the salt 

concentration to a point at which M is no longer in a hairpin conformation but the other 

components of the translation apparatus are still capable of functioning. The resulting 

effect is still production of P; an intervention on geometry alone has no impact on the 

terminus of the causal chain.  

 

Though we speak of intervening on high-level geometry without altering topology, 

topological properties are not independent of low-level geometric and physical 

properties.  What is considered a subunit or an adjacency relation will depend on the 

underlying physics and chemistry of a given system4.  For instance, in the hairpin 

example, codons were taken to be coherent subunits, stable objects which can stand in the 

                                                 
3 Because the genetic code is degenerate, not all changes will be causally efficacious. 

4 This dependence of topology on low-level physical and geometric properties may in 

fact be an instance of full-fledged supervenience in some cases or domains.  Whether or 

not it is actually a supervenience relation is irrelevant to both the notion of biological 

code we develop here, and the question of whether such codes exist. 
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relation of adjacency to one another; the adjacency relation was based on the presence of 

a covalent bond between the sugars of distinct codons, and not on hydrogen bonding 

between the bases.  A codon has a particular charge, geometry, etc. that allows it to be 

distinguished as a subunit, and so the topology of the hairpin depends in some sense on 

the physical and chemical properties of the things identified as subunits.  But the choice 

of which molecular components constitute subunits and which chemico-physical relations 

count as neighborhood relations is crucially not arbitrary in many domains.  Given the 

typical energies at which translation occurs, hydrogen bonds are much shorter-lived than 

covalent bonds, making the latter natural candidates for an adjacency relation.  Similarly, 

atoms and—as we argue below—certain groups of atoms constitute stable and chemically 

distinct objects that are in some sense natural subunits.  This situation is in contrast to the 

conventionality of the low-level characteristics of subunits and adjacency relations in 

human communication codes. Morse Code, for instance, is a correspondence between 

patterns of dots and dashes and characters of the English alphabet, represented by real-

world objects, such as long and short flashes of light or pulses of high voltage on an 

electrical cable.  It is entirely arbitrary what we choose to constitute a short pulse or a 

high voltage, so long as we are consistent; similarly, whether a gap counts as an adjacent 

pulse or an entirely new message is also arbitrary.  For biochemical systems that 

instantiate codes, on the other hand, the choice is made “by nature,” and so there are 

objectively better or worse ways to identify subunits and the associated topology. 

 

The notion of topological causation corresponds to a basic intuition about CT codes: real-

world instantiations of encoding and decoding depend only on topology, rather than other 
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features of the signal. The transmission and reception of a message in Morse Code over 

electrical cable depends on two causal processes: (i) the production of a series of pulses 

of high voltage encoding some printed English text and (ii) the production of a printed 

English text corresponding to the received series of pulses. Each of these processes, as 

they are carried out in the world, involve topological causation, since the actual lengths of 

light pulses, or the exact values of the high and low voltages, are not causally relevant in 

determining which English text is produced in decoding. The arrangement⎯the 

collection of neighborhood relations amongst dots and dashes, and the existence of 

particular objects to fill those roles⎯is all that matters. Similarly, insofar as the text of 

this paper plays some causal role in eliciting particular thoughts or concepts, only the 

neighborhood relations amongst characters are relevant. The text color, chemical 

properties of the ink, or actual print size are all causally irrelevant (at least to a first 

approximation). 

 

Topological causation also provides a coherent explanation for the special features of 

translation highlighted by Godfrey-Smith (2000a). Specifically, he says that the causal 

process of translation appears to be a code because “…genetic specification of protein 

primary structure is done via a combinatorial rule and via mechanisms that are insensitive 

to any direct chemical affinities between codons and the corresponding amino acids” 

(2000a, 204). The appeal to a “combinatorial rule” can be read as the positive assertion 

that combinations of distinct subunits—the topological properties of an mRNA 

transcript—are causally relevant to determining which protein gets produced. The 
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requirement that the mechanisms involved are insensitive to the chemical affinities of 

codons implies the absence of causal impact for non-topological properties.  

