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Abstract I show that the apparent wave function collapse can take place smoothly, without discontinuities.
The projections on the observable’s eigenspaces can be obtained by a delayed initial condition, imposed
to the smooth time evolution of the observed system entangled with the measurement device used for the
preparation. Since the quantum state of this device is not available entirely to the observer, its unknown
degrees of freedom inject, by the means of entanglement, an apparent randomness in the observed system,
leading to a probabilistic behavior. Thus, we can construct a Smooth Quantum Mechanics (SQM), without
the need of discontinuities in time evolution. The probabilities occur therefore because not all the systems
involved have determined quantum states. The evolution is deterministic, but for an observer, who has access
only to an incomplete set of initial conditions, it appears to be indeterministic.
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1 The problem of discontinuities in Quantum Mechanics
1.1 The time evolution of a Quantum System

A quantum system which is in a pure state, and not entangled with another system, evolves according to the
Schrodinger equation:

ih 2 y(t)) = H(t)| w(r)) (1)
[y (1)) = vo),

where |y(1)) € .7 is a state vector from the state space ., and H(¢) is the Hamiltonian, usually a hermitian
operator on .. If the quantum system is closed, then H is time independent, but in general, it is time de-
pendent, because of the interactions with other systems. For more general interactions, the observed system
can become entangled with other systems, and its state will no longer be pure. In this case, as well as in the
case when we don’t know the initial data, but rather a probability distribution, we represent the state by a
density operator p on .. For these situations, we will employ, instead of the equation (1), the Liouville - von
Neumann equation:

in?20 = [H(1),p (1))
{p(z&’) ~p0. @
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1.2 The measurement problem

When a measurement is performed to a quantum system, this one is found to be in an eigenstate of the
observable. There are two main problems raised by this fact. First: why only eigenstates of the observables
are obtained as outcomes of the observations? Why don’t we observe superpositions of such eigenstates, like
a |dead) + |alive) Schrodinger cat? This is the main problem of the measurement, which, in this article, will
be accepted as it is, without offering an explanation. The second problem is the following. Knowing the state
of a quantum system, and assuming that a measurement will find the system in an eigenstate of the observable,
it seems like a discontinuous jump happens. How is this happening? Is this jump really discontinuous? What
is its nature? In this article, I will propose a solution to this discontinuity problem in Quantum Mechanics.

1.3 One-measurement

The Schrodinger equation (1), as well as the Liouville - von Neumann equation (2), are PDE equations. Each
solution can be uniquely specified by an initial condition. The initial condition is obtained by performing a
measurement at an initial moment f.

Let’s consider that we measure the spin of an electron, at the instant #y. The obtained result will determine
the electron’s spin both for moments ¢ with t < #, and with ¢ > #y. The classical view is that the measurement
only revealed the state of the system, and the solution of the evolution equation preexisted long time before the
measurement. On the other hand, in Quantum Mechanics, we can choose what observable to measure, thus,
we can choose the set of admitted eigenstates. So, if the solution we detected by measurement preexisted, it
did this in a way that anticipated our choice of the observables. This choice can be performed with a delay, to
make sure that it doesn’t affect in a causal way the observed system. This was emphasized by Wheeler [1-3]
when he revived ! the idea of delayed-choice experiments. In the case of the electron spin, when we choose
the direction to measure the spin, we let available only two possible eigenstates for the spin. Had we choose
a different direction, the eigenstates would be different. So, our choice limited the possible outcomes. And
when we measure the spin, we determine not only what spin the electron has at 7y, but also for previous ¢, as
we can see from entanglement situations like the one pointed by Einstein, Podolsky, and Rosen [6] (in Bohm’s
version [7]).

We can conclude that one measurement determines uniquely the state at 7y, hence the solution, and this
determination seems to affect the past in a weird way. We cannot say that it can change it, rather it is only an
initial condition, established with a (very large) delay. The one-measurement situation makes apparent that
the eigenstate can be selected without involving the discontinuous wave function collapse.

