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Abstract. We propose a conceptual framework for understand-

ing the relationship between observables and operators in mechan-

ics. To do so, we introduce a postulate that establishes a cor-

respondence between the objective properties permitting to iden-

tify physical states and the symmetry transformations that modify

their gauge dependant properties. We show that the uncertainty

principle results from a faithful – or equivariant – realization of this

correspondence. It is a consequence of the proposed postulate that

the quantum notion of objective physical states is not incomplete,

but rather that the classical notion is overdetermined.

I. Introduction

It is commonly stated that quantum mechanics differs from classical

mechanics in its use of operators acting on physical states. According

to this description, the transition from classical to quantum mechan-

ics can be understood as a substitution of a commutative algebra of

functions – relative to pointwise multiplication – by a non-commutative

algebra of operators. Nevertheless, the use of operators acting on phys-

ical states is also an essential feature of classical mechanics. In fact,

classical observables play two fundamental roles in mechanics, namely

they are functions that can be evaluated on states – and used for iden-

tifying them – and they define Hamiltonian vector fields that act on

states by means of infinitesimal canonical transformations (see Refs.[1],

[2], [5], [9], [10], [13]). For example, the temporal evolution of classical

systems is given by the integration of the infinitesimal classical action

generated by the Hamiltonian vector field vH associated to the Hamil-

tonian function H(q, p). Nevertheless, the Poisson algebra of classical

observables and the Lie algebra of classical operators (under the Lie

bracket of vector fields) are not isomorphic (given that the correspond-

ing map is not injective). This means that classical mechanics fails
1
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to establish a faithful correspondence between the two fundamental

roles played by classical observables. According to Dirac’s quantiza-

tion conditions [4], quantum mechanics can be partially obtained by

forcing an isomorphism between the algebraic structures associated to

these two roles, namely between a subalgebra of the Poisson algebra

of classical observables and the commutator algebra of operators. In

the framework of the geometric quantization program, this task can be

achieved by extending classical operators vf – Hamiltonian vector fields

associated to observables f – to quantum operators v̂f , such that the

commutator algebra of the latter is isomorphic to the Poisson algebra

of classical observables. This quantum correction of classical operators

can be performed by defining a complex line bundle L → M over the

phase space M , endowed with a hermitian connection such that its cur-

vature is given by the symplectic form on M . The polarized sections of

this complex line bundle define the corresponding quantum states (see

Refs.[3], [8], [12], [13], [14]).

The fact that quantum mechanics can be obtained by establishing

a faithful correspondence between observables and operators suggests

that a deeper analysis of the conceptual meaning of this correspon-

dence could shed some new light on the rational necessity of quantum

mechanics. In what follows, we will propose a conceptual framework

for understanding the relation between observables and operators. We

will argue that their correspondence can be understood in terms of

the relation between the objective properties that define physical states

and the symmetry transformations that interchange their gauge depen-

dant properties. To do so, we will show that, even tough it remains

valid, the standard characterization of objective properties as the in-

variants under symmetry transformations does not suffice for properly

understanding the correspondence between observables and operators.

Therefore, we will propose a postulate that specifies the lacking fun-

damental aspect of their relation. Roughly speaking, we will argue

that the objective properties of a physical state play a twofold role,

namely 1) they permit to identify the physical state, and 2) they in-

duce the transformations between the different “aspects”, “profiles” or

non-objective properties of the state. From a conceptual point of view,

we will then show that the proposed postulate implies the necessity

of an uncertainty principle. According to this postulate, the quan-

tum description of a physical state is not underdetermined, but rather
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the classical description is overdetermined. This implies that quantum

mechanics should not be considered an obstruction to the validity of

a well-defined classical notion of objectivity, but rather as a consistent

theory of physical objectivity that overcomes the classical impasses.

The quantum uncertainty principle can be considered the signature of

this achievement.

In this work we analyze the rational necessity of quantum mechanics

by proposing a new interpretation of one of its fundamental features,

namely the uncertainty principle. In Sect. II, we propose a postu-

late – not satisfied by classical mechanics – in order to understand

the fundamental correspondence between observables and operators.

In Sect. III, we show that this postulate can be further clarified and

justified by giving a precise definition to the notion of physical states’

possible properties. To do so, we consider the so-called momentum

map as well as its equivariance properties. We show that the failure

of classical mechanics to establish a faithful correspondence between

observables and operators is manifested through the non-equivariance

of the relevant momentum map. We then consider how quantum me-

chanics can be obtained by forcing such an equivariance. In Sect. IV,

we consider a dual version of this last result by using the geometric

quantization formalism. In Sect. V, we summarize and discuss the

main results.

II. Objective physical states

In general, the relevant variables allowing us to specify a physical

state depend on the arbitrary election of a coordinate system. The

objective properties of the state are then identified with the invariants

under the symmetry transformations that modify the coordinate sys-

tems. In this section, we argue that this standard characterization of

objective properties does not suffice for understanding the fundamen-

tal role played by symmetry transformations in classical and quantum

mechanics.

In classical mechanics, the transformations of the canonical vari-

ables used for specifying a physical state are given by canonical trans-

formations. In particular, we are interested in considering infinitesimal

canonical transformations induced by classical observables. In fact, the

symplectic structure ω of the phase space M permits to pass from an

observable f ∈ C∞(M) to the symplectic diffeomorphism φ
f
λ : M →M
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generated by the Hamiltonian vector field vf induced by f . The relation

between the observable and the induced Hamiltonian vector field vf is

given by the expression ivf
ω = df , where ivf

ω denotes the contraction

of the 2-form ω with the vector vf .
1 Therefore, the classical observables

f ∈ C∞(M) play a twofold role. Not only do they define local coordi-

nates on the phase spaceM – which can be used for identifying classical

states –, but they also induce infinitesimal canonical transformations.

