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Abstract. The aim of this paper is to provide a conceptual analy-
sis of the twin paradox (TwP) within a first-order logic framework.
We give a geometrical characterization of TwP and its variants,
for example, one without differential aging (No-TwP). It is shown
that TwP is not equivalent to the assumption of slowing down of
moving clocks and No-TwP is not equivalent to the Newtonian as-
sumption of the absoluteness of time. The connection of TwP and
a symmetry axiom of Special Relativity is also studied.

1. Introduction

Our general aim is to turn spacetime theories into axiomatic the-
ories of first-order logic and exhaustively investigate the relationship
between the axioms and the predictions of the theories. We work in the
first-order framework of [1], [2]. For reasons why to apply the axiomatic
method to spacetime theories see, for example, [7], [16], [18]. For rea-
sons why to stay within first-order logic when dealing with axiomatic
foundations see, for example, [3], [2, §Why FOL?], [25], [22].

The twin paradox ( TwP ) is one of the most famous predictions of
special relativity. It concerns a pair of twins. One of them stays at
home while the other leaves and returns. The paradox is constituted
by the fact that at the event of returning the traveler twin turns out to
be younger than the stay-at-home one. In this paper we concentrate
on the relation of TwP to the axioms and other consequences of special
relativity. Since the axiom systems used here allows only inertial mo-
tions for observers, we formulate the inertial approximation of TwP,
which is also called clock paradox in the literature. Logical investi-
gation of the full version of TwP needs more complex mathematical
apparatus, see [10], [21]. We also formulate variants of TwP where the
stay-at-home twin turns out to be the younger one (Anti-TwP) and
where no differential aging takes place (No-TwP).

Unfortunately, it is still not uncommon for people misinterpreting
the word ’paradox’ to look for contradictions in relativity theory, that
is why we think it important to note here that its original meaning is
“a statement that is seemingly contradictory and yet is actually true,”
that is, it has nothing to do with logical contradiction. Having the
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nearly century long fruitless debate in view, perhaps it would be better
to call the paradoxes of relativity theory simply effects, thus saying
twin effect instead of twin paradox, but for the time being it appears
to be a hopeless effort to have this usage generally accepted. Anyway,
we would like to emphasize that it is absolutely pointless to try to find
a logical contradiction in relativity theory, as its consistency is proved,
see [2].

In Section 2 we introduce a very basic axiom system Kinem0 of kine-
matics in which no relativistic effect is assumed. Kinem0 is a subtheory
of Newtonian kinematics and special relativity. In Section 3 we for-
mulate and prove a geometrical characterization of TwP, Anti-TwP
and No-TwP each within the models of Kinem0, see Corollary 3.3 and
Theorem 3.4. In Sections 4 and 5 we prove some surprising logical
consequences of the characterization. In Theorem 4.1 we show that
the absoluteness of time (in the Newtonian sense) is not equivalent to
that there is no twin paradox (No-TwP). Similarly, in Theorem 5.3 we
show that the slowing down of moving clocks is not equivalent to TwP.
In Theorem 5.4 we show that a symmetry axiom of special relativity is
strictly stronger than TwP.

We try to be as self-contained as possible. First occurrences of con-
cepts used in this work are set in boldface to make them easier to find.
We also use colored text and boxes to help the reader to find the axioms,
notations, etc. Throughout this work, if-and-only-if is abbreviated to
iff.

2. A first-order axiom system of kinematics

Our basic concepts are explained as follows. Here we deal with kine-
matics, that is, we with the motion of bodies. We represent motion as
the changing of spatial location in time. Thus we use reference frames
for coordinatizing events (set of bodies). Quantities are used for mark-
ing time and space. The structure of quantities is assumed to be an
ordered field in place of the field of real numbers. For simplicity, we
associate reference frames with special bodies which we call observers.
Observations are formulated by means of the world-view relation.

In an axiomatic approach to relativity, it is more natural taking re-
lations of bodies (particles) as basic concepts instead of events. That
is not uncommon in the literature, see, for example, Ax [3], Benda [4].
However, a large variety of basic concepts occur in the different axioma-
tizations of special relativity, see, for example, Goldblatt [6], Mundy [11],
[12], Pambuccian [13], Rob [14], Suppes [19], Schutz [16], [15], [17].

