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1. introduction

Why does the universe have a thermodynamic arrow of time?  The standard reasoning relies on the truism: no asymmetry in, no asymmetry out.  If the fundamental laws of nature are time reversal invariant (that is, time symmetric), then the origin of the thermodynamic asymmetry in time must lie in temporally asymmetric boundary conditions.  However, this conclusion can follow even if the fundamental laws are not time reversal invariant.  The more basic question is whether the fundamental laws—whether time symmetric or not—entail the existence of a thermodynamic arrow.  If not, then the answer must lie in temporally asymmetric boundary conditions.  The more basic reasoning is: no asymmetry of the right kind in, no asymmetry out.  As it happens, as I understand them, none of the current candidates for fundamental law of nature entail the thermodynamic arrow.  String theory, canonical quantum gravity, quantum field theory, general relativity, and more all admit solutions lacking a thermodynamic arrow.  So a first pass at an answer to our initial question is: the universe has a thermodynamic arrow due in part to its temporally asymmetric boundary conditions.

Merely locating the answer in boundary conditions, however, is not to say much.  All it does is rule out thermodynamic phenomena being understood as a corollary of the fundamental laws.  But that's true of almost all phenomena.  Very few events or even regularities can be explained directly via the fundamental laws.  If we are to have a satisfying explanation, we need to get much more specific. 

One promising way of doing so is via the explanation Boltzmann initially devised.  Roughly put, the idea is as follows.  Identify the thermodynamic entropy of a system with the so-called Boltzmann entropy.  Then make plausible the claim that if the initial Boltzmann entropy of the system is low, then over 'reasonable' time spans in the future it is highly likely that it will increase.  Finally, assume as a boundary condition that the initial Boltzmann entropy of the system was low.  With these pieces in place, one can infer that the system will display a thermodynamic arrow over the time spans in question.  What is the system to which this applies?  Because it is difficult to know how to decouple systems in a non-arbitrary way, Boltzmann took himself to be describing the entire universe.  If this is right, we now have a theory explaining why we have a thermodynamic arrow in our universe.
  And this explanation appeals to a much more specific claim about boundary conditions than the generic reasoning we engaged in above: namely, that the Boltzmann entropy of the entire universe was very low (compared to now) roughly 15 billion years ago. In particular, the entropy of this state was low enough to make subsequent entropy increase likely for many billions of years.  Let's follow Albert 2000 in calling this claim the Past Hypothesis; let's call the state it posits the Past State.  Physicists such as Boltzmann, Einstein, Feynman, Penrose and Schrödinger have all posited the Past State in one form or other.  To me, if the Boltzmann framework can be defended, then positing the Past State in one form or other appears to be the simplest answer to the problem of the direction of time in statistical mechanics.
Simplicity is nice, but truth is better.  Is the Past Hypothesis true?  When we look to the early universe, as described by contemporary cosmology, do we observe something resembling the Past State?  Some authors (e.g. Price 1996) believe that Boltzmann's prediction is spectacularly well confirmed by cosmology.  Indeed, I agree that if correct, the vindication of Boltzmann's novel retrodiction should count among the great achievements of science.  It would be a prediction of the early state of the universe from seemingly independent statistical mechanical arguments.  However, if Boltzmann's prediction is right, why is it so unsung? The answer is that we cannot be confident that the prediction is right.  The reason for this is that it has never been entirely clear how to apply Boltzmann's statistical mechanical framework in conditions such as those in the early universe.  

Bracket all the questions still under debate about the Big Bang.  Let's not worry about cosmic inflation periods, the baryogenesis that allegedly led to the dominance of matter over anti-matter, the spontaneous symmetry breaking that purportedly led to our forces, and so on.  The Past State doesn't have to be the "first" moment.  Skip to 10-11 seconds into the story when the physics is less speculative.  Or skip even further into the future if you're worried about the standard model in particle physics.  (And don't even think about dark energy or dark matter.)  

Even still, for confirmation of Boltzmann's insight, at the very least one needs to understand statistical mechanics and Boltzmann entropy in generally relativistic spacetimes, the entropy of radiation, how this entropy relates to the entropy of the matter fields, and more.  Needless to say, all of this is highly nontrivial.
 

No one ever promised that physics would be easy.  It being hard explains why the verdict is still out on Boltzmann's prediction.  That more knowledge is needed, however, doesn't suggest in the least that the Past Hypothesis is false.  Absence of evidence isn't evidence of absence.  

However, what would suggest falsity is if –as a matter of principle -- the basics of Boltzmann's framework just can't be applied in the non-classical theories needed to describe the physics of the early universe.  That is John Earman's 2006 claim with respect to general relativity.  In a sharp attack, Earman claims that the Past Hypothesis is "not even false."  The reason for this conclusion is that Earman is unable to define a coherent and nontrivial Boltzmann entropy in general relativity.  For the Boltzmann entropy to make sense (as we'll see) one needs a well-defined state space for the theory and a measure invariant under dynamical evolution.  We don't have this for the space of all solutions to Einstein's field equations.  We do have it for some very special cases.  Restricted to Friedman-Robertson-Walker metrics with a scalar matter field, one can use the Hawking-Page measure over a two-dimensional reduced phase space or the Holland-Wald measure over a three-dimensional reduced phase space.  Earman shows that using either makes nonsense of the Past Hypothesis.  

Earman's result is troubling, but perhaps not fatal to the Past Hypothesis.
 The measures he cites, it must be admitted, are developed only for a highly idealized solution to Einstein's field equations.  The problem of developing measures on the space of solutions to Einstein's field equation is still in its infancy, e.g., we are very far from claiming that either of the above measures is uniquely invariant with respect to time evolution; hence we do not yet have an in principle demonstration that the Boltzmann entropy is indefinable in general relativity. There may be other measures that work. What Earman shows is that given what we know, things don't look good.

Given this situation, a natural question is whether the Boltzmann entropy makes sense even in classical physics when we consider cosmological systems.  In particular, since what is causing the present trouble is gravity, one would like to understand an early classical state when the gravitational interactions are included in the system.  Such an approach would be deeply limited.  As mentioned, to describe anything like our universe one needs general relativity, the expansion of space, strong and weak nuclear forces, and much more. While this claim is no doubt true, there are virtues in beginning simply.  For if we have trouble even here, then we know we have a problem with gravity no matter how the measure-theoretic details work out in general relativity.  And if some problems in the classical context can only be solved by adding more realism, then that is still something interesting to learn. Before worrying about general relativistic or quantum gravitational thermodynamics, let's figure out whether classical gravitational thermodynamics works.

