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Abstract

Much of the evidence for quantum mechanics is statistical in na-
ture. Relative frequency data summarizing the results of repeated
experiments is compared to probabilities calculated from the theory;
close agreement between the observed relative frequencies and calcu-
lated probabilities is taken as evidence in favour of the theory. The
Everett interpretation, if it is to be a candidate for serious considera-
tion, must be capable of doing justice to this sort of reasoning. Since,
on the Everett interpretation, all outcomes with nonzero amplitude
are actualized on different branches, it is not obvious that sense can
be made of ascribing probabilities to outcomes of experiments, and
this poses a prima facie problem for statistical inference. It is incum-
bent on the Everettian either to make sense of ascribing probabilities
to outcomes of experiments in the Everett interpretation, or to find
a substitute on which the usual statistical analysis of experimental
results continues to count as evidence for quantum mechanics, and,
since it is the very evidence for quantum mechanics that is at stake,
this must be done in a way that does not presuppose the correctness
of Everettian quantum mechanics. This requires an account of the-
ory confirmation that applies to branching-universe theories but does
not presuppose the correctness of any such theory. In this paper, we
supply and defend such an account. The account has the consequence
that statistical evidence can confirm a branching-universe theory such
as Everettian quantum mechanics in the same way in which it can
confirm a non-branching probabilistic theory.



In the midst of this perplexity, I received from Oxford the manu-
script you have examined. I lingered, naturally, on the sentence:
I leave to the various futures (not to all) my garden of forking
paths.  Almost instantly, I understood: ‘the garden of forking
paths’ was the chaotic novel; the phrase ‘the various futures (not
to all)” suggested to me the forking in time, not in space.

Jorge Luis Borges, “The Garden of Forking Paths.”

1 Introduction

Quantum mechanics, standardly interpreted, yields, via the Born rule, state-
ments about the probabilities of outcomes of experiments. These probabil-
ities are, at least in many interesting cases, different from what would be
expected on the basis of classical mechanics. Moreover, we can subject the
claims made by standard quantum mechanics about the probabilities of out-
comes of experiments to empirical test, and the results of such tests favour
quantum mechanics over classical. This sort of empirical testing of proba-
bilistic claims forms a substantial part of the evidence we have for accepting
quantum mechanics as a theory that is empirically superior to classical me-
chanics.

Consider, for example, Bell-inequality experiments. Here we compare
the probabilistic correlations yielded by a quantum-mechanical calculation
to those that could be yielded by some local hidden-variables theory. Rela-
tive frequencies of outcomes in repeated trials are compared with probabil-
ities calculated from quantum mechanics, and with probabilities that could
be yielded by a local hidden-variables theory. The fact that the observed
relative frequencies closely match the quantum probabilities, and exhibit
statistically significant violations of Bell Inequalities, is correctly taken to
favour quantum mechanics over local hidden-variable theories. Although it
is possible to lose sight of the fact in discussing the bearing of such exper-
iments on theory, the reasoning is essentially probabilistic. Any sequence
of outcomes of such an experiment is compatible both with quantum me-
chanics and with local hidden-variables theories. In particular, even if some
local hidden-variables theory is correct, a sequence of outcomes is possible
(though highly improbable) in which the relative frequencies violate the Bell
Inequalities. We take the observed results to rule out the latter because the
results actually obtained are astronomically less probable on the assump-
tion of a local hidden-variables theory than they are on the assumption of



quantum mechanics. Similar considerations apply to the double-slit experi-
ment. The quantum-mechanical calculation yields a probability distribution
for absorption of particles by the screen. From this can be calculated a prob-
ability for any possible pattern of absorption events. The probability will be
high that the observed pattern of detection events shows bands of intensity
corresponding to a diffraction pattern, but we should not lose sight of the
fact that any pattern is consistent with quantum mechanics, including one
that matches classical expectations. The occurrence of a pattern that is much
more probable on the assumption that quantum mechanics is correct than on
the assumption of classical mechanics is taken to provide empirical evidence
that quantum mechanics is getting the probabilities right, or approximately
SO.

Any interpretation of quantum mechanics that is worthy of serious con-
sideration is going to have to make sense of this sort of reasoning. If it
can’t, it runs the risk of undermining the very reasons we have for accepting
quantum mechanics in the first place.

On the Everett interpretation, the quantum state vector after a typical
measurement interaction is a superposition of terms on which the measure-
ment apparatus records different outcomes. Moreover, the quantum state is
taken as a complete description of physical reality, so that there is nothing
that distinguishes one of these branches as uniquely real. As has often been
pointed out (see, e.g. Albert and Loewer (1988)), this poses a problem for
interpreting probabilistic statements in an Everettian context. There is no
obvious sense in which one can ask what the probability is that a certain
result will be the result of the experiment, since all possible results occur in
the post-experiment state, on different branches of the superposition.

There is a danger, in discussing the Everett Interpretation, of talking as
if the goal is to provide a coherent interpretation that is consistent with our
experience. But if that were the goal, the Everettian would have no need of
probabilities; it would suffice merely to note that, for every outcome normally
regarded as possible, the theory entailed that that outcome would occur on
some branch. The goal is actually much higher: it is incumbent upon the
Everettian to provide an interpretation in which the statistical analysis of the
outcomes of repeated experiments provides empirical support for the theory.
This is why the apparent lack of room for probability statements in the
Everett interpretation threatens to create a problem for that interpretation.
The problem is not one of deriving the correct probabilities within the theory;
it is one of either making sense of ascribing probabilities to outcomes of
experiments in the Everett interpretation, or of finding a substitute on which
the usual statistical analysis of experimental results continues to count as
evidence for quantum mechanics.



Call this the Fverettian evidential problem. In our opinion the best hope
for meeting this challenge lies in a decision-theoretic approach. The use of
decision-theoretic ideas in connection with Everettian quantum mechanics
was pioneered by Deutsch (1999), and elaborated, in different ways, by Wal-
lace (2003, 2007), Saunders (2005), and Greaves (2004, 2007a); see Greaves
(2007b) for a recent survey of the approach. Deutsch’s argument and the vari-
ants on it presuppose an agent who accepts Everettian quantum mechanics.
In order to meet the evidential problem, we need a framework for apprais-
ing theories, including branching-universe theories, that does not presuppose
the acceptance of Everettian quantum mechanics or any other theory.! This,
after some preliminary discussion in section 2, will be laid out in section 3,
and applied to branching-universe theories, such as Everett’s, in section 4.
Section 5 discusses and replies to objections. Our conclusion (section 6) is
that the framework presented here suffices to solve the evidential problem.

2 Testing probabilistic theories

We will not be in any position to address the question of whether or not sta-
tistical data can be evidence for Everettian quantum mechanics unless we are
crystal clear about how exactly such data can be evidence for uncontrover-
sially probabilistic theories. We therefore start by stepping back from quan-
tum mechanics and the Everett interpretation, and reviewing some general
considerations about probability statements in physics and their evaluation
in the light of experimental data.
Consider the questions:

1. A pair of fair dice is about to be tossed 24 times. Which is preferable:
an offer of $1,000 if a pair of sixes comes up at least once, or an offer
of $1,000 if a pair of sixes never comes up?

2. This pair of dice is about to be tossed 24 times on this table, using this
cup, by me. Which is preferable: an offer of $1,000 if a pair of sixes
comes up at least once, or an offer of $1,000 if a pair of sixes never
comes up?

The first question is a purely mathematical one, or close to it. Provided
that you prefer receiving $1,000 to not receiving anything, then the question
is one that can be answered by calculation, and is in fact the question that
was posed by the Chevalier de Méré and answered by Pascal.?

IThis point has also been made by Wallace (2006).
2See Ore (1960) for a lucid account of this incident.
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The second question is not purely mathematical; it is, at least in part, a
question about the physical world. To answer it, we need to know whether
there is something about the physical setup—the dice, or the way they are
tossed, or the make-up of the table on which they land—that biases the
results towards a pair of sixes. Questions of this type can be answered in two
sorts of ways:

1. By direct empirical test. Typically this involves repeated throws of the
dice, and statistical analysis of the results.

2. Theoretically. This involves a theoretical model of the setup, plus a
physical theory that says something about which factors are, and which
factors are not, relevant to the outcome of the tosses.

A splendid example of the latter is found in Diaconis et al.’s model of
a coin toss (Diaconis et al., 2007). They construct a simple coin-tossing
machine (crucially, the coin is not permitted to bounce upon landing), model
the dynamics of the tossed coin, come to conclusions regarding the probability
of landing with heads or tails up, given an initial orientation, and conclude
that the coin-toss is biased towards landing with the same side facing up that
it started with. These conclusions are corroborated by data from repeated
trials with the machine.

Even when a theoretical model is available, empirical testing is not su-
perfluous, as we will want to satisfy ourselves of the appropriateness of the
model to the case at hand. We will not, therefore, be able to do without
the first way of answering the question. It is possible to overlook this point,
because such calculations are usually made on the basis of symmetry consid-
erations, and these can create the illusion that the results are truths known
a priori. But judgments of symmetry are judgments that certain factors are
irrelevant to the outcome, and this is a matter of physics. An account of
probability based exclusively on a Principle of Indifference will not do.

Nor can probability concepts be replaced by relative frequencies, in either
actual or hypothetical sequences of experiments, though relative frequency
data will often be our most important sources of information about chances,
or physical probabilities. Consider, for example, a case in which balls are
drawn, with replacement, from an urn containing /N balls in total, of which
M are black, in such a way that each ball has an equal chance of being drawn.
The chance, on each draw, that the drawn ball is black, is, in this case, equal
to M /N, which is also the proportion of black balls in the urn. Suppose that
we perform n drawings, with replacement, and let m be the number of times
in these n trials that a black ball is drawn. Then, for large n, the chance is
high that the sample relative frequency m/n will be close to the proportion

5



of black balls in the population, M /N. Moreover, if the sequence of drawings
be extended without end, then, with chance 1, the sample relative frequency
will converge to the single-case chance M/N. Therefore, if we are unable
to examine the contents of the urn, information about its contents can be
gained by successive drawings. Similar ideas are behind statistical sampling
techniques; one wishes to gain information about a population by a sampling
of the population, and one attempts to construct one’s sampling procedure
such that the chance of any individual being chosen for the sample is inde-
pendent of whether or not that person has the property whose proportion in
the population is to be estimated. This intimate relation between chances
and relative frequencies has suggested to some that chances can be defined
in terms of relative frequencies. In spite of their intimate relation between
chance and relative frequency, the former is not eliminable in favour of the
latter. Notice that in the urn model, it is necessary to stipulate that each ball
has an equal chance of being drawn; it is only this stipulation that makes the
proportion of black balls in the urn, M /N, equal to the chance of drawing a
black ball. Nor can chances be eliminated in terms of limiting relative fre-
quencies in infinite sequences. That the relative frequency converges to the
single-case chance is not the only logically possible outcome of the sequences
of trials; it is rather the only outcome that has nonzero chance (and note
that one cannot identify ‘zero chance’ with ‘impossible’, since even an out-
come according to which relative frequency does match chance is an (infinite)
disjunction of zero-chance outcomes). Thus, the conclusion that the limiting
relative frequency will exist, and be equal to the single-case chance, requires
the use of a notion of chance distinct from the notion of limiting relative
frequency.