Using ordered fields in place of the field of real numbers increases
the flexibility of the theory and minimizes the amount of mathemat-
ical presuppositions. For further motivation in this direction see, for
example, Ax [3]. Similar remarks apply to our other flexibility-oriented
decisions, for example, to keep the dimension of spacetime as a variable.
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Using observers in place of coordinate systems or reference frames
is only a matter of didactic convenience and visualization. There are
several reasons for using observers (or coordinate systems, or reference
frames) instead of a single observer-independent spacetime structure.
One is that it helps in weeding out unnecessary axioms from our theo-
ries. Nevertheless, we state and emphasize the equivalence between
observer-oriented and observer-independent approaches to relativity
theory, see, for example, [8, §4.5].

Keeping the foregoing in mind, let us now set up the first-order
language of our axiom systems. First we fix a natural number d ≥ 2
for the dimension of spacetime. We use a two-sorted language: B is
the sort of bodies and Q is the sort of quantities. Our language
contains the following non-logical symbols:

• unary relation symbol IOb (for observers);
• binary function symbols + , · and a binary relation symbol <

(for the field operations and the ordering on Q); and
• a 2 + d-ary relation symbol W (for world-view relation).

The variables of sort B are denoted by m, k, a, b and c; and those of
sort Q are denoted by p, q, r, x and y.

IOb(m) is translated as “m is an observer.” We use the world-view re-
lation W to speak about coordinatization by translating W(m, b, x1, . . . , xd)
as “observerm coordinatizes body b at spacetime location 〈x1, . . . , xd〉,”
that is, at space location 〈x2, . . . , xd〉 at instant x1.

Body terms are just the variables of sort B. Quantity terms are
the variables of sort Q and what can be built up from quantity terms
by using the field operations. IOb(m), W(m, b, x1, . . . , xd), m = b,
x1 = x2 and x1 < x2 are the so-called atomic formulas of our first-order
language, where m, b, x1, . . . , xd can be arbitrary terms of the required
sorts. The formulas of our first-order language are built up from
these atomic formulas by using the logical connectives not (¬ ), and

(∧ ), or (∨ ), implies (=⇒ ), if-and-only-if (⇐⇒ ) and the quantifiers
exists x ( ∃x ) and for all x (∀x ) for every variable x. To abbreviate
formulas of first-order logic we often omit parentheses according to
the following convention. Quantifiers bind as long as they can, and ∧
binds stronger than =⇒. For example, ∀x ϕ ∧ ψ =⇒ ∃y δ ∧ η means
∀x

(
(ϕ ∧ ψ) =⇒ ∃y(δ ∧ η)

)
.

We use first-order set theory as a meta theory to be able to speak
about model theoretical terms like models, validity, etc. The models

of this language are of the form

M = 〈B,Q; IObM,+M, ·M, <M,WM〉, (1)

where B and Q are nonempty sets and IObM is a unary relation on B,
+M and ·M are binary functions and <M is a binary relation on Q, and
WM is a relation on B × B × Q × · · · × Q. Formulas are interpreted in
M in the usual way.
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We formulate each axiom at two levels. First we give an intuitive
formulation, then a precise formalization using our logical notation
(which can easily be translated into first-order formulas by inserting
the first-order definitions into the formalizations). We seek to formulate
easily understandable axioms in first-order logic.

We use the notation Qn := Q × . . . × Q (n-times) for the set of
all n-tuples of elements of Q. If p ∈ Qn, then we assume that p =
〈p1, . . . , pn〉, that is, pi ∈ Q denotes the i-th component of the n-tuple p.
We write W(m, b, p) in place of W(m, b, p1, . . . , pd), and we write ∀p in
place of ∀p1, . . . , ∀pd, etc. To abbreviate formulas, we also use bounded
quantifiers in the following way: ∀xϕ(x) =⇒ ψ and ∃xϕ(x) =⇒ ψ are
abbreviated to ∀x ∈ ϕ ψ and ∃x ∈ ϕ ψ, respectively. For example, we
write

∀m ∈ IOb ∃b ∈ B ∃p ∈ Qd W (m, b, p) (2)

instead of

∀m ∃b ∃p IOb(m) =⇒ B(b) ∧ Q(p1) ∧ . . . ∧ Q(pd) ∧W (m, b, p) (3)

to formulate that every observer observes a body somewhere.
To be able to add, multiply and compare measurements of observers,

we provide an algebraic structure for the set of quantities with the help
of the following axiom which can be formulated within first-order logic.