In principle, these transformations might be equivalently interpreted

either as passive transformations of the coordinate system or as active

transformations of physical states [5]. The formal equivalence between

passive and active transformations will be called Leibniz equivalence. In

general relativity, the invariance under the group of general diffeomor-

phisms of space-time implies that – if Leibniz equivalence is accepted –

localization on space-time is pure gauge. In principle, we might think

that the invariance of classical mechanics under the group of simplectic

diffeomorphisms can be interpreted in an analogous way. However, such

is not the case. If Leibniz equivalence were valid, we would be forced to

accept that localization on M is pure gauge. But, in that case the very

notion of a space that parameterizes physically distinct states would be

lost. Consequently, infinitesimal canonical transformations induced by

classical observables are interpreted as active transformations between

physically distinct states. For example, the canonical transformations

induced by the Hamiltonian function H(q, p) ∈ C∞(M) generates the

temporal evolution of physical states, that is to say their objective

physical change in time. In other words, “[...] the motion of a mechan-

ical system corresponds to the continuous evolution or unfolding of a

canonical transformation.” [5]. More generally, through its induced

Hamiltonian vector field vp = ∂q, a momentum p generates canoni-

cal transformations of the conjugated coordinate q. Since H generates

temporal evolutions of any observable and p generates canonical trans-

formations of q, the temporal evolution of q is given by the dependance

of H on p (through the Hamilton’s equation q̇ = ∂H
∂p

).2 Since the tem-

poral evolution of q is considered an effective physical change, general

1In M = R
2, the Hamiltonian vector field associated to an observable f ∈

C∞(M) is given by the expression vf = ∂f
∂p

∂
∂q

− ∂f
∂q

∂
∂p

.
2This remark explains the fundamental conceptual difference between q̇ (the

infinitesimal temporal evolution of q) and p (the observable that generates infini-

tesimal canonical transformations of q).
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transformations generated by p should also be interpreted as active

changes of the state.3

Classical mechanics is thus characterized by its denial of Leibniz

equivalence: states related by canonical transformations induced by

classical observables are considered to be physically distinct states. In

what follows we argue that, in order to improve the comprehension of

the foundations of mechanics, it is necessary to partially maintain the

validity of Leibniz equivalence. Moreover, quantum mechanics is the

formalism required to satisfy this prescription. According to this in-

terpretative scheme, we will consider states connected through certain

canonical transformations induced by physical observables to be gauge

equivalent. This implies that the particular value of the coordinate af-

fected by the canonical transformation is not an objective property of

the state. In other words, localization in the orbit of the correspond-

ing symplectic diffeomorphism is pure gauge. We will call objective

reduction the identification of states by means of certain infinitesimal

canonical transformations.

As we have seen, if we considered all possible infinitesimal canonical

transformations as symmetry transformations, all states in M would be

gauge equivalent. It is then necessary to specify the particular subset

of infinitesimal canonical transformations that should be considered for

performing the objective reduction of each state. To do so, we propose

the following fundamental postulate:

‡ The objective properties of a physical state define the only genera-

tors of symmetry transformations accepted for its objective reduction.

A set of objective properties that, according to this postulate, de-

fines both the identity of an objective physical state s and the correct

symmetry transformations needed for its objective reduction, will be

called eidos εs of the physical state s. In this way, the eidos that iden-

tifies a particular physical state also specifies which properties should

not be considered objective properties but “profiles” that depend on

the coordinate system.

In classical mechanics the set of objective properties of a physical

state is given by the 2n local coordinates (qi, pi)i=1,...,n of the phase

3For instance, the uniform rotation generated by a conserved angular momentum

L is an effective physical transformation of the system.
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space M (in what follows we will restrict the analyses to the case

M = R2n; for the consideration of more general cases see Ref.[6]).

According to postulate ‡, objective properties are in correspondence

with the generators of the symmetry transformations required for the

objective reduction of the state. In classical mechanics, this correspon-

dence is provided by the map f 7→ vf between classical observables

f ∈ C∞(M) and Hamiltonian vector fields vf ∈ HM . In particular,

the momentum p defines the generator vp = ∂q of infinitesimal trans-

lations of the conjugated coordinate q (Lievp
q = vp(q) = {q, p} = 1)

and viceversa. Since in classical mechanics both q and p are used for

identifying the state, postulate ‡ demands that both vq and vp should

be used for the objective reduction of the corresponding state. But this

implies that both q and p are gauged out, which is contradictory with

the assumption that they define objective properties of the state (since

by definition objective properties have to be invariant under symmetry

transformations). In other words, the action defined by both vq and vp
reduces the phase space M to a single point {∗} or, equivalently, the

group G of translations in both position and momentum acts transi-

tively on M (i.e. M is a single G-orbit). Clearly, this is a reductio ad

absurdum. We began by supposing that a physical state is identified

by means of the 2n coordinates of the phase space M , that is to say

that each point in M defines a different physical state. We nevertheless

found, guided by postulate ‡, that there is only one possible physical

state {∗}. We can thus conclude that objective physical states defined

by an eidos that satisfies postulate ‡ cannot be identified with classical

states in M .

This classical failure to implement postulate ‡ is a direct consequence

of the fact that classical states are specified by means of too many vari-

ables. We will refer to this fact as the classical overdetermination of

the eidos. According to postulate ‡, an objective property f ∈ εs of the

physical state s has to be invariant under the infinitesimal canonical

transformations generated by the whole set of objective properties in

εs. This implies that vgf = {f, g} = 0 for all f, g ∈ εs. Therefore, the

set of observables in the eidos εs have to define a commutative Pois-

son algebra. Hence, an eidos that completely specifies an objective

physical state is given by the maximal number of mutually commut-

ing observables (i.e. by a complete set of commuting observables). In

order to satisfy postulate ‡ it is then necessary to reduce the eidos to
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half the number of components. Therefore, an acceptance of the pro-

posed postulate implies that the quantum notion of objective physical

states is not incomplete (when compared to a hypothetical complete

classical description), but rather that the classical notion is overdeter-

mined. As a consequence of this overdetermination of classical states,

the relationship established between objective properties and symme-

try transformations by postulate ‡ cannot be elucidated within the

framework of classical mechanics. In fact, the assumption of postulate

‡ implies what we could call the a priori necessity of an uncertainty

principle. If an objective physical state is identified by means of an

eidos composed of n components, there should be n other possible

properties that are gauged out. This means that the values of the lat-

ter have no objective physical meaning. For example, the momentum

p of a system with a well-defined position q is completely gauged out

by the symmetry transformation induced by the objective property q.