As we shall see, even here in the Newtonian context—surprisingly—matters get tremendously complex.  Nasty "paradoxes" threaten the very foundations of gravitational thermodynamics.  The point of the present paper is to introduce these problems and show how they affect the Boltzmann explanation described above.

This paper has two very modest goals.  Firstly, and primarily, I want to demonstrate why even classical gravity is a serious problem for the standard explanation of entropy increase.  If the paper does nothing else, my hope is that it gets the problems induced by gravity the attention they deserve in the foundations of physics.  Secondly, I want to outline a possible way out of at least one difficulty.  Most of the work here will be in the set-up, both in seeing the exact nature of the problem and in understanding how the work done on the statistical mechanics of stellar systems can be conceived from a foundational perspective.  Once framed, I want to make plausible a very weak claim: that there is a well-defined Boltzmann entropy that can increase in some interesting self-gravitating systems—where I get to define "interesting".  More work will need to be done to see if this claim really answers the threat to the standard explanation of entropy increase.  However, establishing the claim might remove some of the pessimism one might have about the standard explanation in the gravitational context, in addition to suggesting a clear path for future study. 

2. The Past Hypothesis

Classical phenomenological thermodynamics is a system of functional relationships among various macroscopic variables, e.g., volume, temperature, pressure.  It tells us that some macrostates M covary or evolve into others, e.g., Mt1(Mt2.  One of these relationships is the famous Second Law of Thermodynamics.  It tells us that an extensive state function S, the entropy, defined at equilibrium, is such that changes in it are either positive or zero, i.e., entropy doesn't decrease.  For realistic cases, it seems to imply that in the spontaneous evolution of thermally closed systems, the entropy increases and attains its maximum value at equilibrium.  Actually, there is controversy whether the spontaneous movement from nonequilibrium to equilibrium strictly follows from the Second Law; but even if it doesn't, there is no controversy that this spontaneous movement occurs and is a central feature of thermodynamics.  This feature describes many of the temporally directed aspects of our world, e.g., heat going from hot to cold, gases spontaneously expanding throughout their available volumes.

Why, from a mechanical perspective, do these temporally directed generalizations hold?  Let us restrict ourselves to classical statistical mechanics, and in particular, the Boltzmannian interpretation of statistical mechanics.  I find the Boltzmannian view of statistical mechanics provides a more "physical" description of what is going on from a foundational perspective than the rival Gibbsian perspective.
 

The first step in understanding the Boltzmannian explanation of the approach to equilibrium is distinguishing the macroscopic from microscopic description of the system.  The exact microscopic description of an unconstrained classical system of n particles is given by a point X ( (, where X=(q1,p1…qn,pn) and ( is a (in the absence of constraints) 6n-dimensional abstract space spanned by the possible locations and momenta of each particle.  X evolves with time via Hamilton's equations of motion.  Since energy is conserved, this evolution is restricted to a 6n-1 dimensional hypersurface of (.

The same system described by X can also be described in the macro-language by certain macroscopic variables (volume, pressure, temperature, etc.).  This characterization picks out the system's macrostate M.  Notice that many other microstates will also give rise to the same macrostate M.  If we consider all the X ( ( that give the same values for macroscopic variables as M gives, this will pick out a volume (M.  The set of all such volumes partitions the energy hypersurface of (.  

A quick word about the volume.  A continuous infinity of microstates will give rise to any particular macrostate, so one requires the resources of measure theory.  The 6n-1-dimensional energy hypersurface of ( has a Lebesgue measure naturally associated with it.  From this measure one creates a probability measure, and one assumes or hopes to prove that the probability of finding a system in region (M of the energy hypersurface of ( is proportional to the volume of (M, |(M|.  

We can now define the entropy of a macrostate M.  The Boltzmann entropy of a system X that realizes M is defined by 

S = k log |(M(X)|

where k is Boltzmann's constant and || indicates volume with respet to Lebesque measure. Notice that this entropy is defined in and out of equilibrium.  In equilibrium, it will take the same value as the Gibbs fine-grained entropy if n is large.  Outside equilibrium, the entropy can take different values and will exist so long as a well-defined macrostate exists.  

Why should Boltzmann entropy increase?  The answer to this is controversial, and we don't have space to discuss it fully here.  The hope is that one will be able to show that typical microstates underlying a nonequilibrium macrostate subsequently head for equilibrium.  One way to understand this is as follows.
  The Boltzmann equation describes the evolution of the distribution function f(x,v) over a certain span of time, and this evolution is one toward equilibrium.  Let (( ( ( be the set of all particle configurations X that have distance (, (>0, from f(x,v).  A good point X ( (( is one whose solution (a curve t( X(t)) for some reasonable span of time stays close to the solution of the Boltzmann equation (a curve t( ft(x,v)).  A bad point X ( (( is one that departs from the solution to the Boltzmann equation.  The claim that typical microstates underlying a nonequilibrium macrostate subsequently head for equilibrium is the statement that, measure-theoretically, most points X ( (( are good.  The expectation –proven only in limited cases--is that the weight of good points grows as n increases.  The Boltzmannian wants to understand this as providing warrant for the belief that the microstate underlying any nonequilibrium macrostate ones observes is almost certainly one subsequently heading toward equilibrium.  As mentioned, the desired conclusion does hang on highly nontrivial claims, in particular, the claim that the solution to Hamilton's equations of motion for typical points follows the solution to the Boltzmann equation. 

Here is a loose bottom-to-top way of picturing matters that will come in handy later (see DeRoeck, Maes, and Netočný 2006).  We know at the macroscopic level that nonequilibrium macrostates evolve over short periods of time into closer-to-equilibrium macrostates.  That is, M1 at t1 will evolve by some time t2 into a closer-to-equilibrium macrostate M2.  Call (M1t1 the set of states in ( corresponding to M1 at t1, (M2t2 the set corresponding to M2 at t2, and (t2-t1(Mt1 the time evolved image of the original set M1.  Then, if our picture is right, the Second Law is telling us that (t2-t1(Mt1 is virtually a proper subset of (Mt2.  That is, almost all of the points originally in M1 have evolved into the set corresponding to M2.  Liouville's theorem states that a set of points retains its size through Hamiltonian evolution.  Hence the volume of (t2-t1(Mt1 is equal to the volume of (M1t1.  Since the former is virtually a proper subset of (Mt2, that means that (Mt1 ≤ (Mt2.  From the definition of entropy it follows that S(Mt2) ≥ S(Mt1).