AxEOF : The quantity part 〈Q; +, ·, <〉 is a Euclidean ordered
field (i.e., a linearly ordered field in which positive elements
have square roots).

For the first-order definition of linearly ordered field see, for example,
[5]. We use the usual field operations 0, 1,−, /,

√
definable within

first-order logic. We also use the vector-space structure of Qn, that
is, if p, q ∈ Qn and λ ∈ Q, then p+ q,−p, λ · p ∈ Qn; the length of
p ∈ Qn is defined as

|p| :=
√
p2

1 + . . .+ p2
n (4)

for any n ≥ 1, and o := 〈0, . . . , 0〉 denotes the origin.
We need some definitions and notations to formulate our other ax-

ioms. Qd is called the coordinate system and its elements are referred
to as coordinate points. We use the notations

pσ := 〈p2, . . . , pd〉 and pτ := p1 (5)

for the space component and for the time component of p ∈ Qd,
respectively.

Our first axiom on observers simply states that each observer thinks
that he is stationary in the origin of the space part of his coordinate
system.
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Figure 1. Illustration of the basic definitions

AxSelf : An observer observes himself at a coordinate point iff the
space component of this point is the origin:

∀m ∈ IOb ∀p ∈ Qd W (m,m, p) ⇐⇒ pσ = o. (6)

The event (the set of bodies) observed by observer m at coordinate
point p is denoted by evm(p), that is,

evm(p) := { b ∈ B : W(m, b, p) } , (7)

and the event-function of m is the function that maps coordinate
point p to event evm(p). Let Evm denote the set of nonempty events
coordinatized by observer m, that is,

Evm := { evm(p) : evm(p) 6= ∅ } , (8)

and Ev denote the set of all observed events, that is,

Ev := { e ∈ Evm : m ∈ IOb } . (9)

Our next axiom states that the events observed by the observers are
the same.

AxEv : Every observer coordinatizes the same events:

∀m, k ∈ IOb ∀p ∈ Qd ∃q ∈ Qd evm(p) = evk(q). (10)
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We define the coordinate-function of observerm, in symbols Crdm,
as the inverse of the event-function, that is,

Crdm := ev−1

m , (11)

where R−1 := {〈y, x〉 : 〈x, y〉 ∈ R} is the first-order definition of the in-

verse of binary relation R. We note that by this definition, coordinate-
functions are only binary relations.

Convention 2.1. Whenever we write Crdm(e), we mean that there
is a unique q ∈ Qd such that evm(q) = e, and this unique q is denoted
by Crdm(e). That is, if we talk about the value Crdm(e), we postulate
that it exists and is unique (by the present convention).

The time of event e according to observer m is defined as

timem(e) :=Crdm(e)τ , (12)

and the elapsed time between events e1 and e2 measured by observer
m is defined as

timem(e1, e2) := |timem(e1) − timem(e2)|; (13)

timem(e1, e2) is called the proper time measured by m between e1 and e2
if m ∈ e1 ∩ e2. We note that whenever we write timem, we assume that
the events in its argument have unique coordinates by Convention 2.1.

The coordinate-domain of observer m, in symbols Cdm, is the set
of coordinate points where m observes something, that is,

Cdm :=
{
p ∈ Qd : evm(p) 6= ∅

}
. (14)

The world-view transformation between the coordinate-domains of
observers k and m is defined as

wk
m := { 〈q, p〉 ∈ Cdk × Cdm : evk(q) = evm(p) } . (15)

We note that by this definition, world-view transformations are only
binary relations.

Convention 2.2. Whenever we write wk
m(q), we mean there is a

unique p ∈ Qd such that 〈q, p〉 ∈ wk
m, and this p is denoted by wk

m(q).