How, then, does the process of confirming or disconfirming statements of
probability in physics work? On our view, the best way to make sense of such
confirmation involves a role for two sorts of quantities that have sometimes
been called “probability.” The first is degree of belief, or credence, which is
subjective in the sense of being attached to an (idealized) epistemic agent.
Accepting this does not entail eliminating any notion of physical probabil-
ity. Among the things our epistemic agent can have degrees of belief about
are the chances of experimental outcomes, which are characteristic of the
experimental setup, and hence the sort of things that a physical theory can
have something to say about. We test such claims by performing repeated
experiments—a sequence of experiments that we regard as equivalent, or near
enough, with respect to the chances of outcomes—and comparing the calcu-
lated chances with the observed relative frequencies. Conditionalization on
these observations raises degrees of belief in theories whose calculated chances
are near the observed relative frequency and lowers degree of belief in theo-



ries whose calculated chances are far from the observed relative frequencies.
That, in short, is the story of statistical confirmation of theories with ex-
periments construed in the usual way. Its core can be summed up by the
following confirmation-theoretic principle:

CC (confirmation-theoretic role of chances). If S observes something
to which theory T assigned a chance higher (lower) than the average
chance assigned to that same event by rival theories, then theory T' is
confirmed (resp. disconfirmed) for S, relative to those theories.

Note that all three concepts—credence, or degree of belief, physical chance,
and relative frequency—have important roles to play in this story. The story
will be elaborated upon in section 3, below, in which we provide a set of
conditions, based on Savage’s axioms for decision theory, and on de Finetti’s
concept of exchangeability, that are sufficient to ensure that the agent will
act as if she thinks of an experiment as having chances associated with its
possible outcomes, and repeated experiments as informative about the val-
ues of those chances. This permits her to experimentally test the claims a
physical theory makes about chances of outcomes.

We wish to argue that a precisely analogous story can be told if the agent
thinks of experiments, not in the usual way, but as involving a branching of
the world, with all possible outcomes occurring on some branch or another.
We claim that the conditions we introduce remain reasonable under this sup-
position, and that the agent will act as if she regards branches as associated
with quantities, which we will call weights, that play in this context a role
analogous to that played by chances on the usual way of viewing things. The
short version of this story is summed up by the principle

CW (confirmation-theoretic role of branch weights). If S observes
something to which theory T assigned a branch weight higher (lower)
than the average chance-or-branch-weight assigned to that same event
by rival theories, then theory 7' is confirmed (resp. disconfirmed) for
S, relative to those theories.

In particular, according to our account, the agent will regard relative fre-
quency data from repeated experiments as informative about values of branch
weights in exactly the same way that, on the usual view, they are informative
about chances of outcomes. If, therefore, Everettian quantum mechanics is
taken as a physical theory that makes claims about branch weights, these
claims can be tested by experiment.

In the general case, the agent will have non-neglible credence in some
theories in which experiments are construed, in the usual way, as chance
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setups, and in some in which they are construed as branch setups. The
account permits both to be handled simultaneously; what are estimated via
repeated experiments are quantities that are to be interpreted as being either
physical chances or physical branch-weights.

The framework will take as its starting point the notion of preferences
between wagers on outcomes of experiments. This may seem an odd place
to start.> We will first lay out a set of conditions on preferences between
wagers, based on Savage’s axioms, which suffice for a representation the-
orem, Theorem 1, according to which an agent’s preferences can be rep-
resented as maximizing expected utility. On the usual interpretation, this
expected utility is a weighted average of utilities across alternative epistemic
possibilities, with the weighting function representing the agent’s degrees of
belief in these alternative possibilities. We will argue that the constraints
on the agent’s preferences are reasonable, also, if the agent thinks of ex-
periments as branching events; in this case the weighting function becomes
what Greaves (2007a) has called a ‘quasi-credence’ function. We then argue
that, upon learning the results of experiments, the agent ought to update
this credence-or-quasi-credence function in a manner equivalent to Bayesian
conditionalization (Theorem 2). We can then take on board the de Finetti
representation theorem (Theorem 3), which shows that, for an exchangeable
sequence of experiments, the agent’s credence-or-quasi-credence function is
a weighted average of certain extremal functions that, as we will argue, can,
under certain circumstances, be thought of as objective chances-or-branch-
weights associated with outcomes of experiments. The weighting function
(called g in Theorem 3), under these circumstances, represents the agent’s
degrees of belief about which set of chances-or-branch-weights is correct.
This opens the way for repeated experiments to be informative about the
values of these chances-or-branch-weights: updating on observed outcomes
of experiments updates the u-function.

Some remarks on the relationship of the present paper to the existing
Everettian literature are in order; these occupy the remainder of this section.

The account of decision-making and empirical confirmation of branching

3Tt is perhaps worth noting that this is where modern probability theory started, too.
What we now call the mathematical theory of probability has its origins in the Fermat-
Pascal correspondence (reprinted in Smith (1959)), and in the treatise of Huygens (1660).
Modern readers may be surprised that these authors never calculate what we would call
a probability. They are concerned, instead, with the values of wagers (expectation val-
ues, in modern parlance). It was Jacob Bernoulli’'s Ars Conjectandi that, 50 years later,
introduced probabilities into the theory. “Before Bernoulli, the mathematics of games of
chance had been developed by Pascal, Fermat, Huygens, and others largely without using
the word (or concept of) ‘probability” (E.D. Sylla, “Preface” to Bernoulli (2006)).



theories that is defended in this paper is the same as that proposed in Greaves
(2007a). The main difference between the two papers is that the present pa-
per offers arguments (in the form of representation theorems) for two key
claims that were taken as basic assumptions in Greaves (2007a). Firstly, in
Greaves (2007a) it was assumed that, in the branching case, decisions are to
be made via maximizing a weighted mean of utilities of rewards-on-branches.
The present paper, in contrast, lays out a set of (Savage-style) axioms con-
straining rational preferences between wagers in a branching context, and
spells out how the claim concerning maximization of expected utility (MEU)
follows via Savage’s representation theorem. While these theorems them-
selves are not new, their applicability to the branching case has not previ-
ously been discussed in any detail. Secondly, in Greaves (2007a) it was also
assumed that the agent’s quasi-credence function satisfies the two principles
PC and PW: Principal Principle for chances, and for branch weights, re-
spectively. The present paper points out that these claims also follow from
Savage’s axioms (via the De Finetti representation theorem). In both cases,
our aim, in highlighting the applicability of these representation theorems to
the branching case, is to shift the locus of discussion from the MEU and PW
claims themselves to the axioms: if the account of rational decision-making
and /or confirmation advocated here and in Greaves (2007a) is not correct
then it must be that one or more of the axioms is not correct, and we urge
objectors to identify which axiom they think this is.

We remark also on the relationship of the present paper to the represen-
tation theorems proved by Deutsch (1999) and Wallace (2003, 2007). Two
points are worthy of note. (i) The Deutsch-Wallace approach aims to derive
the Born Rule from the ‘non-probabilistic’ part of Everettian quantum me-
chanics: that is, it seeks to prove that, conditional on the truth of Everettian
quantum mechanics and the given initial state for a given measurement, the
rational agent’s betting quotients must equal the corresponding amplitude-
mod-squares. This is not something we claim to do in the present paper. In
this respect, Deutsch and Wallace’s claims are stronger than (but consistent
with) ours. (ii) The decision theories developed by Deutsch and Wallace
assume the truth of quantum mechanics (specifically, Everettian quantum
mechanics). This means that they are not general enough to address the
evidential problem. The axioms we adopt in the present paper, in contrast,
are much more theory-general.



3 The Framework

In this section, we present a simplified framework, not meant to be a model for
all decisions, but rather, applicable to a limited class of decisions, involving
payoffs contingent on outcomes of experiments. We apply Savage’s axioms
to this restricted setting (Savage, 1972). These are intended to be thought
of as rationality constraints on an agent’s preferences between wagers.

Suppose, therefore, that we have a set of possible experiments. Associated
with an experiment A there is a set S4 of possible outcomes. We do not
assume that the outcome space is finite or even countable. We assume a set of
payoffs, which are in the first instance the objects of our agent’s preferences,
and that there is a set F4 of subsets of S# (the wagerable subsets of S*)
with which we can associate payoffs. F4 will be assumed to be closed under
intersections, complements, and unions. An association of payoffs with the
elements of a finite partition {F;|i = 1,...,n} composed of elements of F*
will be called a wager. It will sometimes be helpful to imagine these payoffs as
sums of money paid by a bookie to an agent who accepts the wager. But the
framework is not limited to such cases. In particular, we allow for preferences
between states of affairs that do not differ with respect to any effect on the
agent (e.g. a sum of money paid to someone else), including states of affairs
in which the agent is not present. It is not irrational to accept a wager that
pays a large sum of money to your heirs in the event of your death!

To make things simpler, we will assume that, for any experiment A and
any finite partition II4 of S4, any assignment of payoffs to elements of IT* is a
possible wager. This means that the agent is indifferent about the outcomes
of experiments for their own sake, and has preferences only in so far as
these outcomes lead to further consequences. One can, of course, imagine
situations in which this condition does not obtain, but what matters, for our
purposes, is that there is a sufficiently rich set of experiments and outcomes
that are such that this condition is, for all intents and purposes, realized.

A wager f on a partition II* of the outcome space of an experiment A can
be represent by the function that associates payoffs with the outcomes of A.
If A is an experiment, {F;|i = 1,...,n} a partition of S4, and {a;} a set of
payoffs, we will write [F; — a;] for the wager on A that pays a; on outcomes
in F;. We will also write [F — a,—F — b] for [ — a, (54 — F) — b].

Performing one experiment may preclude performance of another. We
assume that there is a relation of compatibility on the set of experiments.
Bets on compatible experiments can be combined. For any two compatible
experiments A, B, there is a third experiment C, with outcome space S4x S5,
such that outcome (s,t) € S¢ occurs iff s € S and t € SP occur. For any
subset F' C S4, there will be a corresponding subset F x S? consisting of
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all (s,t) € S4 x SP such that s € F. For notational convenience, we will
occasionally ignore the distinction between F and F x SP, and will write
F NG for the set of (s,t) € S4 x SB such that s € F and t € G: that is,
(F x SBYN (S4 x G).

We assume that our agent has a preference ordering < on the set of
wagers. The following axioms, based on those of Savage (1972), are to be
taken as rationality constraints on this preference ordering.

P1. a) < is transitive. That is, for all wagers f, g, h, if f < g and g < h,
then f < h.
b) < is a total ordering. That is, for all wagers f, g, f <gor g < f.

(Note that reflexivity of < follows from (b)).
We define an equivalence relation ~ by,

frgif f <gandg=<f.
We define strict preference < by,
f<gifff<gandgAf.

We introduce the concept of a null outcome set as one that is disregarded
in all considerations of desirability of wagers. Obviously, the empty set is a
null set; we leave open the possibility that there might be others, regarded as
by the agent as negligible in all deliberations regarding preferences between
wagers. (Heuristically: in the probabilistic case, null outcomes are those to
which the agent ascribes zero probability.)

Definition. Let A be an experiment, F € FA. F is null iff, for all wagers
f g that differ only on F, f =~ g.