The problem of the direction of time is simple to see.  Nowhere in the above argument did I say whether t2 is before or after t1.  Given a nonequilibrium state at t1, the above reasoning shows that it's very likely that it will subsequently evolve to a later higher entropy state at t2, where t1 is earlier than t2.  However, it is also true that the reasoning shows that most likely the state at t1 evolved from an earlier higher entropy state, in this case where t2 is earlier than t1.  There is nothing in the time reversible dynamics nor in the above reasoning to rule out entropy increase in both temporal directions from the nonequilibrium present.  The famous recurrence and reversibility challenges to Boltzmann point out that even good points X will go bad if given enough time (recurrence) or allowed to go in the wrong temporal direction (reversibility).

All manner of answer to this problem have been proposed—appeals to time asymmetric environmental perturbations, ignorance, electromagnetism, and more.  In my opinion, where these proposals have merit, they eventually reduce to an appeal to temporally asymmetric boundary conditions.  Ultimately we need to assert that in the direction we call "earlier" entropy was in fact very low compared to now. As mentioned at the outset, the specific form of this claim in the present context is that the Past Hypothesis is true; that is, that the Boltzmann entropy of the universe was extremely low roughly 15 billion years ago.  

3. The Past Hypothesis meets gravity

No sooner is the Past State posited than it is immediately challenged with a bit of a problem: it seems to be manifestly false.  When we look to cosmology for information about the actual Past State, we find early cosmological states that appear to be states of very high entropy, not very low entropy.  Cosmology tells us that the early universe is an almost homogeneous isotropic state of approximately uniform temperature, i.e., a very high entropy state, not a low entropy state as mandated by the Past Hypothesis.  Here is the physicist Wald 2006:

The above claim that the entropy of the very early universe must have been extremely low might appear to blatantly contradict the “standard model” of cosmology: there is overwhelmingly strong reason to believe that in the early universe matter was (very nearly) uniformly distributed and (very nearly) in thermal equilibrium at uniform temperature. Does not this correspond to a state of (very nearly) maximum entropy, not a state of low entropy? (395)

If we consider point particles interacting without gravity, then the answer certainly seems to be in the affirmative.

Once the problem is stated, however, authors quickly reassure us that it is only apparent.  We forgot to include gravity, we are told, and yet by including gravity the "situation changes dramatically" (Wald, 395).  Gravity saves the Past Hypothesis.  This claim is made with equal frequency and force by scores of physicists and philosophers of physics.  

How does gravity save the Past Hypothesis?  Here is a (too) simple expression of the idea.  If we think of a normal terrestrial gas in a box, as a result of repulsive forces and collisions, its "natural tendency" is to spontaneously spread throughout its available volume into a homogeneous state.  If this is right, then when we add an attractive force like gravity the reasoning should reverse.  For it is the "natural tendency" of a gravitating system to spontaneously move toward more clumped states.  Masses attract one another, and both in theory and computer simulation self-gravitating Newtonian systems get more and more clumpy with time.  With gravity, inhomogeneity is the new homogeneity.  Since low-to-high entropy transitions express the natural tendency of systems, it ought to be that in gravitating systems clumped states are of high entropy and spread out ones of low entropy.  The cosmic background radiation shows that the universe was more homogeneous in the past.  Hence the Past State is vindicated.  In fact, one might go so far as to say that not only doesn't it falsify the standard explanation of entropy increase, but that it is a stunningly accurate prediction made by the standard explanation.

Of course, this simple idea leaves out the momentum sector of phase space.  There is no "natural tendency" toward spatial homogeneity or inhomogeneity in either gravitating or non-gravitating systems.  The oil and vinegar separating in your container of salad dressing is an entropy increasing process.  Many spatial inhomogeneities grow in perfectly normal entropy increasing situations, and presumably homogeneities can develop in gravitational situations.  The idea must be, then, that the increasing concentration in the configuration sector of phase space is compensated by a greater decreasing concentration in the momentum sector of phase space.  As we go forward in time, one –not implausibly-- imagines the velocity vectors as becoming increasingly chaotic.   

Assume that the total entropy can be expressed as a simple sum of the configuration sector entropy |(Mq| and the momentum sector entropy |(Mp|.  This in itself is a big assumption, but for the sake of illustration let's make it.  Then it's easy to see that it's possible that entropy increase or decrease with time.  When gravity is the dominant force then presumably |(Mq| will decrease as time passes if the initial state is originally very dispersed.  Although the system may develop into various quasi-stable configurations, in the long run we might expect it to become more concentrated in space.  On the other hand, we might expect particles gradually to be "slingshot" far away, so that the system evaporates and becomes very dispersed in space.  Similarly, it's possible that |(Mp| grows as particles' velocities become increasingly randomly distributed with time; but it's also possible that the velocities become more aligned as time passes.  What is needed is that log |(M| increases with time and this can be achieved a variety of ways.

We know in the normal non-gravitational case that entropy can go up or down.  There are, as described before, good and bad initial states, the bad ones leading to subsequent entropy decrease.  Fortunately, with respect to the Lebesgue measure, most of the states are believed to be good ones.  So what is of interest isn't whether entropy can go up or down when gravity is turned on—of course it can—but whether for most initial states entropy increases.  

A really pressing question then is whether the standard probability distribution crafted from the Lebesgue measure is empirically adequate when gravitational interactions are included.  Can we see the motion of the stars, and so on, as the movement to an equilibrium state, where equilibrium is understood as the largest, "most probable" macrostate according to the Lebesgue measure?  A priori, the applicability of the Boltzmann framework, and in particular, the empirical adequacy of the Maxwell-Boltzmann probability distribution, is not guaranteed.  New physics presents new challenges to it. Indeed, when one states this hypothesis one realizes that the standard explanation of the direction of time—which assumes this framework works with gravity--tries to explain with one stroke two possibly quite distinct processes.  It tries to account for ordinary thermodynamics and the rise of structure in the cosmos.  The first is a primarily non-gravitational process and the second is a primarily gravitational process.  The Past Hypothesis is thus a tremendously ambitious claim, and if successful, the result would be a major unification in physics.  But we should be clear that it is ambitious and that it's not obvious that the two processes can be given the same explanation.
  

At this point the natural thing to do would be to calculate the Boltzmann entropy, with gravity included, of some toy gravitational systems and see if entropy increases.  Then one would like to compare the results there with our actual cosmological history. However, for various reasons to be discussed, we are stymied in this attempt.

4. The gravitational paradoxes

Statistical mechanics and thermodynamics work flawlessly in some gravitational contexts.  In terrestrial cases where we can approximate the gravitational field as uniform, there is simply no problem.  Thermodynamics obviously works in such cases, and the extension of statistical mechanics to systems with external uniform fields doesn't require any major modification (see, e.g., Landau and Lifshitz 1969, 72; Rowlinson 1993).  However, we are interested in the more general question, the thermodynamic and statistical mechanical properties of a system self-interacting via time-varying gravitational forces. We will operate under the idealization that gravity is the only force obtaining between the particles and we will restrict ourselves to classical gravitation theory.  Therefore, we investigate the thermodynamic properties of the famous classical N-body problem in gravitation theory.  