Hence, the momentum p is necessarily undetermined. Therefore, the

possible properties of an objective physical state s can be separated

into two sets: the n objective properties {xi}i=1,...n belonging to the

eidos εs, and the n non-objective properties {xj}j=n+1,...,2n that are

gauged out by the symmetry transformations defined by the former.

The fact that there is an even number of possible properties is a direct

consequence of this intertwining between objective and non-objective

properties. Therefore, the set of possible properties has to be given by a

twofold set of 2n symplectically intertwined – or canonically conjugated

– properties.

Since general canonical transformations mix canonical variables, it

should be possible to have properties which are neither objective prop-

erties nor profiles, but a mixture of both. In fact, the flexibility of

quantum mechanics’ formalism enables the consideration of intermedi-

ate physical states where neither q nor p are sharp objective properties.

If for example q is an unsharp objective property of a physical state,

the conjugated momentum p is not completly gauged out. Hence p is in

turn an unsharp objective property that partially gauges the coordinate

q. This means that, for a given physical state, a certain property can

be partially considered an unsharp objective property (that partially

gauges the conjugated variable) and partially a gauged variable. The

resulting subtle equilibrium between unsharp objective properties and
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unsharp non-objective profiles are formally governed by the uncertainty

principle.

III. From universal symmetry transformations to

objective properties

Postulate ‡ establishes a conceptual correspondence between the ob-

jective properties of a physical state and the induced symmetry trans-

formations that connect its gauge dependant “profiles”. In this section

we will justify the necessity of such a correspondence by giving a pre-

cise meaning to the notion of physical states’ properties. To do so, we

will consider the transition from a group of symmetry transformations

acting on states to the definition of certain quantities – the momenta

– that define the possible properties of the states. This relation is

provided by the so-called momentum map (see Refs.[9], [10], [11]). In

other words, instead of going from objective properties to (realized)

symmetry transformations – by means of the map f 7→ vf –, we will

go from (universal) symmetry transformations to objective properties.

Under certain conditions, the momentum map permits to define the

objective properties of a physical state as quantities that specify how

the physical state realizes in a particular way certain universal oper-

ations. As we will show, these conditions are not satisfied in classical

mechanics.

The action Φ : G×M →M of a Lie group G on a manifoldM defines

a map ι between Lie algebra elements ξ ∈ g and fundamental vector

fields vξ on M . This map is defined by means of the expression vξ(x) =
d
dλ

(exp(−λξ) · x)|λ=0, for x ∈ M . At each x ∈ M , the fundamental

vector field vξ generates the infinitesimal transformation of the classical

state x defined by the universal Lie algebra element ξ ∈ g. We will

say that vξ(x) ∈ TxM is the realization by the particular state x of

the universal infinitesimal generator ξ. The action Φ is said to be

symplectic if G acts on M by means of symplectic diffeomorphisms,

i.e. if Φ∗

gω = ω for all g ∈ G (where Φg := Φ(g, ·) : M → M). The

relevant question is whether it is possible to obtain the fundamental

vector field vξ as a Hamiltonian vector field corresponding to a function

hξ ∈ C∞(M). If this is the case, the fundamental vector field vξ has to

satisfy the equation ivξ
ω = dhξ. A symplectic G-action is said to be
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Hamiltonian if there exists a map

µ̃ : g → C∞(M)

ξ 7→ hξ

(called co-momentum) such that the following diagram commutes

0 // R // C∞(M)
π // HM

// 0

g

ι

OO

µ̃

ddI
I

I

I

I

I

I

I

I

I

where the short sequence is exact.4 The co-momentum map µ̃ is defined

up to a constant, i.e. the function µ̃′(ξ) = hξ + k (with k ∈ R) has

also vξ as its induced Hamiltonian vector field. The corresponding

momentum map is the map

µ : M → g∗,

defined by

〈µ(x), ξ〉 = µ̃(ξ)(x) = hξ(x),

with ξ ∈ g and 〈·, ·〉 : g∗ × g → R the natural duality pairing.5 Thanks

to these maps, the realization of universal operations in g as fundamen-

tal vector fields on M can be factorized through functions in C∞(M).

As we will see, if certain conditions are satisfied – namely if the mo-

mentum map is equivariant and if the map C∞(M) → HM is injective

–, then physical observables can be defined as quantities that spec-

ify how different physical states realize differently universal operations

in g. The important fact is that these conditions are no satisfied in

classical mechanics.

For a fixed x ∈ M , µ(x) is an element in g∗ that takes on each in-

finitesimal generator ξ ∈ g a certain value 〈µ(x), ξ〉 ∈ R that depends,

by definition, on the state x. The quantity 〈µ(x), ξ〉 can then be used

4The exactness of this sequence simply means that the image of the inclusion

R → C∞(M) – the constant functions f = k ∈ R in C∞(M) – coincides with the

kernel of the projection π. In other terms, vf=k = 0.
5The ambiguity in the co-momentum map µ̃ induces an ambiguity in the cor-

responding momentum map. The modified momentum map µ′ has to satisfy

〈µ′(x), ξ〉 = µ̃′(ξ)(x) = µ̃(ξ)(x) + k. If one defines µ′(x) = µ(x) + a with a ∈ g∗

such that a(ξ) = k, this relation is satisfied. This means that the momentum map

is defined up to a constant in g∗.
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for identifying – at least partially – the state x. By considering how

this quantity depends on the states, this information can be used to

distinguish between states. To do so, one can fix a universal generator

ξ ∈ g and compare the values of 〈µ(x), ξ〉 for different states x. In fact,

each element ξ ∈ g defines a function hξ : M → R (called a momen-

tum) given by hξ(x) = 〈µ(x), ξ〉. By construction, the Hamiltonian

vector field associated to the momentum hξ is the fundamental vector

field vξ that realizes the universal transformation ξ. For example, the

angular momentum L(q,p) of a particle in Euclidean space is given by

the momentum map µ(q,p) := L(q,p) = q×p. If one selects a partic-

ular Lie algebra element ξ ∈ g = R3, the function Lξ : M → R given

by = Lξ(q,p) = 〈µ(q,p), ξ〉 = ξ · (q × p) defines a possible property

of classical states in M . The Hamiltonian vector field vLξ
associated

to the observable Lξ generates canonical transformations that can be

identified with rotations around the axis defined by ξ.