Let 1t := 〈1, 0, . . . , 0〉. The time-unit vector of k according to m
is defined as

1k
m :=wk

m(1t) − wk
m(o). (16)

The world-line of body b according to observer m is defined as the
set of coordinate points where b was observed by m, that is,

wlm(b) :=
{
p ∈ Qd : b ∈ evm(p)

}
. (17)

AxLinTime : The world-lines of observers are lines and time is
elapsing uniformly on them:

∀m, k ∈ IOb wlm(k) =
{
wlm(o) + λ · 1k

m : λ ∈ Q
}
∧

∀p, q ∈ wlm(k) timek

(
evm(p), evm(q)

)
·
∣∣1k

m

∣∣ = |p− q|.
(18)
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Let us collect the axioms introduced so far in an axiom system:

Kinem0 := {AxEOF,AxSelf,AxLinTime,AxEv } (19)

Let us note that Kinem0 is a very weak axiom system of kinematics.

3. The Geometrical Characterization

To formulate TwP, first we have to formulate the situations in which
it can occur. We say that observer m observes observers a, b and c
in a twin paradox situation at events e, ea and ec iff a ∈ ea ∩ e,
b ∈ ea ∩ ec, c ∈ e ∩ ec, b 6∈ e and timem(ea) < timem(e) < timem(ec)
or timem(ea) > timem(e) > timem(ec), see Figure 2. This situation is
denoted by TwPm(âc, b) (ea, e, ec).

m

a

a

b

b

c

c

p

s q

o

r

e

ea

ec Ev
Crdm

b‡ a‡c‡

Figure 2. Illustration of relation TwPm(âc, b)(ea, e, ec)
and the proof of Proposition 3.2

Let a, b, c ∈ IOb and ea, e, eb ∈ Ev. Let time(âc < b) (ea, e, eb) be the
abbreviation of timea(ea, e)+timec(e, ec) < timeb(ea, ec). The definitions

of time(âc = b) (ea, e, eb) and time(âc > b) (ea, e, eb) are analogous.
Now we are able to formulate the twin paradox in our notations.

TwP : Every observer observes the twin paradox in every twin
paradox situation:

∀m, c, a, b ∈ IOb ∀e, ea, ec ∈ Evm

TwPm(âc, b)(ea, e, ec) =⇒ time(âc < b)(ea, e, ec).
(20)

We define noTwP and antiTwP by replacing < by = and > in the
formula TwP, respectively.
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Remark 3.1. For convenience, we quantify over events too. That
does not mean that we abandon our first order language. It is just a new
abbreviation that simplifies the formalization of our axioms. Instead
of events we could speak about observers and spacetime locations. For
example, instead of ∀e ∈ Evm φ we could write ∀p ∈ Cdm φ[e  
evm(p)], where none of p1 . . . pd occurs free in φ, and φ[e evm(p)] is the
formula achieved from φ by substituting evm(p) for e in all occurrences.
Similarly, we can replace e ∈ Evm by ∃p ∈ Cdm e = evm(p) and
∀e ∈ Ev by ∀m ∈ IOb ∀e ∈ Evm.

We say that q ∈ Qd is (strictly) between p ∈ Qd and r ∈ Qd iff there
is λ ∈ Q such that q = λp+ (1 − λ)r and 0 < λ < 1. This situation is
denoted by Bw (p, q, r).

Let p, q, r ∈ Qd and µ ∈ Q such that Bw(p, µq, r). In this case we
use notations Conv (p, q, r) and Conc (p, q, r) if 0 < µ < 1 and 1 < µ,
respectively.

p

q3
q2

q1

‡r, r
‡p

o

convex

flat

concave

Figure 3. Illustration of relations Conv(p, q1, r),
Bw(p, q2, r) and Conc(p, q3, r)

For convenience we introduce the following notation:

‡p :=

{
p if pt ≥ 0,

−p if pt < 0.
(21)

Proposition 3.2. Assume Kinem0. Let m, a, b, and c be observers

and e, ea and ec events such that TwPm(âc, b)(ea, e, ec). Then

time(âc < b)(ea, e, ec) ⇐⇒ Conv(‡1a
m,

‡1b
m,

‡1c
m) (22)

time(âc = b)(ea, e, ec) ⇐⇒ Bw(‡1a
m,

‡1b
m,

‡1c
m) (23)

time(âc > b)(ea, e, ec) ⇐⇒ Conc(‡1a
m,

‡1b
m,

‡1c
m) (24)

proof . Let m, a, b, and c be observers and e, ea and ec events such

that TwPm(âc, b)(ea, e, ec). Let us abbreviate the time-unit vectors
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‡1k
m to k‡ throughout this proof. Let p = Crdm(ea), q = Crdm(e) and