The next axiom says that preferences between wagers depends only on
their payoffs on the class of outcomes on which the wagers disagree. If I have
wagers f, g on an experiment A, that differ only on an outcome set F' and
agree (yield the same payoffs) on S4 — F, then I can replace them by wagers
f’ g’ that agree with f, g, respectively, on F', and agree with each other on
S4 — F, without changing the preference ordering.

P2. Let A be an experiment, F € F4 a set of outcomes of A, and let f, ', g, g’
be wagers on A such that, on F, f agrees with f’ and g agrees with g’, and
on S4 — I, f agrees with g and f’ agrees with g’. If f < g, then f' < g’.
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The next axiom is context-independence of preferences between payoffs.
A preference for receiving b to a as a result of one wager carries over to other
wagers.

P3. Let A, B be experiments, let f,f’ be wagers on A that pay a, b, respec-
tively, on F' € F4, and coincide otherwise, and let g, g’ be wagers on B that
pay a, b, respectively, on G € FP, and coincide otherwise. If f < f’, then
g =g, and g ~ g’ only if G is null.

For any payoff @ and any experiment A, there will be a trivial wager I (a)
that pays a no matter what happens. P3 ensures that preferences between
such trivial wagers are independent of the experiment performed. With this
axiom in place, the preference order on wagers induces a preference order on
payoffs: a < biff I4(a) < I4(b) for some experiment A (hence, by P3, for all
experiments).

Suppose I am given a choice between wagers:

f: Receive $1,000 on F', nothing otherwise.
g: Receive $1,000 on G, nothing otherwise.

Suppose I prefer g to f. Then it is reasonable to expect that this prefer-
ence would not change if some other payoff that I prefer to receiving nothing
were substituted for the $1,000. The, (assuming I like chocolate cupcakes),
I should therefore also prefer prefer g’ to f', where these are defined by

f’: Receive a chocolate cupcake on F', nothing otherwise.
g’: Receive a chocolate cupcake on GG, nothing otherwise.

The next axiom is meant to capture this intuition.

P4. Let A, B be experiments, F € F4, G € FB. If a, b, d/, b are payoffs
such that b < @ and O/ < @/, and [F' — a,~F — b] 2 [G — a,~G — b], then
[ —d,-F =V 2 [G—d -G—-V.

With this axiom in place, we can define an ordering < on wagerable
outcome sets.

Definition. For F € FA4, G € FB, F < G iff there exist payoffs a, b such
that a < b and [F — a,~F — b] < [G — a,~G — b].

It is easy to check that <, so defined, is a reflexive, transitive, total
ordering. We define an equivalence relation F' ~ G as F < G and G X F,
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and a strict order F' < G as: F' < G and not F' ~ G. (Heuristically: in the
probabilistic case, if F' ~ G then F and G are regarded as equally likely by
the agent.) If F' < G, then G counts for more in our agent’s deliberations
than F'. Differences in payoffs attached to G have more effect on desirability
of the overall wager than differences in payoffs attached to F. If F' ~ G,
then F' and G hold the same weight in our agent’s deliberations.

So far, everything that has been said is compatible with the preference
ordering being a trivial one: f ~ g for all wagers f,g. This is the preference
ordering of an agent who has achieved a state of sublime detachment. To
exclude such a state of nirvana, we add a non-triviality axiom.

P5. There exist payoffs a, b such that b is strictly preferred to a, that is,
a < b.

We want to be able to turn the qualitative relation < into a quantitative
one. That is, we want to associate with each outcome set F' a number «(F)
such that F' < G iff a(F) < a(G). We can do this if, for every n, there is
an experiment A and an n-element partition {F;} of S* such that F; ~ F}
for all i,j. Assigning a(f) = 0 and a(S*) = 1 then gives us a(F) = m/n
for any union of m distinct elements of this partition. Armed with sets of
outcomes on which « takes on all rational values, the fact that < is a total
ordering gives us for any outcome-set G a real number value o(G) .

It turns out that we can assume something a bit weaker. If we can
always find experiments such that all outcomes are arbitrarily low in the
<-ordering, then we can construct n-partitions that are arbitrarily close to
being equivalent, and so get a real-valued ordering function in that way. This
is Savage’s procedure. Thus we add one last axiom,

P6. Let f, g be wagers on experiments A, B, respectively, such that f < g.
Then, for any payoff a, there is an experiment C, compatible with both A
and B, and a partition II¢ of SY, such that, for each element F € II¢, if we
consider the modified wager f' on the combination of A and C' that pays a
on F', and coincides with f otherwise, we have f' < g. Similarly, if we form
g’ by paying a on F' and retaining g’s payoff otherwise, then we have f < g’.

We now have all the conditions we need for a representation theorem.

Theorem 1 (Savage). If the preference ordering < satisfies P1 — PG, then
there exists a utility function u on the set of payoffs (unique up to positive
linear transformations), a function o (unique up to a scale factor), which
takes as arguments wagerable subsets of experimental outcome-spaces, and a
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function U on the set of possible wagers, such that, for any experiment A,
wagerable partition {F;|i =1,..n} of S, and wager f = [F; — a;],
Uf) =) a(F)u(a)
i=1

and, for all wagers £, g, U(f) <U(g) iff f < g.

Theorem 1 says that our agent’s judgments, if they satisty P1-P6, are as
if the agent is maximizing expected utility with v giving the utilities attached
to payoffs, and the a function acting as if it represents degrees of belief in
the outcomes of experiments. See Savage (1972) for proof.

3.1 Learning

Our agent may revise her judgments about wagers on future experiments
upon learning the results of past experiments: she may learn from experience.
Suppose an experiment A is to be performed, and that our agent is to learn
which member of an n-element partition {D#} the outcome of A falls into,
after which she will be given a choice between wagers f and g, defined on
a partition {EJB |j = 1,...,m} of SB. Her choice of wager on B may, in
general, depend on the outcome of A. There are 2" strategies that she can
adopt, specifying, for each D!, whether her choice would be f or g were she
to learn that outcome of A was in D#*. Her choice of which strategy to adopt
is equivalent to a choice among a set of 2" wagers on the combined outcome
of A and B. Each such wager consists of specifying, for each i, whether the
payoff on DA N EJB will be f’s payoff on EJB for every j, or g’s payoff on
E JB . Our agent’s preference ordering on wagers therefore induces a preference
ordering on updating strategies.

We wish to consider changes of preference that can be regarded as pure
learning experiences. This means: changes that do not involve a re-evaluation
of the agent’s prior judgments, and come about solely as result of acquiring a
new piece of information. We do not claim that no other change of preference
is rational; the agent may re-assess her judgments and revise them as a result
of mere cogitation. For changes that are not of this sort, the following axiom
is a reasonable constraint (and may even be taken as part of what one means
by a ‘pure learning experience’).

P7. During pure learning experiences, the agent adopts the strategy of up-
dating preferences between wagers that, on her current preferences, she ranks
highest.

This preferred updating strategy is easy to characterize.
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Theorem 2 Define the updated utility that assigns the value

UAE) = D (7)) ulfy),

7j=1
to the wager [EP — f;] on B, where ot is defined by

QBB = oD 0 EP)

B a(Df)
for non-null D2. The strategy that recommends, upon learning that the out-
come of experiment A is in DA, that subsequent choices of wagers be made
on the basis of U7, is strictly preferred to any other updating strategy.

Theorem 2 says that the strategy that ranks highest in our agent’s preference
ordering is the strategy equivalent to updating by conditionalization. See
Appendix for proof.

3.2 Repeatable experiments

We are interested in repeatable experiments. Now, no two experiments are
exactly alike (for one thing, they occur at different places or different times,
which in practice means that the physical environment is different in some
respect). But our agent might regard two experiments as essentially the same,
at least with respect to preferences between wagers on outcomes. Suppose
we have a sequence A of mutually compatible experiments {A;, As, ...}, with
isomorphic outcome spaces. For ease of locution, we will simply identify
the outcome spaces, and speak as if two elements of the sequence can yield
the same outcome. If, for every composite wager formed from independent
wagers on each of a finite subsequence £ of A, the value of the wager is
unchanged if the payoffs attached to any two elements of £ are switched,
we will say that the sequence A is a sequence of repeatable experiments.
(De Finetti called such a sequence an exchangeable sequence.) Note that
repeatability /exchangeability is, properly speaking, a characteristic, not of
the sequence of experiments, but of an agent’s preference ordering over wagers
on the outcomes of the experiments, and reflects judgments that the agent
makes about which factors are irrelevant to the value of a wager. Note
that our agent’s judgments about wagers on experiments in a sequence of
repeatable experiments need not be independent of each other. Knowing the
outcome of one experiment might be relevant to judgments about the value
of wagers on other members of the sequence.
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We can use de Finetti’s representation theorem to characterize the a-
functions, and, hence, the utility functions U, on which a sequence will be
exchangeable. Among utility functions that make A an exchangeable se-
quence there are some that make wagers independent of each other, in the
sense that knowing the outcome of some subset of experiments in the se-
quence makes no difference to the evaluation of wagers on the other elements
of the sequence. The de Finetti theorem specifies the form of these utility
functions, and says that any utility function that makes A exchangeable is a
mixture of such utilities.

First, some definitions that will facilitate stating the theorem. Let A be a
sequence of mutually compatible experiments, and let 14 = {F;|i = 1,...,n}
be a partition of their common outcome space S. For any finite subsequence
& of A, let ¢ be the composite experiment consisting of elements of £. If £
is an m-element subset, the outcome space of g is S4 x ... x S4 (m times).
Form the partition ¥ of this outcome space whose elements (n™ of them)
correspond to specifying, for each experiment A; € £, which member of the
partition I the outcome of A; falls into. For each s € X, let k(s) be the
vector (ki, ks, ..., k,), where k; specifies how many times an outcome in F;
occurs in s. For example, if m = 10, and II* is a two-element partition
{F1, F,}, one element of ¥ would be

s=(1,2,2,2,1,1,2,2,2,1),

and we would have k;(s) = 4, ks(s) = 6. Note that we must have

n

i=1

We will be interested in wagers on which payoffs are paid independently on
elements of &; that is, wagers f composed of wagers f; = [F; — aj;] on A; € €.
The sequence A is exchangeable if, for every finite subsequence £, and any
such composite wager f on 2U¢, the value of f is unchanged by permutations
of the component wagers f;.

Let A, be the (n — 1)-dimensional simplex consisting of vectors A =
(A1, ...y Ap) satisfying the constraint:

n

d =1

i=1

For any A € A,,, we can define an a-function,
ax(s) = )\]1“(5) ASQ(S)...)\E"(S).
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It is easy to check that the utility functions that assign values to wagers
on m-member subsets of A by

UA(E) = 3 a(s) ulfy)

sEXD

are ones on which A is exchangeable, and, moreover, are ones on which
elements of the sequence are independent of each other. What de Finetti
showed is that any utility function on which A is exchangeable can be written
as a mixture of such functions.

