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Abstract

Cognitive biological structures, social organizations, and com-
puting machines operating in real time are subject to Rate
Distortion Theorem constraints driven by the homology be-
tween information source uncertainty and free energy density.
This exposes the unitary structure/environment system to a
relentless entropic torrent compounded by sudden large de-
viations causing increased average distortion between intent
and impact, particularly as demands escalate. The phase
transitions characteristic of information phenomena suggest
that, rather than graceful decay under increasing load, these
structures will undergo punctuated degradation akin to spon-
taneous symmetry breaking in physical systems. Rate dis-
tortion problems, that also affect internal structural dynam-
ics, can become synergistic with limitations equivalent to the
inattentional blindness of natural cognitive processes. These
mechanisms, and their interactions, are unlikely to scale well,
so that, depending on architecture, enlarging the structure or
its duties may lead to a crossover point at which added re-
sources must be almost entirely devoted to ensuring system
stability – a form of allometric scaling familiar from biological
examples. This suggests a critical need to tune architecture to
problem type and system demand. A real-time computational
structure and its environment are a unitary phenomenon, and
environments are usually idiosyncratic. Thus the resulting
path dependence in the development of pathology could of-
ten require an individualized approach to remediation more
akin to an arduous psychiatric intervention than to the tra-
ditional engineering or medical quick fix. Failure to recognize
the depth of these problems seems likely to produce a relent-
less chain of the Chernobyl-like failures that are necessary,
but often insufficient, for remediation under our system.
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1 Introduction

Massively parallel machines are currently used or proposed
for the regulation of dynamic processes in real time. Poten-
tial critical applications include financial systems and com-
munications networks, refineries, nuclear reactors, chemical
factories, large scale traffic control, the piloting of individual
vehicles, and so on.

Many physiological and psychological systems in higher an-
imals, including man, are both cognitive in the Atlan/Cohen
sense (Atlan and Cohen, 1998), and also operate rapidly
enough to be classified as real-time. These include immune
and blood pressure regulation mechanisms, cognitive gene ex-
pression, and higher order cognition and consciousness (e.g.,
Baars, 2005; Dretske, 1981, 1988, 1994; Wallace, 2005; Wal-
lace and Wallace, 2008).

Social structures ranging from animal hive colonies to mod-
ern giant corporations, their institutional networks of compe-
tition and cooperation, and the associated political empires
which they dominate, engage in elaborate processes of dis-
tributed cognition that must also operate in real-time (e.g.,
Wallace and Fullilove, 2008).

Here we will examine limits placed on real-time systems by
the Rate Distortion Theorem and by homologies with ther-
modynamic free energy, and the manner in which those limits
can produce characteristic patterns of system degradation and
failure.

We begin with a highly formal description of phase transi-
tions in cognitive systems, extending perspectives from phys-
ical theory to ‘necessary conditions’ statistical models of cog-
nitive process based on the asymptotic limits of information
theory.

Landau’s famous insight regarding phase change in physical
systems was that second order phase transitions are usually in
the context of a significant alteration in symmetry, with one
phase being far more symmetric than the other (e.g., Pet-
tini, 2007; Landau and Lifshitz, 2007). A symmetry is lost
in the transition, a phenomenon called spontaneous symme-
try breaking. The greatest possible set of symmetries in a
physical system is that of the Hamiltonian describing its en-
ergy states. Usually states accessible at lower temperatures
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will lack the symmetries available at higher temperatures, so
that the lower temperature phase is less symmetric: The ran-
domization of higher temperatures ensures that higher sym-
metry/energy states will then be accessible to the system.
A change in symmetry must, of necessity, be discontinuous,
so that lowering temperatures inevitably leads to punctuated
transitions in such systems. One can indeed construct a good
phenomenological model using group representations (Pettini,
2007).

What of biological and cognitive structures that cannot eas-
ily be described using elementary physical models or simple
group symmetries? What of systems where the physical tem-
perature is not the determining factor in punctuated change?

We will be concerned here with systems having associ-
ated information sources that can be described in terms of
groupoids, a natural generalization of groups described in the
Appendix that is finding increasingly widespread use in biol-
ogy and cognitive theory (e.g., Golubitsky and Stewart, 2006).
In particular, as we argue below, a broad swath of cogni-
tive phenomena can be characterized in terms of information
sources (e.g., Wallace, 2005; Fullilove and Wallace, 2008).

Mathematical preliminaries require a brief exploration of
the homology between information and free energy.