The Hamiltonian describing the system for N gravitationally interacting particles of mass m is
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(1)

where 
[image: image2.wmf].  Although this system is ideal, some globular star clusters (N=105-106), galaxies (N=106-1012), open clusters (N=102-104), and planetary systems are decent instantiations of this ideal system.  That is, the salient features of these systems over large time and space scales are due to gravity.  Collisions, close encounters and other behaviors where other forces are relevant are rare, so ignoring inelastic interactions doesn't cause great harm.  The question is then whether the stars in such systems or even the galaxies themselves, when idealized as point particles, admit a thermodynamic description.  Can we think of the stars as the point particles in a thermodynamic gas?

In the literature on classical gravitational thermodynamics
, most papers mention some subset of five obstacles facing any such theory: non-extensivity, ultraviolet divergence, infrared divergence, lack of equilibrium, and negative heat capacity.  The first problem is that the energy and entropy of systems evolving according to (1) can be non-extensive, even though in thermodynamics these quantities are extensive.  The second problem arises from the infinite range of the gravitational potential and the lack of gravitational shielding; together they imply that the integral over the density of states can diverge.  The third problem arises instead from the short-range nature of the potential. Here the problem is the local singularity of the Newtonian pair interaction potential.  Two classical point particles can move arbitrarily close to one another.  As they do so, they release infinite negative gravitational potential energy.  Partition functions, which need to sum over all these states, thereby diverge.  The fourth problem comes in many forms, some linked to the divergence problems.  But in general there are many problems with defining an equilibrium state for a system evolving via (1).  Finally, the fifth problem, which is not really a paradox but merely extremely counterintuitive, is that the heat capacity for systems evolving via (1) can often be negative, whereas in classical thermodynamics it is always positive.

To get an intuitive feel for how gravity causes trouble, focus on just one issue, the non-extensivity problem.  Intuitively put, extensive quantities are those that depend upon the amount of material or size of the system, whereas intensive quantities are those that do not.  The mass, internal energy, entropy, volume and various thermodynamic potentials (e.g., F,G,H) are examples of extensive variables.  The density, temperature, and pressure are examples of intensive variables.  Mathematically, the most common expression for extensivity is the definition that a function f of thermodynamic variables is extensive if it is homogeneous of degree one.  If we consider a function of the internal energy U, volume V, and particle number N, homogeneity of degree one means that 


f(aU,aV, aN) = af(U,V,N)





(2)

for all positive numbers a.  Consider a box of gas in equilibrium with a partition in the middle and consider the entropy, so that a=2 and f=S.  Then S(2U,2V,2N) represents the joint system, and equation (2) says that this is the same as two times the individual entropies of the partitioned component systems.  Extensive functions are also assumed to be additive, and with a slight assumption, they are. A function—using our example, entropy—is additive if S(U1+U2, V1+V2, N1+N2)=S(U1+V1+N1)+S(U2+V2+N2).  With minimal assumptions homogeneity of degree one implies additivity.
  With these definitions in hand, let us turn to statistical mechanics, the theory that explains why thermodynamical relationships hold of mechanical systems.

Perhaps the most basic assumption of thermodynamics/statistical mechanics is that the total energy of any thermodynamic system is approximately equal to the sum of the energies of that system's subsystems.  If we have a large gas in a box, and we conceptually divide it into two subsystems, we expect the total energy to be the sum of the two subsystem energies—so long as the subsystems are still macroscopic systems.  In many influential treatments of the theory, this assumption is regarded as the most basic of all, e.g., Landau and Lifshitz's 1969 classic treatment begins with essentially this assumption.     

One of the features that makes this assumption plausible is that in terrestrial cases we are usually dealing with short-range potentials.  At a certain scale matter is electrically neutral and gravity is so weak as to be insignificant.  If the potential is short-range and our subsystems aren't too small, then the subsystems will interact with one another only at or in the neighborhood of their boundaries.  When we add up the energies of the subsystems, we ignore these interaction energies.  The justification for this is that the interaction energies are proportional to the surfaces of the subsystems, whereas the subsystem energies are proportional to the volumes of the subsystems.  So long as the subsystems are big enough, the subsystem energies will vastly trump the interaction energies as the number of subsystems increases because the former scale as (length)3 and the latter as (length)2.  The basic assumption is then justified.

However, if gas molecules are replaced by stars—that is, short-range potentials replaced by long-range potentials—this reasoning doesn't work.  Consider a star at the apex of a cone (Binney and Tremain 1987, 187-8) and the force by which the stars in the cone attract the star (Fig 1.).  Suppose the other stars are distributed with a uniform density.  The force between this star and any other falls off as r-2, but the number of such stars increases along the length of the cone as r2.  Thus any two equal lengths of the cone will attract the target star with equal force.  If the density of stars is perfectly homogeneous and isotropic, the star won't feel any force.  But if not homogeneous—even if not homogeneous only at great distances—the star will feel a net force.  For this reason the force on any particular star is typically determined more by the gross distribution of matter in the galaxy than by the stars close to it.  Collisions do not play as large a role as they do in a typical gas in a box on Earth.  Terrestrial gas molecules tend to lead violent lives determined in large part by sudden disputes with their neighbors; stars tend to lead comparatively peaceful lives because they are in harmony with the overall universe.
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Fig. 1. Fashioned after Binney and Tremaine, 188
Returning to energy, we see that the interaction energies may not be proportional to the subsystem surfaces.  For short-range potentials, the dominant contribution to the energy comes from nearby particles; but for long-range potentials, the dominant contribution comes from far away particles.  To drive home the point, consider a sphere filled with a uniform distribution of particles.  Now add a particle to the origin and consider its internal energy U:
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One can then verify that with (>0 ("short-range potentials"), the significant contribution to the integral comes from near the particle's origin, whereas with (<0 ("long-range potentials"), the contribution comes from far from the origin (Padmanabhan 1990). 

Consider again a chamber of gas divided into two equal boxes, A and B.  If the particles are interacting via long-range forces, the particles in box A will feel the particles in box B as much or even more than the particles nearby.  Let EA represent the energy of box A and EB represent the energy of box B.  As a result of the interaction, it is easy to devise scenarios whereby EA = EB = -a, where a>0, yet where the energy of the combined system E=0, not -2a.  The energy might not be even approximately additive.  