1.4 Two-measurements case and the wave function collapse

Let’s consider a system whose evolution is described by the Schrodinger equation (1). Suppose that, after an
observation at 7y finds the system in an eigenstate, we perform a second observation, at the time #;. If the state
predicted by the evolution equation is an eigenstate of the second observable, then it will be obtained at the
second measurement. If not, then the second observation cannot impose an initial condition, at #{, compatible
with the unitary evolution governed by the Schrédinger equation.

We can see that one observation imposes an initial condition to the Schrédinger equation, but a second
observation either confirms the solution, or it is incompatible with it. In this case, it should not be possible to
perform more than one observation of a system. A quantum system has a wave-like behavior, described by
the Schrodinger equation, or by the Liouville - von Neumann equation, and a quantum behavior, expressed
by the condition to be found in an eigenstate of the observable. These two behaviors seem to be incompatible.

But we know from experience that we can perform more observations to the same quantum system. This
has the appearance of a jumping from one solution of the Schrodinger equation to another one, in a discon-
tinuous fashion.

The analysis of delayed-choice experiments suggests that, if a collapse happened, it took place in advance,
during the previous interaction, possible even at #( (please refer to figure 1).

I 1t seems that similar suggestions were made before by Weiszédcker [4] and Bohr [5].
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Fig. 1 In a delayed-choice experiment, the reduction seems to take place in advance, anticipating the experimenter’s choice of
the observable.

1.5 Why discontinuities cause problems?

The acceptance that a quantum system is subject of a discontinuous wave function collapse can raise several
problems. On the one hand, if we consider the observed system as being a part of a larger one (perhaps
the Universe), containing the measurement device too, as a quantum subsystem, the measurement can be
described by the evolution equation, and we expect that no discontinuous collapse appears. But, when we
refer to the observed system only, we cannot see how the discontinuity can be avoided. We seem to have a
paradox: a system evolving with discontinuities, being in the same time a subsystem of one evolving smoothly.

Another problem is that the discontinuous collapse has been postulated, but never observed directly. It is
not known any mechanism that can produce it, we don’t know when exactly it takes place. An explanation is
required, since we cannot accept that it simply happens.

In Quantum Mechanics, an observable that commutes with the Hamiltonian of the system is conserved
during the evolution. But the conservation holds only as long as the system evolves governed by the Hamilto-
nian (Schrodinger equation or Liouville - von Neumann equation). Since performing a measurement makes
the system jump in a totally different state, it is expected that the conservation laws are broken. For example,
if we measure the momentum of the system, and then measure its position, then the initial momentum is lost.
If we measure again the momentum, we should expect to obtain a totally different value than the first time.
We can expect that, after several measurements, the conserved quantities of the system be totally blown up.

The discontinuities are incompatible with the conservation laws, but the conservation laws don’t break
down as a result of measurements. Something happens always to restore them. To make them compatible, we
need to appeal to a “magical postulate”:

During the state vector reductions, the conservation laws can no longer be deduced from the Hamiltonian,
but they must be restored in some way or another.

The problem is that we don’t know any explanation for the conservation laws, other than the time evolution
described by the equations (1) and (2). Breaking this evolution should break the conservation laws, contrary
to our experimental observations.

The quantum world is like a great illusionist, who has in his sleeves a lot of tricks that make us believing
that the quantum system jumps discontinuously from time to time. But we have to remember that, in the end,
there must be a logical explanation for the illusion number presented in the show, and to look for the strings.

1.6 Can discontinuities be avoided?

In the following, I will show that the apparent wave function collapse can be explained by the standard Quan-
tum Mechanics, minus the discontinuity, as a smooth and natural phenomenon. The first ingredient comes
from the discussion above (§1.3), concerning a system undergoing only one measurement. A measurement



fixes the initial data for a quantum system; going to a larger system, makes those initial conditions insuffi-
cient, therefore, a new measurement is allowed. The second ingredient is the entanglement with the device
performing the previous measurement (which will be named preparation device).