r = Crdm(ec). We have that p 6= r since pτ < rτ or rτ < pτ . Therefore,
by AxLinTime, the triangle pqr is nondegenerate since p, r ∈ wlm(k)
but q 6∈ wlm(b). Let us first show that b measures the same length of
time between ea and ec as a and c do together if Bw(a‡, b‡, c‡) holds.
Let s be the intersection of line pr and the line parallel to a‡c‡ through
q, see Figure 2. Then the triangles oa‡b‡ and pqs are similar; and the
triangles ob‡c‡ and rsq are also similar. Thus

|p− q|
|a‡| =

|p− s|
|b‡| and

|q − r|
|c‡| =

|s− r|
|b‡| (25)

hold. Thus by AxLinTime, we have that

∣∣∣timea(ea, e)
∣∣∣ +

∣∣∣timec(e, ec)
∣∣∣ =

|p− q|
|a‡| +

|q − r|
|c‡|

=
|p− s| + |s− r|

|b‡| =
|r − p|
|b‡| =

∣∣∣timec(ea, ec)
∣∣∣. (26)

Hence time(âc = b)(ea, e, ec) holds if Bw(a‡, b‡, c‡). By AxLinTime, b
measures more (less) time between ea and ec iff his time-unit vector
is shorter (longer). Thus we get that time(âc < b)(ea, e, ec) holds if
Conv(a‡, b‡, c‡), and time(âc > b)(ea, e, ec) holds if Conc(a‡, b‡, c‡). The
converse implications also hold since one of the relations Conv, Bw and
Conc holds for a‡, b‡ and c‡, and only one of the relations time(âc < b),
time(âc = b) and time(âc > b) can hold for events ea, e and ec. This

completes the proof of Proposition 3.2. �

A set H ⊆ Qd is called convex iff Conv(p, q, r) for all p, q, r ∈ H if
there is µ ∈ Q such that Bw(p, µq, r). We call H flat or concave if
Conv(p, q, r) is replaced by Bw(q, r, p) or Conc(r, p, q), respectively. Let
us define the Minkowski sphere here as

MS‡
m :=

{
‡1k

m : k ∈ IOb
}
. (27)

Now we can state the following corollary of Proposition 3.2.

Corollary 3.3. Assume Kinem0. Then

∀m ∈ IOb MS‡
m is convex =⇒ TwP, (28)

∀m ∈ IOb MS‡
m is flat =⇒ noTwP, (29)

∀m ∈ IOb MS‡
m is concave =⇒ antiTwP. (30)

The implications of the above corollary cannot be reversed because
there may be observers who are not part of any twin paradox situa-
tion. We can solve this problem by using the following axiom to shift
observers in order to create twin paradox situations.

AxShift : If an observer observes another observer with a certain
time-unit vector, he also observes still another observer with
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the same time-unit vector in every coordinate point of his co-
ordinate domain:

∀m, k ∈ IOb ∀p ∈ Cdm ∃h ∈ IOb h ∈ evm(p) ∧ 1k
m = 1h

m. (31)

Now we can reverse the above implications.

Theorem 3.4. Assume Kinem0 and AxShift. Then

TwP ⇐⇒ ∀m ∈ IOb MS‡
m is convex, (32)

noTwP ⇐⇒ ∀m ∈ IOb MS‡
m is flat, (33)

antiTwP ⇐⇒ ∀m ∈ IOb MS‡
m is concave. (34)

proof . By Corollary 3.3, we have to prove the “=⇒” part only. For

that, let us take three points from MS‡
m : a′, b′ and c′, such that there

is µ ∈ Q for which Bw(‡a′, µb′, ‡c′). By AxShift there are observers a,
b and c in a twin paradox situation such that 1a

m = a′, 1b
m = b′ and

1c
m = c′. Thus from Proposition 3.2 we get that MS‡

m has the desired

property. �

In the sections below we will use the following concept. Let Σ and
Γ be sets of formulas, and let ϕ and ψ be formulas of our language.
Then Σ logically implies ϕ, in symbols Σ |=ϕ, iff ϕ is true in every
model of Σ. To simplify our notations, we use the plus sign between
formulas and sets of formulas in the following way: Σ + Γ :=Σ ∪ Γ,
ϕ+ ψ := {ϕ, ψ} and Σ + ϕ :=Σ ∪ {ϕ}.
Remark 3.5. Convexity as used here is not far from convexity as
understood in geometry or in the case of functions. For example, in
the models of Kinem0 + AxThExp+ or SecRel0 + AxThExp, that we are
going to introduce below, the Minkowski Sphere MS‡

m is convex in our
sense if and only if the set of points above it, that is {p ∈ Qd : ∃q ∈
MS‡

m pτ ≥ qτ}, is convex in the geometrical sense.

