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1 Introduction

Several philosophical problems exist regarding the applicability of mathe-
matics to the natural or empirical sciences. There are questions concerning
whether and how mathematics can be used in theories to represent vari-
ous aspects of the physical world. There are questions about whether and
how mathematics can play predictive roles in our theories about the natural
world. There are other questions as well. But one problem, it seems to me,
stands out as most difficult. This is the problem of providing an account of
how mathematics can play explanatory roles in empirical science. Of course,
this question presupposes that mathematics does play such explanatory roles,
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and there is far from universal agreement on whether that presupposition is
true. I will have more to say about this below.

So one question is: “Are there genuine mathematical explanations of
physical phenomena?”1 Another, and the one that will be the central con-
cern of this paper, is: “How can we understand mathematical explanations of
physical phenomena?” After briefly discussing the first question, the bulk of
this paper will concentrate on the second. In particular, I will examine a set
of approaches, fairly described as “mapping accounts,” that aim to provide
accounts of applied mathematics, including mathematical explanation. I will
argue that these approaches all fail to deal with the most difficult features
of mathematical explanation. This is to account for how mathematical ide-
alizations can have a role in physical explanations. Finally, I will suggest a
way to move forward—a way that requires a completely new approach to the
problems of applied mathematics.

2 Mathematical Explanations I: Entities

Why might one think that mathematics cannot play an explanatory role in
physical theory? Crudely speaking, one important reason is that mathemat-
ical objects—numbers, e.g.—are (if they exist at all) supposed to be abstract
entities. They are supposed to exist outside of the causal spacetime nexus
that constitutes the backdrop of all physical theories. If mathematical ob-
jects are abstract and acausal, then, if explanation in the natural sciences
is fundamentally causal, mathematical entities cannot play an explanatory
role.2 This objection is only as strong as the idea that all explanations in
physical theory are causal explanations. (And, of course, even weaker, if the
mathematical entities don’t exist at all!)

But, it seems to me that there are very good reasons to deny that all
physical explanations are causal explanations. The main reason is that if
one pays attention to explanations offered by physicists and applied mathe-
maticians it is very often the case that one finds no appeal to causes at all.
In fact, in many instances the various causal details need to be eliminated in

1This is the title of a paper by Alan Baker [1] who argues for an affirmative answer.
2In the context of the so-called indispensability debate, the acausal nature of mathe-

matical entities is sometimes taken to be evidence against, either their existence, or our
ability to know of their existence. See Colyvan [12, Chapter 3] for a discussion.
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order to gain genuine understanding of some phenomenon or other.3

Recent discussions of explanation in the philosophy of mathematics lit-
erature have focused on the indispensability argument. The idea is to try to
show that mathematical entities are indispensable for physical theory in that
they are indispensable for explanation.4 Many of the authors involved in this
discussion readily admit that not all explanation is causal, and they debate
the role of mathematical objects in noncausal explanation. [1, 12, 13] Some of
these examples have been subject to criticism by Melia [18, 19]. In response,
Baker has attempted to provide a clear cut example where mathematical
objects play an explanatory role.

Baker’s example is interesting and persuasive. He argues that one can ex-
plain why the life cycle period of North American cicadas is a prime number
of years (typically 13 and 17 years). Biologists have offered two evolutionary
accounts (one involving the avoidance of predators and the other involving
the avoidance of hybridization with similar subspecies). But both explana-
tions appeal to facts about prime numbers and the number-theoretic notion
of a lowest common multiple. [1, pp. 229–233]

Christopher Pincock, as well, provides a salient example of how a math-
ematical entity—a graph—with certain properties can play an explanatory
role. His example concerns the inability to walk across all of the bridges in
Königsberg returning to one’s starting point and crossing each bridge only
once. It is impossible to do so because the bridges and paths exhibit the
structure of a non-Eulerian graph. [22, pp. 257–259] This is an example
of a kind of abstract explanation—one that ignores (and requires that one
ignores) various physical details about the system of interest and appeals to
a particular abstract structure of the physical system. [22, p. 260] Many
other examples, of abstracting explanations exist. I have argued [4] that
what I call “asymptotic explanations” gain their explanatory power by the
systematic throwing away of various causal and physical details. However, I
disagree with Pincock’s claim that asymptotic explanations are a subspecies
of abstract explanations. [22, p. 260] At least I believe that, by and large,
asymptotic explanations often do not proceed by focusing on an abstract
structure realized by the physical system. This is important and I will dis-
cuss it in more detail below.

3See [4] for an extended discussion of how the elimination of (causal) detail can be
explanatory.

4Baker [1] discusses various aspects of this argument.
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I have no criticisms to offer of either Baker’s or Pincock’s examples. Nor
do I for most of the other examples of genuine mathematical explanation
of physical phenomena one finds in the literature, e.g. [12]. However, I
would like to point out one feature of both these examples and of most
others in the literature: They are designed to show that some mathematical
entity–a number or a graph (or some property of such an entity such as its
primeness or the fact that it is or is not Eulerian)—plays an explanatory
role. In other words, the aim of these examples is to show that mathematical
entities, despite their abstract nature, can still be physically explanatory.
I think that the reason for the focus on entities stems from the fact that
these discussions all grow out of the debate about the indispensability of
mathematics for natural science. The focus of that debate concerns reasons
to believe in the existence of mathematical entities or objects. As a result,
the authors have searched for examples demonstrating that mathematical
entities are explanatorily indispensable. For instance Baker says that

[d]espite their opposing positions, Colyvan and Melia agree that
establishing platonism stands or falls on whether specific examples
can be found from actual scientific practice in which ‘the postu-
lation of mathematical objects results in an increase in the same
kind of utility as that provided by the postulation of theoretical
entities’5. [1, p. 224]

Here the “kind of utility” with which we are concerned is, of course, explana-
tory utility.6

On the other hand, there are, I believe, (many) examples of mathematical
explanations of physical phenomenon that do not require that one associate
a mathematical entity or its properties with some physical structure had by
the system of interest. I present one of these in the next section. Following
this, in section 4, I will discuss the philosophical conceptions of applied math-
ematics that have been proposed to account for the kinds of mathematical
explanations we have been discussing.