2 Quantum Mechanics without discontinuities

We begin by considering the measurement from a semi-classical viewpoint: the observed system is quantum,
and the preparation device is classical.

2.1 The semi-classical interaction approach

Let’s consider a quantum system evolving according to the Schrodinger equation (1), subject to a first
measurement (the preparation) starting at the instant 7y and ending at 7y + €, and a second measurement at
11 > to+ €. If we consider the preparation device as being classical, its influence can be described by an
interaction Hamiltonian Hiy (). Thus, in the Dirac picture, the Hamiltonian is:

H(l‘) =H —l—Him(l‘).

The preparation device is considered classical, this meaning that its true state, which is quantum, is un-
known. There will be a large set of quantum states which, at the classical level, will look identical. This set
of equivalent quantum states can be parametrized, with both discrete and continuous parameters. Let’s take
a smooth parametrization u(¢) of its continuous degrees of freedom. The interaction Hamiltonian Hi,(¢) will
depend on u(t), such that Hin(t) = Hinc (2, u).

Each choice of the parameters u(r) will lead to a state of the system at 7 given by

lw(t,u)) = U(t,10,u) | y(t0)).

Before the introduction of the degrees of freedom parametrized by u(z), there was only one possible state at
t1 for the observed system. Now, by varying u, |y(71,u)) also changes.

We ask the following question:

What condition should the parameters u satisfy, such that all possible outcomes of any possible observa-
tion taking place at t| are reached by |y(t,u))?

This is a problem of Quantum Control Theory. Under some general assumptions on u(t), the condition is
that the Lie group associated to the Lie algebra generated by the matrices of the form iH (¢,u) should contain
all the possible unitary transformations. If the dimension of .% is n < o, then it is enough that the rank of the
Lie algebra generated in this way to be identical to the rank of the unitary Lie algebra u(n). This holds when
there is no time limit, but in our case, the time is limited to #p + &, bringing a new restriction. On the other
hand, we don’t want to obtain all possible states at 71, since we don’t need the ones orthogonal to |yp).

The parameters u(¢) can be determined by appropriate initial conditions. Similarly to the one-measurement
case, the initial conditions are determined such that the system evolves to be the appropriate eigenstate of the
observable, at 1. In the figure 2 we can see how the Hamiltonian can prepare the observed system to be in an
eigenstate of the observable.

Assuming that the observable corresponding to the measurement at ¢1 is O1, for each outcome Yo, 1)
of the measurement, corresponding to an eigenvalue A, there must exist a choice ug, , of the parameters
u(t) such that the interaction send the observed system in |y, ). The corresponding unitary operator is
Uo, 2 (t1:10), so that [Wp, 2) = Up, 2 (t1,10) o).

Let us consider the following example, raised by Einstein to Bohr, at the Fifth Solvay Conference (Brussels
1927). Einstein said that, in a two-slit experiment, if we measure the recoil of the wall containing the two slits,
when the light passes through it, one should be able to deduce whether the photon passed through one slit
or the other. As Bohr replied to him, if we measure a significant recoil, the interference pattern is destroyed.
Let’s reverse a bit the reasoning, and apply it to the delayed-choice [1-5] version of the two-slit experiment.
We can decide after the photon has passed through the slit(s) whether to observe the “which way” or the “both
ways” aspects. If we decide to observe the “which way” behavior, we cause the wall with the two slits to
undergo a significant change of momentum (corresponding to the cases when the photon has passed through
one slit or the other). If we choose to observe the interference, the change in momentum will be undefined.
The wall with the two slits will get in a superposition of eigenstates of momenta. This example shows that,
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Fig. 2 The disturbance in the evolution of the quantum system, introduced by the measurement device performing the prepa-
ration, needs to be taken into account by modifying the Hamiltonian from Hy to H(t,u) = Hy + Hiy (t,u) for the time interval
(f0,%0 + €). This will “repair” the discontinuity presented in the figure 1.

indeed, the interaction with the wall with the two slits, happening in the interval (¢y,% + €), takes place in
such a manner that the outcome of the measurement is one expected by the choice of the observable.