Theorem 3 (De Finetti, 1937) Let A be an exchangeable sequence of ex-
periments, {F; |i =1,...,n} a partition of their common outcome space S*.
Then there is a measure u on A, such that, for any wager £ on the outcomes
of a finite subsequence € of experiments in A,

UmzAmwww)

We are now close to having all the conditions required for our agent to
take relative frequency of results of past experiments in an exchangeable
sequence as a guide to future preferences between wagers. Close, but not
quite there. Consider an agent who initially bets at even odds on a coin toss.
Suppose, now, that the coin is tossed one hundred times, with heads coming
up each time. We would regard it as reasonable for the agent to favour heads
on the next toss: she should prefer a reward on heads to the same reward on
tails. It is, however, compatible with all the conditions above, including that
she treat successive coin tosses as exchangeable, that our agent resist learning
from past experience, and continue to bet at even odds. We therefore add a
condition that her preferences be non-dogmatic.

P8. For any exchangeable sequence A, the measure p appearing in the de

Finetti representation should not assign measure zero to any open subset of
A,

We now have learning from experienced within an exchangeable sequence.
As an example, consider a repeated coin flip. Since we have only two possible
outcomes for each flip, A, is just the unit interval [0,1], and the extremal
a functions can be characterized by a single parameter A\. These extremal
a-functions are those that assign, to a sequence s of N flips containing m
heads and n = N — m tails, the value

ax(s) = A"(1 = )"

17



Suppose that the measure p is represented by a density function p(A).

1
a :/ dA () ay
0

After observing a sequence s of N tosses containing m heads and n tails,
our agent updates the a-function she uses to evaluate subsequent wagers by
conditionalization,

a— ag,

which is equivalent to updating the density function p via

[ = Hs,

where

ps(A) o AT (L= A)" pu(X).

The function
IA)=A"1-=A)"

is peaked at A = m/N, which is the relative frequency of heads in the ob-
served sequence s. Moreover, it is more sharply peaked (with a width that
goes as 1/ VN ), the larger the observed sequence. Thus, if our agent’s initial
a-function is non-dogmatic, for sufficiently large N the density p will end
up concentrated on an interval around the observed relative frequency, with
width of order 1/v/N.

Strict exchangeability is a condition that will rarely be satisfied for agents
with realistic judgments about wagers. The agent might not be completely
certain that differences between elements of the sequence A ought to be re-
garded as irrelevant. If they are successive throws of a die, for example,
our agent might not completely disregard the possibility that some observ-
able feature of the environment is relevant to the outcomes of the die. Her
a-function, accordingly, will be a mixture of one on which the sequence is
exchangeable, and others containing correlations between the elements of A
and the results of other possible experiments. There are generalizations of
the de Finetti representation theorem that encompass such situations. Not
surprisingly, they have the result that the agent can learn which experiments
she ought to take as correlated and which she ought to take as independent,
and may converge towards a judgment of exchangeability regarding a se-
quence of possible experiments. See Diaconis and Freedman (1980), Skyrms
(1984, Ch. 3), and Skyrms (1994) for discussions of such generalizations.
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3.3 On the notion of physical chance

The de Finetti representation theorem shows that an agent whose degrees
of belief make a sequence of coin tosses an exchangeable sequence will bet
in exactly the same way as someone who believes that there is an objective
chance, perhaps imperfectly known, for each toss to come up heads, and who
has degrees of belief concerning the value of this chance, which mesh with her
degrees of belief concerning outcomes of the tosses in the way prescribed by
Lewis’ Principal Principle (Lewis, 1980). Furthermore, if our agent’s degrees
of belief are nondogmatic, she will, upon learning the results of an initial
finite sequence of tosses, update her betting preferences in exactly the same
way as someone who takes these tosses to be informative about the chance
of heads on the next toss. This has been taken by some—and was so taken
by de Finetti— to indicate that the notion of objective chance is eliminable.
There is another way to look at it, however: the agent’s degrees of belief are,
implicitly, degrees of belief about objective chances. An extremal a-function
ay, represents a chance distribution on which the chance of obtaining a result
in F; is \;, and the mixture represents the agent’s degrees of belief about
which of these functions give the actual chances.*

Should we, then, in some circumstances at least, ascribe beliefs about
objective chances to agents? Note that, even if we start with the idea that
probabilities are subjective, we are not thereby committed to denying that
some probability assignments are better adapted to the world than others.
De Finetti famously declared that the only criterion of admissibility of prob-
ability assignments is that of coherence; all probability assignments “are
admissible assignments: each of these evaluations corresponds to a coherent
opinion, to an opinion legitimate in itself, and every individual is free to
adopt that one of these opinions which he prefers, or, to put it more plainly,
that which he feels” (De Finetti, 1980, p. 64). Such language suggests that
all probability assignments are equally valuable, but note that de Finetti is
careful not to say that. Once an agent has adopted a probability assignment,
she will not freely exchange it for any other. Nor will an agent always regard
her own judgments to be the best. Suppose that Alice and Bob both have
degrees of belief on which a certain sequence of experiments is exchange-

4There is an analogy here with the relationship of the principle of maximizing expected
utility (MEU) to the Savage representation theorem. The Savage theorem shows that,
given certain constraints on preferences, there will be a credence and utility functions
according to which her preferences satisfy MEU. We are, in effect, using MEU to ascribe
credences and utilities to the agent. Similarly, the de Finetti theorem shows that, given
certain constraints, the agent acts as if she has credences about chances, credences that
satisfy the Principal Principle. One could say: it is via this Principle that we ascribe
beliefs about chances to the agent.
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able, and that their priors are the same, or close enough that differences are
negligible. Suppose Alice learns the result of the first 100 elements of the
sequence, and Bob does not, and that they are both offered wagers on the
result of the 101st. Unless Bob has zero degree of belief that learning what
Alice knows would affect his judgment about the wager he is about to un-
dertake, coherence requires that strictly prefer betting according to Alice’s
judgments to betting according to his own current judgments, if offered the
choice. He does not regard all assignments of probability as equally valuable,
and does not even rank his own highest.

Suppose, now, that there is a sequence A of experiments that Bob judges
to be exchangeable, and that there are no other experiments except those
in A that he takes to be relevant to elements of the sequence, and suppose
his preferences are non-dogmatic. Then, if offered the opportunity to accept
or reject wagers on an element A of the sequence, he would certainly prefer
to have knowledge of outcomes of other elements of the sequence that have
already been performed. Furthermore, if there are elements of the sequence
that have not been performed, but could have been, he would prefer that
they had been performed, because knowledge of the outcomes of these would
improve his betting situation. There will, however, typically be no experi-
ments that either have or could have been performed that would lead him
to certainty regarding the outcome of A. However, he is certain that there
is some probability function over the potential outcomes of A to which his
degrees of belief, and those of any other agent who judged the sequence ex-
changeable and was non-dogmatic, would converge, were they to learn the
results of sufficiently many other members of the sequence.

Suppose that on Bob’s credences, the results of experiments not in the se-
quence A are irrelevant to experiments in A. Then, the extremal a-functions
are invariant under conditionalization on the results of any experiment that
has been or could have been performed prior to betting on a given element of
A. They are, in this sense, regarded by Bob as candidates for being the maxi-
mally well-informed, or optimal betting strategy. He does not currently know
which one of them is in fact optimal, but his current betting preferences are
epistemically weighted averages reflecting his current degrees of belief about
what the optimal strategy is. The optimal strategy is not subjective, in the
sense of being the betting strategy of any agent. It is something that Bob
regards as optimal for bets on a certain class of experimental setups. Fur-
thermore, when he conditionalizes on the results of elements of the sequence,
he learns about what the optimal strategy is, and he is certain that any agent
with non-dogmatic priors on which the sequence of experiments is exchange-
able will converge to the same optimal strategy. If this is not the same as
believing that there are objective chances, then it is something that serves
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the same purpose. Rather than eliminate the notion of objective chance, we
have uncovered, in Bob’s belief state, implicit beliefs about chances—or, at
least, about something that plays the same role in his epistemic life.

To generalize beyond the case of exchangeability: suppose that Bob has
degrees of belief regarding the outcome of an experiment A, which can be
represented as mixtures of probability functions that he regards as states of
maximal accessible knowledge, in the sense of being invariant under condi-
tionalization on results of all experiments that either actually have or could
have been performed prior to A, and suppose that we can show that, with
probability one, Bob’s beliefs would converge to one of these, given a suf-
ficient body of information of the sort that could be accessible to an agent
about to bet on the outcome of A. Then Bob’s preferences between wagers
are as if he thinks that one of these extremal, maximally informed probabil-
ity distributions is the correct chance distribution, and his preferences reflect
degrees of belief about what the chance distribution is.?

Presumably, the physics of an experimental setup is relevant to which bet-
ting strategy on outcomes of the experiment is optimal. Bob may formulate
theories about what the optimal strategy is for a given experimental setup.
Experiments that he regards as informative about these optimal strategies
will accordingly raise or lower his degrees of belief in such theories. One sort
of theory would be one in which the dynamical laws are stochastic, invoking
an irreducible chance element. The theory could also have deterministic dy-
namics. Though such a theory will map initial conditions into outcomes of
experiments, it might nevertheless be the case that the maximal accessible
information (confined to learning the results of all experiments that have or
could have been performed, prior to the experiment on which the wager is
placed) falls short of information sufficient to decide with certainty between
experimental outcomes. This is the case with the Bohm theory. Though the
theory is deterministic, it is a consequence of the theory that no agent can
have knowledge of particle positions that would permit an improvement over
betting according to Born rule probabilities. In this context, these maximally
informed degrees of belief play the role of objective chances.

Lewis remarked, of the notion of objective chance, “Like it or not, we have
this concept” (Lewis, 1980, p. 269). To which we might add: like it or not, an
agent with suitable preferences acts as if she believes that there are objective
chances associated with outcomes of the experiments, about which she can
learn, provided she is non-dogmatic. This, together with the assumption
that physical theories may have something to say about these chances, is all

>This discussion is heavily indebted to that found in Chapter 3 of Skyrms (1984). See
also Skyrms (1994)
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we require for our account of theory confirmation. There may be more to be
said about the nature and ontological status of such chances, but, whatever
more is said, it should not affect the basic picture of confirmation we have
sketched.

Though the notion of physical chance is not reducible either to epistemic
probability or frequency, the three are intimately related. An agent who
updates her epistemic probabilities by conditionalizing on the results of re-
peated experiments will take the relative frequencies of outcomes in these
experiments as evidence about the values of physical chances. In this way
theories that say something about physical chances are confirmed or discon-
firmed by experiment. Note that we have not needed to pass to an infinite
limit to achieve such confirmation. Nor is there any need for a substantive
additional assumption such as “Assume your data are typical.” It is a con-
sequence of conditionalizing on the data that degree of belief is raised in
theories that posit chances that are close to the observed relative frequencies
and lowered in theories that posit chances that are far from the observed
relative frequencies.

4 The Garden of Forking Paths

Suppose, now, that our agent, having read Borges’ “The Garden of Forking
Paths,” (Borges, 1941, 1962) thinks of an experiment as an event in which the
world divides into branches, with each outcome occurring on some branch.
On each of the branches is a copy of herself, along with copies of everyone else
in the world, and each payoff is actually paid on those branches on which the
an outcome associated with that payoff occurs. How much of the foregoing
analysis would have to be revised?