Remark 3.6. Let us note that theorem Σ |= ϕ is the stronger, the
fewer axioms Σ contains, and similarly, Σ 6|= ϕ is the stronger, the more
axioms Σ contains.

Remark 3.7. All the theorems would remain valid if we replaced |=
by ⊢, that is, by the deductibility relation of first-order logic.

4. Consequences on kinematics

First let us investigate the connection of No-TwP and the Newtonian
assumption on the absoluteness of time.

AbsTime : Any observer measures the same elapsed time between
any two events:

∀m, k ∈ IOb ∀e1, e2 ∈ Ev timem(e1, e2) = timek(e1, e2). (35)
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To strengthen our axiom system, we introduce an axiom that ensures
the existence of several observers.

AxThExp+ : Observers can move in any direction at any finite
speed:

∀m ∈ IOb ∀p, q ∈ Qd pτ 6= qτ

=⇒ ∃k ∈ IOb k ∈ evm(p) ∩ evk(q).
(36)

By the following Theorem, NoTwP does not logically imply AbsTime.
Which is an astonishing fact since it means that we would not been
able to conclude that the time is absolute in the Newtonian sense even
if there had been no twin paradox in our world.

Theorem 4.1.

AxEOF + AbsTime |= noTwP, but (37)

Kinem0 + AxThExp+ + noTwP 6|= AbsTime. (38)

proof . Item (37) is easy.

To prove (38), we construct a model of Kinem0, AxThExp+ and
noTwP, in which AbsTime does not hold. Let 〈Q; +, ·, <〉 be any Eu-
clidean ordered field. Let B :=Qd × Qd. Let IOb := {〈p, q〉 ∈ B : pτ 6=
qτ}. Let

MS‡
〈1,0〉 :=

{
x ∈ Qd : xτ − x2 = 1 ∧ xτ > 0

}
. (39)

Let W (〈1, 0〉, 〈p, q〉, r) hold iff r is in line pq. Now the world-view
relation is given for observer 〈1, 0〉. For any other observer 〈p, q〉, let

w
〈p,q〉
〈1,0〉 be an affine transformation that takes o to p while its linear part

takes 1t to MS‡
〈1,0〉 ∩ {λ · (p − q) : λ ∈ Q} and fixes the other basis

vectors. From these world-view transformations, it is easy to define
the world-view relations of other observers. So the model is given. It
is also easy to see that Kinem0 and AxThExp+ are true in this model.
Since MS‡

〈1,0〉 is flat and the world-view transformations are affine ones,

it is clear that MS‡
m is flat for all m ∈ IOb. Hence noTwP is also true

in this model by Corollary 3.3. It is easy to see that AbsTime implies
that (1k

m)τ = ±1 for all m, k ∈ IOb. Hence AbsTime is not true in this

model; and that is what we wanted to prove. �

5. Consequences on special relativity theory

Now we are going to investigate the consequences on special relativity
of the characterization. To do so, let us extend our language by a new
unary relation Ph on B for photons and formulate an axiom about
the constancy of the speed of photons. For convenience, this speed is
chosen to be 1.
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AxPh0 : For every observer, there is a photon through two coor-
dinate points p and q iff the slope of p− q is 1:

∀m ∈ IOb ∀p, q ∈ Qd |pσ − qσ| = |pτ − qτ |
⇐⇒ Ph ∩ evm(p) ∩ evm(q) 6= ∅. (40)

Let us introduce a weakened axiom system of special relativity:

SpecReld
0
:= {AxEOF,AxSelf,AxPh0,AxEv } (41)

We note that if d ≥ 3, SpecReld
0

is strong enough to prove the most
important predictions of special relativity such as that moving clocks
get out of synchronism, see, for example, [1]. However, SpecReld

0
is

also weak enough not to prove every prediction of special relativity.
For example, it does not prove TwP or the slowing down of relatively
moving clocks. Thus it is possible to compare these predictions within
the models of SpecReld

0
. To investigate the logical connection between

them, let us formulate the slowing down effect on moving clocks within
our first-order logic framework.