5This latter phrase is from [19, p.75].
6Mary Leng argues that Colyvan’s and Baker’s examples can be explanatory even if the

mathematical entities don’t exist—that the explanatory utility of a mathematical model
“does not depend upon the actual existence of the [mathematical] objects posited by the
model.” [16, p. 167] As will become obvious, my interests here lie elsewhere.
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3 Mathematical Explanations II: Operations

In contrast to explanations that appeal to mathematical entities (or proper-
ties of such entities) to explain physical phenomena, there are explanations
which, while mathematical, do not make reference to such objects. Rather,
these explanations appeal to (or better “involve”) mathematical operations.
I have discussed some examples in previous publications. [4, 5]

Consider the explanation offered by condensed matter physics for the
so-called universality of critical phenomena. The explanandum is the re-
markable similarity in behavior of “fluids” of different molecular constitution
when at their respective critical points.7 Experimentally it is found that a
certain dimensionless number—a critical exponent—characterizes the virtu-
ally identical behavior of diverse systems at their respective (and different)
critical points. One would like to explain this remarkable universality of
behavior or, in philosophical terms, how this multiply realized behavior is
possible.8 Let me briefly introduce some of this terminology.

Consider the temperature-pressure diagram for a typical “fluid” in fig-
ure 1. The bold lines represents thermodynamic states in which two distinct
phases of the fluid (pairs of solid, liquid, and vapor) can coexist.9 Thus, the
lines represent states in which the system is undergoing a (first order) phase
transition. For instance, along the line between points A and C one will
find both liquid and vapor in the container—just what we see when the tea
kettle boils on the stovetop. At point C, the critical point, something strange
happens. Below the critical temperature Tc and below the critical pressure
Pc, the fluid exists in its vapor phase. Further, it is impossible, below Tc
and above Ta, to change the system from its vapor phase to the liquid phase
by increasing pressure without crossing the line A–C. In other words, below
Tc the system cannot pass from the vapor to the liquid phase without going
through a state in which both vapor and liquid are simultaneously present in
the container. Above the critical temperature, T > Tc, it suddenly becomes
possible to do this. Simply increase the temperature beyond Tc, increase the

7I put “fluids” in scare quotes because really there are many different kinds of systems
that exhibit the same critical behavior including magnets and because, as we will see
below, “fluids” can exhibit behavior that pre-theoretically we would not associate with
fluids—i.e., liquids.

8See [3] for a discussion of the relationship between universality and multiple realiz-
ability.

9Point A is actually a triple point—a state in which all three phases can coexist.
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Figure 1: Temperature-Pressure Phase Diagram for a “Fluid”

pressure beyond Pc and then decrease the temperature below Tc. This will be
a path, γ, through states in which the “fluid” changes from vapor to liquid
without ever being in a state where both phases coexist. The critical point
indicates the existence of a qualitative change in the behavior of the system.
Below Tc the distinction between liquid and vapor makes sense; above Tc,
it apparently does not. Thermodynamically, the qualitative distinction be-
tween different states of matter is represented by a singularity in a function
(the free energy) characterizing the system’s state.

Thus, mathematical singularities in the thermodynamic equations repre-
sent qualitative differences in the physical states of the fluid in the container.
As mentioned above, at the critical point, systems with radically different
microstructures exhibit behavior that mathematically is described by a par-
ticular number, the critical exponent β—the number is the same for the
diverse systems. At the simplest level, the critical behavior can be charac-
terized in terms of the behavior of a certain quantity, the so-called “order
parameter,” which for fluids is the difference in densities between the differ-
ent coexisting phases. So along the line A–C in figure 1 the order parameter,
Ψ, is the difference between the liquid and vapor densities:

Ψ = |ρliq − ρvap|.

Below the critical temperature, Tc, Ψ is nonzero indicating the simultaneous
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Figure 2: Coexistence Curve: Density vs. Temperature for a “Fluid”

existence of both liquid and vapor in the container. Above Tc, the order
parameter takes the value zero. Figure 2 exhibits the vanishing of the order
parameter Ψ at Tc. The heavy line is the coexistence curve with the vertical
“tie lines” indicating that at some specific temperature T ′, the liquid density
is ρliq(T

′) and the vapor density is ρvap(T
′). Note that at Tc the difference

between these two values vanishes.
One universal feature–a feature displayed by all of the distinct fluids

at their respective critical temperatures—is the fact that the coexistence
curves near each of these Tcs have the same shape. We can introduce a
“distance” measure called the “reduced temperature”, t, that allows us to
describe how far any system is from criticality. This allows us to compare
the critical behavior of different systems with different Tcs—different critical
temperatures. The reduced temperature is

t =

∣∣∣∣T − TcTc

∣∣∣∣ ,
and the universality claim amounts to the fact that the order parameter, Ψ,
for every fluid vanishes as some power β of t:

Ψ = |ρliq − ρvap| ∝ tβ.

The number β characterizes the shape of the coexistence curve in the neigh-
borhood of Tc. For instance, if the curve is a parabola, then β would be
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1/2—a result erroneously predicted by mean field theory. Experimentally, it
has been found that the β is not 1/2 but rather some number close to 0.33.

The explanatory question then is why the order parameters for various
physically distinct fluids (and even magnets where the order parameter is the
net magnetization) scale as a specific power law tβ. Condensed matter the-
orists have provided an explanation for this fact that involves the so-called
renormalization group.10 Without going into detail here, one essential feature
of the explanation provided is the invocation of the so-called thermodynamic
limit. This is the limit in which (roughly speaking) the number of particles of
the system, e.g., the number of H2O molecules in the tea kettle, approaches
infinity. And, of course, this is an idealization: water in real tea kettles con-
sists of a finite number of molecules. This limiting idealization is essential
for the explanation because for a finite number of particles the statistical
mechanical analogs of the thermodynamic functions cannot exhibit the non-
analytic behavior necessary to represent the qualitatively distinct behaviors
we observe.11 Kadanoff puts it as follows:

The existence of a phase transition requires an infinite system. No
phase transitions occur in systems with a finite number of degrees
of freedom. [15, p. 238]

The claim that the explanation of the existence of phase transitions and
of the universality of critical phenomena requires the thermodynamic limit
(that the limiting idealization is explanatorily essential) is not uncontrover-
sial. Some, like Craig Callender [11], argue that to accept this is to “take
thermodynamics too seriously.” I’ve argued in [5] that, to the contrary, on
this point we should take thermodynamics very seriously indeed.12 But the
main point here is that if I am right, and taking the thermodynamic limit is
an explanatory essential mathematical operation, then this is a case in which,
while we have a genuine mathematical explanation of physical phenomenon,
there is no appeal to the existence of mathematical entities or their properties.
Instead, the appeal is to a mathematical idealization resulting from a limit
operation that relates one model (the finite statistical mechanical model) to
another (the continuum thermodynamic model).