2.2 The entanglement approach

The previous analysis simplified the interaction between the preparation device and the observed system.
A more general description will consider that the preparation device is quantum, not classical. In this case,
its interaction with the observed system leads to an entanglement between the two. The evolution of the
observed system can no longer be considered unitary: its state may go from being pure, at g, to being mixed
at tp + €. Of course, the combined system made from the observed system and the preparation device, may
be isolated, and undergo unitary evolution, but the observed system’s state will be obtained by partial tracing
the density operator of the larger system, and it will not necessarily be pure. A correct description will use
density operators to represent the state, and the Liouville - von Neumann equation (2), for its evolution.

Let us consider that the state of the observed quantum system is described by the density operator py,
on the state space .7, and the one of the preparation device is described by a density operator p,, on the
state space .#),. We consider that the combined system, represented by a density operator p, , on ./, ® /),
is isolated. If it is not isolated, then we complete the system with remaining systems p,, so that we obtain an
isolated system. We can consider, without loosing the generality, that the preparation device incorporates all
these systems, so it will be enough to work on the state space ., ® .#),. The combined system will have a
unitary evolution between 7y and 7y + €, given by the unitary operator U, , = Uy p(to + €,1):

Pgp(to+€) = Uq,ppq7p<f0)U;,p
The initial and the final density operators for the observed system can be obtained by partial trace:
Pq(t0) = trpPqp(10)
Pylto+€) = trppyp(t0 +€),

and we have
py(to+€) = ”’p(Uqu.p(tO)U;,p)'

In general, the transformation from py () to p,(to + €) is not unitary.
We do now another simplification, again without loosing generality, by purifying the state. We can purify
the state p, , by expanding the state space from .7, ® ., to

S =S Q QI QS



with 7, = 7/ and ., = .. The two extra state spaces .7, and .#, does not necessarily represent physical
systems, but they allow us to consider p,,, as the partial trace of a pure state on .. The composed system’s
evolution can be considered to be described by Schrédinger equation (1) on ., although the state p, , still
needs to obey equation (2). We denote the state space which is external to our observed system by

S =Sp RIS,

and the density operator describing the evolution on this space by p,.
The conditions imposed by the observations to the system described by p, at 7y and #; imply that p,(fo)
and p, (1) represent pure states:
Pq(tO) = |W0><II/0‘ and (3)
Pq(tr) = lyn) (.

This imposes restrictions also on the combined system p, ,. After # the systems p, and p, become entangled,
and the second observation disentangles them, and also imposes to p, a purity condition

Pe(t1) = [m){ml,

with n; € .%,.

Since at #y the preparation device and the observed system were separated, the preparation device was in
a state p,(to), which can be obtained by partial tracing from a pure state |1) € .7,. Although the state vector
[n1) is uniquely determined by the observation at 7y, it depends on |7g). Because we don’t know the value
of 1), to each possible |1), and to each possible outcomes |yp) and |y) of the two measurements, will
correspond a unique |1;). In order to clarify this correspondence, we need to study some properties of linear
operators acting between tensor products of vector spaces.

Let ¥4, V5, V¢ and ¥p be four vector spaces over a field K, K =R or K = C, and let

T: V@V — Y@ “

be a K-linear morphism of vector spaces. We are interested in identifying the possible separable vectors
|A) ®|B) € ¥4 ® ¥ and |C) ® |D) € ¥¢ ® ¥p such that:

r(|A)©|B)) = |C)@|D). )

Proposition 1 Let us consider |A) and |C) fixed. The set of vectors |B) € ¥, and the set of vectors |D) € ¥p,
satisfying the equation (5), form vector subspaces ”I/;C < ¥, respectively ”I/[?C <.

