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Abstract. We analyze the geometric foundations of classical Yang-

Mills theory by studying the relationships between internal relativ-

ity, locality, global/local invariance, and background independence.

We argue that internal relativity and background independence are

the two independent defining principles of Yang-Mills theory. We

show that local gauge invariance – heuristically implemented by

means of the gauge argument – is a direct consequence of internal

relativity. Finally, we analyze the conceptual meaning of BRST

symmetry in terms of the invariance of the gauge fixed theory un-

der general local gauge transformations.

I. Introduction

In order to introduce Yang-Mills theory a formal procedure known

as the gauge argument is commonly followed. This argument proceeds

as follows. One begins with a free fields theory that is invariant under

a global symmetry of the form ψ(x) → eiαψ(x). A “relativistic locality”

is then invoked in order to justify the necessity of defining a theory with

a local symmetry of the form ψ(x) → eiα(x)ψ(x), where the parame-

ter α becomes dependant on space-time M .1 Nevertheless, the precise

physical meaning of the local gauge invariance requirement is still the

object of an ongoing debate.2 The common strategy is to justify this

requirement by means of some sort of locality principle. However, far

1This is the kind of argument presented in the original seminal paper of C.N.

Yang and R.L. Mills: “It seems that this [a global symmetry] is not consistent with

the localized field concept that underlies usual physical theories.” (Yang & Mills,

1954, p. 192).
2See Martin (2002) for a criticism of the different justifications for the demand

of local gauge invariance and O’Raifeartaigh (1995) for a historical account.
1
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from being a univocally defined notion, there are many alternative def-

initions of locality. Even if the original Lagrangian L0(ψ, ∂µψ) is not

invariant under local gauge transformations, there exists a simple for-

mal procedure which renders the theory locally invariant. On needs

only to substitute the ordinary derivatives ∂µ with covariant deriva-

tives Dµ = ∂µ + Aµ(x) in the Lagrangian L0(ψ, ∂µψ) of the original

non-interacting fields. If one assumes that the field Aµ transforms into

A′

µ = g(x)−1Aµg(x) + g(x)−1∂µg(x) under a transformation defined by

an element g(x) = eiα(x) of a Lie group G, then the new Lagrangian

L(ψ,Dµψ) is invariant under these local gauge transformations. We

can thus conclude that in order to guarantee local gauge invariance, it

is necessary to introduce new fields, namely the so-called gauge field

Aµ = Aa
µTa ∈ Ω1(M) ⊗ g, where Ta is a basis of the Lie algebra g

of G. The remarkable result is that the gauge field Aµ can be iden-

tified with the potential of a fundamental physical interaction (as for

instance the electromagnetic interaction if G = U(1)). Under this

identification, the new terms in the Lagrangian L(ψ,Dµψ) represent

the minimal coupling between the matter and the gauge fields. Hence,

it is tempting to conclude that forcing local gauge invariance makes

it necessary to introduce physical interactions. However, in order to

find the complete Lagrangian of the matter field minimally coupled

to a dynamic gauge field, it is still necessary to add a kinetic term

for the gauge field of the form −1
4
Tr(FµνF

µν), with Fµν = [Dµ, Dν ].

Therefore, strictly speaking it is not true that a dynamic gauge field

can be derived from the requisite of local gauge invariance. Following

this and other arguments, some authors questioned the physical non-

triviality of the gauge argument and the belief that it encompasses a

fundamental principle of nature (see Martin, 2002).3 This criticism

can be traced back to Kretschmann’s classic objection to the physical

content of general covariance in general relativity (see Norton, 1992,

1993, 2003). The transition from what seems to be nothing more than

an “epistemic constraint” (namely that the theory’s observational con-

tent has to be invariant under local transformations of the coordinate

3The main arguments are the following: 1) the requisite of local gauge invariance

is not clearly justified, 2) it is necessary to add a kinetic term for the gauge field

by hand, 3) the resulting Lagrangian is not uniquely fixed by the gauge argument

and 4) the final structure of the theory depends on other principles, as for example

the requisite of renormalizability.
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system) to the introduction of a fundamental physical interaction is

not straightforward. Therefore, far from explaining the rational link

between symmetries and interactions, the gauge argument’s heuristic

value remains to be clarified.

In this paper, we will argue that internal relativity and background

independence are the two independent defining principles of Yang-Mills

theory. By means of the fiber bundle formalism, we will show that

Yang-Mills theory depends on the ontological assumption that geomet-

ric objects in the corresponding internal spaces (the fibers) are not

absolute geometric objects, that is to say they cannot be intrinsically

discerned. Since an active transformation of geometric objects in inter-

nal spaces can always be interpreted as a passive transformation of the

coordinate system, the specification of the field’s internal state at a cer-

tain position does not have a gauge invariant meaning. This property

of internal spaces will be called internal relativity. Since internal states

cannot be intrinsically discerned, different fibers cannot be canonically

identified. This property of fiber bundles will be called locality. In such

a geometric setting, the bases in the different fibers can be modified

independently of one another. Therefore, the theory is naturally invari-

ant under local gauge transformations. Local gauge invariance is thus

the “epistemic” consequence (in the sense that it concerns our utiliza-

tion of coordinate systems) of the non-trivial ontological assumption

about the internal relativity of the matter fields’ internal states.

Thanks to the fiber bundle formalism, we know that the gauge field

Aµ describes a connection on a G-principal fiber bundle over space-

time. However, the local theory that results from implementing the

gauge argument depends on this arbitrarily-fixed background connec-

tion (or absolute object in Anderson’s words; see Anderson, 1967). In

other words, the dynamics of matter fields is not relative to other de-

grees of freedom, but relative to a fixed background geometric struc-

ture. This means that a local theory is not necessarily a background

independent theory. In order to render the theory background indepen-

dent, it is necessary to include new degrees of freedom that describe the

connection dynamics. This can be done by adding a kinetic term for

the gauge fields to the Lagrangian L(ψ,Dµψ). While general relativity

succeeds in generalizing the background independence of external or
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spatiotemporal motion, Yang-Mills theory extends this requirement to

the dynamics of matter fields’ internal states.4

Since the quantum theory of gauge fields mixes quantum aspects

with gauge aspects in a non-trivial way, in this work we will only treat

classical Yang-Mills theory. It is true that Yang-Mills theory appeared

for the first time in a quantum context (at least in the non-abelian

case). Nevertheless, the preliminary consideration of the classical the-

ory allows us to distinguish between the gauge aspects coming from

the classical theory (such as the BRST symmetry) and those features

that are strictly of quantum nature (such as unitary, renormalisation

and anomalies).

In Sect. II we analyze the notions of relative and absolute geometric

objects. In Sect. III we use the fiber bundle formulation of Yang-Mills

theory in order to define locality and internal relativity. In Sect. IV

we consider the geometric conditions implicitly assumed in the frame-

work of a theory with global gauge invariance. In Sect. V we analyze

theories that are defined in a fiber bundle endowed with a connec-

tion. In Sect. VI we analyze the physical significance of gauge freedom

in Yang-Mills theory. In Sect. VII we clarify the conceptual meaning

of the BRST symmetry in Yang-Mills theory. In the final section we

summarize the obtained results.

II. Relative Geometric Objects

We will begin by analyzing the intrinsic nature of geometric ob-

jects. For the sake of simplicity, we will consider vectors belonging

to a n-dimensional vector space V . A vector v – an “arrow” – does

not depend on the particular basis s that we can arbitrarily choose in

V . In a particular basis {êµ}µ=1,...,n
in V , the vector v is expressed as

4It is sometimes stated that Einstein’s theory of gravity failed to generalize the

principle of relativity due to the irreducible absolute character of accelerated motion

(see Friedman, 1983). Nevertheless, even these “absolute” motions are relative to

a dynamic field of the theory, namely the gravitational field. In other words,“the

inertial structure of the world” – which “is accepted as the cause for the dynamic

inequivalence of motions” – is “a real thing that not only exerts effects upon matter

but in turn suffers such effects. [...] The phenomena of gravitation thus divulge the

flexibility of the field of inertia, or, as I prefer to call it, the ’guiding field’, and its

dependence on matter.” (Weyl, 1949, p. 105-106). This way of considering general

relativity was traditionally defended by H. Weyl (Weyl, 1949) and nowadays by C.