We claim: none of it. The Savage axioms are requirements on the pref-
erences of a rational agent, whether the agent conceives of an experiment in
the usual way, with only one outcome, or as a branching occurrence, with
all of the payoffs actually paid on some branch or another. The reader is
invited to go back and reconsider the axioms in this light. (We will discuss
some possible objections to this claim in section 5.)

Reinterpreting experiments in this way, however, does force a reinter-
pretation of the a-functions that appear in the representation of the agent’s
preferences. The reason is that on a branching interpretation of experiments,
a(F') cannot in general be interpreted as degree of belief that the outcome
of the experiment will lie in the set F: our agent may have degree of belief
1 that each outcome associated with a non-null subset of S# will occur (on
some branch), but still in general a(F') < 1. What we can say, on the basis
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of the way it (still) feeds into the maximization of expected utility formula,
is that the function «(F) is a measure of the weight the agent attaches in
her deliberations to branches having outcomes in F'.

What the De Finetti representation shows (now) is that, for an exchange-
able sequence, the agent’s a-function will have the form of degrees of belief
concerning optimal branch weights, where these ‘branch weights’ play the
role of physical chances in her deliberations. When our agent updates her
preferences by conditionalization on experimental results, she will take the
results of previous experiments in an exchangeable sequence as informative
about branch weights (rather than about chances).

Ordinary quantum mechanics consists of the Hilbert space framework,
plus interpretive rules that tell us how to associate operators with experi-
mental setups and state vectors (or density operators) with preparation pro-
cedures, plus the Born rule, which tells us to interpret the squares of ampli-
tudes as chances of outcomes of experiments. It is this latter rule that gives
the theory much of its empirical content; theories that make claims about
physical chances are confirmed or disconfirmed in the manner described in
the previous section.

Now consider Everettian quantum mechanics as a theory that retains the
Hilbert space framework, the same associations of operators with experimen-
tal setups and state vectors or density operators with preparation procedures,
but replaces the Born rule with the rule: the squares of amplitudes are to
be interpreted, not as chances of outcomes, but as branch weights. The
calculated values can be compared with the results of experiments, and Ev-
erettian quantum mechanics is confirmed in much the same way as quantum
mechanics with Born-rule chances is.

On this view, we (as agents who are agnostic about whether or not our
world is a branching one) should be taking relative frequency data as infor-
mative about quantities that are either physical chances or physical branch
weights. A hypothesis that makes claims about physical branch weights is
confirmed by the data to precisely the same extent as a hypothesis that at-
tributes the same numerical values to chances. As with chance, there may
be more to said about the nature and ontological status of these branch
weights, but such a further account is not expected to affect the basics of
how branch-weight theories are confirmed.

We close this section with two examples, intended to clarify and fix ideas
by showing how this account works in two particular cases.
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4.1 Example: the unbiased die

Recall the question with which we started: whether, on 24 tosses of a pair
of fair dice, it is better to receive $1,000 if a pair of sixes come up at least
once, or to receive $1,000 if a pair of sixes never come up. We now consider
this question in a branching context.

There is a continuum of ways in which the dice can land, but we are
interested only in which faces are up when the dice come to rest. We therefore
partition the outcome space into the 3624 ~ 2.24 x 10%" classes corresponding
to distinct sequences of results. Suppose that these classes of outcomes are
all regarded by our agent as equivalent, with respect to wagers—she will
not change her estimation of the value of a wager on this experiment upon
permutation of the payoffs associated with elements of the partition. Then
she ought to prefer a wager g that pays $1,000 on the branches on which
a pair of sixes does not occur, and nothing on all branches on which this
does occur, to a wager f with the payoffs reversed. Why? Because there
are 35% ~ 1.14 x 1037 sequences of results on which a pair of sixes never
occurs, and only 362* — 3524 ~ 1.10 x 10%” on which at least one pair of sixes
does occur. The wager f can be converted via a permutation of payoffs into
a wager f in which the $1,000 is received on 36%* — 35%* elements of our
partition on which a pair of sixes does not occur, and nothing is paid on the
remaining branches. By assumption, this does not change the value of the
wager, and so f ~ f’. We can obtain g from f’ by giving a $1, 000 reward on
each of the remaining branches — corresponding to approximately 4 x 103
elements of our partition — on which a pair of sixes does not occur. If it
is better for the agents on those branches to receive $1,000 than to receive
nothing, then, by P2, we should regard g as preferable to f’, and hence, to f.

4.2 Example: the biased die

Suppose that our agent has available to her records of the outcomes of a great
many previous rolls of the die, and examination shows that, though one of
them displays the behaviour expected of a fair die, the other has shown a
6 in a fraction of outcomes significantly higher than 1/6. On the ordinary
view of a die toss, we would say that it should be possible for sufficient data
of this sort to reverse her estimates of the values of the wagers f and g, and
come to prefer f to g. It does not take a huge bias to reverse this preference.
If, for example, one die is unbiased, and the other has a chance of 6/35 of
showing a six on any given toss, then the chance that a pair of sixes shows
up at least once in 24 tosses is approximately 0.501, and f is the marginally
better wager.
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On a branching view also, if our agent has exchangeable, non-dogmatic
prior preferences about wagers on the dice tosses, then a sufficiently large
number of tosses showing bias will lead her to prefer f to g. She regards
the statistical evidence as informative about branch weights and concludes
that, though there is a greater number of sequences of possible outcomes of
24 dice tosses in which a pair of sixes never occurs, the set of branches on
which a pair of sixes comes up at least once has a higher total weight. That
is, it is better to reward her successors on that set of branches, than on its
complement.

A simpler example will give the flavour of this reasoning. Suppose that
our agent is initially sure that a coin is either biased two-to-one in favour
of heads, or two-to-one in favour of tails, with her degrees of belief evenly
divided between these two alternatives. That is, she believes that the coin
either produces, on each toss, branches with total weight 2/3 on which it
lands heads and branches with total weight 1/3 on which it lands tails, or
branches with total weight 1/3 on which it lands heads and total weight 2/3
on which it lands tails. Suppose that the coin is to be tossed twice, and that
after learning the result of the first toss, she will be given the choice between
receiving $1, 000 if the second toss lands heads, and $1, 000 if the second toss
lands tails. She resolves to bet on heads on the second toss if the first toss is
heads, and on tails if the first toss is tails. She reasons as follows. If the coin
is biased towards heads, then it is better to make the second bet on heads.
On her strategy, this will happen on weight 2/3 of branches, with the wrong
bet being made on weight 1/3. Similarly, if the coin is biased towards tails.
Her estimation of a strategy is an epistemically weighted mean of its value if
the coin is biased towards heads, and its value if the coin is biased towards
tails. The strategy she has resolved to follow is the one with the highest
expected value.

If she is to be coherent, and if she is to follow this strategy upon learning
the outcome of the first toss, then she must revise her degree of belief about
the branch weights via conditionalization. That is, an agent who sees heads
on the first toss will have degree of belief 2/3 that the coin is biased towards
heads. Of course, there will be branches on which our agent’s successors
are misled, and decrease their degrees of belief in the true hypothesis about
branch weights. But on a higher weight of branches the agent’s successors
will have their belief-states improved.®

6This can be made precise: it can be shown, via the argument of Greaves and Wallace
(2006), that, on any reasonable way of measuring the epistemic value of a belief-state,
updating by conditionalization maximizes expected epistemic value. This epistemic-utility
argument is complementary to the intertemporal-consistency defence of conditionalization
given in the Appendix.
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It is a consequence of updating beliefs about branch weights by condi-
tionalization that agents on all branches take the results of experiments to
favour hypotheses that afford their own branches high weight, and so boost
their degrees of belief in such hypotheses and lower their degrees of belief in
hypotheses that afford their own branches low weight. The copy of our agent
on each branch ends up believing that the set of branches that share the
outcome that she has seen has high weight. Some of them will be mistaken,
of course. But there will be a higher total weight of agents who have had
their beliefs about branch weights altered in the direction of the truth, than
of those who have been misled.

5 Objections and replies

As our presentation above has tried to emphasize, there is a pervasive struc-
tural analogy between chance theories and branching-universe theories (and
between chances and branch weights, and between possible worlds and branches).
Correspondingly, many of the objections that might be raised against the
proposed account of decision-making and/or belief-updating in the face of
branching have equally compelling (or uncompelling) analogs in the chance
case. This is important: we claim only that the Everett interpretation is
no worse off than any other theory vis-a-vis the philosophy of probability,
so any objection that applies equally to both cases will be irrelevant to the
present project.

Before considering particular objections in any depth, we therefore sum-
marize the analogy that we see between the two cases. It will be helpful to
keep this analogy in mind in the discussion that follows because, if there is
to be a branching-specific objection, it must take the form of a claim that
the analogy presented here is incomplete in some relevant respect; in every
case, our replies will claim that it is not.
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Chance setup (gamble) \ Branch setup (bramble)
Preferences between wagers go as maximizing expected utility, which
is an average of utilities across

alternate possible outcomes \ all branches
weighted by an a-function. We call this a-function
a credence function. \ a quasi-credence function.”

For an exchangeable sequence of experiments, the agent’s a-function
can be represented as a mixture of extremal exchangeable functions a.
The agent acts as if she believes that one of these extremal functions
is objectively the best one to base decisions on (although, in general,
she is not sure which), and her a-function is an epistemically weighted
average of them. That is, she acts as if the a;,’s are candidates for being
objective chance distributions, \ objective branch weights,

and the weighting (u) of these that yields her a-function reflects her
credences about which vector A gives the right one. Updating by con-
ditionalizing on results of experiments in the exchangeable sequence
permits her to refine her credences about which « is objectively best.
Part of the content of quantum mechanics is the claim (which either is
derivable from the non-probabilistic part of the theory, or is an inde-
pendent postulate of the theory), that

chance = |amplitudel|*. | branch weight = [amplitude.
Call this the Born Rule. Note that the Born Rule is a substantive
claim: left and right side of this equation have independent meanings
(the left implicitly defined by decision theory, the right by quantum
mechanics). Moreover, it is an empirically testable claim. Conditional-
izing on results of experiments in the exchangeable sequence will cause
the agent’s credences about the values of

chances \ branch weights

to become peaked about the observed relative frequency. If the observed
relative frequency is close to the value calculated from the Born Rule,
it will raise credence that quantum mechanics is correct; if it is far from
the Born Rule value, it will lower credence that quantum mechanics is
correct.

"In Greaves (2004) and Greaves (2007a), the term ‘caring measure’ was also used. It
was applied to the measures over branches that lie to the future of a given branch in a
given multiverse that one obtains by conditionalising the agent’s quasi-credence function
(that is, her a-function) on the self-locating proposition that she is currently on the branch
in question in the multiverse in question. There is thus a ‘caring measure’ that coincides
with the quasi-credence function, and gives the agent’s betting quotients, in the special
case (and only in that case) in which the agent is sure which multiverse is actual and
which branch in that multiverse she is on. (This comment is included only to clarify the
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Chance setup (gamble) Branch setup (bramble)

There will certainly be branches | There are possible worlds in which

on which
anomalous statistics occur. A frequentist analysis of
chance \ branch weight
is untenable: one cannot hold that
‘the chance of F is «’ ‘ ‘the branch weight of E is 2’

Just means ‘the long-run frequency of £ will be x” because, for any FE
and x,

it is possible that there will be some branches on

which

the long-run frequency of E is not x. Relative frequencies are connected
only evidentially with

chances. branch weights.
In anomalous-statistics possible On anomalous-statistics branches,
worlds,

agents are misled: they rationally lower their credence in the theory
that is in fact true. Still,

the possible worlds in which this the branches on which this occurs
occurs have a low total chance. have a low total weight.