SlowTime : Relatively moving observers’ clocks slow down:

∀m, k ∈ IOb wlm(k) 6= wlm(m) =⇒
∣∣(1k

m)τ

∣∣ > 1. (42)

To prove a theorem about the logical connection between SlowTime

and TwP, we need some definitions and theorems. A map ϕ̃ : Qd → Qd

is called field-automorphism-induced map iff there is an automor-
phism ϕ of the field 〈Q, ·,+〉 such that ϕ̃(p) = 〈ϕ(p1), . . . , ϕ(pd)〉 for
every p ∈ Qd.

Theorem 5.1. Let d ≥ 3. Let m, k ∈ IOb. Then

(1) If AxPh0 and AxEv are assumed, wk
m is a Poincaré transfor-

mation composed by a dilation D and a field-automorphism-
induced map ϕ̃.

(2) If AxPh0, AxEv and AxSymDist (defined below) are assumed, wk
m

is a Poincaré transformation.

On the proof. It is not hard to see that AxPh0 and AxEv imply that wk
m

is a bijection from Qd to Qd that preserves lines of slope 1. Hence Item
(1) is a consequence of the Alexandrov-Zeeman theorem generalized for
fields, see, for example, [23], [24].

Now let us see why Item (2) is true. By Item (1), it is easy to see
that there is a line l such that both l and its wk

m image are orthogonal
to the time-axis. Thus by AxSymDist, wk

m restricted to l is distance
preserving. Consequently, both dilation D and field-automorphism-
induced map ϕ̃ in Item (1) has to be the identity map. Hence wk

m is a

Poincaré transformation. �
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Lemma 5.2. Let d ≥ 3. Assume AxEOF, AxPh0, AxEv and AxLinTime.
Let m, a, b, c ∈ IOb and let ea, e, eb ∈ Ev. Then

TwPm(âc, b)(ea, e, ec) ⇐⇒ TwPb(âc, b)(ea, e, ec). (43)

proof . By (1) of Theorem 5.1, AxEOF, AxPh0 and AxEv imply that wb
m

is a composition of a Poincaré transformation, a dilation and a field-
automorphism-induced map. By AxLinTime, the field-automorphism is
trivial. Hence timem(e) is between timem(ea) and timem(ec) iff timeb(e)
is between timeb(ea) and timeb(ec). This completes the proof since the
other parts of the definition of TwP do not depend on observers m and
b. �

We have to weaken AxThExp+ since SpecReld
0

implies the impossibil-
ity of faster than light motion of observers if d ≥ 3, see, for example,
[1].

AxThExp : Observers can move in any direction at any speed less
than 1, that is, less than the speed of light:

∀m ∈ IOb ∀p, q ∈ Qd |pσ − qσ| < |pτ − qτ |
=⇒ ∃k ∈ IOb k ∈ evm(p) ∩ evk(q).

(44)

The following theorem shows that the slowing down of moving clocks
(SlowTime) is not logically equivalent to TwP.

Theorem 5.3. Let d ≥ 3. Then

SpecReld
0

+ AxLinTime + SlowTime |= TwP, but (45)

SpecReld
0

+ AxLinTime + AxThExp + TwP 6|= SlowTime. (46)

proof . Item (45) is clear by Lemma 5.2.

To prove Item (46), let us construct a model of SpecReld
0
, AxLinTime,

AxThExp and TwP, in which SlowTime does not hold. Let 〈Q; +, ·, <〉
be any Euclidean ordered field. Let B := Qd ×Qd. Let IOb := {〈p, q〉 ∈
B : |pσ − qσ| < |pτ − qτ |}. It is easy to see that there is a convex subset

M of Qd such that 1t ∈ M and |pτ | < 1 for some p ∈ M . Let MS‡
〈1,0〉

be such a convex subset of Qd. Let W (〈1, 0〉, 〈p, q〉, r) hold iff r is in
line pq. Now the world-view relation is given for observer 〈1, 0〉. For

any other observer 〈p, q〉, let w
〈p,q〉
〈1,0〉 be such a composition of a Lorentz

transformation, a dilation and a translation which takes o to p while
its linear part takes 1t to MS‡