Rovelli (Rovelli, 2004).
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v = êµv
µ. We can also express v as v =

(

êνΛ
ν
µ

) (

Λ−1µ
ρ vρ

)

= ê′µv
µ′

, with

Λν
µ ∈ GL(n,R). The same geometric object v now has coordinates

vµ′

= Λ−1µ
ρ vρ in the new basis s′ defined by the vectors ê′µ = êνΛ

ν
µ.

In this way, one can identify the intrinsic geometric object v with the

equivalence class [(s, vs)] of pairs composed of a basis s and the compo-

nents vs of v in s. It is tempting to conclude that the demarcation line

between the intrinsic geometric object v (the “arrow”) and its gauge-

dependant coordinate representation has been successfully traced. Nev-

ertheless, the standard distinction between the coordinate-independent

– or intrinsic – mathematical object and the coordinate-dependent rep-

resentation misses an important point which becomes relevant in the

present context. Given a new set of coordinates vµ′

= Λ−1µ
ρ vρ, it is

a priori impossible to decide whether they are the components of the

original vector v in the new basis ê′µ = êνΛ
ν
µ (coordinate or passive

transformation), or the components of a new vector v′ in the old basis

êµ (automorphism of V ). In other words, given a coordinate transfor-

mation s  s′, one can always define an automorphism h such that

the vector hv is given in the old coordinate system by the new co-

ordinates of v. The automorphism h satisfies s(hv) = s′(v), where

s : V → R
n with s(v) = vµ. Reciprocally, if h is an automorphism of

V , one can always define an induced coordinate transformation s s′

which assigns new coordinates to each vector v that are equal to the

coordinates of hv in the original coordinate system. The new basis is

defined by s′ = s ◦ h. We can thus conclude that an automorphism

can always be trivialized in the form of a coordinate transformation.5

This well-known duality between coordinate transformations and auto-

morphisms is a consequence of the fact that vectors in V lack intrinsic

properties that could be used to discern them independently of the ar-

bitrary election of a basis. This means that vectors in V , considered as

intrinsic geometric objects, cannot be canonically individuated. It is

worth stressing that this is an ontological statement about the intrinsic

nature of vectors in V . The consequence of these considerations is that

vectors in V cannot be interchanged in absolute terms, that is to say

it is not possible to perform a “real” (non-trivializable) automorphism.

In other words, vectors in V are inchangable: an automorphism can

5The fundamental importance of the active interpretation of gauge transforma-

tions is a well-established fact in the case of general relativity (see the literature

concerning the hole argument, as for example Earman & Norton, 1987).
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always be reinterpreted as a relabelling of the vectors. This lack of in-

trinsic discernibility does not mean that geometric objects related by an

automorphism should be identified. Even though elements of a vector

space are intrinsically indiscernible, they are numerically distinct. If

this were not so, we would loose the very notion of a vector space. This

means that the leibnizian identity of indiscernibles is not valid here:

two vectors are different and indiscernible geometric objects. Their dif-

ference is thus a primitive one, that is to say irreducible to properties.

This means that in the present context the violation of the identity

of indiscernibles is not due to the impossibility of an epistemic access

to “metaphysical” properties. We could then say that “thisnesses are

metaphysically primitive” (Adams, 1979, p. 10). In other words, a vec-

tor space is characterized by an irreducibility of “thisness” or “intuitive

exhibition” to “suchness” or “conceptual determination”.6 This means

that a vector space is a primitive multiplicity of indiscernible geomet-

ric objects that can only be individuated by means of a “primitive,

nonqualitative thisness” (Adams, 1979, p. 10). Hence, we conclude

that what we thought to be intrinsic geometric objects cannot be abso-

lutely discerned in an ontological sense. In order to stress this intrinsic

indiscernibility, we will call them relative geometric objects.7

On the other hand, if vectors in V were intrinsically discernable, then

the coordinate transformations and the automorphisms could be dis-

tinguished by determining whether the basis or the vector had changed.

6This terminology is borrowed from Adams (1979) and Weyl (1949). See also

Auyang (1995) for a general discussion.
7In fact, choosing a basis s means choosing n linearly independent vectors of

V . Hence, a vector v can only be defined relatively to other vectors. As it was

clearly stated by H. Weyl, since the basis s is composed by vectors which, as any

vector, lack of intrinsic discernibility (they cannot be “characterized conceptually”),

they have to be exhibited by indexical expressions. In other words, the set of vec-

tors chosen as a basis cannot be individuated by the coordinate system defined by

themselves: “A conceptual fixation of points by labels [...] that would enable one

to reconstruct any point when it has been lost, is here possible only in relation to a

coordinate system, or frame of reference, that has to be exhibited by an individual

demonstrative act. The objectification, by elimination of the ego and its immedi-

ate life of intuition, does not fully succeed, and the coordinate system remains as

the necessary residue of the ego-extinction.” (Weyl, 1949, p. 75). This indexi-

cal resource is the “phenomenological residue” that makes it impossible to reduce

thisness to suchness.
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Since an automorphism h would transform a vector v into another vec-

tor v′ = hv that can be intrinsically discerned from v, the automorphism

h cannot be trivialized simply by being considered a mere coordinate

transformation. We could imagine, for example, that each vector is

colored differently. While a coordinate transformation changes the co-

ordinates of each vector (but not its color), an automorphism assigns

to each vector v another vector v′ = hv of a different color, that is

to say intrinsically different. Now that the vectors differ in color, the

identity of indiscernibles is saved. In other words, different vectors are

different because they are intrinsically discernable, since their difference

can be explained in terms of their properties. Intrinsically discernable

geometric objects will be called absolute geometric objects.

These considerations show that the duality between passive and ac-

tive transformations is the bridge allowing us to pass from what seems

to be an epistemic consideration about coordinate systems to an onto-

logical (or intrinsic) characterization of the relevant geometric objects,

namely that they are numerically different – in the sense that there

are many – and intrinsically indiscernables. The analysis of coordinate

systems’ transformations only serves to demonstrate the intrinsic rela-

tivity of the geometry itself: any active automorphism can always be

trivialized by interpreting it as a coordinate transformation. There-

fore, the duality between passive and active transformations, far from

being an a priori necessity, results from the intrinsic indiscernibility

of vectors in V . Hence, it could be misleading to insist exclusively on

the difference between the intrinsic (or coordinate-independent) geom-

etry and its non-canonical coordinate representation. The important

point here is that the intrinsic geometry itself is composed of relative

geometry objects that lack intrinsic discernibility.