10See [15] for an account by one of the founders of the technique and [4, chapter 4] for
more a more philosophical discussion.

11For an extended discussion of essential or “ineliminable” idealizations in physics see
[14]. See also [5] for related work.

12See also, [2].
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There are other examples of this type of mathematical explanation. In
fact, I believe that most idealizations in applied mathematics can and should
be understood as the result of taking mathematical limits. In [4], for example,
I wrote extensively about how one can explain the fact that the spacings and
intensities of the bows in rainbows are the same, despite the fact that the
(causal) details of how each rainbow gets formed will be completely distinct—
for instance, the sizes and shapes of the raindrops will vary from rain shower
to rain shower. The explanation in this case also involves the taking of a
limit: In order to explain the universal pattern we witness in rainbows, we
need to examine the wave theory of light in the limit as the wavelength goes
to zero. When the wavelength equals zero, we are in the domain of ray theory
or geometrical optics and it turns out that stability properties of ray-theoretic
structures explain the universal rainbow pattern that we witness. [4, chapter
6] (See also [9, 6].) The important thing, again, is that the limiting operation
between models leading to the idealized description in terms of rays plays an
ineliminable role in the explanation of the physical pattern that we witness.

I will argue below that the “standard philosophical accounts of applied
mathematics” are unable to account for the role of limiting idealizations in
mathematical explanation. As a result, a completely new approach to the
applicability of mathematics is required.

4 Mapping Accounts: Strengths

What, then, are the “standard philosophical accounts of applied mathemat-
ics”? Given the relatively recent interest in the topic of the applicability of
mathematics, it isn’t clear that this is entirely a well-formed question. On
the other hand, recent investigators do seem to have an approach to appli-
cability on which, in broad outline, they agree. Bueno and Colyvan [10],
following Pincock [22], call such accounts “mapping accounts.”13 In a nut-
shell mapping accounts seek to explain the utility of mathematics in some
applied situation by demonstrating the existence of the right kind of map
from a mathematical structure to some appropriate physical structure.

Pincock [22] address the issue of how to interpret statements that arise
in applied mathematics. He calls these “mixed statements,” and holds that

13Bueno and Colyvan are at pains to argue that Pincock’s mapping account cannot be
the full story about the applicability of mathematics, and while I agree, I don’t believe
Pincock ever made such a strong claim.
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what all mixed statements have in common is “the occurrence of what seems
to be mathematical terms along with nonmathematical terms.” [22, p. 137]
An example of such a mixed statement is “the mass of the satellite is 100
kg.” Pincock’s proposal is that one can provide truth conditions for mixed
statements by providing an appropriate mapping from the mathematics to
physical situation. A very simple example is how to understand the mixed
claim: “There are 4 apples on the table.” [22, p. 145] On the mapping (or
“structuralist”) account favored by Pincock, this sentence comes out true
just in case “there is an isomorphism from [apples] to an initial segment of
the natural numbers ending with [4].” [22, pp. 145–146]

Pincock’s appeal to the non-Eulerian nature of certain graphs to account
for path restrictions on walking the bridges of Königsberg is another exam-
ple that fits with the mapping account. Here there is a mapping from the
graph structures in the mathematical domain to the structural relations be-
tween the actual bridges in Königsberg. Certain relations between parts of
the bridge system allow for a mapping between an appropriate graph and
those parts. In this case, as I’ve noted above, it seems that the existence
of this mapping enables us to provide a mathematical explanation of the
physical path restrictions; though, as Pincock rightly emphasizes, the ex-
planatory feature results from the abstraction involved in highlighting the
formal relational structures of the physical (bridge) system. [24, p. 257–259]

The point I wish to emphasize here is that underlying both the purely
representative aspects of (the mixed statements of) applied mathematics,
and the explanatory aspects, is the idea that the proper understanding of
applied mathematics involves some sort of mapping between mathematical
structures and the physical situation under investigation. While they criticize
Pincock’s position in various ways, Bueno and Colyvan [10], as well, endorse
the position that a proper account of the applicability of mathematics is to
be grounded in some kind of mapping between the mathematical domain and
the physical.

For instance, Bueno and Colyvan, in presenting what they call an “in-
ferential conception of the application of mathematics,” see themselves as
extending or building on the “pure” mapping account they attribute to Pin-
cock.14 They say

14I think Bueno and Colyvan are a bit uncharitable in their interpretation of Pincock.
They claim that according to Pincock “the existence of an appropriate mapping from a
mathematical structure to a physical structure is sufficient to fully explain the particular
application of the mathematical structure in question.” [10, p. 1] I don’t see Pincock as
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[w]hy is it that mathematics is so useful in empirical science? One
answer is simply that mathematics is a rich source of structures and
therein lays its utility. Some mathematical structure is either de-
signed to, or otherwise found to, accurately capture the important
structural relations of an empirical set up, and we can thus read off
important facts about the empirical set up from the mathematics.
[10, pp. 1–2]

Further, they argue that

[t]here is clearly something right about the mapping account. Math-
ematics is a rich source of structures and when some mathematical
theory finds applications in empirical science, it is clear that the
mathematics captures certain important structural relations in the
system in question. [10, p. 3]

I believe that all of these claims are correct. Surely something is right
about the mapping account. In particular, when it comes to representing
physical structures, mathematical structures often provide useful models that
abstract (as Pincock stresses) from various explanatorily irrelevant physical
details. My disagreement, as will become evident, concerns the necessity of
representation for explanation. Instead, what is often explanatorily essential
is the mediating limiting relationship between the representative models. To
put this slightly differently, mapping accounts focus on “static” relationships
between mathematical models and the world. My view is that this misses, in
many cases, what is explanatorily relevant about idealizations; namely, that
they often involve processes or limiting operations.