Proof If |B') and |B") are such that T (|A) ® |B')) = |C) ® |D’) and T (|A) ® |B")) = |C) @ |D") for some |D’)
and |D") € .p, then for any 7/,7” € C,
T(1A)® (|B) +"|B"))) =T (|A)®|B) +'T(|A) @ [B")) =
ZIC)®|D) +"|C)® |D") = |C) @ (|D') +2"|D")),

therefore the solutions |B) € ¥ form a vector subspace “//BAC < ¥p. Consequently, the solutions |D) € ¥p
form a vector subspace ¥/4C = T (V4C) < ¥5.

Remark 1 Since we have ¢ ® ¥p = ¥p ® ¢, it follows from Proposition 1 that a similar result holds for |A)
and |D) fixed.

Proposition 2 [f the space Y¢ has a scalar product { | ), the linear operator

THC .= T|.
B [y ac

is given, for |C) # 0, by e B c
1y = EeT S B2 €)

Proof To remove the |C) part from |C) ® |D), we tensor |C) ® |D) with (C| € ¥, partial trace over |C)(C|,
and then divide by ||C)|?.



Remark 2 If T defined in (4) is isomorphism, then Tgc is isomorphism onto its image.

We can now apply the previous results to a unitary operator U acting on our space ., ® .7,:
U: S QS — S4® S, (6)

and to the equation
U(lyo) ®[no)) = [y1) @ m), @

obtaining the following corollaries.

Corollary 1 Let us consider |Wy) and |yn) fixed. The set of vectors |Mg) € %, and the set of vectors |11) €
., satisfying the equation (7), form isomorphic vector subspaces /5" < .7, respectively S}V < .,

Proof Follows immediately from Proposition 1 and Remark 2.

A measurement at 71, although determines the observed state to be in |yq), it does not necessarily deter-
mine completely the state |1;) of the preparation device.

Corollary 2 Let us consider |Wy) and |11) fixed. The set of vectors |10) € %, and the set of vectors |y) €
Sy, satisfying the equation (7), form isomorphic vector subspaces %gonl < .%,, respectively ,5”;’1’07“ <7

Proof Follows from the Remark 1.

We denote the isomorphism obtained by restricting the unitary operator U to ,Y%‘ml by Kyqn, -
From Corrolary 2 we obtain:

Theorem 1 The set of all states |y) € .7, that can appear in the right side of the equation (7) for a fixed
|Wo) € 7, is given by the following union of subspaces:

= ok, (8)
[n1)ee

obtained by varying the state vector 1) in the set

yelgo = U yg‘l(;o‘l’l . (9)
lvi)e

Remark 3 A good preparation must satisfies the condition
L0 > {lyn) € Z,[(wlU (11,10) | o) # 0}, (10)

where U (t1,19) is the evolution operator of the observed system, if it is undisturbed.

We recall that the state space .7, is an extension of a ., made for working with purified states, but this
is not a problem, since we can always recover the density operators of the subsystems by partial tracing.

The mechanism proposed here is represented in the figure 3. The preparation should consist in an in-
teraction with the property that any possible outcome |y;) of the second measurement can be fitted by an
appropriate choice of the initial conditions for the preparation device, represented by the state vector |1p).
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Fig. 3 Each possible outcome |l//; ) can be obtained by choosing the appropriate states \né} representing the preparation device.

2.3 The smooth projection mechanism

Because the first measurement can find the observed system in the state |yp), while the second one in |y;) #
U(t,t0)|wo), it is easy to understand why it seemed so obvious that the state vector suffers a discontinuous
jump, somewhere between fy and #;. But we can now explain the wave function collapse as taking place
smoothly, restoring the continuity in its evolution.

In order to do this, we had to go to the level of a larger system, composed by the observed system and the
preparation device. At that level, the unitary evolution has been restored, and we have seen that the observed
system (although its evolution may no longer be unitary, being entangled with the preparation device) can
undergo a “‘smooth collapse”.