When the additivity and extensivity go, so do large portions of equilibrium thermodynamics and statistical mechanics.  For example, when a system is in equilibrium, its large subsystems also will be in equilibrium.  This is no longer necessarily the case.  And additivity is a requirement for the equilibrium Second Law in thermodynamics (see Lieb and Yngvason 1998).  Moreover, in statistical mechanics it is built into the heart of the theory. The famous Boltzmannian probability W of a macrostate is assumed equal to the product of the probabilities of the subsystem macrostates, i.e., Wtotal=WaWb.  Boltzmann's definition of entropy as S=klnW straightforwardly implies that Stotal=Sa + Sb.  And there is no conventional thermodynamic limit for non-extensive systems. For a rigorous discussion of this see Padmanabhan 1990, Levy-Leblond 1969 and Hertel et al 1972.  This last fact shouldn't be surprising. The existence of the thermodynamic limit depends on making the contribution of surface effects go to zero as N,V go to infinity.  In a non-additive system, we saw that the surface effects aren't going to get smaller as N and V increase. Ironically, the thermodynamic limit doesn't apply to very large systems if one includes the force primarily relevant to the dynamics of those systems.

5. The Problem 

As interesting as these problems are, they are—at first glance—orthogonal to our main worry.  The problems described are problems for equilibrium thermodynamics and statistical mechanics, but we're interested in nonequilibrium statistical mechanics.  

The reason this is so is because the Past State is surely not an equilibrium state, yet arguably it still has a Boltzmann entropy.  Why is the Past State a non-equilibrium state? It is the global state of the universe, and the very reason it is posited is that subsequent evolution will spontaneously take the global state to regions corresponding to higher entropy.  But if it's in equilibrium, the system won't change unless an external constraint is removed; yet since the system is the global state, there is no external constraint to remove.  The unavoidable conclusion is that the Past State must not be an equilibrium state.  Indeed, no one expects the Past State to stay that way.  It is expected, under the attractive force of gravity, to begin clumping.  The Past State, therefore, simply doesn't have an ordinary equilibrium entropy corresponding to equilibrium thermodynamics or equilibrium statistical mechanics.  But it does have a Boltzmann entropy.  The definability of the Boltzmann entropy in systems outside equilibrium is touted as perhaps its greatest virtue.  Since we're restricting ourselves to the classical phase space and assuming a Lebesgue measure upon it, we don't have the in-principle problems Earman worries about in general relativity.  All one really needs for a Boltzmann entropy to exist is a well-defined macrostate and a well-defined notion of volume in phase space.  If the earliest cosmological times don't correspond to a macrostate for some reason, then the Past Hypothesis picks out the "first" state that does.  This macrostate will correspond to a particular volume |(M|, and hence it has an entropy.  The problems with equilibrium statistical mechanics in the presence of gravity are worrying, but so far not directly relevant to the increase of Boltzmann entropy.

Or are they?  One can't completely divorce non-equilibrium theory from equilibrium theory. Think of the issue as follows.  The Boltzmann entropy for the gravitating system described by the Past State will exist, but what will it do?  What one wants is not merely the existence of entropy but also the functional relationships that are usually entailed by a system having an entropy.  Why think, for instance, that a system in the Past State will increase its entropy?  And more generally, granted that the Past State picks out some volume in phase space, what gives this volume its physical significance?

As Boltzmann famously showed, in the case of the dilute gas we have everything we could want from the Boltzmann entropy. Recall that the argument goes as follows.  The H-theorem shows that the entropy S(f(x,v))
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(3)

increases monotonically with time when f is evolving via the (independently motivated) Boltzmann equation.  Here f is the distribution function defined over 6-dimensional (-space when partitioned into a finite number of cells.  S(f) is shown to increase with time except for when f is a local Maxwellian, whereupon S(f) is stationary.  Since Maxwell had already shown that his distribution corresponded to equilibrium, the idea of S(f) playing the role of entropy is naturally suggested.  Notice that so far none of this bears on the Boltzmann entropy.  The crucial link is provided by the detour via 6-dimensional (-space.  By making a number of assumptions appropriate to the dilute gas—but certainly not to gases with strong interactions—Boltzmann is able to "translate" distributions f into hypervolumes in (.  In particular, he is able to show via the famous "combinatorial argument" that the distribution f corresponding to the Maxwell distribution occupies far and away the greatest proportion of volume in (.  Via this translation Boltzmann shows that all the desirable properties true of S(f) are true of the Boltzmann entropy too in the case of the dilute gas.  Doing so motivates the entire picture of microstates most likely evolving into the dominant equilibrium sections of (.  (See Uffink 2007 for more discussion).  

It is important to stress that it is the above connection to the H-function and the Boltzmann equation that gives the volume in ( any claim to be physically significant.  After all, there are other volumes calculated in other bases, e.g., energy, which do not have this feature.

Now we immediately see at least one big problem for providing the Boltzmann entropy physical significance in the gravitational case.  Boltzmann's argument can plausibly be extended to some systems for which it was not originally intended, and new arguments mimicking Boltzmann's can show that the Boltzmann entropy for some non-dilute gases have physical significance (e.g, Garrido, Goldstein and Lebowitz 2004; Goldstein and Lebowitz 2004).  However, in the gravitational case we know we in general can't use Boltzmann's argument and there isn't much reason to hope anything like it will help.

For instance, consider an important property we need to know of our system: the macrostate f(x,v) that has maximum volume in (.  One can hope to find this via the combinatorial argument only if one can translate between (-space and (-space--and one can only do this because the gas is dilute and interactions are effectively turned off.  What one does is maximize f(x,v) subject to two constraints.  One constraint is associated with particle number, but the other is more directly relevant to us:  
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(4)

where E is the total energy.  In other words, one is maximizing conditional on the claim that the total energy is the sum of kinetic energies.  If this is so, the Maxwell equilibrium distribution is the macrostate with the maximum volume in (.  In fact, as n goes to infinity departures from the equilibrium macrostate go to zero.  This step warrants the additional geometric interpretation the Boltzmannian asserts.  The picture of typical nonequilibrium states moving to equilibrium states because there are vastly more of the latter than former is not justified except by this procedure.

In the present case, however, we are directly challenged by the total energy not being approximately the sum of independent individual energies.  Equation (4) is manifestly false and not even approximately true for many self-gravitating systems.  The gravitational potential energy contributes to the overall energy of the system.  Without (4) one cannot show that the largest macrostate in phase space is the equilibrium state; and absent this, one cannot make plausible that typical initial states go to equilibrium.  So although the loss of a maximization constraint may seem like a quibble, an awful lot hangs on it.  In fact, the very terms by which we conceived the original question depends on this; unless the energy factorizes there is no reason to think the entropy S(f) is a simple sum of a configurational contribution and momenta contribution, so the intuitive reasoning we engaged in earlier doesn't hold.   And if this weren't bad enough, we are also lacking a gravitational version of the Boltzmann equation for which one can prove an H-theorem (more on this later).  I hope this discussion adequately displays the problem: although the gravitational system has a well-defined Boltzmann entropy, that by itself doesn't imply any particular subsequent behavior. 