 

Both instantiated CT codes (e.g., Morse code) and some biological processes (e.g. 

translation) exhibit features of topological causation, but similarity of features is 

obviously insufficient to show that they are identical. One must further show that the 

relevant features of those biological processes can be systematically formalized and 

expressed in terms of the mathematical relation of CT coding. Since the relevant features 

are topological, any formal representation of those processes and molecules as “codes” 

must be capable of representing the full set of neighborhood relations within any given 

molecule. Graphs, and undirected graphs more specifically, provide the most appropriate 

representations of topological properties. An undirected graph has vertices and edges, 

where the edges are unordered pairs of vertices that represent, in the most general sense, 

neighborhood relations amongst objects (vertices). Typically, vertices in an undirected 

graph are unmarked. Because we are interested in representing neighborhood relations 

amongst subunits of many different and discernible types (such as atoms of particular 

elements or codons of a particular sort), we augment the graphs with a labeling function 

that maps vertices to particular types or “marks.” These undirected graphs with marking 

functions are, we argue, sufficient and minimal abstractions for representing the 

properties that are relevant in topological causation.5

 

                                                 
5 All formal details about the framework, including precise details about this type of 

graph, can be found in the appendices. 
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The simplest schema for representing molecules using this framework is: atoms map to 

vertices marked by an appropriate label indicating the element, and covalent bonds map 

to edges. The motivation for this identification is simple: atoms are, so far as 

biochemistry is concerned, the smallest, distinct and indivisible units of a molecule, and 

chemical bonds are the physical entities that maintain atoms in fixed neighborhood 

relations. Of course, we are not claiming that this is the only conceivable set of 

correspondence rules between molecules and graph representations of them. But 

regardless of the specific rules chosen, the edges of the graph must correspond to the 

stable patterns of subunit arrangement in the molecule. Stability is largely a matter of 

degree, and one’s choice of threshold for considering a neighborhood relation to be stable 

will likely depend on which molecular system is under consideration. In some instances, 

one might consider hydrogen bonds sufficiently stable to warrant an edge, even though 

their bond life is significantly shorter than that of a covalent bond. Ionic bonds, given 

their high binding energy, are arguably equivalent to covalent bonds and one might 

choose to represent them the same way. At the present time, our account of biological 

codes requires only that we represent all covalent bonds, including double and triple 

bonds, with single edges. If vertices and edges are depicted as points and lines, this 

representation is similar to the standard notation in organic chemistry, though we do not 

use that precise shorthand (and we disregard differences between covalent bonds).  An 

example is shown in Figure 1, where uracil is depicted in both the standard representation 

of organic chemistry and as the marked graph obtained using our correspondence rules. 
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Figure 1  Uracil represented (a) in standard chemical notation and (b) as the 

corresponding graph using the relevant correspondence rules. 

 

Importantly, the justification of the undirected graph representation for topological 

properties of complex molecules makes no reference to coding. Rather, there are 

independent reasons to suppose that such graphs are faithful representations of relevant 

neighborhood relations in biological molecules. Atomic nuclei are the smallest stable 

units capable of chemical recombination. They are neither created nor destroyed in 

biochemical processes and are, so far as physics is concerned, the smallest objects 

capable of stable neighborhood relations in a macromolecule.6 Similarly, covalent and 

                                                 
6 Subatomic particles, e.g. neutrons and protons, are found in non-localized states in 

which neighborhood relations are not well-defined.  

 12



ionic bonds are arguably the basic physical entities that maintain these neighborhood 

relations between atoms. The motivation for these correspondence rules is thus strictly 

physical and invokes only chemical and physical concepts. Coding relations are not 

required by our representation scheme, but arise (if at all) only as a matter of contingent 

fact. 