There is no available updating policy that guarantees that agents raise
their credence in the true theory

in every possible world. \ on every branch.

It therefore makes sense that the conditionalization strategy recom-
mended is the optimal one:

low-chance \ low-weight

events don’t count for much in the evaluation of wagers.

We now consider and reply to eight foreseen objections to the account
proposed in the present paper.

Objection 1: Branch weights are not probabilities. Reply: we do not
claim that they are. The claim is, rather, that, given reasonable constraints
on an epistemic agent’s preference between wagers, she will act as if she be-
lieves that there are physical branch weights, analogous to physical chances,
that can be estimated empirically in the same way that chances are, and that
observation of events to which a theory assigns high branch weight boosts

relationship between the three papers in question; the concept of ‘caring measure’ plays
no special role in the present paper.)
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rational credence in a branching theory in the same way that observation of
events to which a theory assigns high chance boosts rational credence in a
chance theory.

Objection 2: The decision-theoretic account is all about the be-
havior of rational agents; this is (surely) irrelevant to matters of
physics, and so cannot supply the Everett interpretation with an
acceptable account of physical probability.

We do not accept that the behavior of a rational decision maker
should play a role in modeling physical systems. (Gill, 2005)

The reply to this has two parts. The first is that there is a clear sense
in which, in order to model a physical system, one does not need to in-
voke considerations of rationality, and that this remains true in Everettian
quantum mechanics. The second (and deeper) point is that—the first point
notwithstanding—considerations of rationality have always played a role, and
indeed must play a role, in the confirmation of physical theories, so it is
no objection to the approach outlined above that it brings rationality con-
siderations into the discussion of the confirmation of Everettian quantum
mechanics. Let us explicate each of these two points in turn.

First, the sense in which the modelling of physical systems is silent on
issues of rationality. The point here is perfectly straightforward. According
to quantum theory (Everettian or otherwise), one models a physical system
by ascribing to it a quantum state—a vector in, or density operator on,
some Hilbert space. On the Everettian account of measurement, after a
measurement there will exist a multiplicity of branches; the quantum state of
the universe will be a superposition of the states of these branches, with some
particular set of complex coefficients (amplitudes). Here we have, in outline,
a physically complete account of the situation before and after measurement,
and nothing has been said about rationality.

Now let us move on to the second point: that considerations of rationality
must be relevant to theory confirmation. The point can be seen abstractly
as follows. The question under consideration — when we are talking about
theory confirmation—is that of which physical theories it is rational to believe
(or have significant degree of belief in, or have significant degree of belief in
the approximate truth of, etc.), given the evidence we in fact have. This is
a question about a relation between physical theories on the one hand, and
rationality on the other. It should then be of no surprise that, in answering
the question, we need to consider the theory of rationality, as well as our
various candidate theories of physics.
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The point can be made more vivid by considering a more concrete case.
Let us put the issue of branching-universe theories aside for the moment.
Suppose that we have a physical theory, call it 7', that is irreducibly stochas-
tic. (T can be thought of as, for example, a dynamical collapse theory along
the lines proposed by GRW et al.) Consider some fixed experimental setup,
A. Suppose fixed the way that A is to be modelled in terms of 7" (including
initial conditions). Then, according to T', there are a number of possible out-
comes for the experiment A: sq,...,s,. T also assigns chances to the various
possible outcomes: py,...,p, for si,...,s, respectively. But now suppose
that these so-called ‘chances’ are unrelated to considerations of rationality.
In particular, suppose that there is no rationality constraint to the effect
that the experimenter, insofar as she believes T, should bet at odds given by
P1, - - -, Pn on the outcome of the experiment; and that there is no rationality
constraint with the consequence that, if in a long run of repetitions of the
experiment she observes relative frequencies that approximately match the
single-case chances predicted by T, and that no other available theory has
this so-called ‘virtue’, then she should increase her degree of confidence in
the theory over its rivals. Under these suppositions, the ‘chances’ ascribed
by the theory would have become altogether idle: for all practical and theo-
retical purposes, we would be no better off than if our theory merely said
that such-and-such a range of outcomes was possible, and ascribed the var-
ious possibilities no chances at all. In particular, the evidential connection
between theoretical single-case chances (on the one hand) and observed rel-
ative frequencies (on the other) can be made to reappear only by admitting
the connection between chances and rational belief revision.

Why is this point often missed? In our view, the explanation is the preva-
lence of (a) a frequentist analysis of chance and (b) a falsificationist account
of confirmation—both of which accounts are importantly defective. On the
combination of these two (defective) accounts, one reasons as follows. First,
one takes it that one knows perfectly well what to do with predictions of
the form ‘the chance of F is z’, without touching on issues of rationality:
such predictions just mean (according to frequentism) that in a long run of
repetitions of the experiment, the relative frequency of E will be approxi-
mately z. Second, one notes (as a consequence) that if the observed relative
frequency deviates significantly from the theory’s single-case chance, then
something has happened that the theory predicted would not happen, and
hence has been falsified; if, on the other hand, there is approximate agree-
ment (and, perhaps, the prediction was a ‘risky’ one), then the theory has
been confirmed (or, perhaps, ‘corroborated’).

The deficiencies of frequentism and falsificationism are well known. To
repeat: a probabilistic theory does not predict, categorically, that the ob-
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served relative-frequency will approximately match the theoretical single-case
chance; what it predicts that (in a sufficiently long run of experiments) this
matching will be observed with probability close to one. So the first assertion
in the above frequentist-deductivist account is false. And when one replaces
‘the theory predicts that the observed relative frequency will approximately
match the theoretical single-case chance’” with ‘the theory ascribes probabil-
ity close to one to the proposition that the observed relative frequency will
approximately match the theoretical single-case chance’, the second step in
the above account develops a glaring hole: if the observed relative frequency
deviates significantly from the theory’s single-case chance, then something
has happened that the theory ascribed low probability to, but this is perfectly
consistent with the theory’s being true, so the theory has not been falsified.

The would-be deductivist is then tempted to patch up the account with
a principle to the effect that, if something happens that the theory deemed
sufficiently improbable—say, to which the theory ascribed probability less
than some threshold pyp..sp—then the theory is to be regarded as effectively
falsified. But this patching-up will not work either: for every way the ob-
servations could turn out (including relative frequencies that approximately
match the theoretical single-case chances), there will be some description un-
der which ‘those observations’ were astronomically improbable (such as the
particular ordered sequence of outcomes observed).

To escape from this quagmire, one must move to something more closely
resembling a Bayesian account of theory confirmation. But then, if one really
wants to be precise about the details, one is up to one’s elbows in rationality
constraints—on belief-updating, and on the connection between conditional
credences and chances (the Principal Principle). The account we have given
is just the extension to the branching case of this standard Bayesian account.
To be sure, one can, for the purposes of most discussions of physical theory,
avoid explicit discussion of rationality. One can simply help oneself to a
particular consequence of the Bayesian theory: the principle (CC) stated
in section 2. The same thing can be done in the Everettian case: one can
simply help oneself to the principle (CW) stated above. This, too, obviates
the need to write several paragraphs on decision theory before drawing evi-
dential conclusions from a laboratory experiment. But it is a myth that the
foundations of these confirmation-theoretic principles are independent of the
theory of rational belief and decision. Our task in this paper has been to
provide the foundation for the principle (CW): it is only for this reason that
our discussion has been more explicitly rationality-theoretic than that found
in the average physics text.
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Objection 3: The decision-theoretic account presented here shows
that agents must attach some decision-theoretic weights to branches,
but it does not show that these weights must equal those given by
the Born rule. There is a sense in which this is correct, and a sense in
which it is not.

The observation made by the ‘objection’ is correct in the sense that we
have not supplied a ‘derivation of the Born rule’ from the pre-existing part
of the theory. That is, we have not supplied an a priori proof that betting
quotients for outcomes, conditional on the truth of Everettian quantum me-
chanics stripped of any explicit postulate about the relationship of branch
weights to (say) the amplitude-mod-squared measure over branches, must,
on pain of irrationality, be those given by the Born rule. That is, we have not
made the claim that is made by Deutsch (1999) and Wallace (2003, 2007).
However, as we will now explain, we do not take this to be ground for any
objection to our account.

The status of derivations of Born-rule weights within Everettian quan-
tum mechanics is (at least prima facie) similar to the status of Gleason’s
theorem and related results® concerning probability in quantum mechan-
ics. They show that certain assumptions lead to Born rule probabilities
(or weights). The assumptions used as premises in such proofs are not be-
yond question. At most, such proofs show that Born-rule chances/ignorance-
probabilities/ branch weights are the only ones that fit naturally with, or,
perhaps, are definable in terms of, the existing structure of quantum me-
chanics. It is an open question what the significance of this is: whether,
chance/ignorance-probability /weight predictions should be thus definable in
terms of the structure that is already present in the theory prior to the
introduction of chances/ignorance-probabilities/weights. Further, it is con-
ceivable that the answer to this question could turn out to be different in a
chance or an ignorance-probability theory than in a branching-universe the-
ory. For example, Wallace (2007, section 6) can be understood as arguing
that in the branching case decision-theoretic branch weights must be defin-
able in terms of the structure of the theory, but that the analogous claim for
chances or ignorance probabilities is not true; meanwhile, the existence of the
subject of nonequilibrium statistical mechanics, of the work of Valentini et
al on Bohmian mechanics ‘out of quantum equilibrium’; (see e.g., Pearle and
Valentini (2006)) show (for whatever this is worth) that the principle that
probabilities be definable in terms of pre-existing structure is in fact flouted

8 A nice recent example is the Zurek’s derivation of the Born rule from envariance Zurek
(2005). Barnum (2003) has shown how to turn this proof into one that takes no-signalling
as its main premise.
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by some (non-branching) theories taken seriously by working scientists.

Perhaps probabilities and/or weights must be derivable from pre-existing
structure; perhaps this issue plays out differently in branching and non-
branching theories; perhaps not. We have no further comment to offer on
these issues. Fortunately, such issues are irrelevant to our central claim. If
chances/ignorance-probabilities/branch weights must be definable in terms
of the existing structure of the theory, then the Born rule seems to be the
only option, in either a branching or a non-branching version of quantum
mechanics. In that case, had we consistently observed non-Born frequencies,
we would have been compelled to abandon quantum theory altogether. If (on
the other hand) there is no requirement that weights be definable in terms of
existing structure, then two versions of Everettian quantum mechanics that
agree on everything but the branch weights but ascribe non-Born weights
to branches are, for the purposes of theory confirmation, distinct theories,
just as Bohmian mechanics in and out of quantum equilibrium are distinct
theories. In this case, had we observed non-Born frequencies, we would
have had more latitude; it is the package as a whole, branches (or possible
histories) plus branch weights (or chances, or ignorance-probabilities) that
is confirmed or disconfirmed; it might have been open to us to retain a core
of quantum theory, but to adopt a different rule for the chances/ignorance-
probabilities/branch weights.