5 Mapping Accounts: Idealizations

Many explanatory models appear to involve idealizations. We speak of fric-
tionless planes when there are no such things, and we idealize fluids to be
continua when, in fact, they are composed of discrete finite collections of
molecules. If we accept that idealizations can and do play important roles
(perhaps even explanatory roles), then that raises a deep problem for map-
ping accounts of the applicability of mathematics. The problem is simple:

saying anything a strong as this sufficiency claim. On the other hand, I believe all of these
investigators endorse the idea that the right kind of mapping is necessary for explaining
any particular application of mathematics to the physical world.
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Nothing in the physical world actually corresponds to the idealization. So
in what sense can we have a mapping from a mathematical structure to an
existing physical structure? Mapping accounts are representative and good
representations reflect the truth about the world. Idealizations, however, are
false.

Both Pincock, and Bueno and Colyvan, are well-aware of the difficulties
mapping accounts will have with idealizations: Since idealizations are nec-
essarily false of the physical world, there can be no physical structure to be
mapped onto an appropriate mathematical structure. Despite their differ-
ences, both, it seems to me, try to deal with this problem in a similar way.
In the next two subsections I will discuss their proposals. Following that
in section 6 I will argue that neither attempt to allow for certain types of
idealizations succeeds.

5.1 Pincock and Matching Models

A natural hallmark of mapping accounts of the applicability of mathemat-
ics is that such maps provide representations of physical structures using
mathematical machinery. Pincock is explicit in holding that “[m]athematical
idealizations are scientific representations that result from assumptions that
are believed to be false, and where mathematics plays a crucial role.” [23,
Abstract] Pincock recognizes the immediate problem with this view of math-
ematical idealization. He asks:

What guarantee is there that the results of employing these false
assumptions will be representations? Or, more precisely, as repre-
sentations may be ranked in terms of their accuracy and adequacy,
why should making false assumptions contribute to the production
of good representations? [23, pp. 958–959]

Pincock proposes to respond to these questions by providing an account of
how one can in fact rank idealizations (with their false assumptions) as better
or worse for representing the world.

Pincock’s example is the idealization in which a discrete equation char-
acterizing Newton’s law of cooling—an equation that describes the amount
of heat per unit time passing from a warmer plate 2 to a cooler plate 1—is
replaced by the more idealized one dimensional heat equation, a partial dif-
ferential equation that treats the discrete quantities as continua. The discrete
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equation is:
∆Q

∆t
=
κA

d
|T2 − T1|. (1)

Here ∆Q is a discrete quantity of heat, κ is the thermal conductivity of the
material, A represents the area of the plates, and d is their distance from one
another.

The continuum heat equation for u(x, t), the temperature at a point x at
time t, is:

∂

∂t
u(x, t) =

κ

ρs

∂2

∂x2
u(x, t). (2)

Here, κ is as above, ρ is the material density and s is its specific heat.
Consider the heat equation (2) as our idealized “equation model” (to use

Pincock’s terminology). The question is how this obviously false idealized
equation can be used to represent heat transfer? Pincock holds that an
equation model such as (2)

represents a physical situation when the scientists believe both that
(i) there is an isomorphism between the physical situation and a
matching model and (ii) there is an acceptable mathematical trans-
formation between the equation model and the matching model.
The matching model contains wholly mathematical analogues of all
the physical magnitudes in the physical situation. A mathemat-
ical transformation will be acceptable when it is consistent with
the goals of the scientists in terms of scale and accuracy. [23, pp.
962–963]

The matching model is a model that is supposed to perfectly reflect the
physical situation of interest. Thus, every physical parameter (relevant or
otherwise) of a given system will find a counterpart in the matching math-
ematical model. A natural reading of this would be that a matching model
provides an absolute fixed point (like 0◦ Kelvin for the temperature scale)
with respect to which we can judge the representativeness of one model to
another—the closer it is to the matching model the more representative and,
hence, better it is.

I think that when it comes to assessing the overall “representativeness”
of a model, Pincock must be committed to something like this reading—the
closer the equation model is to the matching model, the more representa-
tive it will be. However, he explicitly denies that for an idealization to be
good one requires a global metric or distance measure between the equation
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model and the matching model. On his view, one can judge locally an ide-
alization/representation to be good to the extent that it meets the “scale
and accuracy” (the experimental error) acceptable to scientists. This will,
apparently allow for a nonabsolute measure of the goodness of idealizations.
Thus, this view is compatible with having conflicting (possibly equally good)
idealizations and, therefore, fits with Morrison’s discussion of the role of
idealization in physical theories. [20]

There is a tension for Pincock in these assertions. On the one hand, he
wants to present an account of idealizations that allows one to rank idealiza-
tions, yet at the same time he denies a global measure of distance between
the full representation (the matching model) and one’s idealized equations
model. Local measures of goodness, do not, as far as I can tell, allow for com-
parative rankings of different idealized models. I believe this tension becomes
acute in the context of trying to develop an account of how idealizations can
be explanatory and I will return to this below. Prior to this, let me discuss
Bueno’s and Colyvan’s proposal.

5.2 Bueno, Colyvan and the Inferential Conception

In [10] Bueno and Colyvan propose an inferential conception of the appli-
cation of mathematics. They explicitly note that it is an extension of the
mapping account proposed by Pincock in that it includes features that are not
purely structural. “Unlike the mapping account . . . the proposal advanced
here is not purely structural, since it makes room for additional pragmatic
and context-dependent features in the process of applying mathematics.”15

[10, p.7]

The crucial feature of the proposal is that the fundamental role
of applied mathematics is inferential: by embedding certain fea-
tures of the empirical world into a mathematical structure, it is
possible to obtain inferences that would otherwise be extraordinar-
ily hard (if not impossible) to obtain. . . . [Mathematics has other
roles, from] unifying disparate scientific theories through helping

15As we have just seen in the last section, however, Pincock’s proposal (at least when
it comes to dealing with idealizations) is not purely structural either. He appeals to prag-
matic features and context when claiming that the equation models is to be judged relative
to the matching model in terms of a measure of scale and accuracy that is acceptable to
scientists. [23, p. 963]
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Figure 3: Inferential Conception of Applied Mathematics [10, p. 9]

to make novel predictions (from suitably interpreted mathemati-
cal structures) to providing explanations of empirical phenomena
(again from certain interpretations of the mathematical formal-
ism).