 

3. The Proposed Formalism 

Any formal explication of ‘biological code’ should provide for the unproblematic uses of 

the term in theoretical and experimental contexts. At the very least, any proposal must 

imply that the “genetic code” in translation—the correspondence between triplets of 

RNA and amino acids—is an instance of biological coding. A suitable formalism should 

also enable inquiry into whether various non-genetic systems in molecular biology 

instantiate codes. The definition of ‘biological code’ should not be simply an ad hoc re-

description of translation; if it is not at least possible that other, non-genetic causal 

systems are codes, then the term ‘biological code’ provides no content beyond the term 

‘translation.’ More generally, this requirement that any formal definition potentially 

apply to previously unconsidered systems ensures that it can serve a theoretical role in 

explanation and prediction. This section presents a formal theory of coding that is (a) 

based on marked, undirected graphs, and (b) satisfies these desiderata for such a term, 

including a basis in the concept of topological causation. Moreover, as shown later, the 

classical communication theory of coding emerges as a special case of this framework.  
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In general, coding is a relation between sets (possibly of infinite cardinality) of objects. 

Our particular focus is on sets of graphs that can be defined in terms of (i) potential 

marked vertices; and (ii) recursive formation rules.7 A set of graphs S is complete with 

respect to a set of formation rules and marked vertex types iff S contains all graphs that 

can be assembled from those vertices using the formation rules (possibly infinitely many 

applications of formation rules). We define a graphical code to be a mapping⎯either 

one-one or many-one⎯from a complete set of graphs GA to a not-necessarily-complete 

set of graphs GB. Such a relation between GA and GB is a code because each graph 

“source message” in GA corresponds to exactly one graph “code message” in GB. The 

correspondence rules between biological macromolecules and their graph representations 

mean that this extended formalism for coding can be immediately applied to biological 

processes. The resulting definition of coding for biological processes can be stated 

informally as follows:  

 

A biological code is any relation between two sets of macromolecules A and B that 

satisfies three conditions: 

1. Elements of A induce elements of the set B under normal cell conditions. 

2. GA (the set of graphs representing the members of A) is complete relative to 

formation rules corresponding to actual biological processes. 

                                                 
7 All technical details concerning coding⎯including definitions of completeness, 

formation rules, and so on⎯are provided in Appendix A. A precise statement of natural 

source alphabets (see below) is located in Appendix B. 

 14



3. There is a graphical code between GA and GB such that if ga ∈ GA maps to gb 

∈ GB, then a ∈ A must induce b ∈ B. 

 

This definition introduces an additional term⎯‘induce’ in conditions (1) and (3)⎯as 

shorthand for a particular type of causal arrangement. Suppose that the introduction of 

some structure a ∈ A initiates a causal chain resulting in the production or presence of 

any structure in B under normal cell conditions. We say that a induces b ∈ B just when a 

has this causal role, and it always causes the presence of the particular member b. 

Condition (1) in the definition of biological code is thus not as strong as it might seem, 

since most molecular cell processes can be described in this way. There are, however, 

various stochastic processes that do not have deterministic outcomes. For instance, in 

microtubule formation, introduction of the molecules of α- and β-tubulin initiates the 

production of a microtubule of stochastically determined length. Such processes are 

excluded by this definition from being biological codes, precisely because there is no 

definite “message” for which the initiating structure can be said to code.  A salient 

example in which condition (3) fails to hold may be the relation between DNA sequences 

and mature mRNA transcripts.  Because there are often multiple ways in which a given 

precursor mRNA transcript may be spliced, there are generally multiple mature mRNA 

transcripts corresponding to a single DNA sequence.  The mapping from the set of graphs 

representing DNA molecules to the set representing mature mRNA transcripts is 

generally one-many or even many-many. 
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Clearly, translation is a relation of biological coding between the set of possible mature 

mRNA transcripts—those that have already been spliced—and the set of polypeptide 

products. The process of translation satisfies condition (1), since introduction of a 

particular mRNA transcript into the proper portion of a functioning cell always causes the 

production of the same polypeptide, if it causes production of anything at all. There are 

natural correspondence rules for representing the set of all possible mRNA transcripts 

(including arbitrarily long ones) by a set of graphs, and that set of graphs is complete 

with respect to the collection of marked vertices representing atoms, and with respect to a 

set of simple formation rules that model the biochemical facts of transcript production. 