As things have turned out empirically, however, this is all largely ir-
relevant: we have observed Born frequencies and so, whether or not there
are other coherent theories out there that otherwise agree with Everettian
quantum mechanics but postulate non-Born branch weights, the theory with
Born-rule branch weights has been empirically confirmed (and any candi-
date theories with non-Born branch weights have been disconfirmed). This
is the sense in which the objection is incorrect: our account does have the
consequence that—whether or not there exists a satisfactory ‘derivation of
the Born rule’ from the pre-existing part of the theory—rational agents who
observe long runs of Born-rule frequencies will increase their degree of belief
that the weights of future branches are those given by the Born rule.

Objection 4: There are branches on which non-quantum statistics
are observed. Hemmo and Pitowsky write:

Even for agents like us, who observed up to now finite sequences
which a posteriori seem to conform to the quantum probability
[i.e. the Born rule], adopting the quantum probability as our
subjective probability for future action is completely arbitrary,
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since there are future copies of us who are bound to observe fre-
quencies that do not match the quantum probabilities (Hemmo
and Pitowsky, 2007, p. 348).

The inference from the existence of branches to the arbitrariness of adopt-
ing Born-rule probabilities as guides to future choice requires some explana-
tion. The argument seems to be something like this. On the ordinary ac-
count, evidence from past relative frequencies provide grounds for believing,
if not with certainty then at least with high degree of belief, that future rela-
tive frequencies will be similar. But, on an Everettian account, there are no
grounds for such belief, and we are in fact certain that relative frequencies
will deviate arbitrarily far from Born-rule weights on some future branches.
In the absence of an account on which observation of past frequencies is
evidence that it is better, in some sense, to adopt Born-rule probabilities
as guides to future actions, these past observations are irrelevant to future
action.

We claim to have supplied such an account. Theorem 2 shows that up-
dating beliefs about branch weights by conditionalizing on observed data is
preferred to any other strategy. In worlds like ours, provided only that the
agent regards the sequences of experiments in question as repeatable, this
leads to beliefs that the Born-rule branch weights are at least approximately
correct. It is, therefore, not arbitrary.

If our agent has priors on which a sequence of experiments is exchange-
able, and if these are non-dogmatic, then she will treat past experience as
relevant to future action. Of course, an agent might have priors that are such
that the result of one experiment is never relevant to that of another, and so
be unable to learn from experience which betting strategies are better than
which other. But she would be an agent who could not do science. We are
not aware of any reason for thinking that the sort of assumption that entail
learning from experience are any less reasonable in the branching than in the
non-branching case.

Objection 5: According to the Everett interpretation, what the
observer learns when she observes a measurement outcome is only
self-locating information. This cannot possibly be relevant to the-
ory confirmation. The idea here is as follows. Consider an agent who
is about to perform some quantum measurement with n possible outcomes
O4,...,0,. Conditional on the proposition that the Everett interpretation
is true, this agent is certain, for each value of ¢ from 1 to n, that there will be
some future branch on which O; occurs, and some future copy of herself on
that branch. The measurement is then performed. A later copy of our agent
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looks at the apparatus in her lab, and observes that, on her branch, some
particular outcome O; occurred. Then (the thought runs) conditional on the
truth of Fverettian quantum mechanics, the information she has acquired is
purely self-locating — she knew all along (conditional on the truth of Ev-
erettian quantum mechanics) that there would be such a copy of herself, and
now she has merely observed that indeed there is. Therefore (the objection
continues), she cannot possibly have learnt anything that is evidentially rele-
vant to the truth of Everettian quantum mechanics. (The thought is related
to that raised in objection 4.)

Let us put aside the awkwardness (‘knew conditional on the truth of
Everettian quantum mechanics’, etc.) required to state the sense in which
the information is ‘purely self-locating’. The key mistake on which the above
objection rests is the idea that information that is ‘purely self-locating’, in
the sense that it does not rule out any possible worlds, is necessarily also
evidentially irrelevant to de dicto propositions (i.e., that it cannot, under
rational belief-updating, result in the redistribution of credences between
possible worlds).

Such a principle cannot be sacrosanct; there are in any case many known
counterexamples, independent of the Everett interpretation. Consider, for
example, the prisoner in a lighted cell, who knows that it is six o’clock in the
evening and that the light in her cell will be switched off at midnight iff she is
to be hanged at dawn. Some significant amount of time passes, and the light
stays on; the prisoner rationally becomes more confident that she will live
another 24 hours. But nothing that she has learnt rules out the possibility
that she will be hanged at dawn: she remains uncertain as to whether or
not midnight has really passed. For a second (more familiar, but also more
controversial) example, consider Sleeping Beauty: the two most common
analyses of Beauty’s case, the ‘thirder’ (Elga, 2000) and ‘halfer’ (Lewis, 2001)
analyses, agree that on learning that it’s Monday, Beauty acquires evidence
that the coin landed heads, despite the fact that her being awake on Monday
is consistent both with Heads and with Tails.

Our account is one according to which this (anyway non-sacrosanct) prin-
ciple is routinely violated: information about the outcomes of experiments
(in the possible world in which, and/or on the branch on which, the agent is
now located) is a type of information that, even in the highly idealized cases
in which it becomes purely self-locating (i.e. cases in which the agent is cer-
tain that some branching-universe theory is correct), is evidentially relevant
to de dicto propositions. Furthermore, we are aware of no well-motivated
alternative account of belief-updating that renders it evidentially irrelevant.
(The methodological point implicit in this reply is that it is often more reli-
able first to work out which global belief-updating strategies are candidates
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for rational status, and afterwards to draw conclusions about which sorts of
information can be evidentially relevant to which sorts of propositions, than
vice versa.)

Objection 6: Decision-making is incompatible with deterministic
physics. This issue is an old one. If the underlying physical dynamics
is deterministic, then the decision our agent is going to make is already
determined by the present state of the universe, together with the dynamical
laws. It is an illusion, according to this objection, that she has any decision
at all to make.

In reply, it should first be mentioned that this does not differentially affect
our account, but applies equally well to any deterministic physical theory.
Nor does a move to an indeterministic physics help; making my actions partly
a matter of chance does not address the concerns behind this objection.

Fortunately, we do not have to consider the age-old problem of freedom
of the will here. Our axioms concern rational preferences between wagers.
It makes sense to have such preferences, and to evaluate them as rational
or irrational, independently of questions of our ability to act on the basis of
such evaluations. We frequently evaluate our own actions (often, negatively)
in cases in which, due to weakness of the will, we are unable to act in the
way that we judge to be best.

Objection 7: Preferences between wagers is nonsensical in a branch-
ing universe. On the branching-universe view, all payoffs corresponding to
non-null outcomes are actually paid to agents on the corresponding branches.
This is certainly a departure from the usual way of thinking about wagers.
Some readers may find themselves at sea when contemplating such a sce-
nario, and it may seem that we have no clear ideas about what preferences
between branching wagers might be reasonable.

We claim that the situation is not so grim. For one thing, there do seem to
be some clearly defensible principles regarding rational preferences between
branching wagers. A wager that pays a desirable payoff on all branches is
surely preferred to a wager that pays nothing on all branches. If, on every
otucome, the payoff paid by f is at least as desirable as that paid by g, then
f is at least as desirable as g.

If we accept that preferences between wagers makes sense in the branching
case, and accept also that there are principles that reasonable preferences be-
tween branching wagers ought to satisfy, then the question still arises whether
the axioms we have laid down are reasonable constraints on rational prefer-
ence in the branching case.
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Objection 8: The decision-theoretic axioms are not as defensible in
the branching as in the non-branching case. This is the most serious
objection. If the axioms are accepted for preferences between wagers on a
branching scenario, then confirmation of theories that posit branch weights
proceeds in a manner entirely parallel to theories that posit chances.

One occasionally comes across the following idea: since decision-making
conditional on the assumption that the Everett interpretation is true is
decision-making under conditions of certainty, ‘the’ decision theory for such
decision scenarios is trivial (meaning: it consists merely of the requirement
that preferences be total and transitive, that is, our axiom P1).?

If intended as an objection to the account defended in this paper, this
point would beg the question entirely. One can, of course, write down both
trivial and nontrivial decision theories, both for decision making in the face of
indeterminism and for decision making in the face of branching. The fact that
decision making in the face of branching had not been seriously considered
(and hence no nontrivial decision theories for that case advocated) prior
to 1999 is irrelevant; the question is which decision theories are reasonable.
Our claim is that the nontrivial decision theory we have outlined is no less
reasonable in application to the branching case than in its long-accepted
application to the structurally identical indeterministic case. A non-question-
begging objection in this area must give a reason for thinking that, structural
identity notwithstanding, the decision-theoretic axioms we have discussed,
while reasonable in the indeterministic case, ought not to be applied to branch
setups in the way that we have advocated.

Such a reason must involve a difference between chance setups and branch
setups. The most obvious difference is that, on a branching scenario, all
outcomes actually occur, whereas, in the non-branching scenario, only one
outcome is actual. Moreover, if a given payoff is paid only on a class of out-
comes with low chance, our agent can be reasonably certain that that payoff
will not be the one that is paid. In the branching scenario, the corresponding
payoff is sure to be paid, albeit on a class of outcomes with low weight.

Why might this difference be relevant? We will not explore the full range
of possible reasons here; we discuss only the one that, in our own opinion,
poses the most serious prima facie problem for our account. It is this. The
fact that all outcomes actually occur supplies a sense, possibly relevant, in
which preferences between wagers on branch setups (‘brambles’; as, following
Barry Loewer, we called them in the above table) are analogous to questions

9Mostly this suggestion has been made in conversation; however, see also Wallace (2002,
section 3.2).
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of distributive justice.! Now, the representation we obtain from our axioms
P1-P6 is one in which alternate distributions of payoffs are judged according
to a weighted mean of utilities on all branches. Though some, namely util-
itarians, accept that judgments regarding distributive justice, no less than
questions of rational decision under uncertainty, are to be addressed in this
way, there are of course dissenters from such a view. Rawls, for example, ar-
gues for a maximin rule, which seeks to maximize the well-being of those that
are worst off (Rawls, 1999). Someone who accepts such a view for questions
of distributive justice could still think that rational strategies for prudent
decision-making under uncertainty conform to the axioms. If she regards
preferences among brambles as relevantly similar to questions of distributive
justice rather than to preferences among gambles, she will then accept our
axioms for chance setups, but be wary of a rule for branch setups that ranks
wagers according to a weighted mean of payoffs on branches.

Two replies can be made to this objection. The first is that even if
preferences among brambles is relevantly similar to questions of distributive
justice, still the representation theorem discussed in section 3 will do the
epistemic work we have claimed it can do in the branching context. The
second is that it is at least far from obvious that the similarity in question
is relevant. We will set out these two replies in turn.