Perhaps we can look at the glass as half full?  We already knew the above problems for the Boltzmann explanation. Many critics of Boltzmann (e.g. Schrödinger 1948 [1989]) point out that it works rigorously only for the case of dilute gases, yet most systems are of course not dilute gases.  The Boltzmannian can deflate some of these worries by showing how many systems are approximately like dilute gases, how numerical simulations of cases that aren't dilute gases vindicate the Boltzmannian claims, and so on.  But there are of course many systems that don't fit this mold, and the strongly self-gravitational system is one of them.  All we have done is highlight the existing problem by displaying a class of systems that are especially far from being treated as dilute gases.  And we could have made this argument with plenty of non-gravitational systems too, e.g., some type sof plasmas.  Maybe, perversely, this is good news to the Boltzmannian. The problem gravitational interaction presents to the standard story the Boltzmannian tells is as bad as but not obviously worse than the problem other systems already cause the Boltzmannian.  

It would be nice if we could view the problem as simply a new version of the same old one already challenging Boltzmann.  But it's not clear that even this is the case.  In astrophysics researchers often make assumptions about the stars that warrant a description of the system via f on (-space, not the full (-space. That is, they often work with the "one-particle" distribution function on 6-dimensional (-space just as Boltzmann did in his work on dilute gases.  This restriction on f is typically justified in the astrophysics literature by the fact that gravitational systems are essentially collisionless for long periods of time.  So what were doing now is restricting ourselves to a regime wherein some of the usual Boltzmann apparatus can be salvaged.  The entropy is defined as (3) above. 

Under these restrictions, let us now search for the state of maximum entropy, which will be our equilibrium state. Even here, however, we run into problems.  To find out what equilibrium looks like for self-gravitating systems, therefore, we can find the distribution f(x,v) that maximizes the equilibrium entropy (3).  However, if one looks for the distribution f that maximizes S for a given mass M and energy E, then it is a major result in the field that S is extremized iff f(x,v) is the distribution function of the isothermal sphere (Ogorodnikov 1965; Lynden-Bell 1967).  The isothermal sphere is an infinite N self-gravitating ideal gas.  That is, there is no distribution function that maximizes S while keeping M and E finite.  Maintaining finite M and E, one can obtain arbitrarily large entropies by rearranging the configuration of stars, as Binney and Tremaine 1987 show.  There is no f(x,v) that maximizes the entropy (3) for finite M and E.  (Binney and Tremain 1987 take this result to show that galaxies and presumably other typical stellar configurations are not the result of long-term thermal equilibrium.  The quest in the astrophysics literature is to associate typical stellar configurations with quasi-stationary states, not true equilibrium states.
)

The Boltzmannian may reply that this problem is an artifact of the simplification, that with the 'true physics' on ( the problem will go away.  That puts the Boltzmannian in an awkward position, however.  The Boltzmannian cannot show this is the case because then she meets the gravitational version of Schrödinger's worry: that one can't prove much outside the simple case. In the non-gravitational case the Boltzmannian replies to Schrödinger by pointing out all the success she had with dilute gases, toy models, computer simulations, and so on.  Now in the gravitational case it looks like the Boltzmannian needs to solve the hard case to help answer problems with the allegedly easy case.

Obviously more study is needed of this problem.  Perhaps there is still a way the Boltzmannian can by-pass these difficulties.  Right now, however, gravity seems to have pulled the Boltzmannian into a serious thicket of problems.

6. A WAY FORWARD?
That was the bad news.  Let's conclude, however, with some good news.  

In Section 5 we learned that the problem we have is giving the Boltzmann entropy of a gravitating system physical meaning.  In the case of a non-gravitating dilute gas we saw that the Boltzmann equation, the H-theorem and the connection to the H-function provided the Boltzmann entropy physical significance.  Can we do this for other systems, in particular, gravitational systems?

In some regimes, yes.   

To understand the general idea, recall again what Boltzmann does for dilute gases.  Boltzmann considers a distribution f(x,v,t) that evolves according to the Boltzmann equation, an equation independently motivated on physical grounds.  His famous H-theorem shows that a function of f, S(f), increases with time except when f(x,v) is a local Maxwellian.  The reason why any of this is interesting is that S(f) is shown to be roughly equal to the Bolztmann entropy klog|(M(X)| and the Maxwellian distribution is the distribution corresponding to the maximum Boltzmann entropy.  Thanks to this connection, we know that so long as the system is appropriately modeled via the Boltzmann equation, the genuine Boltzmann entropy will increase with time until reaching equilibrium.

There are physical regimes, of course, where the Boltzmann equation is not a good approximation, and in those cases different macroscopic kinetic equations often apply.  Are there macroscopic kinetic equations that are good approximations of real systems wherein the dominant interaction is gravitational?  Can we get an H-theorem for these regimes?  And can we show that this H-function H=-S(f) is roughly equal to the Boltzmann entropy?  The answer in each case is yes.

In astrophysics the full n-body problem is often too hard to study, even in computer simulations in many instances, and hence one considers regimes wherein various kinetic equations are appropriate.  Astrophysics is filled with macroscopic equations of motion for distributions.  Indeed, since plasmas interact via long-range forces too, many of the same kinetic equations used in plasma physics often work in astrophysics too, so an awful lot is known about many equations.  

Consider a galaxy of n identical stars with characteristic radius r.  The time it takes any star to cross the galaxy is r/v, where v is the typical speed of a star (determined by G, n, r, mass); this is called the crossing time of the star.  Suppose that the star evolves in a background wherein the mass is perfectly smoothly distributed, not clumped up into individual stars.  Call this its mean trajectory.  When would the difference between the star evolving in this background versus a more realistic background show up in its velocity (where by "show up" we mean the velocity changes by order of itself)?  Leaving the details to textbooks on galactic dynamics, the answer is that the star is deflected from its mean trajectory over order 0.1n/lnn crossing times.  Hence one concludes that for systems that are less than 0.1n/lnn crossing times old, individual stellar encounters are more or less unimportant.  Many galaxies, with n≈1011 stars and a few hundred crossing times old, are examples.  For these systems, typically where the forces are long-range and weak, a natural move is to replace the actual force by its spatial average.  Many self-gravitating systems enjoy large space and time scales where this approximation is justified.  