Finally, there is a many-one mapping from this complete set of graphs to the set of graphs 

representing polypeptide products that captures the biological mapping from mRNA 

transcripts to polypeptides. Use of coding talk in the canonical example⎯the “genetic 

code”⎯is thus justified according to this definition.   

 

This definition of biological code places no inherent restrictions on which biological 

processes might be codes. For instance, glycans are complex molecules composed 

predominantly of linked sugars, and are involved in an enormous array of molecular cell 

processes. Causal processes involving glycans may potentially provide instances of 

complex biological coding. Unlike the topological structure of DNA or RNA, the sugar 

portions of glycans are typically highly branched (Varki et al. 1999). Furthermore, the 

effect of introducing a particular glycan into certain signaling reactions appears to be 

determined by the sequence of simple sugars along multiple branches. Gabius (1997; 

2000) has argued that the discrete arrangements of groups of short, nearby branches on 
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some glycans constitute a code that determines the signal receptor to which the glycan 

will bind. If the set of possible glycans is complete with respect to the cellular processes 

that generate them, then such a system would be an excellent candidate for a code 

involving non-chain-like molecules. This code would share what we have argued are the 

essential properties of code relations—namely that sets of molecules are related through 

topological causation—but would involve macromolecules with more complex subunit 

relations than those in the chain-like molecules of the genetic code. In particular, coding 

relations involving glycans cannot be captured using representations based on strings of 

characters. 

 

The notion of topological causation emphasizes the importance of neighborhood relations 

amongst distinguishable subunits, but does not specify any necessary scale for the 

subunits. In the particular case of macromolecules, the most natural correspondence rules 

provide graphs with vertices for atoms, and edges for the stable bonds between atoms. 

While those rules allow for unambiguous application of the definition of biological code 

without ad hoc decisions about representation, they also sometimes include too much 

information: namely, the total set of neighborhood relations amongst atoms. In many 

cases, the relevant set of distinguishable subunits is some larger collection of atoms (e.g. 

the nucleotide monomers in an RNA polymer). We define a natural alphabet to be any 

set of subgraphs that can be used to express the graphs in a graph set in terms of 

“characters” larger than a vertex. Natural source alphabets are the “coarsest” (i.e., with 

the largest subgraph “characters”) natural alphabets in which one can rewrite the graphs 

of the source set and still preserve the coding relation in which it stands. A natural source 
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alphabet represents the set of subunits⎯possibly much larger than atoms⎯whose large-

scale neighborhood relations are the causally relevant ones. Given sets of graphs that 

stand in a coding relation, we have developed reliable, though typically computationally 

intractable, algorithms for discovering natural source alphabets. 

 

Natural source alphabets are particularly important for biological systems. Once one set 

of molecules is known to stand in a coding relation with another, the natural source 

alphabet provides the causally relevant subunits. Representation in terms of natural 

source alphabets eliminates irrelevant detail and fixes, in some sense, the proper scale at 

which to model coding processes. They also form a natural basis on which to construct 

definitions of information applicable to molecular processes. 