III. Locality

In Yang-Mills theory, matter fields are described as sections of a vec-

tor bundle p : E → M over space-time. At each point x of the base

space M , a different copy Vx of a vector space V is attached. As we

have seen in the previous section, a vector v in a fiber Vx is a relative

geometric object described by an equivalence class of the form [(s, vs)],

where vs are the coordinates of v in the basis s. The equivalence rela-

tion is defined by (s, vs) ∼ (s · g, ρ(g−1)vs), where ρ is a representation

of a Lie group G (the so-called structure group) that defines the left
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action of G on V . A section of a vector bundle is a map ψ : M → E

subject to the condition p ◦ ψ = idM . This means that ψ assigns a

vector in the fiber Vx to each x ∈ M . The element ψ(x) ∈ Vx will be

called the internal state of the field ψ at x. Since a section ψ assigns

a vector v ∈ Vx to each x ∈ M and since all fibers Vx are isomorphic

to V , one might be tempted to consider ψ a function from M to the

vector space V . Nevertheless, it should be stressed that the image of

each x ∈ M belongs to a different copy Vx of the vector space V . In

fact, the distinction between functions and sections is one of the fun-

damental clarifications provided by the fiber bundle formalism. Even

though all vector spaces Vx are isomorphic, there is no canonical iso-

morphism between them. This is a direct consequence of the fact that

internal states in each fiber are relative geometric objects that cannot

be intrinsically discerned. This property of the fibers will be named

internal relativity. In other words, by internal relativity we mean that

the internal state of a matter field ψ at a position x ∈M lacks a gauge

invariant meaning (i.e. it is not like a colored vector). If one chooses

a vector v in Vx, there is no canonical means of deciding which is the

corresponding vector in another copy Vx′ of V at a different position.

Copying an object whose points cannot be intrinsically discerned is an

irreversible procedure: even when the copies are identical, one cannot

identify them canonically. On the other hand, if vectors in V were in-

trinsically discernable (i.e. if they were like colored vectors), all copies

Vx could be canonically identified. In this case, two vectors in differ-

ent fibers will be identified if they are copies of the same intrinsically

discernable vector in V (i.e. if they have the same color). We can thus

conclude that the canonical identifiability of the different fibers depends

on the intrinsic discernibility of geometric objects in each fiber. If vec-

tors in each fiber Vx are intrinsically indiscernable (internal relativity),

then the different fibers cannot be canonically identified. If internal

states in different locations cannot be compared, then it is not possible

to decide whether or not a section ψ changes with the position x. Since

a matter field describes by definition the spatiotemporal dependence of

local internal states, the very concept of a field is deprived of meaning

if its spatiotemporal variation cannot be intrinsically defined.

To summarize, we can say that the space-time manifold M parame-

terizes identical copies of the vector space V that cannot be canonically
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identified. The intrinsic indiscernibility of vectors in V (internal rel-

ativity) results in the external unidentifiability of the different copies

Vx.
8 Since there is no canonical isomorphism between the different

copies Vx of V , the procedure of making copies is not reversible. This

means that their numerical difference cannot be canonically reduced.

In Auyang’s terminology, we could say that the identical internal spaces

Vx are “autonomous individuals” and that “[...] M , the set of all x, can

be interpreted as the identifying system for the individuals.” (Auyang,

1995, p. 132). This irreducible numerical difference between identical

internal spaces Vx introduced by space-time is precisely what we shall

understand by locality. In other words, locality means that the identical

geometric structures that are defined over different space-time points

cannot be canonically identified one to another. If this is the case,

then space-time plays the role of a “[...] principium individuationis. It

makes the existence of numerically different things possible which are

equal in every respect.” (Weyl, 1949, p. 131). In sum, if internal states

cannot be intrinsically discerned (internal relativity), then space-time

localizes matter fields, that is to say the internal states in different

locations cannot be compared. Hence, localized matter fields are just

a collection, parameterized by space-time, of unrelated local internal

states.

It is important to highlight that the spatiotemporal parametrization

of internal spaces implies locality only if internal states in each fiber

Vx cannot be intrinsically discerned. This means that locality is not

strictly speaking a “principle”, but rather a consequence of the intrinsic

relativity of internal states. If internal states were defined by means of

absolute geometric objects (as in the example of the colored vectors),

then internal states in different fibers could be compared. In this case,

the fibers Vx could be identified by means of a canonical isomorphism,

8It is worth noting that if the different fibers Vx are considered identical (as it is

assumed here, as well as in Auyang [1995] and Weyl [1949]), then their spatiotem-

poral position cannot be interpreted as a property of the fibers. If spatiotemporal

position were a “location property” of the fibers as it is proposed in Teller (1987),

then the fibers would be different, since they would differ in their location property.

On the contrary, we assume that the set of copies Vx of V is a primitive multiplicity

parameterized by space-time of numerically different identical copies of V . In other

words, we assume here that the copies Vx do not differ in any property. Hence, their

difference is purely numerical.
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that is to say their numerical difference could be canonically reduced.

The fibers Vx would no longer be “autonomous individuals”. Therefore,

space-time would not localize the matter field. In other words, this

definition of locality depends on an intrinsic (or ontological) feature of

the geometric objects used for describing matter fields’ internal states.

This intrinsic feature of internal states has “epistemic” consequences in

what concerns our utilization of coordinate systems. If a matter field is

localized, then the bases in the different fibers can be arbitrarily chosen

independently one of another. This means that local gauge invariance

is a natural consequence of internal relativity.

For a critical account of other definitions of locality that can be in-

voked for justifying the local gauge invariance requirement see Martin

(2002). One possibility is to assert that “A ‘local’ field theory is [...]

just one specified by a Lagrangian depending on the values of the field

and a finite number of its derivatives at a single point.” (Martin, 2002,

p. 226). Nevertheless, “[...] a field theory can be local in this sense and

yet have a global gauge invariance.” (Martin, 2002, p. 226). Another

possibility is to understand locality as a prohibition of instantaneous

communication between space-time points. According to this inter-

pretation, a globally invariant theory would not be compatible with

special relativity. This notion of locality is closely related to the idea

that “[...] every physical process is determined by what happens locally

- that is to say, by what is happening at each space-time point where

that process is going on.” (Healey, 1991, p. 406). Nevertheless, since a

local gauge transformation can be consistently interpreted as a passive

transformation of the local coordinate systems, “[...] there is nothing

physical that gets changed under the transformations.” (Martin, 2002,

p. 227). Moreover, as it is correctly remarked in Martin (2002), global

gauge transformations are particular cases of local gauge transforma-

tions (where g(x) = g ∈ G, ∀x ∈ M). This means that by rendering

the theory locally invariant, we are not excluding global gauge trans-

formations. Another possibility would be to interpret locality in terms

of Lorentz invariance. However, “[...] the requirement of Lorentz in-

variance does not exclude Lagrangians with global invariances: e.g., the

Lagrangian for the free Dirac field.”(Martin, 2002, p. 226). In the next

section, we will show that, according to our definition of locality, a

theory invariant only under global gauge transformations is not local.
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Therefore, our definition of locality allows us to trace a satisfactory de-

marcation line between globally invariant theories and locally invariant

theories. Moreover, it allows us to ascertain the ontological assumption

that is at the base of local gauge invariance, namely internal relativity.

IV. Rigid fiber bundles

In this section we will analyze the ontological presuppositions im-

plicitly assumed in the framework of a field theory with a global gauge

invariance. To do so, we will begin by considering the corresponding

G-principal fiber bundle P → M . Instead of attaching a copy Vx of

the vector space V to each point x ∈ M , we now attach the space Rx

of all bases s in Vx. The structure group G rotates the bases in Rx

by means of the free and transitive right action Rx × G → Rx, with

(s, g) 7→ s′ = s · g.9 We will now characterize the kind of objects that

the spaces Rx are. If a basis s0(x) in a fiber Rx is arbitrarily cho-

sen, an isomorphism ϕs0(x) between Rx and the structure group G is

induced. The basis s0(x) is identified with the identity element e in

G. Any other basis s(x) in Rx is identified with the element g that

defines the rotation between s0(x) and s(x). In other words, the iso-

morphism ϕs0(x) : Rx → G is such that s0(x) 7→ e and s(x) 7→ g where

s(x) = s0(x)·g. Technically speaking, each space Rx is a G-torsor, that

is to say a set Rx with an operation Rx × Rx → G. As J. Baez says:

“A torsor is a group that has forgotten its identity” (Baez, 2005, p. 3).