If the co-momentum map µ̃ is a homomorphism of Lie algebras –

i.e. if µ̃([ξ, η]) = {µ̃(ξ), µ̃(η)} –, the symplectic G-action is said to be

strongly Hamiltonian. It can be shown that this is the case if and only if

the momentum map is infinitesimally equivariant, i.e. if Txµ(vξ(x)) =

−ad∗ξµ(x) for all ξ ∈ g, where Txµ : TxM → Tg∗ ≃ g∗ and ad∗ denotes

the coadjoint action of g on g∗ (see Refs.[10], [11]).6 The action of a

group G on the manifold M is equivariant if Ad∗g−1 ◦µ = µ ◦Φg (where

Ad∗ denotes the coadjoint action of G on g∗), i.e. if the following

diagram commutes

M
µ

//

Φg

��

g∗

Ad∗
g−1

��

M µ
// g∗.

It can be shown that equivariance implies infinitesimal equivariance

and that the converse is true only if G is connected [10]. For compact

6The adjoint representation of a Lie group G on its Lie algebra g is defined

by Adg := TeIg : g → g, where Ig : G → G is given by Ig(h) = ghg−1. The

infinitesimal adjoint action of g on g is defined by the map adξ : g → g given by

adξη = [ξ, η] with ξ, η ∈ g. The coadjoint action of G on g∗ is defined by using the

dual map Ad∗g : g∗ → g∗ given by 〈Ad∗gµ, ξ〉 = 〈µ,Adg(ξ)〉, with µ ∈ g∗ and ξ ∈ g.

The coadjoint action of G on g∗ is then defined by the map Φ∗ : G× g∗ → g∗ given

by (g, µ) 7→ Ad∗
g−1µ. The infinitesimal coadjoint action of g on g∗ is defined by the

map ad∗ξ : g∗ → g∗ given by the expression ad∗ξ(µ) = 〈µ, [ξ, ·]〉 [10].
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Lie groups, one can always use the fact that momentum maps are

defined up to a constant in g∗ in order to choose them as equivariant

[11].

We will now consider the significance of this equivariance property.

The important result is that, for equivariant momentum maps, the dual

g∗ of the Lie algebra g defines a final object in the category of Poisson

G-manifolds, the momentum map µ being the unique morphism from

an object in the category – i.e. a phase space M – to the universal

object g∗ [7]. A Poisson G-manifold is a pair (M, µ̃), where M is

a Poisson manifold with a G-action and µ̃M a strong co-momentum

map, i.e. a homomorphism of Lie algebras µ̃M : g → C∞(M). It

is then possible to define the category G of all Poisson G-manifolds,

where a morphism α : (M, µ̃M) → (N, µ̃N) is a smooth map from M

to N which preserves the Poisson bracket structure (i.e. which satisfies

α∗ {f, g} = {α∗f, α∗g}) and such that the following diagram commutes

C∞(N)
α∗

// C∞(M)

g

µ̃N

OO

id // g.

µ̃M

OO

It can be shown that the dual vector space g∗ of the Lie algebra

g defines a final object in this category. The action of G on g∗ is

the coadjoint action. Under this action, g∗ breaks up into so-called

coadjoint orbits.7 The vector space g∗ has a canonical Poisson bracket

structure. This means that g∗ is a Poisson manifold, with the coadjoint

orbits as its symplectic leaves. The Poisson bracket on C∞(g∗) can be

defined as follows. If f, g ∈ C∞(g∗), then df(x), dg(x) ∈ T ∗

xg∗ ≃ g

(for x ∈ g∗). The Poisson bracket can then be defined as {f, g} (x) =

〈x, [df(x), dg(x)]〉. In the Poisson G-manifold g∗, it is possible to define

7The coadjoint orbit through µ ∈ g∗ is the subset of g∗ defined by Oµ ≡ G ·µ :=
{

Ad∗
g−1(µ),∀g ∈ G

}

. The fundamental property of coadjoint orbits is that they are

symplectic manifolds. In order to define the corresponding symplectic structures

let’s consider the tangent vectors to coadjoint orbits. If µ(t) = Ad∗
g(t)−1µ is a

curve in Oµ with µ(0) = µ and g(t) = exp(tξ) for ξ ∈ g, it can be shown that

µ′(0) = −ad∗ξµ. Thus TµOµ =
{

ad∗ξµ, ξ ∈ g
}

. The symplectic structure on Oµ can

be defined as ωOµ
(µ)(−ad∗ξµ,−ad

∗
ηµ) = 〈µ, [ξ, η]〉. It can be shown that the map

Ad∗
g−1 : Oµ → Oµ preserves ωOµ

(see Ref.[10] for more details).
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a co-momentum map µ̃g∗ : g → C∞(g∗) given by µ̃g∗(ξ)(x) = 〈x, ξ〉.8

Therefore, the pair (g∗, µ̃g∗) is a Poisson G-manifold. Moreover, it is a

final object in the category G of Poisson G-manifolds, being the strong

momentum map µ : M → g∗ the unique morphism from an object

(M, µ̃M) to (g∗, µ̃g∗). In this way, the momentum map µ : M → g∗

establishes an identification between states in M and elements of the

universal model g∗ for the G-action.9 Since G also acts on g∗, the

characterization of a mechanical system as a realization of the universal

model g∗ is valid only if the momentum map µ : M → g∗ respects the

structure defined by the G-action. In other words, the G-action has to

be equivariant. This means that the realization of the universal model

established by the momentum map commutes with the G-action on

bothM and g∗. The fact that an equivariant momentum map preserves

the relevant structures when passing from the universal model g∗ to its

realization by M is also manifested by the fact that such a map is a

Poisson map, i.e. it satisfies µ∗ {f, g} = {µ∗f, µ∗g}, for f, g ∈ C∞(g∗).