2 Free Energy Density and Informa-
tion Source Uncertainty

Information source uncertainty can be defined in several ways.
Khinchin (1957) describes the fundamental ‘E-property’ of a
stationary, ergodic information source as the ability, in the
limit of infinity long output, to classify strings into two sets;

[1] a very large collection of gibberish which does not con-
form to underlying rules of grammar and syntax, in a large
sense, and which has near-zero probability, and

[2] a relatively small ‘meaningful’ set, in conformity with
underlying structural rules, having very high probability.

The essential content of the Shannon-McMillan Theorem is
that, if N(n) is the number of ‘meaningful’ strings of length
n, then the uncertainty of an information source X can be
defined as

H[X] = lim
n→∞

log[N(n)]
n

=

lim
n→∞

H(Xn|X0, ..., Xn−1) =

lim
n→∞

H(X0, ..., Xn)
n+ 1

,

(1)

where H(...|...) and H(....) are conditional and joint Shan-
non uncertainties defined from the appropriate cross-sectional
string probabilities (e.g., Ash, 1990; Cover and Thomas, 1991;
Khinchin, 1957).

Information source uncertainty has an important heuristic
interpretation. Ash (1990) puts it this way:

...[W]e may regard a portion of text in a par-
ticular language as being produced by an informa-
tion source. The probabilities P [Xn = an|X0 =
a0, ...Xn−1 = an−1] may be estimated from the avail-
able data about the language; in this way we can
estimate the uncertainty associated with the lan-
guage. A large uncertainty means, by the [Shannon-
McMillan Theorem], a large number of ‘meaningful’
sequences. Thus given two languages with uncer-
tainties H1 and H2 respectively, if H1 > H2, then
in the absence of noise it is easier to communicate
in the first language; more can be said in the same
amount of time. On the other hand, it will be easier
to reconstruct a scrambled portion of text in the sec-
ond language, since fewer of the possible sequences
of length n are meaningful.

The free energy density of a physical system having vol-
ume V and partition function Z(K) derived from the system’s
Hamiltonian at inverse temperature K is (e.g., Landau and
Lifshitz 2007)

F [K] = lim
V→∞

− 1
K

log[Z(K,V )]
V

=

lim
V→∞

log[Ẑ(K,V )]
V

,

(2)

where Ẑ = Z−1/K .
Feynman (2000), following Bennett, concludes that the in-

formation contained in a message is simply the free energy
needed to erase it. The argument is direct. Thus, and ac-
cordingly, information source uncertainty is homologous to
free energy density as defined above.

3 Groupoid Free Energy

Equivalence classes define groupoids, by the mechanisms de-
scribed in the Mathematical Appendix. The basic equivalence
classes of a cognitive or biological structure will define the
basic transitive groupoids, and higher order systems can be
constructed by the union of these transitive groupoids, hav-
ing larger alphabets that allow more complicated statements
in the sense of Ash above. We associate information sources
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with transitive groupoids, and with the larger groupoids con-
structed from them. The more complicated the groupoid, the
greater the information source uncertainty, following Ash’s
reasoning.

Given an appropriately scaled, dimensionless, inverse em-
bedding temperature-analog K, we propose that the probabil-
ity of an information source HGi , representing some groupoid
element Gi, will be given by the classic relation (e.g., Landau
and Lifshitz 2007)

P [HGi
] =

exp[−HGiK]∑
j exp[−HGj

K]
,

(3)

where the normalizing sum is appropriately over all pos-
sible elements of the largest available symmetry groupoid.
By the arguments above, compound sources, formed by the
union of (interaction of elements from) underlying transitive
groupoids, being more complex, will all have higher free-
energy-density-equivalents than those of the base (transitive)
groupoids.

Let

ZG ≡
∑
j

exp[−HGj
K].

(4)

We now define the Groupoid Free Energy (GFE) of the
system, FG, at inverse normalized equivalent temperature K,
as

FG[K] ≡ − 1
K

log[ZG[K]].

(5)

We have expressed the probability of an information source
in terms of its relation to a fixed, appropriately normalized,
inverse system temperature. This gives a statistical thermo-
dynamic means of defining a ‘higher’ free energy construct
– FG[K] – to which we can now apply Landau’s fundamen-
tal heuristic phase transition argument (Landau and Lifshitz
2007; Skierski et al. 1989; Pettini 2007).

Absent a high value of the temperature-equivalent, in this
model, only the simplest transitive groupoid structures can

be manifest. A full treatment from this perspective requires
invocation of groupoid representations, no small matter (e.g.,
Bos, 2007; Buneci, 2003).