The election of a local basis s0(x) in each fiber Rx defines a section

s0 : M → P , which will be called a moving frame of reference.10

It is important to note that even locally a G-principal fiber bundle

P → M is not, strictly speaking, a product space of the form Ui ×G.

Fiber bundles are commonly characterized as globally twisted gener-

alizations of the cartesian product of two spaces. According to this

description, if a fiber bundle is not generally a cartesian product at the

global level, it would nevertheless be so at the local level. The origi-

nality of the fiber bundle formalism would be that allows us to treat

9The vector bundle E → M can be defined as a bundle associated to the G-

principal fiber bundle P → M by identifying E with P ×G V , where the right

action of G on P × V is given by (s, v) · g = (s · g, ρ(g−1)v).
10In general this can only be done locally, that is to say on each open set Ui ⊂ M

of an open cover U = {Ui}i of M . If the principal fiber bundle P → M is not trivial,

it is not possible to define a global section s : M → P .
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non-trivial global structures by gluing trivial local ones.11 Even when

this is the case, such a characterization misses a point of fundamental

importance to the present context. In fact, the fiber bundle formalism

introduces a novelty even at the local level (or, equivalently, in the case

of trivial fiber bundles). From the previous analysis, it follows that a

principal fiber bundle cannot be considered a product space, even at

the local level. The fact that a fiber bundle can be globally trivialized

does not mean that it is per se a cartesian product. This is because

over each point x ∈M there is not group G, but rather a G-torsor Rx.

The significant difference here is that the G-torsors Rx – like the vector

spaces Vx – cannot be identified canonically. It is only after arbitrarily

choosing a local moving frame of reference s0 : Ui → P , that the dif-

ferent G-torsors Rx over Ui are identified with the structure group G,

and that the fiber bundle locally takes the trivial form Ui ×G. When

a local section s0 is chosen, the numerical or primitive heterogeneity

between the different fibers is lost. Over each point x ∈ M there is

now a copy of the group G and the fiber bundle becomes a cartesian

product.

As we have already seen, the fact that different fibers cannot be

canonically identified is not an a priori necessity.12 Internal states

in each fiber could conceivably be described by intrinsically discern-

able (or absolute) geometric objects (as in the example of the colored

vectors). Since the different identical copies Vx of a vector space V

composed of absolute vectors inherit the discernibility of these vectors,

the different fibers become canonically identifiable and the theory is

no longer local. This means that the numerical difference between the

fibers Vx can be reduced by means of a canonical isomorphism. The

intrinsic discernibility of elements of V privileges a certain class [s0] of

moving frames of reference. A privileged moving frame of reference in

this class is a section s0 such that two vectors in different fibers v ∈ Vx

and v′ ∈ Vx′ have the same coordinates in the local frames s0(x) and

s0(x
′) respectively, if and only if they are copies of the same absolute

vector in V (i.e. if they have the same color). The privileged sections in

11For example, Lyre (2001, p. 376) states: “As long are we are concerned with

trivial bundles, the notion of a fiber bundle is in a way superfluous (since we may

simple use a direct product). For non-trivial bundles, however, the fiber bundle

framework becomes indispensable.”
12See Norton (1992) for an analysis of an analogous situation in general relativity.
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the class [s0] induce privileged isomorphisms between the frame spaces

Rx and the structure group G. This means that there exists a class of

privileged trivializations of the principal fiber bundle. Given a moving

frame of reference s0 in the privileged class [s0], another section in the

same class can be obtained by rotating all the local frames of reference

in s0 in the same way. In other words, two sections in the privileged

class can be related by means of a global transformation defined by a

unique group element g ∈ G. In this way, vectors in different fibers that

have the same coordinates in the moving frame of reference s0 will have

the same coordinates in the rotated moving frame s′ = s0 · g. On the

other hand, if the local frames in s0 were rotated independently of one

another (local gauge transformation), the identification defined by the

privileged moving frame s0 would be lost. In more common terms, a

vector bundle with fibers Vx composed of absolute geometric objects is

only invariant under global or rigid gauge transformations. By means

of this analysis, we wish to identify the ontological presupposition of a

theory invariant under global gauge transformations. The fundamen-

tal assumption of such a theory is that the fibers Vx are composed of

absolute geometric objects that can be intrinsically discerned. In other

words, such a theory assumes that internal states of a matter field at

a certain position have an intrinsic physical meaning. Therefore, the

duality between passive and active transformations is broken. While a

passive global gauge transformation does not change absolute vectors,

a global automorphism does change them. According to our definition

of locality, a spatiotemporal parametrization of internal spaces com-

posed of absolute geometric objects does not localize the matter field.

In other words, the different internal spaces Vx can now be canonically

identified. It is worth stressing that globally invariant theories do not

presuppose that there is “one true gauge” (Maudlin, 1998, p. 367), but

rather that there is a privileged class [s0] of moving frames of reference.

This epistemic presupposition relies on the ontological assumption that

internal states in different fibers are intrinsically discernable.

V. Connected fiber bundles

Apparently one has to choose between working with localized matter

fields (composed of unrelated local internal states) on the one hand or

working in a rigid fiber bundle where internal relativity and locality

are lost on the other. The heuristic non-trivial content of the gauge
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argument is that it shows how to “connect” the different fibers with-

out loosing locality. Instead of supposing a fiber bundle with internal

spaces composed of absolute geometric objects, the fiber bundle can be

endowed with a fixed background connection A (see Appendix for the

definition of connections on principal bundles). The different fibers are

now “connected” by means of parallel transports πγ
A : Rx → Rx′ that

depend in general on the path γ(x, x′) in M . What is significant here

is that the “connection” between different fibers no longer relies on the

supposition that internal states are intrinsically discernable. Since dif-

ferent fibers cannot be identified canonically, the connection does not

break the spatiotemporal heterogeneity between them. Therefore, the

resulting theory is local. It follows that local frames of reference in each

fiber Vx can be modified independently of one another. Hence, the the-

ory is naturally invariant under local gauge transformations generated

by elements of the so-called gauge group G . This group is the group

of vertical automorphisms of the principal fiber bundle P → M (see

Appendix for more details).

It is well known that theories such as Newtonian mechanics and

special relativity can be reformulated in terms of generally covariant

equations. This means that they can be given an intrinsic or coordi-

nate independent formulation (Friedman, 1983; Misner et al., 1973).

This result has been used to argue that covariance principles have no

physical content (for a general discussion about the physical meaning

of general covariance see Norton, 1992, 1993, 2003). In the case of a

globally invariant theory of the kind that we are considering, an analo-

gous reformulation can be performed by reinterpreting the original La-

grangian L0(ψ, ∂µψ) as the standard formulation of a locally invariant

theory defined in a fiber bundle endowed with a fixed flat connection

A (see Appendix for the definition of flat connections). By “standard

formulation” we mean the formulation of the theory in the coordinate

system in which the Lagrangian takes its simplest form (Friedman,

1983). Since we can interpret L0(ψ, ∂µψ) either as the Lagrangian of

a globally invariant theory or as the Lagrangian of a locally invariant

theory in a fiber bundle endowed with a fixed flat connection, local

gauge invariance would seem to have no physical content. We will now

argue that the ontological assumptions underlying these two alterna-

tive interpretations are completely different. Moreover, far from being

a mere difference in the conceptual interpretation of the theory, the
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two formulations might have different physical content. This will be

the case if space-time M is not simply-connected, that is to say if the

fundamental group π1(M) is non-trivial.

In order to analyze the situation in detail, let us consider the case of

a fiber bundle P →M endowed with a flat connection A ∈ Ω1(P )⊗ g.