The first reply runs as follows. We concede (for the sake of argument)
that preferences among brambles are relevantly similar to questions of dis-
tributive justice, but we claim that, for a suitably restricted class of decisions,
even questions of distributive justice are suitably treated using the weighted-
average formula. The point is the following: all that is required, for the
representation theorem to go through, is that there be at least two payoffs,
one of which is strictly preferred to the other. This means that we do not
need to make the strong claim that our axioms apply even when some of
the brambles among which the agent is choosing assign a terrible outcome to
some branches, or in general when the utility differences between branches
are large. (This is relevant because part of the intuition underlying the ob-
jection is that there are some things that we ought not do to anyone, no
matter how great the benefit to others might be.) Suppose, then, that we re-
strict our attention to preferences between wagers involving only the payoffs,
a: receive one chocolate donut, and b: receive two chocolate donuts, with b
strictly preferred to a. The trivial wager I(b) is strictly preferred to the trivial
wager I(a). All other wagers in this restricted class are ties on the maximin
rule, since they share the same worst outcome. It does not seem reasonable
to simply be indifferent between all such wagers; if f and g coincide except

10See Huw Price’s contribution to this volume.
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on a non-null class F' of outcomes, on which f awards a and g awards b,
then, surely, g is to be strictly preferred to f. We claim that axioms P1-P6
are reasonable ones for breaking maximin ties within this restricted class of
wagers. And, if this is accepted, then we still get a representation on which
values of wagers are represented as a weighted mean of utilities on branches.
For the confirmation-theoretic purposes of this paper, we do need to claim
that a rational agent should always have the same preferences when faced a
bramble or with a corresponding gamble. Perhaps a case can be made for
this strong claim; but we need not take the analogy so far.

The second reply, rather than conceding the objector’s point and arguing
that it is not damaging, challenges the point itself, as follows. It is far from
obvious that Everettian decision-making is relevantly analagous to distrIbu-
tive justice, rather than to decision-making under classical uncertainty, in
cases (if any such there be) in which the correct decision procedures for the
latter two situations diverge. To be sure, as we noted above (and as our
objector emphasizes), brambles and distributive justice problems share the
attribute that all candidate reward-recipients are actual. But, since any two
scenarios are similar in some respects and dissimilar in others, the existence
of some criterion effecting this grouping is trivial. There are, of course, many
other (more or less natural) criteria that would group brambles and gambles
together while excluding distributive justice problems, and still others that
would group gambles and distributive justice problems together while ex-
cluding brambles. (An example of the former type of criterion is: are the
candidate reward recipients future copies of the decision-making agent?!!
An example of the latter is: was the scenario in question discussed prior to
19507)

What is required, in order to assess the relevance or otherwise of appeals
to distributive justice, is a careful exploration of precisely which differences
between scenarios of classical uncertainty and those of distributive justice
are responsible for the divergence in recommended policies; only once we
have such an explanation can we know to which the Everettian case is rele-
vantly analogous. This project has not (to our knowledge) been carried out,
and lies beyond the scope of the present paper. But in the meantime, it is
at least plausible that the fairness-based intuitions that motivate deviations
from maximization of expected utility in the case of distributive justice are
grounded in issues of trust and power dynamics, present in a complex com-
munity of distinct and interacting agents but absent in the case of ‘brambles’,

HFollowing a panel discussion at the Perimeter Institute conference during which one
of us raised this point, Simon Saunders suggested an alternative that is probably more to
the point: Is there any interaction between the recipients?
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and have nothing at all to do with the mere fact that all candidate recipients
are actual. (When deciding whether to increase contributions to one’s pen-
sion fund or blow the extra money on an expensive holiday next year, one
doesn’t worry about whether or not one’s allocation of resources between
one’s next-year self and one’s older self is fair, despite the fact that both are
[timelessly] actual. It is very interesting to ask why not, and we do not know
the answer; but the datum is clear.) It is thus at least plausible that the
analogy to cases of distributive justice is irrelevant.

Let us turn to P7. This axiom seems non-controversial: unless our agent
has cause to re-evaluate her earlier judgments about preferences between
wagers, she should continue to employ the updating strategy that, on her
initial preferences, she deemed the best. This, as we have seen, is equivalent
to updating by conditionalization. The following objection, however, can be
raised to P7 in the branching case.!?

The account defended in this paper has the post-branching agent adopt-
ing the updating strategy ranked highest by the pre-branching agent. But
(the objection runs) our post-branching agent knows that, if the Everett in-
terpretation is true, then her interests now are not the same as the interests of
her pre-branching self — the latter’s interest was to maximize average utility
across branches according to the measure of importance of those branches,
whereas the former’s interest is to maximize utility on whichever branch she
is in fact now on. And (the objection continues) intertemporal consistency
criteria — such as P7 — can have the status of rationality constraints only
if the agent-stages concerned believe that they have the same interests as
their temporal counterparts. Therefore (the objection concludes), P7 is a
rationality constraint for chance setups but not for branch setups.

Before replying, let us illustrate the objection by elaborating on the sort
of example that it suggests. We imagine a situation in which, prior to a
sequence of two coin flips, our agent (call her Aliceg) weighs options and
decides whether, in her estimation, her successors on each of the post-flip
branches should prefer wager f or wager g on the outcome of the second
flip. Now let Alice; be a successor on one of the branches after the first coin
flip, but suppose that Alice; has not yet learned the outcome of this first
coin toss. We imagine that Alice; opts not to take the advice of Alicey, on
the grounds that her interests are different. However, since the situation is
meant to be one of the sort for which updating by conditionalization would
be required in the non-branching case, we must stipulate that Alice; still
endorses Alicey’s judgments as appropriate for Alicey’s situation. (Recall

12We are grateful to Tim Maudlin for raising a similar objection to a predecessor of the
position defended in this paper, and for extensive discussion.
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that P7 restricts the intertemporal consistency requirement to ‘pure learning
experiences’.) Alice;’s reasoning must then be: “Alicey, in formulating her
advice, was concerned with maximizing mean benefit across all branches to
her future. But I’'m only concerned with myself and with my future branches.
(And, by the way, I see no reason for my self-locating credences concerning
which branch I am now on to bear any particular relationship to Alicey’s
estimates of the relative importance of branches.) Though Alicey was right,
given her concerns, to recommend that I choose f, it would be better for me,
with my concerns, to choose g.”

We claim that Alice; should, rather, accept Alicey’s advice on whether to
take f or g. The reason is that there is a relevant sense in which the interests
of Alicey and Alice; are the same: they both ultimately aim to maximize
actual payoff averaged with respect to the actual branch weights. But given
that they do not know the actual branch weights, each’s preferences over
wagers are given by maximizing average payoff with respect to their respec-
tive credences about the branch weights. Now, the actual branch weight of
a given payoff on a wager on the second coin flip is the same downstream of
Alice; as it was downstream of Alicey, and Alice; knows this. And Alice; has
gained no new information about the branch weights; she is, with respect
to branch weights, in a ‘pure learning situation’ in which nothing has been
learned. If she endorses Alicey’s credences, she should therefore retain the
same credences about branch weights, and hence the same preferences among
wagers. Hence Alice; will endorse Alicey’s recommendations about what she
should do upon learning the result of the experiment. The subsequent learn-
ing of the outcome of the experiment involves no branching, merely a gain
in knowledge, so there is no room for a supposed change of interest to alter
her judgments about what she should do, upon learning which sort of branch
she is on.

Someone might accept P1-P7 and nevertheless insist on a more egalitarian
treatment of measurement outcomes, continuing to bet at even odds on the
outcome of a coin toss, even in the face of a string of tosses in which heads
predominate. After all, the argument goes, there will be a copy of me on the
H branch, and a copy of me on the T" branch; ought not I be fair, and treat
both of these copies equally? This amounts to rejecting P8, which is meant
to exclude dogmatism of this sort.

This is reminiscent of Laplaceanism, and the reply is similar. Counting
branches is not as simple as that. After all, there are many ways in which
the coin can land heads, and many ways in which it can land tails. A wager
that makes the payoff depend only on heads or tails imposes a partition
on the outcome space. There is no necessity, and no compelling reason,
why this partition, rather than some other, must be treated so that copies
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of me in one class hold the same weight in my deliberations as copies of
me in the other class. Just as, in applications of probability conceived in
the ordinary way, Laplace’s definition of probability must be supplemented
by judgments of which classes of events are to be judged equipossible, so,
too, would an egalitarian approach to preferences between branching wagers
require a judgment of which partitions of an experiment’s outcome space are
to be afforded equal weight. What we suggest is the same for the branching
case as for the non-branching case: let experience be your guide.

6 Conclusions

Everettian quantum mechanics ascribes weights to branches. We have out-
lined an account according to which rational agents use these weights as if
they were chances in evaluating bets that may give different payoffs on dif-
ferent branches, and the occurrence of events to which the theory ascribed
a weight higher than the average chance-or-weight ascribed by rival theories
increases rational degree of belief in the Everettian theory. That is, on this ac-
count, branch weights play both the decision-theoretic and the confirmation-
theoretic role that chances play. We have argued that this account is no
less defensible than the structurally identical account according to which
chances, in an indeterministic theory, have similar decision-theoretic and
confirmation-theoretic relevance. It follows from the same decision-theoretic
axioms, via the same representation theorems; and, we claim, the axioms are
no less plausible under our suggested interpretation in branching contexts
than they are under the familiar interpretation in non-branching contexts.
If correct, this solves the prima facie evidential problem that the Everett
interpretation seemed to face.
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Appendix

Experiments A, B are to be performed in succession. Our agent is to be
informed which element of a partition {D# |i = 1,....,n} of S# that the
outcome of experiment A falls into, and then offered a choice between wagers
f=[EP — fj], 8= [Ef — g;] on the outcome of B, where {EF|j =1,...,m}
is a partition of SP. A strategy consists of a choice, for each i, of f or g as
the preferred wager on B upon learning that the outcome of A is in D;.
Define the strategy ¢ by
£, if 320D 0 EF)u(fy) 2 32, (D N EF) u(g;)
¢; =
g, if 32, (D N EP)u(fy) <3, a(Df N EF) u(gy)

Let ¢; be the opposite strategy: if ¢; is f, ¢, is g, and vice versa. ¢’s choices
are such that, for each 1,

> a(D 0 EP) (u(dy) — u(dyy)) > 0.
J
We will say that ¢ strictly prefers ¢; to ¢; iff
Za(D{‘ A EJB) (U((bij) - U(ngg)) > 0.
J
We will show that:
i). For any strategy v, ¥ < ¢.

ii). If, for some 4, ¢; is strictly preferred to ¢;, then, for any strategy
that disagrees with ¢’s choice on 7, 1) < ¢.

Let ¢ be any strategy. ¢ < ¢ iff
> D a0 EP)uly) < YD a(Df 0 EP)u(y),

or,

ZZO‘(D? A E]B) (u(ij) — u(vpy;)) < 0.

There is no contribution to this sum from those %, if any, on which ¢ and v

agree. When ¢ and 1 disagree, 1; = ¢;. For such 1,

Y aDf 0 EP) (uldy) —ulvy) = Y a(Di 0 EP) (u(dy) — ul(édy)) =0,

J J
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and so,

ZZQ(DZA N EP) (u(¢i;) — u(iyy)) =0,
or, ¢ = ¢. If, for any 1,
> aDf 1 EP) (u(dy) — uldy)) >0

we have ¢ < v for any v with ¥; = ¢;.
This gives us o' up to an arbitrary scale factor. If we wish to normalize
the updated a-function, so that a}(S?) = 1, we have

a(D{ N EP)

) = o
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