All of these roles, however, are ultimately tied to the ability to
establish inferential relations between empirical phenomena and
mathematical structures, or among mathematical structures them-
selves. [10, p. 7]

Their inferential conception involves two mappings:

• An “immersion” map from the physical system or “empirical set-up” to
an appropriate mathematical structure.

• An “interpretation” map back from some (possibly new) mathematical
structure to the physical system or empirical set-up of interest.

In between these two mapping relations there is what they call a “deriva-
tion step” in which inferences are drawn about the mathematical structures
purely from within mathematics. See figure 3.

How do Bueno and Colyvan attempt to accommodate idealizations in this
framework? To do this they appeal to an apparatus of partial mappings. I do
not believe that I need to go into detail about how this apparatus is supposed
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to function. [10, p. 13–14] One can get a feel for what partial mappings are
supposed to do by briefly examining the examples they cite.

They consider the case of neoclassical economics where agents are mod-
elled as being perfectly rational in that they maximize their expected utility
functions. Since real world agents are not perfectly rational in this sense,
such a representation is an idealization. As they say,

[T]here’s no full mapping between the behavior of agents in the
actual world and the . . . mathematical structures of [analysis]. Af-
ter all, actual economic agents do not necessarily maximize their
utility functions . . . . In this case, we have at best partial mappings
between the behavior of actual economic agents (corresponding to
features that actual agents try to preserve in practice) and the
relevant mathematical structures. [10, p. 14]

Despite this Bueno and Colyvan point out that

[t]his doesn’t mean that neo-classical economics has nothing to of-
fer. As even critics of neo-classical economics should be able to
recognize, there are partial mappings between certain aspects of
the actual economic scenario . . . and the mathematical model . . . .
This indicates in which respect neo-classical economics, although
idealized, can still say something about the world, albeit indirectly.
There are aspects of the actual world—although certainly not ev-
ery aspect—that are successfully captured by the relevant models.
Even in idealized contexts there are partial mappings between em-
pirical and mathematical structures. [10, pp. 15–16]

At this point, one might ask why simply having a partial mapping be-
tween some aspects of the physical situation and an appropriate mathemati-
cal structure accounts for the explanatory role that idealizations can play in
applied contexts. So far what we have is a framework in which we can get
some kind of partial representation of the full actual structure. (This partial
representation is, I believe, to some extent analogous to Pincock’s equation
model discussed in section 5.1.) Prima facie, it seems we have no reason to
believe that simply having an appropriate (partial) mapping is explanatory.
Indeed, what is the argument that such a partial representation itself plays
an explanatory role?

While not explicit in their paper I think we can get some idea of the kind of
answer Bueno and Colyvan might want to give to this question. (It is similar
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to what I take to be Pincock’s response to the same problem.) They discuss
another example from economic theory—Herbert Simon’s theory of bounded
rationality. On this account, rational agents do not strive for anything as
strong as the maximization of some utility function; rather they, search for
a “satisficing” alternative. This view explicitly

emphasizes two basic sort of limitations involved in actual decision
making in economics: (i) limitations on the economic agent : he or
she has limited computational and cognitive power; and (ii) limi-
tations on the nature of information about the environment : often,
the agent has at best incomplete information about alternatives.
[10, p. 16]

Bueno and Colyvan note that this theory is a significant improvement over
the neoclassical theory just discussed. But they point out that despite its
less idealized status, “. . . there will be at best partial mappings between the
actual economic situation and the new mathematical models, given that the
economic situation is now thought of as fundamentally incomplete.” [10, p.
17]

They summarize the discussion as follows:

. . . it now becomes clear that, also in Simon’s case, partial isomor-
phisms or partial homomorphisms are central in the immersion
step. These mappings allow us to move from the limitations of the
empirical set up (the partiality of information that agents have and
their limited cognitive capacities) to the appropriate mathematical
models. Similarly, after derivations are obtained, the interpreta-
tion step can also be implemented with partial isomorphisms or
partial homomorphisms. After all, . . . the empirical set up is now
characterized by partial information, and so only partial mappings
will hold from the mathematical model back to the empirical set
up. In the end, partial mappings are crucial even when we deal
with less idealized models, such as developed by Simon. [10, p.18.]

It seems reasonable to assume from this discussion that Bueno and Coly-
van consider Simon’s less idealized model in an effort to demonstrate the
possibility of finding more realistic models that improve upon those that are
more idealized. I think this fits with Pincock’s desire to rank idealizations as
better (more representative) than others. Thus, (and this is not explicit in
Bueno and Colyvan) perhaps part of the answer to why some idealizations
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can play explanatory roles, despite being false, is because we can tell a story
about how they ultimately can be removed by paying more attention to de-
tails that are ignored or overlooked by more idealized models: If we only had
a more complete characterization of the actual economic situation, we would
be able to approach (in some measure) a full isomorphism between the world
and the mathematical model. So, in the end, the partial mappings, that
are required because of idealizations, can play explanatory roles because one
expects that their partialness can be (in principle) eliminated yielding a full
isomorphism—a complete representational mapping.

However, this suggestion for what might make an idealization provided
by a partial mapping explanatory is not endorsed by Bueno and Colyvan.
Neither, as we’ve seen, is it endorsed by Pincock. Pincock denies the existence
of such a global measure. Colyvan, as well, in a personal communication, says
that he does not intend the discussion to suggest that the less idealized model
(Simon’s satisficing account) will necessarily be more explanatory than the
more idealized model. So the tension present in Pincock’s proposal exists
for Bueno’s and Colyvan’s account as well: Partial representation enables a
ranking of idealizations in terms of representativeness but that ranking does
not correlate with a given idealization being more explanatory than another.