The price to be paid was the acceptance that the observed system acts, somehow, anticipating the set of
possible eigenstates. This feature may seem acausal, but it is presented also in standard Quantum Mechanics,
as we have learned from the “delayed-choice experiments” 2. In this article, the collapse was only pushed
to the “beginning of times”, and the initial conditions remained at the time #{, being thus “delayed initial
conditions”.

Each measurement specifies the initial conditions of a system. When a system is measured a second time,
the initial conditions need to be restated. To be restated without contradicting the previously observed initial
conditions, they should be lost somehow. I hypothesized here that they are lost because of the interaction
with the preparation device, which, although determines the previous set of conditions, transfers from its
own indeterminacy of initial conditions to the observed system. Any interaction of a system with another
system which have some freedom in the choice of its initial conditions, will make the former system loose its
specification of the initial conditions. The observation only shows what the state was, and not what it will be
at the next measurement.

Our mechanism allows us to see the projection, usually being associated to the wave function collapse,
as taking place continuously, smoothly, and not discontinuously. The projector operator is not present explic-
itly in the evolution equation, but it is “embedded” in a set of operators parametrized by |1o) — it can be
reconstructed, for each pair (|yo), |y1)), by choosing an appropriate |1o) € .7.

2 A similar apparent acausality, manifested by the anticipation of future initial conditions, is also present in experiments with
photons having negative group velocity [8].



3 Discussion
3.1 Smooth Quantum Mechanics
3.1.1 Smoothness

This article provides a scenario of how the wave function collapse can take place without discontinuities, in
a smooth way. We can reconstruct the Quantum Mechanics into a Smooth version, but we have to remember
that this is not the only place where discontinuities occur. For example, the eigenstates of the position are
distributions, and the eigenstates of the momentum has infinite norm. If we consider the state space as being a
Hilbert space, then we have to accept such problems. Yet, we can avoid this kind of problems by renouncing
at the completeness — the idea that the state space should contain limits for any Cauchy sequence. We can
instead use a rigged Hilbert space, . C 5 = 7% C .&*. The state vectors will be then elements of a space
- of smooth functions of finite norms, but the (ideal) eigenstates of various operators will belong to 7.

3.1.2 Probabilities

The evolution equations are deterministic, and since we eliminated the discontinuities, the only source of
randomness is in the initial conditions. Therefore, both the Born rule and the Heisenberg relations, have to be
reinterpreted. The Born rule don’t expresses the probabilities of collapse, but of the initial conditions to lead
to each outcome.

We can derive the original Heisenberg relations [3] by multiplying the relations AwAf¢ > 27 and Ak, Ax >
27, from the Fourier analysis, with the reduced Plank constant 7. To obtain similar Heisenberg relations for
other pairs of conjugated operators, we do the same for the corresponding eigenbases. These relations refer
to how large can be the support of a state vector, when expressed in two different bases, and have nothing
intrinsic probabilistic built in. For example, the relations Ak Ax > 27 show that if the wave packet is too
located in space, then in the momenta space it will be more spread. We can obtain also the Heisenberg’s
relations from the commutation relations of the operators. A version of Heisenberg’s relations, which is used
frequently, is o (py)o(x) > %h, expressed in terms of the standard deviation, defined for an operator A by

o(A) := \/(A%) — (A)2. Again, the probabilities have not yet entered into the play, because the standard
deviations, in this case, refer to the components of the wave packet, expressed in two conjugate bases.

It is only when the state vector is disturbed by a preparation, and we apply the Born rules in relation to an
eigenbasis of an observable, when Heisenberg’s relations become the uncertainty relations. It follows that the
probabilistic meaning of the Heisenberg’s relations also reflects our ignorance of the initial conditions.

The observers don’t have access to the full set of initial conditions. The observations allows them collect
only a set (which we will name registry) of partial initial conditions. Therefore, although the evolution is
deterministic, they perceive the time evolution as indeterministic.