〈1,0〉 ∩ {λ · (p− q) : λ ∈ Q} and fixes the

other basis vectors. It is easy to see that there is such a transformation.
From these world-view transformations, it is easy to define the world-
view relations of the other observers. So the model is given. It is also
easy to see that SpecReld

0
, AxLinTime and AxThExp+ are true in this

model. Since MS‡
〈1,0〉 is convex and the world-view transformations are

affine ones, it is clear that MS‡
m is convex for all m ∈ IOb. Hence
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TwP is also true in this model by Corollary 3.3. It is easy to see that
SlowTime is not true in this model since there is p ∈MS‡

〈1,0〉 such that

|pτ | < 1; and that is what we wanted to prove. �

To see one more consequence of our characterization, we introduce
a symmetry axiom called the symmetric distance axiom.

AxSymDist : If events e1 and e2 are simultaneous for both the ob-
servers m and k, then m and k agree as for the spatial distance
between e1 and e2:

∀m, k ∈ IOb ∀e1, e2 ∈ Ev timem(e1, e2) = timek(e1, e2) = 0

=⇒ distm(e1, e2) = distk(e1, e2),
(47)

where distm (e1, e2) is an abbreviation of |Crdm(e1)σ−Crdm(e2)σ|, and
it is called the spatial distance between events e1 and e2 according
to observer m.

Like the similar results of [20] and [21], the following theorem also
answers Question 4.2.17 of Andréka–Madarász–Németi [2]. It shows
that TwP is not logically equivalent to the symmetric distance axiom
of SpecRel.

Theorem 5.4. Let d ≥ 3. Then

SpecReld
0

+ AxSymDist |= TwP, but (48)

SpecReld
0

+ AxThExp + AxLinTime + TwP 6|= AxSymDist. (49)

proof . By (2) of Theorem 5.1, SpecReld
0

and AxSymDist imply that wk
m

is a Poincaré transformation for all m, k ∈ IOb. Hence

MS‡
m ⊆

{
p ∈ Qd : p2

τ − |pσ|2 = 1 ∧ pτ > 0
}
. (50)

Consequently, MS‡
m is convex. So by Corollary 3.3, TwP follows from

SpecReld
0

and AxSymDist.
Since SpecReld

0
and AxSymDist imply SlowTime if d ≥ 3, Item (48)

follows from Theorem 5.3. �

It is interesting that AxSymDist and SlowTime are equivalent in the
models of SpecReld

0
(and some auxiliary axiom) if the quantity part is

the field of real numbers. However, the assumption that the quantity
part is the field of real numbers cannot be formulated in any first-
order language of spacetime theories. Thus this equivalence cannot be
derived from first-order axioms in our language either.

Theorem 5.5. Assume SpecReld
0
, AxThExp, AxLinTime, AxShift, and

that Q is the field of real numbers. Then

SlowTime ⇐⇒ AxSymDist. (51)
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For proof of Theorem 5.5, see [21, §3].
This theorem is interesting because it shows that assuming only that

the moving clocks slow down in some degree implies the exact ratio of
the slowing down of moving clocks (since SpecRel0 +AxSymDist implies
the Poincaré group, see Theorem 5.1).

Question 5.6. Does Theorem 5.5 retains its validity if the assumption
that Q is the field of real numbers is removed? If not, is it still possible
to replace it by a first-order assumption, for example, by axiom schema
IND used in [9], [10], [21]?

6. Concluding remarks

We have seen that (the inertial approximation of) TwP can be char-
acterized geometrically within a weak axiom system of kinematics. We
have seen some consequences of this characterization, among others,
that TwP is logically weaker than the assumption of slowing down of
moving clocks or the AxSymDist axiom of special relativity. A future
task is to explore the logical connections between other assumptions
and predictions of relativity theories. For example, in [10] and [21],
SpecReld

0
+AxSymDist is extended to axiom system AccRel that logi-

cally implies the accelerated version of TwP, but the natural question
below raised by Theorem 5.4 has not been answered yet.

Question 6.1. Is it possible to weaken AxSymDist to TwP in AccRel

without losing the accelerated version of TwP as a consequence? See
Question 3.8 in [10].
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