To sum up, we can say that universal operators in g act on concrete

states in M by means of realized operators in HM (fundamental or

Hamiltonian vector fields). This realization is mediated by classical

observables by means of the co-momentum map µ̃ : g → C∞(M).

Since by definition the Lie algebra g acts on its dual g∗, it is natural

to discover that g∗ constitues a universal model of the phase space

M . This means that g∗ is a final object in the category of Poisson

G-manifolds. The identification between the phase space M and the

universal model g∗ is given by the momentum map µ : M → g∗. This

correspondence is valid only if the maps respect the relevant algebraic

structures. This means that the G-action on both M and g∗ and the

Poisson structures have to be preserved by the corresponding maps.

We will now consider a potential obstruction to the momentum map’s

infinitesimal equivariance. This obstruction measures the extent to

8It can be verified that the corresponding momentum map is the identity. Using

that 〈µg∗(x), ξ〉 = µ̃g∗(ξ)(x) = 〈x, ξ〉, it follows that µg∗(x) = x.
9In particular, a coadjoint orbit can be considered the universal model for the

orbits of the G-action. It can be shown that the image of µ is a union of coadjoint

orbits. In particular, if G acts transitively on M , then the momentum map is a

covering of a unique coadjoint orbit.



GABRIEL CATREN 13

which the co-momentum map µ̃ : g → C∞(M) fails to be a homomor-

phism of Lie algebras. The obstruction is then given by the map

Σ : g × g → R

defined by

Σ(ξ, η) = µ̃([ξ, η]) − {µ̃(ξ), µ̃(η)} .

By using Jacobi’s identity in both {·, ·} and [·, ·], it can be shown

that Σ satisfies

Σ(ξ, [η, ζ]) + Σ(η, [ζ, ξ]) + Σ(ζ, [ξ, η]) = 0.

This means that Σ defines a 2-cocycle in the Lie algebra cohomology

H∗(g,R) of g with values in R.10 The corresponding cohomology class

[Σ] ∈ H2(g,R) is the obstruction to the infinitesimal equivariance of

the momentum map. The cocycle Σ is a coboundary if there exists

a 1-cochain λ : g → R such that Σ(ξ, η) = (δgλ)(ξ, η) = −λ([ξ, η]).

Two co-momentum maps differing in a constant element λ ∈ g∗ have

associated cocycles differing in a coboundary: Σλ(ξ, η) = Σ(ξ, η) +

λ([ξ, η]). This means that they belong to the same cohomology class:

[Σλ] = [Σ]. If the cohomology class is trivial – i.e. if [Σ] = 0 or

equivalently Σ(ξ, η) = −λ([ξ, η]) –, then the momentum map can be

modified so as to be infinitesimally equivariant. In fact, the new map

µ̃′ = µ̃ + λ is an infinitesimally equivariant co-momentum map.11 In

10Let Ck(g,R) = {α : gk → R} be the set of R-valued k-cochains (where the

maps α are skew k-linear maps). Let’s define the differential δg : Ck(g,R) →

Ck+1(g,R) as

(δgα)(ξ0, ..., ξk) =
∑

0≤i<j≤k

(−1)i+jα([ξi, ξj ], ξ0, ..., ξ̂i, ..., ξ̂j , ..., ξk),

where ξ̂i means that ξi has been suppressed. It can be shown that δ2g = 0. The

corresponding cohomology H∗(g,R) = ker(δ∗g)/im(δ∗−1
g ) is the Lie algebra coho-

mology of g with values in R. In our case, the element Σ is a skew bilinear map

that satisfies (δgΣ)(η, ξ, ζ) = −(Σ([η, ξ], ζ) + Σ([ζ, η], ξ) + Σ([ξ, ζ], η)) = 0, i.e. it is

a 2-cocycle in H2(g,R).
11The obstruction associated to the co-momentum map µ̃′ = µ̃+ λ is

Σ′(ξ, η) = µ̃′([ξ, η]) − {µ̃′(ξ), µ̃′(η)}

= µ̃([ξ, η]) + λ([ξ, η]) − {µ̃(ξ) + λ(ξ), µ̃(η) + λ(η)}

= µ̃([ξ, η]) + λ([ξ, η]) − {µ̃(ξ), µ̃(η)}

= Σ(ξ, η) + λ([ξ, η])

= 0.
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particular, if g is semisimple, then the Second Whitehead Lemma states

that H2(g,R) = 0.

When the cohomology class of Σ is not trivial, the momentum map

can still be adjusted to be infinitesimally equivariant by enlarging g to

the central extension g′ = g + R defined by Σ. The bracket in g′ is

defined by

[(ξ, a), (η, b)] = ([ξ, η],Σ(ξ, η)).

The Lie algebra g′ acts on M by ρ(ξ, a)(x) = vξ(x). The induced

momentum and co-momentum maps

µ′ : M → (g′)∗ = g∗ ⊕ R

µ̃′ : g′ = g + R → C∞(M)

satisfy

vh(ξ,a)
= vhξ

,

where h(ξ,a) = µ̃′(ξ, a) and hξ = µ̃(ξ). This implies that h(ξ,a) − hξ =

̺(ξ, a), with ̺(ξ, a) constant. The obstruction to the infinitesimal

equivariance of µ̃′ is

Σ′((ξ, a), (η, b)) = µ̃′([(ξ, a), (η, b)]) − {µ̃′(ξ, a), µ̃′(η, b)} =

= µ̃′([ξ, η],Σ(ξ, η)) − {µ̃(ξ) + ̺(ξ, a), µ̃(η) + ̺(η, b)}

= µ̃([ξ, η]) + ̺([ξ, η],Σ(ξ, η)) − {µ̃(ξ), µ̃(η)}

= Σ(ξ, η) + ̺([ξ, η],Σ(ξ, η)).

The 2-cocycle Σ′((ξ, a), (η, b)) belongs to the trivial class if it is a

coboundary, i.e. if Σ′((ξ, a), (η, b)) = −λ([(ξ, a), (η, b)]) = −λ([ξ, η],Σ(ξ, η)).