 

The notion of ‘graphical code’ presented here is a generalization of communication 

theory coding. It is easy to see qualitatively that standard CT coding is a “special case” of 

graphical coding, since the graph sets containing only linear, chain-like graphs (graphs 

for which every vertex has no more than two neighbors) are obviously isomorphic to sets 

of strings. For this restricted collection of graph sets, ‘code’ corresponds to8: 

 

                                                 
8 A typical definition of code in terms of strings is: “Let the set of symbols comprising a 

given alphabet be called S = {s1, s2, …, sq}. Then we define a code as a mapping of all 

possible sequences of symbols of S into sequences of symbols of some other alphabet X = 

{x1, x2, …, xp}” (Abramson 1963). This is clearly equivalent to our notion of ‘code’ for 

the restricted collection of chain-like graph sets. 
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Given a finite alphabet of symbols S = {s1, s2, …, sn}, a communication 

theory code is a one-one or many-one mapping from a complete set of 

strings A to a set of strings B. 

 

The notion of ‘graphical code’ that we have presented here also emerges immediately if 

one starts with a standard CT definition of coding, but generalizes to use sets of marked 

vertices instead of alphabets, and sets of marked graphs instead of sets of strings. Our 

explication of coding is a conservative extension of the standard communication theory 

notion of ‘code’ to allow for the possibility of undirected, marked graphs as the 

messages. It is the most natural understanding of coding between graphical objects, rather 

than between strings. 

 

4. Two objections 

Our appeal to classical CT runs counter to a pervasive sentiment in the philosophical 

literature: namely, that CT is inadequate for understanding codes in biology. At least in 

part, we think that this categorical rejection could derive from a mistaken conflation of 

“codes for” and “carries information about.” If these two notions are taken to be 

equivalent, then the so-called “parity thesis” would ipso facto defeat any CT-based theory 

of coding. The parity thesis is the claim that one cannot use the concept of CT 

information to pick out a privileged class of bio-molecules. Specifically, Griffiths (2001, 

396) suggests that the application of CT to biological systems requires the adoption of a 

“causal notion of information” derived from Dretske (1981), and so information is passed 

between two systems whenever a channel exists between them.  This is the case “when 
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the state of one is systematically causally related to the other, so that the state of the 

sender can be discovered by observing the state of the receiver” (Griffiths 2001, 397). 

Because causal information makes reference only to the causal relations, there is no non-

arbitrary way to distinguish between channel conditions (or noise sources) and the signal: 

there is parity amongst the set of causally linked systems (i.e., the various biological 

molecules and cell structures) and so none can be privileged as the information source. 

Thus (the argument continues), DNA cannot be viewed as special in carrying information 

because other factors can just as well be referred to in this way; cell conditions could be 

the “signal” and DNA the “channel conditions/noise.” If biological coding is based on or 

identical to causal information, then we have no way of determining which biological 

molecules are “signal” (e.g., presumably DNA) and which are “noise.”  

 

In contrast, we take coding to be conceptually more fundamental than information, and 

aim (in future work) to use the present concept of biological code as the basis for a theory 

of biological information. In this, we more closely follow Shannon’s original approach in 

developing CT (Shannon 1948). While it is only implicit in Shannon’s definition of a 

communication system, a channel is partially defined by a set of coding relations: a 

communication system exists only when a transmitter exists, and a transmitter is defined 

by the coding relation which it instantiates. Similarly, receivers are defined by the 

decoding relation that they instantiate. In an abstract communication system, noise in a 

channel is a source of stochastic errors introduced into the signal. Unlike transmitters, 

sources of noise (and other channel conditions) do not stand in coding relations with the 

destination. There is thus an asymmetry in the definition of a communication system that, 
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in all but the most trivial cases, enables us to distinguish the signal from the noise in a 

principled manner. In Shannon’s account, the presence of a coding relation is at least 

logically independent of whether there is transfer of information, and perhaps even 

logically prior to it. We agree that parity is a theoretical possibility between two systems 

that causally influence a third, but deny that all such causal relations fit the abstract 

schema of a communication system; in practice, we do not get to choose which systems 

may be viewed as sources and which as channel conditions or noise sources.  By 

requiring that the coding relation hold, some physical systems are privileged as 

instantiations of communication theoretic transmitters or receivers and parity is broken—

the parity thesis does not preclude a substantive application of communication theory, at 

least with respect to coding.  By appealing to the fact that biological coding relations 

(which are independently discoverable) characterize the channel but not sources of noise 

or background conditions affecting the channel, our notion of biological coding might be 

used to provide a theory of biological information that is immune from concerns over 

parity. 