3.1.3 What remains to be done

This article only shows that it is possible to have a smooth, instead of a discontinuous, wave function col-
lapse, and shows that it is possible a smooth reconstruction of Quantum Mechanics. Not any interaction is
able to provide the freedom in initial conditions required to solving this problem. Perhaps, this is why not any
interaction is a measurement, but this point needs to be developed better. Ideally, we would have a precise
mathematical description of a measurement, and a theorem showing that from this description, we obtain pre-
cisely the required range of outcomes at a second observation. Having a good definition of the measurement
apparatus will allow us to predict, for example, which interactions qualify as measurements. Maybe, for this
understanding, we will have to wait until more challenging parts of the Quantum Mechanics — the reconstruc-
tion of the classical world from the quantum world, and the explanation of why a measurement can obtain
only eigenstates of the observable as outcomes — will receive better explanations. Another important progress
would be a deduction of the Born rule. At the current moment, it seems that this rule is independent on the
Smooth Quantum Mechanics, but it would be desirable to have at least a good definition of a measurement
which will lead easily to a smooth version of the Projection Postulate, including the Born rule.
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3.2 Relations with other interpretations of Quantum Mechanics

After about eight decades of progresses in Quantum Mechanics, the discussions between Einstein and Bohr
remain actual. Although their views seemed incompatible one another, the Smooth Quantum Mechanics pre-
sented here is friendly with both of them. I don’t say that, had they living today, they would say that they
had in mind this solution, but I hope that this is at least a small step towards a reconciliation between their
viewpoints. In a way, Bohr was right to say that “a phenomenon does not exist, until is observed” [9,3], and
Einstein was right to hope for a better, more complete, explanation of the quantum phenomena.

Perhaps, Schrodinger’s ideas are most compatible with the SQM, since he disliked the discontinuous
collapse, and believed in the physical reality of the wave functions. For example, he took the charge density in
the electron’s wave function literally, not as a probability distribution, and, according to SQM, he was right.
The electron is the electron’s wave function, since it is not a point, it is a wave, having different “shapes”,
depending on the measured observables.

The determinism is regained, since the evolution is again deterministic. The efforts of de Broglie, Vigier,
culminating with David Bohm’s causal or ontological interpretation of Quantum Mechanics [10, 11], are theo-
ries whose purpose is to restore the determinism, the causality, and the reality and independence of the world.
The price, as we now know, was the necessity to admit the nonlocality [12—16]. SQM provides a deterministic
theory without extra “hidden variables”, rather, it is based on undetermined variables, or undetermined initial
data. Here, “to determine” has a passive meaning — “to measure/observe”, and an active one — “to choose”.
The initial data is determined by measurements, but we can choose what to measure. We can look at the
indeterministic QM as applying to open systems only, whose description can be completed to a deterministic
image by accounting for the parameters “hidden” in the environment.

The indeterministic view is not completely lost, since what the observer has is the registry, which is never
a complete set of initial data. Each new measurement can bring new information, and the registry can be
extended in different ways. We can interpret this in two ways. The first way is that the past is not established,
and it is created by each new choice of the observables, and, consequently, by each new outcome of the
measurement. The second way to see the things is that all possible worlds exist, like a sheaf, and when we
choose the observable we reduce the sheaf of worlds compatible with our registry. Each extension of the
registry reduces this sheaf. Therefore, SQM is compatible with the Many Worlds Interpretation, with the
amendment that each world is deterministic, and the only split is in the observer’s registry, which can be
completed in many ways. We can call this version of MWI the Many Registry Interpretation.

Perhaps one reason in the acceptance of a fundamentally indeterministic behavior in Quantum Mechanics
was the belief that this is the only way to allow the existence of free-will [17,18]. The Smooth Quantum
Mechanics offers an alternative, a deterministic view, which is still compatible with the free-will, at the same
extent as the standard QM. We have the same freedom in choosing what observable to measure, influencing
by this the initial conditions [19], but in a smooth and deterministic manner.
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