Since the connection is flat, there always exists a class of moving

frames of reference [s] such that the components of the local form

As = s∗A ∈ Ω1(M) ⊗ g are zero for s ∈ [s].13 Different sections in the

privileged class [s] are related by means of global gauge transformations

defined by elements of the structure group G. In these privileged mov-

ing frames of reference the covariant derivativeDµ = ∂µ+Aµ(x) reduces

to an ordinary derivative and the covariant Lagrangian L(ψ,Dµψ) co-

incides with L0(ψ, ∂µψ). In this way, the privileged class [s] defines the

standard formulation of a theory invariant under local gauge transfor-

mations. In a coordinate system s′ = s · g(x) which does not belong to

the privileged class, the components of the connection take the form

As′ = g−1(x)dg(x) and the connection is said to be “pure gauge”. From

this description, it might seem that a flat connection A privileges the

class of sections [s] that defines the standard formulation of the theory.

This class would establish a privileged identification between internal

states in different fibers. Therefore, this tricky implementation of local

gauge invariance does not seem to modify the ontological presupposi-

tion of rigid fiber bundles invariant under global gauge transformations,

namely that internal states in each fiber are intrinsically discernable.

Nevertheless, it is easy to see that the transition from a rigid fiber bun-

dle to a fiber bundle endowed with a fixed flat connection does allow

us to eliminate this ontological assumption. In other words, it is not

true that the flat connection A privileges a particular class of sections.

Given a local gauge transformation s  s′ = s · g(x), one can always

define a vertical automorphism Φ : P → P such that the gauge equiv-

alent connection A′ = Φ∗(A) has zero local form in the coordinate

13The privileged class [s] can be obtained by integrating the equivariant distri-

bution HA defined by the connection. This means that sections in the class [s] are

everywhere tangent to the horizontal subspaces defined by the distribution HA. To

show that As = 0, let us consider the action of As on any vector X on M :

As(X) = (s∗A)(X) = A(s∗X) = 0 ∀X ∈ TxM,

since s∗X belongs to the equivariant distribution HA defined by the kernel of A.
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system s′ (i.e. A′

s′ = 0)14. Whereas the connection A privileges the

class [s], the transformed connection A′ = Φ∗(A) privileges the class

[s′]. Nevertheless, A and A′ are gauge equivalent, that is to say they

are different representatives of the same intrinsic connection [A]. This

means that the class of sections that define the standard formulation

depends on which representative of the orbit of gauge equivalent con-

nections we are working with. Then, it is not true that the intrinsic

connection [A] privileges a certain class of sections. Hence, the differ-

ent fibers cannot be canonically identified, that is to say they preserve

their spatiotemporal irreducible heterogeneity (locality). This means

that internal states in each fiber cannot be intrinsically discerned, i.e.

they do not have a gauge invariant meaning (internal relativity). We

have therefore shown that substituting a globally invariant theory (de-

fined in a rigid fiber bundle) by a locally invariant theory (defined in

a fiber bundle endowed with a fixed connection), allows us to elimi-

nate the ontological assumption that the different fibers are composed

of geometric objects that are intrinsically discernable. Therefore, by

endowing the fiber bundle with a fixed background connection, it is

possible to “connect” the different fibers without spoiling internal rel-

ativity and locality.

We will now argue that the covariant reformulation of a globally in-

variant theory is not a mere formal step, but rather requires, in the gen-

eral case, the non-trivial election of a particular geometric background

structure. In fact, if the fundamental group π1(M) of M is non-trivial

(i.e. if M is not simply-connected), there will be different inequiva-

lent flat connections parameterized by the corresponding moduli space

M(M,G) (see Appendix). This means that the covariant reformulation

of a theory with a global gauge invariance makes it necessary to select

a particular flat connection from this moduli space. In other words,

the original theory described by the Lagrangian L0(ψ, ∂µψ) does not

univocally prescribe the flat connection of its covariant reformulation.

14Let’s show that it is possible to choose a vertical automorphism Φ : P → P

such that A′

s′ = 0. To do so, let’s write explicitly A′

s′ :

A′

s′ = s′∗A′ = s′∗(Φ∗A) = (Φ(s′))∗A,

where we used that (g ◦ f)∗ = f∗ ◦ g∗. Let’s choose Φ such that Φ(s′) = s.

This condition can be satisfied by choosing Φ(s′) = s′ · g(x)−1. If fact, Φ(s′) =

s′ · g(x)−1 = (s · g(x)) · g(x)−1 = s. Hence, A′

s′ = (Φ(s′))∗A = s∗A = 0.
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Moreover, inequivalent flat connections can be distinguished by per-

forming parallel transports around loops in M . Even if the curvature

vanishes, parallel transport might be non-trivial if M is not simply-

connected. Hence, inequivalent flat connections will define different

holonomy groups. Since the so-called Wilson loops are gauge invari-

ant observables obtained from the holonomy defined by a connection,

inequivalent flat connections will define different physical observables

(Gambini & Pullin, 1996). Hence, different elections of a background

flat connection might have different physical consequences.

In sum, the introduction of a fixed background connection by means

of the gauge argument has non-trivial consequences. Firstly, it allows

us to get rid of the ontological assumption presupposed in the frame-

work of globally invariant theories, namely that matter fields’ internal

states have a gauge invariant meaning. In this way, the gauge argu-

ment allows us to reestablish internal relativity and locality. Secondly,

the introduction of a connection permits to define new physical ob-

servables associated to the parallel transport around loops of internal

states. Nevertheless, the introduction of a fixed background connection

by means of the gauge argument is not enough for reobtaining Yang-

Mills theory. Since a kinetic term for A does not appear in L(ψ,Dµψ),

the connection is not described by new degrees of freedom, but rather

is a fixed geometric background of the theory. A local field theory de-

fined in a fiber bundle endowed with a fixed connection is a background

dependent theory. In principle, there exist two strategies for trying to

eliminate a geometric background structure. Firstly, one can try to

establish a complete determination of the background structure by the

material degrees of freedom. We will call this strategy Machian pro-

gramme. In the context of space-time theories, this solution reflects

Mach’s idea that “[...] the local standards of inertial motion [...] are

entirely fixed by the matter distribution throughout space and time [...]”

(Huggett & Hoefer, 2006). According to the Machian programme, it

should be possible to eliminate the “unnecessary” hypothesis of an ab-

solute space by working only with relative quantities. In this way, it

would be possible to define a background independent theory without

extending the minimal ontology of material degrees of freedom. In

the case that we are considering here, it is not the geometry of space-

time, but rather the geometry of the G-principal fiber bundle P →M

that should be completely fixed by the material degrees of freedom.



18 GABRIEL CATREN

The second possible strategy is to substitute the fixed geometric back-

ground with a new physical entity carrying its own degrees of freedom

and coupled to matter fields, that is to say partially determined by

them. We will call this strategy Einstenian programme. In this case,

the minimal ontology of matter fields is extended by introducing ad-

ditional degrees of freedom that describe the dynamics of the physical

connection.15 Since in Yang-Mills theory the degrees of freedom that

describe the geometry of the fiber bundle are coupled to matter fields

(instead of being completely determined by them), Yang-Mills theory

can be understood to extend the Einstenian programme to physical in-

teractions other than gravity.16 It is worth noting that the background

independence at stake in Yang-Mills theory exclusively concerns the ge-

ometry of the fiber bundle. The background independence concerning

spatiotemporal geometry is accomplished by general relativity.