 

Having established that there are no prima facie inconsistencies in taking a CT approach, 

it remains to defend our choice of formal representations. The coding relation holds 

between sets of objects, and so the fact that those objects are graphs does no work in 

explaining what a code is. The properties of a code do not depend on the properties of 

graphs; rather, graphs are used to express the features of a code. In that case, one might 

object that the formalism could just as easily be developed using some other type of 

representation, such as strings, and so nothing is really added by this generalization of CT 
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coding. Our justification for graphs is two-fold. First, graphs allow for perspicuous and 

easily defended correspondence rules between molecules and their appropriate 

representations. Analogous rules for other representational schemes would necessarily be 

more complex. For instance, one might consider coding relations using representations of 

DNA as strings of characters, as in Yockey (1992). There is, however, no a priori reason 

to represent DNA as a string of characters, unless one already knows that DNA is 

involved in a coding relation with a particular structure. But such a justification is clearly 

circular, as the coding relation can only be justified by use of the string representation of 

DNA. Even if there were some independent justification of string representation 

correspondence rules for DNA, there is no a priori reason to think that all molecules 

involved in biological coding can be represented as strings of characters using the same 

rules.  

 

N N

N N
 

Figure 2  A marked graph containing a cycle. 
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Second, there is a clear correspondence between properties of graphs and properties of 

molecules. Graphs allow properties of the structures they represent to be directly “read 

off.” To make this clear, consider a simple example. Suppose the marked graph shown in 

Figure 2 is a representation of a simple molecule—maybe a nitrogen ring of some sort—

and that this graph was constructed in accord with the correspondence rules described 

above. The graphical property “has a cycle” (i.e., there is a closed path) corresponds 

directly to the ring-like topology of the molecule being represented. Consider instead the 

equivalent representation in terms of an adjacency matrix9: 

0 1 0 1 

1 0 1 0 

 0 1 0 1 

 1 0 1 0 

 

This matrix may in turn be represented by the string: 0101101001011010. However, there 

is no straightforward correspondence between properties of this string and properties of 

the molecule. Of course, properties of the molecule could be extracted from the string, 

but the relevant transformation is neither transparent nor readily extensible to other 

molecules. Unlike the graphical representation, properties of the string representation are 

in part determined or mediated by the intervening representational apparatus (e.g., 

adjacency matrices). 

                                                 
9 An element aij of an adjacency matrix is 1 if there is an edge between the ith and jth 

vertices of the graph it describes and 0 otherwise.   
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There are arguably an infinite number of equivalent representations, and so we claim that 

one should prefer a representational scheme that has both straightforward correspondence 

rules, and also clear relationships between properties of the representation and of the 

represented. A representational scheme that permits one to directly read off properties is a 

much more useful scheme than one that does not. Graphs are the most natural and, we 

contend, the most useful such representation. 

 

5. Conclusion 

A standard claim in molecular biology (and philosophy of biology) is that some of the 

molecules or molecular processes in living cells form a privileged class that can be 

described, perhaps heuristically, using ‘coding’ talk. We have argued that these processes 

are in fact instances of topological causation: casual processes in which the relevant 

properties are the neighborhood relations of subunits. By representing molecules with 

marked, undirected graphs, we conservatively extend classical coding theory to formulate 

a precise definition of biological code that is not ad hoc, that captures the canonical case 

of translation, and that can substantiate theoretical uses of code terminology in molecular 

biology. Our theory of biological codes also facilitates the identification of natural source 

alphabets, the causally relevant subunits involved in a coding process. The implications 

of natural source alphabets for an information theory of biology are clear: where before 

only ad hoc reference to the sequence of chain-like polymers was used to justify 

measures of information in macromolecules, now relevant units of information may be 

discerned in systems that are isomorphic to part of a communication system in a rigorous 
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sense. This gives both a principled reason why the monomers of DNA should be 

considered possible states of the source and provides a tool for evaluating information in 

novel settings. Of course, such an information theory remains to be developed, but the 

present account gives a principled basis for the language of coding in molecular biology. 
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Appendix A: Biological codes 