Let’s define the 1-cochain τ : g′ → R given by τ(ξ, a) = a. Then

Σ(ξ, η) = τ([ξ, η],Σ(ξ, η)) and thus

Σ′((ξ, a), (η, b)) = (τ + ̺)([ξ, η],Σ(ξ, η))

= (τ + ̺)([(ξ, a), (η, b)])

= −λ([(ξ, a), (η, b)]),

with τ + ̺ = −λ. Therefore, the co-comentum map µ̃′ can be ad-

justed to be infinitesimally equivariant by choosing ̺(ξ, a) = −a. The

resulting co-momentum map is then

µ̃′(ξ, a) = µ̃(ξ) − a.
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We will now consider the action of g = R2 = {(a, b)} on M =

R2 = {(q, p)} given by Φ(a,b)(q, p) = (q + a, p + b). The realization of

the Lie algebra element ξ = (a, b) is given by the fundamental vector

field vξ = a∂q + b∂p. This vector field is the Hamiltonian vector field

corresponding to the function hξ(q, p) = ap − bq. The co-momentum

map is then

µ̃ : g → C∞(M)

(a, b) 7→ hξ(q, p) = ap− bq.

This co-momentum map is not infinitesimally equivariant. This

means that it is not a homomorphism of Lie algebras. The obstruction

Σ is given by

Σ((a1, b1), (a2, b2)) = µ̃([(a1, b1), (a2, b2)]) − {µ̃(a1, b1), µ̃(a2, b2)}

= b1a2 − a1b2.

Since [g, g] = 0, the only coboundary is zero. This means that Σ

belongs to a non-trivial cohomology class. In particular let’s consider

the Lie algebra elements ξq = (1, 0) and ξp = (0, 1). These elements

induce on M the fundamental vector fields vξq = ∂q and vξp = ∂p

respectively. In this case the obstruction is

Σ(ξq, ξp) = µ̃([ξq, ξp]) − {µ̃(ξq), µ̃(ξp)}

= µ̃(0) − {p,−q}

= −1.

Since the action of g = R2 on M = R2 is not infinitesimally equi-

variant, classical mechanics on M is not a satisfactory realization of the

universal model g∗ for the G-action. It is worth noting that the non-

equivariance of µ̃ is a consequence of the fact that the algebraic struc-

ture of g does not reflect the symplectic intertwining between physical

properties. In other words, [ξq, ξp] = 0 even if {q, p} = 1. The infinites-

imally equivariant co-momentum map is obtained through the central

extension of g = R2 defined by Σ. It is given by

µ̃′ : g′ = R2 ⊕ R → C∞(M)

((a, b), c) 7→ h(a,b) − c = ap− bq − c.

The central extension g′ = R2 ⊕ R is called Heisenberg algebra and

the corresponding connected and simply-connected Lie group is the



16 GABRIEL CATREN

Heisenberg group H. The underlying manifold is H = R2 × S1 (where

R2 is considered an additive Lie group), with multiplication given by

the expression

(g1, e
iθ1) · (g2, e

iθ2) = (g1 + g2, e
i[θ1+θ2+ 1

2
Σ(g1,g2)]),

with identity (0, 1) and inverse (g, eiθ)−1 = (−g, e−iθ).

As we have argued above, adopting postulate ‡ makes it impossible

to identify the space of states with the phase space M (since classical

states x ∈M are overdetermined). We will now provide some heuristic

justifications for the election of a new space of states. If certain con-

ditions were satisfied, it would be possible to use the momentum map

to give a rigorous definition of physical properties. More precisely, if

the moment map were equivariant – and, as we will see in the next

section, if the map C∞(M) → HM were injective –, the properties

µ̃(ξ) = hξ : M → R would specify how different physical states re-

alize differently universal generators ξ ∈ g. This characterization of

physical properties would explain why the correspondence between ob-

servables and operators is a fundamental feature of mechanics. The fact

that physical properties hξ induce generators of infinitesimal canonical

transformations – through the map π : C∞(M) → HM – would be a

consequence of the fact that hξ are quantities – defined through the

map µ̃ : g → C∞(M) – that specify how the universal generators ξ ∈ g

are realized by states in M . The following diagram encompasses both

sides of the relationship between observables and operators:

g
µ̃

//

ι

%%
C∞(M)

π // HM .

The realization – as Hamiltonian vector fields in HM – of universal

symmetry transformations in g is factorized through physical prop-

erties in C∞(M), which can be used for identifying the state. In this

way, each physical property defines a realization of a universal infinites-

imal canonical transformation that acts on another possible property.

The phase space M is then characterized by a set of 2n simplectically

intertwined possible properties. In particular, we have considered the

transitive action of the translation group R2 on M = R2. The problem

we found is that this group does not reflect the symplectic intertwining
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between properties in M (since [ξq, ξp] = 0). This fact is manifested

through the non-equivariance of the corresponding momentum map

(i.e. it does not preserve the relevant algebraic structures). In order

to guarantee the equivariance of the momentum map, the translation

group R2 has to be extended to the Heisenberg group H = R2 × S1.

Nevertheless, even if the corresponding Heisenberg algebra reflects the

symplectic intertwining between canonically conjugated properties –

[(ξq, 0), (ξp, 0)] = ([ξq, ξp],Σ(ξq, ξp)) = (0,−1) –, its action on M is

still given by classical operators, i.e. by Hamiltonian vector fields –

(ξ, a) ∈ g′ acts on M by ρ(ξ, a)(x) = vξ(x) –. As we will see in the next

section, the Lie algebra of Hamiltonian vector fields is not isomorphic

to the Poisson algebra. This means that it does not reflect the inter-

twining between coordinates q and momenta p. If one wants to define

physical properties as quantities that specify how different states real-

ize differently universal operations, this realization must be faithful. In

other words, the realized operator algebra has to be isomorphic to the

universal operator algebra. This means that non-commuting univer-

sal operators should be mapped to non-commuting realized operators.

Moreover, it is also necessary to consider the following important factor.