VI. Physical meaning of gauge freedom

The configuration space associated to the connection’s degrees of

freedom is an affine space modelled on Ω1(M) ⊗ g. Since the action

of the gauge group G on this configuration space is not free, the quo-

tient generally is not a manifold. This problem can be solved by using

framed connections (Donaldson & Kronheimer, 1990). It can be shown

15In order to consider the spatiotemporal connection A as a dynamic entity, it

it necessary to foliate space-time M by spacelike hypersurfaces. In other words, it

is necessary to choose a diffeomorphism ι : M → M × R, where M is a smooth

3-dimensional riemannian manifold. Using the diffeomorphism ι and the fact that

R is contractible, one can assume that the fiber bundle P → M over the space-time

is the pullback, defined by means the projection M ≃ M × R → M, of a fixed

G-principal bundle P → M. Each connection A on P → M then has a canonical

decomposition A = A(t) + A0(t)dt, where A(t) denotes a time evolving connection

on P → M and A0(t) is a time-evolving section of ad(P ) = P ×G g.
16According to Einstein’s point of view, general relativity satisfies what he calls

Mach’s principle. This principle is defined by Einstein as follows: “The G-field is

completely determined by the masses of the bodies.” (quoted in Barbour, 1992, p.

149). Nevertheless, as J. Barbour says, this formulation “[...] unnaturally puts the

entire responsability for the determination of local inertial properties (represented

by values of the metric tensor realized at and around a given space-time point) on

the shoulders of matter alone, whereas the theory is actually about dynamic inter-

action and space and matter, which have their own independent dynamic degrees of

freedom.” (Barbour, 1992, p. 150). This explains why we distinguish the Machian

programme from the Einstenian programme, in spite of Einstein’s own formulation.
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that under certain conditions the G -action induces the structure of a

G -principal fiber bundle π : A → A /G , where A is the configuration

space of framed connections. In principle, it is possible to directly work

on the orbit space A /G , which only describes physical degrees of free-

dom (i.e. classes [A] of gauge equivalent connections). Nevertheless,

there are generally technical obstructions. The common solution is to

work on A by fixing the gauge, that is to say by selecting a partic-

ular representative A ∈ π−1([A]) in the corresponding orbit for each

class [A] ∈ A /G of gauge equivalent connections. This amounts to

choosing a gauge fixing section σ : A /G → A . In principle, we can

thus choose between working in a space with non-physical degrees of

freedom or working in the smaller space A /G where the gauge sym-

metry has been eliminated. More generally, it is well known that any

ordinary Hamiltonian system can be enlarged to a gauge theory by

adding non-physical degrees of freedom and constraints. Reciprocally,

any gauge theory can be reduced to an unconstrained theory on the cor-

responding reduced phase space. Therefore, the formulation of a theory

as a gauge theory could seem to be only a matter of technical “conve-

nience” (mathematical tractability) and/or “perspicuity” (Belot, 2003,

p. 220). Nevertheless, we will argue that the point of gauge freedom in

Yang-Mills theory is independent of the choice between these two for-

mulations of a physical theory. As we have explained above, local gauge

invariance is a direct consequence of spatiotemporal locality, that is to

say of the fact that fibers in different locations cannot be canonically

identified. And locality is a consequence of internal relativity, that is

to say of the fact that matter fields’ internal states do not have a gauge

invariant meaning. Both locality and internal relativity are intrinsic

features of Yang-Mills theory which do not depend on the chosen for-

mulation. To clarify this point, let us consider the G-principal bundle

A × P → A ×M . This bundle can be obtained as the pullback of

P → M by means of the projection A ×M → M . The action of the

gauge group G on A induces an action on A × M . This action is

covered by the action of G on A ×P induced by its action on both A

and P . Therefore, the G-principal bundle A × P → A ×M induces

the G-principal bundle (A × P )/G → A /G ×M (Atiyah & Singer,

1984). The relationships between these bundles can be summarized by
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means of the following diagram

A × P

&&
MMMMMMMMMMM

yyssssssssss

A ×P
G

%%
KKKKKKKKKK

A ×M

xxqqqqqqqqqqq

A /G ×M

where the arrows from left to right denote G-projections and the arrows

from right to left denote G -projections. The fiber bundle A × P →

A ×M can be interpreted as a universal family parameterized by A

of G-principal bundles P → M with tautological connections A ∈ A .

The G-principal bundle (A × P )/G → A /G ×M is the intrinsic for-

mulation of this universal family (in the sense that the gauge freedom

was eliminated by taking the quotient by G ). If we fix an element [A]

in A /G we obtain a G-principal fiber bundle over M endowed with the

intrinsic connection described by the class [A]. Therefore, even if we

work in the orbit space A /G , we still have a G-principal fiber bundle

over M endowed with a connection. In this principal bundle, internal

states cannot be intrinsically discerned (internal relativity) and the dif-

ferent fibers cannot be canonically identified (locality). In this way, if

we consider the intrinsic – or coordinate-independent – geometry (i.e.

if we take the quotient by G ), local gauge invariance disappears. Never-

theless, the ontological assumptions underlying local gauge invariance

(internal relativity and locality) are still present. In other words, the

point of gauge freedom in Yang-Mills theory does not concern local

gauge invariance itself, but the ontological assumptions that force the

local gauge invariance of the theory. We could also argue as follows.

The elimination of local gauge invariance (by passing from A to A /G )

does not erase the fact that the connection had to be introduced for

guaranteeing internal relativity and locality (and therefore local gauge

invariance). In other words, by taking the quotient by G we eliminate

the local gauge freedom in the expression of the connection, but we do

not eliminate the connection that was introduced in order to guarantee

the ontological presuppositions that underlie local gauge freedom. To

summarize, we can say that the fiber bundle formalism strikes twice on

Yang-Mills theory, namely through the G -principal bundle A → A /G
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and through the G-principal bundle P → M (or the associated bun-

dle E → M). Nevertheless, the essential point of gauge freedom in

Yang-Mills theory does not concern the former, but rather the latter.

The partition of the configuration space in gauge orbits is a common

feature of any gauge theory (Henneaux & Teitelboim, 1994). On the

contrary, the analysis of the fiber bundle structure over space-time let

us ascertain the origin of gauge freedom in the particular context of

Yang-Mills theory.

VII. BRST Symmetry

In the Lagrangian formulation of Yang-Mills theory, the gauge is

fixed by means of a gauge fixing term in the corresponding Lagrangian.

Commonly this term takes the form Lgf = λF (A), where λ is a La-

grange multiplier whose variation imposes the gauge fixing condition

F (A) = 0. In order to define a section σ : A /G → A , this condition

has to be such that for each equivalence class [A] ∈ A /G there is one

and only one connection A ∈ A which satisfies the condition. In other

words, a local gauge transformation applied to an element in the sec-

tion σ must take it out of the section.17 This means that by definition

an adequate gauge fixing term is not gauge invariant. Hence, the gauge

fixed Lagrangian is not gauge invariant either. This fact is commonly

presented in the following terms. It is held that the gauge fixing pro-

cedure breaks the gauge invariance of the theory. It is then argued

that the gauge fixed theory is fortunately invariant under a mysterious

new global – or rigid – symmetry, the so-called BRST symmetry. This

symmetry would act as a substitute for the lost local gauge invariance.

In particular, the BRST transformation of the gauge field A is given

by the expression A  A + DAη, where η is a new (anticommuting)

field called ghost field. This transformation is similar to the usual in-

finitesimal local gauge transformation of A

A A+DAξ(x),

where the role of the space-time function ξ(x) is played by the ghost

field η. Nevertheless, the global nature of BRST symmetry seems to

17Due to possible topological obstructions associated to the non-triviality of the

bundle A → A /G , in some cases it is impossible to define a global gauge fixing

section σ : A /G → A . This is the so-called Gribov’s obstruction to the gauge

fixing (Gribov, 1978; Singer, 1978).
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prevent us from mistaking it for the local gauge symmetry. As it is

stated in Redhead (2003, p. 135-136), the BRST symmetry would be

“a kind of generalized gauge symmetry” of an “hybrid” nature: “It is

in essence a non-linear rigid fermionic transformation, which contains

within itself, so to speak, a local gauge transformation specified by a

dynamical field, namely the ghost field.”