 

An undirected graph G is a pair of finite sets: the vertex set, V(G); and the edge set, 

E(G). V(G) contains n vertices. E(G) contains m unique two-element subsets (unordered 

pairs) of V(G) for which both elements are distinct. A marked graph is a graph G that has 

associated with it a marking function LG:V(G)  M that maps vertices of the graph onto a 

set M containing a finite number of elements. The elements of M are understood to be 

labels, indicating or marking each vertex in the graph with a type.  

 

An alphabet S = {s1, s2, …, sn} is a finite set of single marked vertices (which are, of 

course, graphs). A set of formation rules associated with an alphabet S is denoted FS = {fi 

| i = 1, 2, …, m} and consists of a finite set of partial functions that take marked graphs to 

marked graphs, where each function is a composition of four primitive operations: (1) 

addition of a marked vertex, (2) addition of an edge, (3) removal of a vertex, and (4) 

removal of an edge. Additionally, a set of formation rules must satisfy the following 

conditions: 

(1)  ∃i(fi(∅) ≠ ∅) (∅ is the empty graph) 

(2)  Let Β = ∪j fj(∅) be the set of "base cases" produced by FS. Then there exists at 

least one fj ∈ FS such that for some β ∈ Β 

 (2a)  fj(β) = τ and τ ∉ Β 

 (2b)  fj(β) and β have in common at least one vertex isomorphic to one in S 
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Condition (1) ensures that there are “base cases” generated by the formation rules. 

Condition (2) implies that at least one of the formation rules is non-trivial, in the sense of 

both using the input graph, and producing an output graph that is related to the input 

graph. 

 

Now use the following notation to describe the repeated application of formation rules: 

Σ1 = ∪j fj(∅) 

Σ2 = Σ1 ∪ (∪i,,j fi(σ1j)) 

Σ3 = Σ2 ∪ (∪i,,j fi(σ2j)) 

M 

where the σnj are the members of Σn. A complete graph set Σ with respect to S and FS is 

defined as follows: 

Σ = ∪j Σj     (complete graph set) 

 

Given the above definitions, we can now provide a formal statement of the notion of 

biological coding: The set of molecules A is a code for the set of molecules B if and only 

if: 

(1) Elements of the set A induce elements of the set B under normal cell 

conditions. Every a ∈ A induces some b ∈ B. 

(2) Let GA be the set of graphs representing the elements of A with respect to an 

alphabet of vertices S. Let FS be a set of formation rules representing the 

chemical or physical processes by which elements of A are generated in vivo 
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from the components represented by S. Then GA is complete with respect to S 

and FS.  

(3) There is a mapping (one-one or many-one) from GA to GB such that if ga maps 

to gb then a induces b where ga ∈ GA, gb ∈ GB, a ∈ A, b ∈ B and ga represents 

a and gb represents b. 

 

In the body of the paper, we argued that this definition generalizes the communication 

theory account of coding, which is defined on strings. Strings can be represented as 

graphs in which every vertex has degree less than or equal to two, though one must attend 

to certain details. Strings are inherently directional, in that they have a start and end: the 

string “aab” is not identical to “baa”. However, the chain-like graphs a—a—b and b—a—

a are identical. One can straightforwardly represent the directionality of strings by 

introducing additional elements into the set of marks. For instance, a mark a* can be used 

to indicate a “left” vertex of type a. If the formation rules and marking function are 

appropriately designed, then the resulting complete graph set is essentially a complete 

string set and the classical theory can be recovered. 
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Appendix B: Natural source alphabets 

 

Consider a subset S ⊆ V(G) of the vertex set of the graph G. The subgraph induced by S, 

denoted <S>, is the graph consisting of the vertices in S and all of the edges u—v in G 

such that u, v ∈ S (Buckley and Lewinter 2003). If G is a marked graph, then the vertices 

of the induced subgraph retain the same values of the marking function as they did in G.  