There are two desiderata at play. First, one would like mapping accounts
to allow idealizations to be explanatory. Second, one would like (explicitly for
Pincock) to rank idealizations in terms of their representational goodness. A
natural way to satisfy both of these desiderata would be to adopt a Galilean
understanding of idealizations of the sort advocated by McMullin [17] and
others. This is a view in which idealizations are perfectly respectable in
science, provided that one can (in principle) tell a story about how they
might be removed through further work. However, neither Pincock, nor
Bueno and Colyvan want to go down that road. I think this puts them in a
difficult situation as mapping accounts that meet the two desiderata seem to
require such a view.

6 Mapping Accounts: Limitations

We have seen that Pincock, as well as Bueno and Colyvan, endorse some form
of mapping account of the applicability of mathematics. As a result both
are forced to consider some relationship between mappings that represent
more and less idealized situations. But let me ask again the question I
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raised earlier: How does having a representation or a partial representation
of a physical situation in mathematical terms provide an explanation of that
physical situation?

In some contexts, the answer appears to be the promise of being able to
tell an additional story about how the representation can be improved—how
the idealizations can be de-idealized. Such a story fits well with what I have
elsewhere called the “traditional view” of idealization. [8] A better name,
following McMullin’s seminal contribution would be “Galilean” idealization.
[17] The guiding idea is somewhat paradoxical: Idealizations are compatible
with good science (both descriptively and explanatorily) to the extent that
they can be eliminated through further work that fills in the details ignored
or distorted in the idealized model.

There are many situations in which this Galilean conception of ideal-
ization is appropriate. And, to the extent that it is, I believe accounts of
the applicability of mathematical idealizations in natural science can be un-
derstood in terms of mapping accounts. A very helpful, and often quite
accurate way of understanding this mathematically is in terms of regular
(analytic/nonsingular) perturbation series: The idealization is the first order
term in the series and we improve upon that by adding correction terms in
powers of the relevant parameter. (This is the natural way of making the
concept of a de-idealizing story mathematically precise.)

However, it is worth noting again, that neither Pincock, nor Bueno and
Colyvan want to adopt this Galilean conception. They both want to al-
low for “good” (and explanatory?) idealizations without having to commit
themselves to the kind of global ranking that would enable them to tell
the required de-idealizing story. And, once again, given that mapping ac-
counts seem almost to require a representational ranking, this rejection of
the Galilean picture does not fit well.

Despite this, however, I think that far more often interesting idealizations
are not de-idealizable. I think that there are many cases of “nontraditional”
idealization in which idealizations actually play an essential, ineliminable role
in explanatory contexts.16 (This may be the reason Pincock, and Bueno and
Colyvan, want to resist the traditional or Galilean picture.) Of course, we
have already seen one such example in section 3. There we saw that the
thermodynamic limit plays a crucial and ineliminable role in understanding
the universality of critical phenomena. Other examples, are discussed in [8],

16By “ineliminable” here I mean that no de-idealizing story is possible even in principle.
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[5], and [4].
Nontraditional idealizations do not (and cannot) have any promissory

background story about how to fill in the details. In fact, such idealizations
trade on the fact that in many instances “overly simple” model equations can
better explain the most salient features of a phenomenon than can a more
detailed less idealized model. (Again, this comports well with Pincock’s and
Bueno’s and Colyvan’s intuitions about idealizations, but is ultimately, I
believe, at odds with structuralist/mapping accounts of applicability.)17 On
the nontraditional conception, adding more details counts as explanatory
noise—noise that often obscures or completely hides the features of interest.

Nontraditional idealizations cannot provide such a promissory background
story because the limits involved are singular. This is, in fact, the case in the
renormalization group explanation of the universality of critical phenomena.
(Here, the perturbation problem is singular and there is no convergent se-
ries expansion such as one finds in regular/analytic perturbation problems.)
A singular limit is one in which the behavior as one approaches the limit
is qualitatively different from the behavior one would have at the limit. A
simple example (overly simple in some ways) is the following. Suppose we
have a quadratic equation

x2 − ε2x− 2 = 0,

where ε is a parameter. Consider the limit ε→ 0. For any nonzero value of
ε the quadratic equation has two roots. And, in fact, at ε = 0, the solution
set also has two roots; namely, +

√
2 and −

√
2. So there is a sense in which

the qualitative behavior of the solution set doesn’t change when one reaches
the limit of zero: There remain two roots throughout the limiting operation.

Had the parameter multiplied the quadratic term, the situation would be
radically different. In this situation the equation is

εx2 − 2x− 2 = 0,

and as ε→ 0 there are will be two roots for any nonzero value of ε. However,
at ε = 0 there is only one solution: x = −1. A qualitative change in the
structure of the solution set has occurred. In this case, (speaking somewhat
but not completely metaphorically) it isn’t possible to have a “measure” of
how close the ε = 0 solution is to any ε is-very-very-small solution.

17At the very least, proponents of mapping accounts that reject the Galilean story owe
us an account of how a mere partial representation can be explanatory.
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In the thermodynamic limit, as it is employed in the explanation of the
universal scaling of the order parameter for critical systems, there emerges a
host of divergences and singularities. Crucial among these is the divergence
of the so-called correlation length. This implies a loss of any sort of charac-
teristic length scale and allows the various systems to be compared with one
another asymptotically. Such a loss of scale is required to demonstrate the
genuine qualitative change in the states of matter that occur at criticality.
Finite systems with more and more particles may in some sense18 get “close
to” the nonanalytic behavior in the thermodynamic functions, but for finite
N , the curves are always smooth. There is no distance measure or metric
saying how close an actually smooth curve is to a nonsmooth/nonanalytic
one. (Again, the related perturbation problem is singular.)

There are two important and related features of nontraditional idealizing
explanations evident in this example. First, the explanation for the universal-
ity of critical phenomena requires singularities; in particular, the divergence
of the correlation length. Without this, we have no understanding of how
physically diverse systems can realize the same behavior at their respective
critical points. Second, singularities make it impossible to tell any kind of
de-idealizing story that would enable one to rank idealizations in terms of
their distance from a matching model (Pincock) or from full isomorphism
(Bueno and Colyvan).

One consequence of this is that the kind of explanations provided by the
renormalization group (and numerous other examples of the use of limiting
asymptotic idealizations for explanatory purposes) are not representative.
Some mathematical explanations of physical phenomena appeal to limiting
operations and these are simply not the sorts of gizmos which figure in a
(partial) representation, the explication of which is the aim of the various
mapping accounts.