Since (q, p) is a complete set of observables – every function that com-

mutes with both q and p is necessarily constant –, the induced (quan-

tum) operators v̂q and v̂p must also be a complete set. This means that

any operator commuting with both v̂q and v̂p is necessarily a multiple

of the identity. This conditions amounts to demand that the opera-

tors v̂q and v̂p act irreducibly on the space of states.12 To sum up, the

searched space of states has to be endowed with an irreducible action of

operators v̂q and v̂p, such that their commutator algebra is isomorphic

to the Poisson algebra. In the case M = R2n, the Stone-Von Neumann

theorem guarantees all irreducible representations of the Heisenberg al-

gebra to be unitary equivalents to the Schrödinger representation (for

a fixed value of Planck’s constant). In this representation, operators

associated to the observables q and p act on functions in L2(Rn) by

means of the expressions v̂qψ(q) = qψ(q) and v̂pψ(q) = −i~∂ψ(q)
∂q

. It

is worth noting that the resulting quantum states satisfy postulate ‡

by construction. For example, if a quantum state has a well defined

12Irreducibility means that every closed subspace of the space of states which is

invariant under the action of this set is either {0} or the whole space of states.
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position – |ψ〉 = |q〉 –, the transformation generated by the operator v̂q
(multiplication by q in the coordinate representation) should not be an

active transformation between physically distinct states, but rather a

symmetry transformation that does not modify the physical state. In

fact, the transformed state eiv̂qk|q〉 = eiqk|q〉 is gauge equivalent to |q〉.

On the other hand, since the observable p is not an objective property

of the state |q〉, transformations generated by v̂p – i.e. translations

in position – should not be considered symmetry transformations, but

rather active transformations between physically different states. This

is consistent with the fact that eiv̂pk|q〉 is not gauge equivalent to |q〉.

IV. From objective properties to realized symmetry

transformations

We will now consider the results described in the preceding section

from a dual point of view. We have seen that in order to define an

equivariant co-momentum map between universal operators and ob-

servables it is necessary to enlarge the translation group that acts on

M by adding an extra S1-degree of freedom (defining in this way the

Heisenberg group). Conversely, the prequantization formalism shows

that in order to define a faithful correspondence between observables

and realized operators it is necessary to enlarge the symplectic man-

ifold M by adding an extra S1-degree of freedom ([3], [8], [12], [13],

[14]).

A fundamental feature of classical mechanics is that the surjective

Lie algebra homomorphism C∞(M) → HM – defined by the symplectic

structure ω – between classical observables f ∈ C∞(M) and classical

operators vf ∈ HM is not injective, being its kernel the set of constant

functions f = k ∈ R. These properties of the map C∞(M) → HM can

be summed up by saying that the short sequence

0 // R
i // C∞(M)

π // HM
// 0

is exact. In other words, the image of the injection i – the constant

functions in C∞(M) – is the kernel of the projection π (i.e. vf=k = 0).

This means that, as Lie algebras, the Poisson algebra of classical ob-

servables C∞(M) and the Lie algebra HM of Hamiltonian vector fields

are not isomorphic. Consequently, while for exemple the infinitesimal

transformation of q generated by p is given by Lievp
q = {q, p} = 1,

the same infinitesimal action applied to vq yields Lievp
vq = [vp, vq] = 0.
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In other words, the classical differential operator vp acts non-trivially

on q and trivially on vq. This means that classical mechanics fails to

establish a faithful correspondence between observables and operators:

a transformation of an observable f is not necessarily reflected at the

level of the induced operator vf . Nevertheless, the definition of a phys-

ical property as a quantity that specifies how different states realize

differently universal operations is consistent only if a change in the

value of the property is faithfully reflected in the corresponding real-

ized operators. It is worth noting that [vp, vq] = 0 (while {q, p} = 1)

is the dual version of the fact – considered in the preceding section –

that [ξp, ξq] = 0 (while {µ̃(ξp), µ̃(ξq)} = {q, p} = 1). In other words,

both the universal operator algebra g and the realized operator algebra

HM fail to reflect the symplectic intertwining defined by the Poisson

algebra between properties that are canonically conjugated.

The geometric arena of classical mechanics is insufficient for estab-

lishing a faithful correspondence between observables and operators.

As the prequantization formalism shows, in order to define an opera-

tor algebra isomorphic to the Poisson algebra C∞(M), it is necessary

to extend classical operators vf to quantum operators v̂f by adding

additional components to the former. To do so, the symplectic man-

ifold M has to be extended by defining a complex line bundle over

it. The quantum operators v̂f must satisfy the quantization conditions

proposed by Dirac [4]:

• Q1) If f = k ∈ R, then v̂f=k = kI, where I is the identity

operator.

• Q2) If {f, g} = h, then [v̂f , v̂g] = −i~v̂h.

• Q3) If {fi} is a complete set of classical observables, then the

Hilbert space of quantum states has to be irreducible under the

action of the set {v̂fi
}.

The prequantization formalism shows that, in order to define an

operator algebra that satisfies Q1 and Q2, it is necessary to define a

complex line bundle L → M over the phase space M with a hermit-

ian connection ∇, such that its curvature is given by the symplectic

form ω. The additional “internal” dimensions defined by the fibers

let us extend the classical operators vf ∈ HM by means of vertical

components ζf tangent to the fibers. By construction, the extended

quantum operators v̂f = vhf + ζf (where vhf is the horizontal lift of vf
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defined by the connection) satisfy commutation relations isomorphic to

a subalgebra of classical observables’ Poisson algebra. This guarantees

that [v̂q, v̂p] 6= 0, even if [vq, vp] = 0. By adding an internal “quantum”

dimension to the symplectic manifold M , it is possible to define a quan-

tum operator algebra isomorphic to the Poisson algebra. It can then

be shown that the differential operators v̂f acts on sections s : M → L

by means of the expression [3]

v̂f · s = ∇vf
s− fs.