 

We can now capture the important idea that a set of subgraphs (and not just vertices) 

constitutes the appropriate alphabet for a set of graphs. A finite set Ν of connected, 

marked graphs is a natural alphabet of a set of graphs Σ if and only if: 

1. For every σ ∈ Σ there exists one and only one partition Q of V(σ) such that every 

q ∈ Q induces a connected subgraph <q> on V(σ) that is isomorphic to some η ∈ 

Ν.  

2. Suppose Q is the partition of V(σ1) that satisfies condition (1) for some σ1 ∈ Σ. 

Let Β1 be the set of connected graphs induced by the members of Q on V(σ1). 

Note that, since Q satisfies condition (1), Β1 ⊆ Ν. Let Β = ∪i Βi be the set of all 

graphs induced on the members of Σ by partitions satisfying (1). Then it must be 

the case that Β = Ν. 

 

Suppose that Ν is a natural alphabet for some graph set Σ. We use ΣN to denote the set of 

graphs in Σ rewritten in the “language” of Ν. Specifically, for each σ ∈ Σ, there is a 

corresponding σΝ ∈ ΣΝ that is constructed in the following manner. Let Q be the partition 
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of V(σ) satisfying condition (1) above. That is, Q is the partition of V(σ) such that every q 

∈ Q induces a connected subgraph on V(σ) that is isomorphic to a member of Ν. Then for 

each qi ∈ Q there is a vertex vi ∈ V(σΝ). The vertices of σΝ are marked and so there is 

associated with ΣΝ a marking function L: V(σΝ)  M where M is a finite set containing 

one element for every member of the natural alphabet Ν. Essentially, each vertex of a 

graph rewritten in the alphabet Ν is marked with a label indicating which subgraph was 

replaced by this vertex. The edge set of the new graph is determined via the following 

rule: if any vertex in qi shares an edge with any vertex in qj≠i ∈ Q then {vi, vj} ∈ E(σΝ). 

Constructed in this fashion, V(σΝ) and E(σΝ) define the graph σΝ (“σ rewritten in Ν”). 

There is no requirement that distinct graphs in Σ have distinct corresponding graphs in 

ΣΝ. For example, suppose Ν contains a—b (marked by x in ΣΝ) and the source set Σ 

contains:  

(i) a—b—a—b; and (ii) a—b—b—a. Both of these graphs correspond to the graph x—x in 

ΣΝ.  

 

Suppose we have some set Σ (complete with respect to the formation rules in F) that 

stands in a coding relation with some set Ξ. A natural alphabet N of Σ is a natural source 

alphabet if: 

(1) There exists a set of recurrence relations on graphs, FΝ, which makes ΣΝ 

complete and which satisfies: 

(1.1) |F| = |FΝ| 
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(1.2) For all σj ∈ Σ, if fi(σj) = σj’ for all j and for some fi ∈ F then there 

exists some fi
Ν ∈ FΝ such that fi

Ν(σj
Ν) = σj’

Ν for all j. Here, σj
Ν is the 

graph σj rewritten in the alphabet Ν. 

(1.3) If, for any σj ∈ Σ, σj and fi(σj) overlap (share at least one vertex) for 

all j, then so do σj
Ν and fi

Ν(σj
Ν). 

(2) The average number of vertices per graph in the set ΣΝ is as small as 

possible. 

(3) For all σ ∈ Σ, if σ maps to ξ in the code set, then σΝ maps to ξ and there is 

no σ’ such that σ’Ν = σΝ and σ’ maps to some ξ’ ≠ ξ. 
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