Another slightly different way to see this is by noting that there are no
structures (properties of entities) that are involved in the limiting mathemat-
ical operations. That is, limiting mathematical operations typically do not
yield anything like the abstract non-Eulerian structure of the bridge system
in Pincock’s example. If the limits are not regular, then they yield vari-
ous types of divergences and singularities for which there are no physical

18For instance, the relevant curves “look” sharper and sharper as the number of particles
increases. But “looking sharp” is not a relevant measure: For any finite N, no matter how
large the curves are smooth and analytic, no matter how sharp they appear.
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analogs. Nevertheless, as we saw in section 3 these singularities are essential
for genuine explanation. One might, I suppose, stretch terminology a bit
and call the various divergences “structures”, but this won’t help the map-
ping theorists as there are no possible physical structures analogous to such
mathematical “structures”.19

In sum, if nontraditional idealizations do play explanatory roles in phys-
ical theory, then mapping accounts simply cannot be the whole story about
the explanatory applicability of mathematics in natural science. Some new
story needs to be told in which limit operations (rather than mathematical
entities and their properties) are important supporting characters and where
the mathematical singularities that emerge in those limits play starring roles.
In the next section I begin to outline what such a tale should look like.

7 Suggestions for a New Approach

The mapping approaches to the applicability of mathematics emerged out of
a concern with the indispensability problem.20This motivation, as I noted in
section 2, was to find a role in physical theory for entities that are abstract
and acausal. One could say, fairly I think, that these approaches originate
from a concern with the nature of mathematical entities (and our ontological
commitments to them). They are not driven by considerations of physical
application in any direct way.

I have been arguing that there is another aspect to the applicability prob-
lem; namely, to account for the role played by limiting idealizations in applied
mathematics. I think the proper approach to this should come from the side
of physics (and not from philosophical concerns about the nature of abstract
entities). The guiding question becomes: Does the physical world dictate in
any way the kind of mathematics that must be used to explain and under-
stand physical phenomena? I believe the answer to this question is “yes” and
that as a result we can formulate a new account of the role of mathematics
in physical theorizing. The rest of this section provides a brief discussion of

19This is my response to Pincock’s claim that asymptotic explanations are a subspecies
of what he calls abstract explanations. See [22, p. 18] and the brief discussion above in
section 2.

20I should say “contemporary mapping approaches.” There is indeed a long history of
trying to understand the relationship between the axioms of geometry, theories of space,
and formal logic. See, for instance, [21].
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how the answer to this question can be in the affirmative.21

Begin by noting that most (though not all) explanations in physics and
applied mathematics are explanations of patterns or regularities.22 The
universality of critical phenomena is an example of a surprising pattern—
different fluids all display identical behavior at criticality. Another example,
mentioned at the end of section 3 concerns why rainbows always appear with
the same bow structure—the same pattern of intensity and spacings of the
colored and dark bands. Each rainbow is the result of a unique set of cir-
cumstances. The wind will be different, the raindrop shapes and sizes can
vary considerably, etc. Nevertheless, despite the fact that various details are
completely distinct, we witness the same pattern. We would like an expla-
nation of why. (See [4, Chapter 6].) In fact, any phenomenon that we see
repeat itself at various times and locations—any repeatable or reproducible
experiment—will always occur in situations with different details. The world
is a complicated place and is continually changing in many ways.

In order to explain the robustness (the repeatability) of the patterns we
see, our mathematical representations have to be stable under changes of all
these different details. One important way mathematics allows us to do this
is through the taking of limits. Limits are a means by which various details
can be thrown away. (For instance, in taking the thermodynamic limit in
the context of explaining fluid behavior, we eliminate the need to keep track
of individual molecules and we remove details about the boundaries of the
container in which the fluid finds itself, etc.) In applied mathematics this
taking of limits is sometimes called “variable reduction” and it often has
interesting consequences. For instance, in taking such limits we are often led
to focus on mathematical singularities that can emerge in those limits. The
divergence of the correlation length in the renormalization group explanation
of the universality of critical phenomena is one such emergent singularity.

In the context of the rainbow patterns, we are in the realm of the wave
theory or wave optics where lightwaves are governed by a wave equation.
When we investigate the nature of this equation in the limit in which the
wavelength of light approaches zero, we might expect to smoothly obtain ray
or geometrical optics—the theory in which light is composed of rays rather

21This is only a sketch of a full answer. Further elaboration is obviously needed and is
the topic of current investigation.

22We do at times care about understanding sui generis behavior like transients in a cir-
cuit before it settles down to a steady state. But mostly, we are interested in understanding
patterns that present themselves to us at different times and different places.
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than waves. However, such a smooth limit does not exist.23 There are various
mathematical blow-ups and singularities in the zero wavelength limit. (One
should, for example, expect light of infinite intensity on the emergent focal
surfaces or caustics.) Nevertheless, the asymptotic investigation of this equa-
tion is essential for an understanding of why rainbows always appear with
the same patterns of intensities and spacings of their bows. [4, Chapter 6]
The asymptotic investigation of the wave equation leads to an understanding
of the stability of those phenomena under perturbation of the shape of rain-
drops and other features. Stability under perturbation of details is exactly
what is required for a phenomenon to be repeatable or reproducible.

It is fair to say, however, that most philosophical discussions of explana-
tion in the natural sciences eschew places where the mathematics (via the
development of singularities) would say that the world isn’t law-governed.
That is, explanations most always involve some kind of subsumption of the
explanandum phenomenon under some kind of regularity . (Even sophisti-
cated non-covering law accounts, such as Woodward’s [28] recent causal ac-
count, look to invariances—kinds of regularities—of some kind or another.)
But if ones interest is in understanding the robustness of the patterns of be-
havior that we see, a focus on regularities and lawlike equations very often
turns out to be the wrong place to look! We need to understand why we
have these regularities and invariances. We need, that is, to ask for an ex-
planation of those very regularities and invariances. This is the fundamental
explanatory question. The other accounts don’t ask that question, in that
they typically treat those regularities and invariances as given. The answer
to this fundamental question necessarily will involve a demonstration of the
stability of the phenomenon or pattern under changes in various details.