A major equation of study in galactic dynamics is therefore the Vlasov equation, or the collisionless Boltzmann equation.  The equation is for a density of particles subject to an average force field: 
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where f=f(x,v,t)d3xd3v and ( is a smooth gravitational potential.  (5) is essentially a special case of the Liouville equation (for a derivation of (5), see Kandrup, ms and Kandrup 1981).  Despite its simplicity, the Vlasov equation is described in textbooks as the fundamental equation of stellar dynamics.  What is nice for us is that if we define an entropy via this f, S(f), then one can show that it is proportional to the Boltzmann entropy.  What is not so nice, however, is that we cannot show that entropy increases for distributions evolving according to the Vlasov equation.
  This is not at all surprising, since the Vlasov equation is more or less the Liouville equation.
 

Nonetheless, there is a lot more to stellar dynamics than the Vlasov equation.  Many systems are such that stellar encounters have played a major part in their development.  Globular clusters, open clusters, galactic nuclei and clusters of galaxies all have n, crossing times and lifetimes making the collisionless regime inappropriate to describe them.  Outside this Vlasov regime, kinetic equations other than (5) are required, equations including some effect of collisions and close encounters.  There are scores of kinetic equations used in the subject, but for concreteness let me mention two, namely, the Fokker-Planck equation and the essentially equivalent Landau equation.  (The Landau equation is a symmetric form of the Fokker-Planck equation.) These are equations of form 
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where C[f] denotes the rate of change of f due to encounters and collisions.  The Fokker-Planck and Landau equations are of form (6) with specific collision terms derived for small-angle grazing collisions.  The equations are derived by expanding the Boltzmann equation about small-angle grazing collisions.  For the exact form of C[f] see Balescu 1963, Spohn 1991 or Heggie and Hut 2003.  Both Fokker-Planck and Landau are useful for gas/fluid systems that are weakly coupled, and they are particular useful for stellar systems in which collisions are rare and interactions weak.  In astrophysics, the Fokker-Planck equation is advertised as the "most accurate model of a stellar system, short of the N-body model" (Heggie and Hut, 87).

What I want to point out is that for the Fokker-Planck equation, one of the most successful kinetic equations in astrophysics, one can get everything one wants.  In particular, for many broad classes of collision terms C[f] one can prove an H-theorem for (6).  One can show that this H-function is related to the Boltzmann entropy in the same way Boltzmann does for the dilute gases.  And one can show that the stationary or equilibrium distribution of (6) is equivalent to the solution one obtains from maximizing the Boltzmann entropy in the presence of an external potential.  Since the Fokker-Planck equation has been extensively studied, and these results are relatively well known, I will not prove any of it here.  I simply will refer the reader to the relevant literature for proofs and discussions of these assertions (see, e.g., Balescu 1963, 170ff; Green 1952; Liboff and Fedele 1967; Risken 1989; Spohn 1991, 83; van Kampen 1981).
  I note in addition that many of these results have recently been extended to the nonlinear Fokker-Planck equation too (e.g., Frank 2005 and references therein).  Of course, complete vindication of my claim will hang on demonstrating the match between particular astrophysical systems and the assumptions (boundary conditions and so on) used in any particular H-thoerem.

There are scores of other kinetic equations used in astrophysics and for many of these one will also find an H-theorem in the literature.  And for those that do not readily admit of an H-theorem, one may also try employing the conjecture of De Roeck et al to find an "H-theorem" of sorts.  Recall that in Section 2 I described a top-down way of thinking about entropy increase and H-theorems.  Imagine we have some deterministic macroscopic equation of motion, one that tells us that macrostates like M1 at t1 will evolve by time t2 into macrostate M2.  We saw that Liouville's theorem and the claim that (effectively) (t2-t1(M1t1 ( (M2t2 implies that almost all of the points originally in M1 have evolved into the set corresponding to M2.  From this it follows that (M1t1 ≤ (M2t2 and we therefore have a kind of H-theorem.  Whether this strategy is defensible and whether it works with certain equations in astrophysics are questions that require study.  I will not argue for either here.  Presently I merely wish to point out that with the plethora of macroscopic kinetic equations in the field, there will be many opportunities to try to employ this strategy.

The picture we have developed, then, is this.  We have not calculated the Boltzmann entropy including strong gravitational coupling directly, so we do not know whether it increases or decreases from an initial state like the early cosmological state.  For the reasons discussed in section 5, unless we simplify our system considerably we cannot show what the Boltzmann entropy of such a state will do.  We have no answer to the main question of this paper; indeed, displaying this problem is the main point of the paper.  As mentioned, however, the news is not all bad. We know that when some large self-gravitating structures in the universe reach a certain stage of development it becomes appropriate to idealize them as obeying a gravitational kinetic equation.   For some of these equations, and in fact for some very accurate ones, we can show that the Boltzmann entropy increases.  I have not shown this here, as it is implicit in the literature.
  Moreover, I have pointed to the vast range of gravitational kinetic equations in use as a place to investigate this question further. 

To what extent the Boltzmannian program is ultimately successful in the face of gravity depends on what we hope for and on the empirical facts. The original Past Hypothesis covered the entire universe, but this theory will not be vindicated by the current very limited result. The current move only yields an increasing Boltzmann entropy in regimes appropriately described by a gravitational kinetic equation.  For instance, the Fokker-Planck regime only lasts when the system is weakly coupled.  The whole universe is certainly not such a regime.  If one hopes for a Boltzmann entropy for the universe, this avenue cannot meet this goal.  Also, if one wanted to tackle the problems of extensivity et al head-on, we have not done that here either.  By going to a regime where a mean force is used, even where close encounters are considered to some extent, we may be accused of ignoring the problem of extensivity rather than addressing it.

Yet if one has more modest expectations, one has encouraging news.  What is perhaps the best kinetic equation incorporating gravitational effects generates the increase of Boltzmann entropy.  The natural reconstruction of the Past Hypothesis is as the claim that the early states of (e.g.) Fokker-Planck regimes are of very low Boltzmann entropy compared to now. The pressing empirical question for this approach is whether we're in such a regime and if so how big it is and how many there are.
  

This picture, it must be said, bears some similarity to the "branch" systems approach to statistical thermodynamics. Reichenbach's 1956 branch hypothesis is the claim that thermodynamics applies only to quasi-isolated macroscopic "branch" systems.  Thermodynamics doesn't apply to the universe as whole on this view, but only to certain systems when they become sufficiently isolated from the rest of the world.  Historically, the main objection to this picture is that it's not at all clear what "sufficiently isolated" could possibly mean.  See Albert 2000, 88-89 for a forceful statement of this objection.  Here I just want to note that the proposal under review isn't guilty of this mistake, at least on one reading.  The criterion of whether a system fits the assumptions underlying the use of a Fokker-Planck equation is quite clear.  The identification of branches can proceed without too much difficulty.  The larger problem, also mentioned by Albert, of whether one has any right to impose a uniform probability distribution over the "first" such state when we know it has evolved from previous states lingers, however, and demands further thought.