A rigorous conceptual and mathematical formulation of the BRST

construction was performed in the context of the constrained Hamilton-

ian formalism (Henneaux & Teitelboim, 1994).18 The BRST formalism

is a cohomological procedure for defining the observables of a gauge

theory. In its Hamiltonian formulation, BRST transformations are

generated by a nilpotent operator acting on an extended phase space.

This space is obtained by introducing new conjugated canonical vari-

ables called ghost fields and ghost momenta (Henneaux & Teitelboim,

1994). The BRST transformation of a function f on this extended

phase space is obtained by means of the expression δBRSTf = {f,Ω},

where Ω is the so-called BRST charge and {·, ·} the Poisson bracket in

the extended phase space.19 By using the Jacobi identity for the Pois-

son bracket, the nilpotency of the BRST transformation (that is to say

the identity δ2
BRST = 0) can be expressed as {Ω,Ω} = 0. The BRST

charge Ω is constructed in such a way that the zero degree cohomology

H0 (Ω) associated to the corresponding complex coincides with the the-

ory’s set of observables (i.e. with the set C∞(Σ/G ) of gauge invariant

functions on the reduced phase space Σ/G , where Σ is the constraint

surface defined by the generalized Bianchi identities).20 It is important

18The relationship between this formulation and the Lagrangian formulation

that is usually used in quantum field theory (in terms of ghosts, antighosts and the

Nakanishi-Lautrup auxiliary field) can be found in Henneaux & Teitelboim (1994,

Ch. 11).
19In general, a function g on a phase space defines an induced classical operator

vg such that its action on a function f is given by the expression vgf = {f, g}.

The classical operator vg, called Hamiltonian vector field, satisfies the expression

ω(vg) = dg, where ω is the symplectic form of the phase space.
20The BRST operator δBRST can be obtained in a two step procedure. Firstly,

the restriction to functions on the constraint surface Σ makes it necessary to intro-

duce a Koszul-Tate resolution of the algebra C∞(Σ). This resolution is generated

by the ghost momenta and a homological differential δ. Secondly, the consideration

of gauge invariant functions makes it necessary to introduce a vertical differential

complex generated by the ghost fields and a vertical cohomological differential d. By

using results from homological algebra, these two differentials can be combined in
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to stress that the BRST formalism is a classical construction. Following

the Faddeev-Popov method, it might seem that ghost fields are exclu-

sively necessary for exponentiating the Faddev-Popov determinant in

the corresponding path integral (Faddeev & Popov, 1967; Faddeev &

Slavnov, 1991). Certainly, BRST symmetry is a fundamental tool for

quantifying gauge theories, and for guaranteeing the unitary and the

renormalizability of the theory. Nevertheless, the Hamiltonian formu-

lation of BRST theory clearly shows that it is a construction associated

to the geometry of the classical reduced phase space (Henneaux & Teit-

elboim, 1994).

We will now argue that the BRST symmetry should not be un-

derstood as a new rigid symmetry that replaces the lost local gauge

symmetry. By definition, physical observables do not depend on the

particular chosen frame of reference. Hence, we can fix the gauge with-

out modifying the relevant physical content. By fixing the gauge, we

only lose the explicit covariance of the motion equations. In a gauge

fixed theory, motion equations are expressed in the chosen coordinate

system. This is not a problem since the observable quantities are by

definition gauge invariant. Nevertheless, it is not enough to test their

invariance under a particular gauge transformation. In other words,

the observables have to be invariant under any infinitesimal local gauge

transformation. In order to test this general invariance, it is necessary

to perform what we will call a general local gauge transformation. To

clarify this notion, let us consider an analogous situation in differential

geometry. The exterior derivative df of a function measures the general

changes of f , in the sense that the particular direction of the transfor-

mation has not yet been specified. If this direction is specified by

means of a vector v, the general expression df becomes df(v) = vµ ∂f

∂xµ .

This expression describes the change of the function f in the direction

defined by v. As this example shows, defining these general trans-

formations requires an exterior algebra of differential forms dual to

the tangent space that defines the possible particular transformations.

Analogously, we will now argue that a BRST transformation is a gen-

eral infinitesimal local gauge transformation. In Yang-Mills theory,

particular infinitesimal local gauge transformations are defined by ele-

ments ξ(x) of the gauge group’s Lie algebra Lie(G ). Therefore, in order

the BRST differential δBRST = δ+d+..., where the supplementary terms guarantee

the nilpotence of δBRST (see Henneaux & Teitelboim, 1994, Ch. 8 & 9).
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to define general gauge transformations it is necessary to introduce an

exterior algebra dual to Lie(G ). This explains why the definition of

these general transformations requires to introduce the ghost field. In

fact, in Bonora & Cotta-Ramusino (1983), it was shown that the ghost

field can be identified with the Maurer-Cartan form of the gauge group

G , that is to say with the form η ∈ Lie(G )∗ ⊗ Lie(G ) that satisfies

η(ξ) = ξ, ∀ξ ∈ Lie(G ). This means that the ghost η is a Lie(G )-

valued 1-form dual to Lie(G ). The BRST transformation of the gauge

field A is given by the expression

δBRSTA = DAη.

This expression defines a general infinitesimal local gauge transforma-

tion. This explains why the Lie algebra element ξ(x) (analogous to

the vector v of the previous example) was substituted by the Lie(G )-

valued differential form η (analogous to the form df of the previous

example). A particular infinitesimal local gauge transformation of A

can be obtained by contracting the ghost η appearing in the BRST

transformation of A with an element ξ(x) ∈ Lie(G ). As expected, the

infinitesimally transformed gauge field is

A′ = A+DAη(ξ(x)) = A+DAξ(x),

where we used that the Maurer-Cartan form satisfies η(ξ) = ξ, ∀ξ ∈

Lie(G ). As it is clearly stated in Bonora & Cotta-Ramusino (1983,

p. 594): “Expression A → A + DAη represents in a compact form

all the possible infinitesimal gauge transformations, each of which is

characterized by an element of the Lie algebra Lie(G ) [...].”.

It is worth stressing that the spatiotemporal dependence of a particu-

lar local gauge transformations is carried by the element ξ(x) ∈ Lie(G ).

Since a BRST transformation is a general local gauge transformation

(where ξ(x) was substituted by η), the spatiotemporal dependence is

not specified. In other words, the spatiotemporal dependence carried

by the elements ξ(x) appear only when we pass from general (or BRST)

transformations to particular local gauge transformations. Hence, a

BRST transformation is in a trivial sense a “global” transformation

with no spatiotemporal dependence. These arguments show that BRST

symmetry should not be interpreted as a kind of generalized gauge sym-

metry different from the usual local gauge symmetry. In a gauge fixed

theory, physical observables do not depend on the gauge, that is to say
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they are invariant under any local gauge transformation. Since BRST

transformations define general local gauge transformations, physical

observables have to be invariant under BRST transformations.

VIII. Conclusion

The analysis of classical Yang-Mills theory’s geometric foundations

was performed by analyzing the relationships between internal relativ-

ity, locality, global/local invariance, and background independence.

Since elements of a vector space V are not intrinsically discernable,

any automorphism of V can be reinterpreted as a transformation of

the basis in V . This fact constitues the well-known duality between

passive and active transformations. Even though vectors in V are geo-

metric objects independent of coordinate systems, they lack intrinsic

geometric identity. The key point is not the relationship between the

intrinsic geometry and the non-canonical election of a particular ba-

sis, but rather the relativity of the intrinsic geometry itself. According

to the fiber bundle formulation of Yang-Mills theory, space-time pa-

rameterizes identical copies of V . As a consequence of the intrinsic

indiscernibility of vectors in each fiber V (internal relativity), there is

no canonical isomorphism between the different copies Vx of V (local-

ity). Hence, locality is a direct consequence of internal relativity, that

is to say of the fact that internal states lack a gauge invariant meaning.