Remarkably and paradoxically, many applied mathematical accounts of
the robustness of patterns—of the repeatability of phenomena despite wide
variations in various details—involve the investigation of singularities. To
explain and understand the robustness of patterns and regularities one some-
times needs to focus on places where those very regularities breakdown. Thus,
the existence of patterns or regularities in the world and our desire to under-
stand and explain them, has led us rather straightforwardly to investigate
singularities in mathematical limiting operations. I suggest that this is one

23Why would we be interested in this limit? Because, the wavelength of light is much
smaller than any other distance parameter in the problem such as the diameter of a
raindrop. This directs us to the asymptotic shortwave limit.
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way to begin to understand the effectiveness of mathematics in applied sit-
uations. Furthermore, it is an approach that is completely orthogonal to
structuralist/mapping accounts that take explanations necessarily to involve
static representational maps.

In recent work, I have focused on some examples of this odd but ubiq-
uitous situation [5, 7]. Mark Wilson, in a slightly different context, argues
for a similar point of view about the importance of singularities. His discus-
sion [26, p. 189–190] of shock waves in a gas is representative: Imagine we
have a tube full of a gas and we blow in one end. Considered as a collection
of molecules, if the initial blowing is hard enough, then fast molecules will
eventually pass slower ones further down the tube—just like a traffic jam
on a highway. If, however, we model the gas in the continuum limit as a
(continuous) fluid, the mathematics will develop a singularity—the model
will say, for example, that the gas should have two different velocities at the
same place and time. Wilson notes “[p]rima facie, one would expect that
this apparent contradiction in the mathematics will force us to abandon our
smoothed out fluid description . . . .” [26, p. 189] But rather than move back
to a description of the gas as a finite collection of molecules we can sweep
all of those details under the rug and consider the mathematical shock—
the singularity—as a boundary that dominates the physics of the situation.
That singular surface constrains and largely determines the behavior in the
law governed regions on either side of the shock.24

Wilson says that

. . . from a modeling point of view, we should object to the appear-
ance of singularities where some density or velocity blows up to
infinity; from a mathematical point of view, we often greatly value
these very same breakdowns, for . . . the singularities of a prob-
lem commonly represent the precise features of the mathematical
landscape we should seek in our efforts to understand how the qual-
itative mathematics of a set of equations behaves. Insofar as the
project of achieving mathematical understanding goes, singularities
prove our best friends, not our enemies. ([27, p10]

I understand his conception of a “modeling point of view” to be a “repre-
sentative point of view.” Indeed such mathematical blow-ups are not always

24Wilson [26, p. 362] calls this “physics avoidance”: “the policy for reducing descriptive
variables through compressing behavioral complexities into boundaries and singularities
. . . .”
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representative of physical systems.
Consider another example. When water drips from a faucet, it appears to

undergo a genuine physical discontinuity—one topological blob breaks into
two. And if we describe the drop using continuum hydrodynamics, there are
mathematical singularities that develop in finite time, corresponding to the
breaking of the drop.25 However, at the molecular level, no such singularity
exists. We can follow the individual molecular dynamics and will never be
able to identify the place and the time where the drop breaks. Nevertheless,
as I’ve argued elsewhere, we need the continuum limit mathematics with its
emergent divergences to explain why drops will (almost) always break with
the same shape regardless of other details of how they were formed. [5, 8]
Explanations do not necessarily have to be representative. And, in many
(most) instances of explanations in applied mathematics, they are not.

8 Conclusion

The “problem of the applicability of mathematics in the natural sciences”
has many facets. This paper has focused primarily on one—that of provid-
ing a viable account of how mathematical idealizations can play explanatory
roles in physical theory. Most, if not all, attempts to answer this and re-
lated questions have their genesis in the debate about the ontological status
of mathematical entities—the problem of the indispensability of mathemat-
ics. Perhaps, if one can show that mathematics plays an indispensable ex-
planatory role in some physical explanations we may be able to infer to the
existence of the abstract entities and properties referred to.

It is natural in this context to develop so-called mapping or structural
accounts of the relationships between mathematical entities and their prop-
erties and the physical world. As Bueno and Colyvan say, “[m]athematics is
a rich source of structures and when some mathematical theory finds appli-
cations in empirical science, it is clear that the mathematics captures certain
important structural relations in the system in question.” [10, p. 3]

I have argued, to the contrary, that it is not always clear that when a
bit of mathematics gets applied in empirical science, it is because of some
kind of static mirroring of empirical structure by the mathematics. My ar-
gument depends upon accepting the idea that idealizations can indeed be

25In [5] I do speak rather sloppily of genuine physical singularities. It is best to think
instead in terms of some kind of genuine qualitative change in the system at a given scale.
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explanatory. (This is something both Pincock and Bueno and Colyvan ac-
cept.) But, it further depends upon recognizing that there are different types
of explanatory idealizations. There are traditional or Galilean idealizations
which are distinguished by the in principle ability to tell some kind of de-
idealizing story—one that demonstrates how ones model can be “improved”
so as to provide a more accurate or more representative picture of the sys-
tem modeled. There are also, I have argued, nontraditional idealizations in
which the very idea of such a de-idealizing story is seriously problematic, if
not incompatible with the explanatory features of the model. These nontra-
ditional idealizations play essential explanatory roles involving operations or
mathematical processes without representing the system(s) in question. And
it is this fact that dooms mapping accounts to fail to provide a complete
story about the explanatory applicability of mathematics.

I have suggested that a completely new approach is needed. It is an
approach that looks to the world as the “driving influence” for how mathe-
matics gets applied, rather than to fortuitous parallels or analogies between
mathematical structures and physical structures. There is more to the ap-
plicability of mathematics than the fact that mathematics happens to be a
very rich source of structures—a place to look for representations of physical
structures. If this proposal is right, then there are strong reasons to deny
Wigner’s famous phrase concerning the “unreasonable effectiveness of math-
ematics in the natural sciences.” Wigner said that the “appropriateness of
the language of mathematics for the formulation of the laws of physics” is
a “miracle”—“a wonderful gift which we neither understand nor deserve.”
[25, p. 237] If this proposal is right, then to the contrary, the world itself
tells us that certain kinds of mathematical language is required for genuine
understanding.
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