In sum, I hope to have shown how the inclusion of gravity into the Boltzmannian account of the direction of time is highly ambitious but also nontrivial.  After sketching the serious problems with gravity, I made plausible a sketch of how one can obtain an increasing Boltzmann entropy in self-gravitating systems described by certain types of gravitational kinetic equations.  Further work is needed to judge whether this kind of approach is best, but I do hope it removes some of the pessimism one might (reasonably) have about the Boltzmannian account in the presence of gravitation.
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� Many physicists and some philosophers want more: they want to explain why the boundary condition is what it is.  In Callender 2004 I argue that this is not necessary.


� Please don't be fooled into thinking that various entropies used in the literature, including the so-called Bekenstein entropy, are a quick fix.  It is commonly asserted that the Bekenstein entropy is low in the past and high in the future.  Without a clear connection between this entropy and the Boltzmann entropy, however, this claim simply isn't relevant to our question.


� Earman also launches other attacks on the Past Hypothesis and the uses to which it has been put, but we only have space to focus on this problem.


� Of course, it could be—and in some cases I would argue, is—the case that shifting to quantum  mechanics or general relativity actually solves the puzzles I mention below.  I don't mean to preclude the possibility that newer physics answers the puzzles of classical gravitational thermodynamics.  I simply think that beginning with classical physics is a natural place to begin to get a physical handle on the problem.


� I am not alone.  Lavis 2005 writes, "When confronted with the question of what is ‘actually going on’ in a gas of particles (say) when it is in equilibrium, or when it is coming to equilibrium, many physicists are quite prepared to desert the Gibbsian approach entirely and to embrace a Boltzmannian view”.  See Lavis for a description of the Gibbsian view.


 


� For a general discussion, see Goldstein 2002 and references therein.  For the specific formulation here, see Spohn 1991, 151.  And for some of the challenges this approach faces, see Frigg, forthcoming.


� I shouldn't give the impression that no one else is aware of potential difficulties with the usual response besides Earman.  Wald 2006, for instance, comments that statistical thermodynamics is usually justified via ergodicity, and yet ergodicity won't obtain in a general relativistic universe (the universe might be open, and it's not time translation invariant in the right way).  He also warns that the real story will include discussion of black hole entropy and quantum gravity.  As mentioned above, I think that unless one shows that the black hole entropy is connected to the Boltzmann entropy, then the black hole entropy will not be relevant to our explanation.  The first worry may also be irrelevant, as stated, since the Boltzmannian hopes his or her explanation uses requirements on the dynamics that are weaker than ergodicity.  But the spirit of Wald's point is right: once the Boltzmannian is clear about the necessary dynamics, it will be a good question whether they obtain in generally relativistic spacetimes. 


� For entries into this literature, see, Dauxois et al 2002, Heggie and Hut 2003, Padmanabhan 1990, and Saslaw 2000.


� See Dunning-Davies 1983 and Touchette 2002 for useful discussions of extensivity and additivity.  Because of their close connections for realistic systems, I'll use the two more or less interchangeably.


� Before concluding this section I should point out that there is a large research program devoted to the statistics of non-extensive systems that I am here bracketing aside.  This is the approach of Tsallis statistics.  The Tsallis school develops a generalization of the Boltzmann and Gibbs entropies, namely, the Tsallis entropy.  The Tsallis entropy reduces to the Boltzmann and Gibbs entropies when the system is extensive, but is different otherwise.  The motivation behind the program is to show that the Tsallis entropy works well in situations where the Boltzmann and Gibbs entropies allegedly break down.  Long-range force systems like self-gravitating systems are supposed to be one example.  The debate between the Tsallis school and others believing Boltzmann-Gibbs suffices is often very heated.  For the purposes of this paper I want to stay conservative and remain within the Boltzmann framework--though for some criticism of the Tsallis school, see Nauenberg 2003.  That said, we ought to acknowledge that one way of responding to the above worries is to change frameworks and go outside the normal Boltzmann-Gibbs picture.





� See, for instance, Chavanis 2005.


� In terms of the conjecture mentioned in section 2, De Roeck et al 2006 make clear that not all macroscopic equations will produce an H-theorem.  In particular, and skipping the details, they explain that if every microstate X is typical of the macroscopic equation, then the argument doesn't go through.  For (5), every X is typical: every solution of Hamilton's equations will follow solutions of (5) for f.  We will not, therefore, get an H-theorem.


� A coarse-grained entropy might increase, however.  In gravitational dynamics physicists speak of non-collisional "phase mixing" as another means of a system moving to equilibrium.  See Heggie and Hut 2003, 93 and Chavanis 1998.


�  Please bear in mind that often these works are not written from the perspective of the Boltzmann viewpoint used here.  To complete all the links mentioned, one sometimes will need to use, for example, the fact that the Boltzmann entropy is close in value to the Gibbs entropy at equilibrium for large systems, as well as results from Boltzmann's original derivation.


� It may be worth pointing out that the diffusion coefficient in the Fokker-Planck equation causes dispersal in velocity space.  So if we think back to section 3, where we wanted to know what was happening in momentum space in such systems, we see that these kinetic equations are describing systems whose momenta are getting more dispersed as time goes on, just as we hoped.


� Actually, probably more of the action will come in looking at the level of detail—i.e., the choice of macrostates—than simply the size of the system.  For instance, our galaxy, the Milky Way, has approximately N=1010 stars in it and a "crossing time" of 108 yrs, making stellar close encounters a relatively unimportant part of its evolution.  This means the Vlasov equation is a good description of our galaxy.  This equation, recall, provides no entropy increase.  However, that doesn't mean that if one wants to look at more fine-grained structure in our galaxy one can't use the Fokker-Planck equation, an equation from which one can derive entropy increase.  And that doesn't mean that one can't also enlarge the scale and use the Fokker-Planck equation to describe the dynamics of clusters of galaxies, with N=103, which may include the Milky Way.  


� Thanks to Jonathan Cohen, Roman Frigg, Carl Hoefer, Tarun Menon, Ioan Muntean and Allan Walstad for comments, as well as audiences at the 2006 Philosophy of Science Association Meeting and the 2008 Reduction, Emergence and Physics Workshop in Tilburg. 
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