Since different fibers are not identified, the local frames of reference in

each fiber can be locally modified. In other words, local gauge invari-

ance is a direct consequence of internal relativity and locality. If the

fiber bundle is not endowed with supplementary geometric structures,

matter fields’ internals states ψ(x) ∈ Vx in different locations x ∈ M

cannot be compared. We could say that local internal states in matter

fields are mutually “disconnected”. Since a matter field is for the mo-

ment a set of local unrelated internal states, it is not strictly speaking,

a “penetration of the This (here-now) and the Thus” (Weyl, 1949, p.

130).

One possible way of treating this dispersion of unrelated fibers is by

supposing that internal spaces Vx are absolute spaces whose points can

be intrinsically discerned (as in the example of the colored vectors).

In this case, the theory is no longer characterized by internal relativ-

ity: the specification of internal states now has an intrinsic meaning.

Making copies of a vector space V composed of intrinsically discernable
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elements is a reversible procedure and the different copies Vx can now

be canonically identified. Hence, locality is lost. There exists now a

privileged class [s0] of moving frames of reference. A section in this

class assigns the same coordinates to vectors in different fibers that are

intrinsically identical. Different sections in the privileged class [s0] are

related by means of global gauge transformations. It is worth stress-

ing that global invariance is the “epistemic” consequence (in the sense

that it concerns our utilization of coordinate systems) of the intrinsic

(or ontological) discernibility of internal states.

Another possibility is to endow the fiber bundle with a fixed connec-

tion. By means of parallel transports, internal states in different fibers

can now be compared without supposing that they are intrinsically dis-

cernable. Since the connection does not establish any privileged identi-

fication between different fibers, locality is preserved. Hence, the theory

is naturally invariant under local gauge transformations. In this way,

local gauge invariance is the epistemic consequence of the intrinsic (or

ontological) indiscernibility of internal states (internal relativity). The

resulting locally invariant theory depends on a fixed geometric back-

ground, or what Anderson calls an absolute object (Anderson, 1967).

However, by adding to the Lagrangian a kinetic term for the connec-

tion, the theory is rendered background independent. This means that

the fixed geometric structure is replaced by new dynamic degrees of

freedom. This solution to the problem of formulating a background

independent theory was distinguished from the Machian programme,

where the background structure is supposed to be completely deter-

mined by the material degrees of freedom.

In sum, we could say that in order to define a field theory charac-

terized by internal relativity (and consequently by locality and local

gauge invariance) and background independence, it is necessary to en-

dow the fiber bundle with a dynamic connection. The requirement of

internal relativity makes it necessary to endow the fiber bundle with

a connection minimally coupled to matter fields. The requirement of

background independence makes it necessary to consider the connec-

tion a dynamic physical entity. We can thus conclude that internal

relativity and background independence are the two independent prin-

ciples of Yang-Mills theory. Hence, in Yang-Mills theory the dynamics

of internal states depends neither on an absolute definition of the latter
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(Yang-Mills theory’s internal relativity) nor on a fixed background geo-

metric structure (Yang-Mills theory’s background independence). Just

as spatiotemporal motion is relative to the local gravitational field in

general relativity, the dynamic of matter fields’ internal states is relative

to the dynamic gauge field A in Yang-Mills theory. Just as spatiotem-

poral localization does not have a gauge invariant meaning in general

relativity, the internal states of a matter field in Yang-Mills theory does

not have one either. In general relativity, the invariance under general

diffeomorphisms removes any intrinsic physical meaning from naked

points of space-time, that is to say the latter do not define absolute

positions. Analogously, the invariance of Yang-Mills theory under lo-

cal gauge transformations removes any intrinsic physical meaning from

internal states, that is to say the latter do not define absolute internal

states. In this way, Yang-Mills theory allows us to extend the criticism

of spacetime substantivalism in general relativity to the case of internal

states. According to Earman & Norton (1987), spacetime substantival-

ism can be defined by the denial of Leibniz equivalence, that is to say by

the assumption that diffeomorphic models represent different physical

situations. In Yang-Mills theory, field configurations related by means

of local gauge transformations are interpreted as different representa-

tions of the same physical configuration. If we did not consider them

physically equivalent, the resulting theory would be indeterministic.21

In other words, this “radical form of indeterminism” (Earman & Nor-

ton, 1987, p. 515) would be the price to pay for what we could call

internal substantivalism. By interpreting the different solutions as dif-

ferent representations of a single physical configuration, it is possible

to recover a deterministic theory. The gauge invariant quantities – the

observables – thus have a deterministic evolution (Norton, 1992).

Finally, the BRST symmetry of the gauged fixed theory was in-

terpreted in terms of general local gauge transformations. The most

singular features of BRST symmetry, namely its action over an ex-

tended phase space and its global nature, follow naturally from this

characterization.

21It is a well known fact that in gauge theories the specification of a set of

initial conditions for all the degrees of freedom determine infinitely many subsequent

evolutions (Henneaux & Teitelboim, 1994).
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IX. Appendix

IX.1. Connections on principal bundles. A connection on a G-

principal fiber bundle q : P → M can be defined as an equivariant

distribution H, that is to say a smooth field Hp ⊂ TPp (with p ∈ P )

such that 1) there is a direct sum decomposition TPp = Hp ⊕ ker dqp
∀p ∈ P , and 2) the field is preserved by the induced action of G on

TP (Hpg = Rg∗Hp, where Rg∗ denotes the differential of the right

translation by g ∈ G). We can assign a g-valued G-equivariant 1-form

A on P to each connection, such that vectors in the distribution H

belong to the kernel of A. In a local trivialization defined by local

sections si : Ui → P , the 1-form A induces g-valued 1-forms Asi
= s∗iA

on Ui (the gauge fields).

IX.2. Vertical automorphisms of principal bundles. A vertical

automorphism of q : P →M is a diffeomorphism Φ : P → P that pre-

serves the fibers (q(Φ(p)) = q(p)) and that commutes with the action of

the structure group G, i.e. Φ(p ·g) = Φ(p) ·g, ∀p ∈ P , ∀g ∈ G. If si is a

local section over Ui ⊂M , it is possible to define a map g(x) : Ui → G

such that Φ(si(x)) = si(x) ·g(x). If the principal fiber bundle is trivial,

it is possible to define a global section s. In this case, a vertical auto-

morphism Φ can be described in terms of a map g(x) : M → G (that

depends on the arbitrary section s).

IX.3. Flat connections. A connection is flat if every x ∈ M has an

open neighborhood U such that the induced connection in q−1(U) is

isomorphic with the canonical flat connection in U×G. The equivariant

distribution corresponding to this canonical flat connection is given by

the tangent spaces to U×{g} at u = (x, g) ∈ U×G. The corresponding

1-form is f ∗θ, where θ is the canonical 1-form onG and f : U×G→ G is

the natural projection. The isomorphism is provided by the pullback

of the canonical flat connection by means of the trivialization ψs :

q−1(U) → U × G defined by a section s. This trivialization is defined

as ψs(p) = (q(p), g), where g ∈ G is such that p = s(q(p))·g (Kobayashi

& Nomizu, 1963).

In general, the moduli space M(M,G) of flat connections in a G-

principal fiber bundle q : P →M is given by M = Hom(π1(M), G)/G,

where the quotient of G is defined by conjugation (Birmingham et al.,

1991). Roughly speaking, the holonomy hp(γ) ∈ G around a loop γ
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(where p ∈ P ) defined by a flat connection A depends only on its ho-

motopy class [γ] ∈ π1(M). Hence, it defines a map π1(M) → G, where

the composition of loops is mapped into multiplication in G. If we start

from p · g (with g ∈ G) the holonomy is hp·g(γ) = g−1hp(γ)g. This fact

explains the necessity of taking the quotient by the conjugation action

of G. In particular, if π1(M) is trivial, then there is only one possible

flat connection.
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