Therefore, it might seem natural to identify the sections s : M → L

with the new notion of physical states. Nevertheless, since these sec-

tions depend on the 2n coordinates of the phase space M , they do not

correspond to the usual notion of quantum states, which only depends

on n coordinates. In fact, if quantum states were defined by these sec-

tions, they could be localized in both q and p. This means that both q

and p could be objective properties of the physical state. However, as

explained above, such simultaneous localization would be contradictory

with postulate ‡. The formal counterpart to this conceptual objection

is that the quantum operators associated to a complete set of classical

observables by the prequantification formalism, is not a complete set

(they do not act irreducibly on the space of quantum states [7]).13 This

problem can be solved by restricting the space of quantum states. To

do so, it is necessary to perform a second stage in the quantization

process given by the election of a polarization (i.e. a foliation of M

by Lagrangian submanifolds [14]). The resulting polarized quantum

states only depend on the n coordinates of a Lagrangian submanifold

of M . This means that they cannot be localized in both q and p.

In this way the geometric quantization formalism allow us to reob-

tain the results described in the preceding section. In order to define

physical properties by means of an equivariant realization of univer-

sal operations, it is necessary to extend the translation group in M to

13For example, the prequantization of the cotangent bundle M = T ∗
R associates

to the complete set of canonical variables q and p the quantum operators v̂q =

q + i~ ∂
∂p

and v̂p = −i~ ∂
∂q

respectively. Let’s consider the subset C∞(R) ⊂ C∞(M)

composed of states of the form ψ(q). The transformed states v̂qψ(q) = qψ(q) and

v̂pψ(q) = −i~∂ψ(q)
∂q

also depend only on q. This means that C∞(R) is a proper

subspace of quantum states invariant under the action of the quantum operators

v̂q and v̂p.
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the Heisenberg group. The Stone-Von Neumann theorem assures that

there is essentially a unique irreducible representation of this group,

which is given (modulo unitary equivalence) by the Schrödinger repre-

sentation. On the other hand, in order to define an operator algebra

that is isomorphic to the Poisson algebra, it is necessary to extend the

symplectic manifold by defining a fiber bundle over it. The correspond-

ing operator algebra acts irreducibly on the space of polarized sections.

By choosing a vertical polarization the Schrödinger representation is

recovered [14].

V. Conclusion

Beyond the empirical observation that quantum mechanics is, at

least to our present knowledge, the correct theory of mechanics, it still

lacks a satisfactory explanation of the rational necessity of substituting

classical mechanics by quantum mechanics. In this paper we proposed

that an analysis of the relations between objective properties of physi-

cal states and symmetry transformations could shed new light on this

problem. The twofold role played by classical observables in mechanics

– as functions that can be evaluated on states and as generators of

canonical transformations – is considered here a fundamental feature

that deserves further attention. Our first observation is that the clas-

sical correspondence between these two roles is not satisfactory. This

can be seen in two ways. On the one hand, the map C∞(M) → HM

between classical observables and Hamiltonian vector fields is not in-

jective. On the other hand, the co-momentum map µ̃ : g → C∞(M)

is not equivariant (where g is the Lie algebra of the translation group

in M). This means that the Lie algebras HM and g do not reflect the

symplectic intertwining between properties that are canonically conju-

gated. In fact, quantum mechanics can be understood as the theory of

mechanics that bypasses these flaws. Dirac’s quantization conditions

can be considered a formalization of this prescription. The geometric

quantization formalism shows that in order to satisfy Dirac’s condi-

tions (at least for a certain subalgebra of observables), classical oper-

ators (Hamiltonian vector fields) have to be extended by adding new

“vertical” components. In order to define these new components it is

necessary to extend the phase space M by defining a complex line bun-

dle over it (endowed with a hermitian connection of curvature defined

by the symplectic form). Quantum states are then given by polarized
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sections of the line bundle. From the dual point of view, in order to

define an equivariant momentum map, the translation group in M has

to be extended to the Heisenberg group. For M = R2n, the Stone-

Von Neumann theorem fixes (modulo unitary equivalence) its unique

irreducible representation.

These formal results show that, to a certain extent, quantum me-

chanics can be recovered by forcing a faithful – or equivariant – corre-

spondence between observables and operators. Hence, in order to un-

derstand the necessity of quantum mechanics, it is necessary to better

establish the rational link between the two roles played by observables.

As a means of establishing this rational link, we proposed postulate

‡. According to this postulate, the infinitesimal canonical transforma-

tions induced by the objective properties of a physical state should not

be considered active transformations between different physical states

– as in classical mechanics –, but as symmetry transformations that do

not affect its objective properties, i.e. that do not modify the physi-

cal state. This implies that states connected by these transformations

have to be considered gauge equivalent. In other words, the objective

properties that allow us to identify the state define also the symme-

try transformations that gauge its non-objective properties. Moreover,

the momentum map formalism permits a better understanding of the

relationships between observables and operators. According to this for-

malism, the objective properties of a physical state characterize the way

the state realizes equivariantly certain universal transformations. Such

considerations give a conceptual scope to the correspondence between

observables and operators. Nevertheless, we showed that classical me-

chanics cannot be consistently interpreted by means of postulate ‡.

In fact, a determination of classical states by both q and p is incon-

sistent with the interpretation of the induced infinitesimal canonical

transformations as effective symmetry transformations. According to

the proposed postulate, since each objective property characterizes the

realization of a symmetry transformation that gauges the canonically

conjugated property, not all properties can be consistently attributed

to a particular physical state. This implies that classical states are

overdetermined, that is to say that they are defined by means of too

many canonical variables. On the contrary, the quantum uncertainty

principle can be considered a faithful realization of postulate ‡. The

momentum of a state with a well defined position q is completely gauged
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out by means of the symmetry transformation induced by the observ-

able q (which is an objective property of the state). Therefore, we

can conclude that it is not the case that the quantum notion of physi-

cal objectivity is underdetermined – when compared to a hypothetical

classical completeness – but that the classical notion is overdetermined.

It is a remarkable fact that non-commutativity of quantum operators

is the condition of possibility for a well-defined notion of physical ob-

jectivity. Quantum non-commutativity guarantees that the symplec-

tic intertwining between properties that are canonically conjugated is

faithfully reflected at the level of operators. Therefore, physical prop-

erties of states can be consistently defined as the quantities that specify

faithfully how different states realize different universal operations.
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