Somewhat more rigorously, the elaborate renormalization
schemes of Wallace (2005) may now be imposed on FG[K] it-
self, leading to a spectrum of highly punctuated transitions in
the overall system of information sources. The essential point
is that FG[K] is unlikely to scale with a renormalization trans-
form as simply as does physical free energy, and this leads to
very complicated ‘biological’ renormalization strategies. See
Wallace (2005), Wallace and Fullilove, (2008) or Wallace et
al., (2007) for details.

Most deeply, however, an extended version of Pettini’s
(2007) Morse-Theory-based topological hypothesis can now
be invoked, i.e., that changes in underlying groupoid struc-
ture are a necessary (but not sufficient) consequence of phase
changes in FG[K]. Necessity, but not sufficiency, is important,
as it allows for mixed symmetries. An outline of the theory is
presented in the Appendix. For details see, e.g., Matsumoto
(2002) or Pettini (2007).

As the temperature-analog declines, in this model, the sys-
tem can undergo punctuated groupoid symmetry reductions
representing fundamental phase transitions.

Dynamical behavior away from critical points will be deter-
mined, in this model, by Generalized Onsager Relations, also
explored more fully in the Appendix.

We next apply this formalism to examples of of purely in-
ternal, and of linked internal-external, cognitive function.

4 High Order Cognition

According to Atlan and Cohen (1998), the essence of cognition
is comparison of a perceived external signal with an internal,
learned picture of the world, and then, upon that comparison,
the choice of one response from a much larger repertoire of
possible responses. Such reduction in uncertainty inherently
carries information, and, following Wallace (2000, 2005) it is
possible to make a very general model of this process as an
information source.

A pattern of ‘sensory’ input, say an ordered sequence
y0, y1, ..., is mixed in a systematic (but unspecified) al-
gorithmic manner with internal ‘ongoing’ activity, the se-
quence w0, w1, ..., to create a path of composite signals x =
a0, a1, ..., an, ..., where aj = f(yj , wj) for some function f .
This path is then fed into a highly nonlinear, but otherwise
similarly unspecified, decision oscillator which generates an
output h(x) that is an element of one of two disjoint sets B0

and B1. We take

B0 ≡ b0, ..., bk,

B1 ≡ bk+1, ..., bm.

(6)
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Thus we permit a graded response, supposing that if

h(x) ∈ B0

(7)

the pattern is not recognized, and if

h(x) ∈ B1

(8)

the pattern is recognized and some action bj , k+1 ≤ j ≤ m
takes place.

Our focus is on those composite paths x that trigger pattern
recognition-and-response. That is, given a fixed initial state
a0, such that h(a0) ∈ B0, we examine all possible subsequent
paths x beginning with a0 and leading to the event h(x) ∈ B1.
Thus h(a0, ..., aj) ∈ B0 for all 0 ≤ j < m, but h(a0, ..., am) ∈
B1.

For each positive integer n, letN(n) be the number of gram-
matical and syntactic high probability paths of length n which
begin with some particular a0 having h(a0) ∈ B0 and lead to
the condition h(x) ∈ B1. We shall call such paths meaningful
and assume N(n) to be considerably less than the number
of all possible paths of length n – pattern recognition-and-
response is comparatively rare. We again assume that the
longitudinal finite limit H ≡ limn→∞ log[N(n)]/n both exists
and is independent of the path x. We will – not surprisingly
– call such a cognitive process ergodic.

Note that disjoint partition of state space may be possible
according to sets of states which can be connected by mean-
ingful paths from a particular base point, leading to a natural
coset algebra of the system, a groupoid. This is a matter of
some importance.

It is thus possible to define an ergodic information source X
associated with stochastic variates Xj having joint and con-
ditional probabilities P (a0, ..., an) and P (an|a0, ..., an−1) such
that appropriate joint and conditional Shannon uncertainties
may be defined which satisfy the relations of equation (1)
above.

This information source is taken as dual to the ergodic cog-
nitive process.

Dividing the full set of possible responses into the sets B0

and B1 may itself require higher order cognitive decisions by
another module or modules, suggesting the necessity of choice
within a more or less broad set of possible quasi-languages.
This would directly reflect the need to shift gears according

to the different challenges faced by the organism, machine, or
social group.

‘Meaningful’ paths – creating an inherent grammar and
syntax – have been defined entirely in terms of system re-
sponse, as Atlan and Cohen (1998) propose. This formalism
can easily be applied to the stochastic neuron in a neural
network, as done in Wallace (2005).

A formal equivalence class algebra can be constructed for a
cognitive process characterized by a dual information source
by choosing different origin points a0, in the sense above,
and defining equivalence of two states by the existence of a
high-probability meaningful path connecting them with the
same origin. Disjoint partition by equivalence class, analogous
to orbit equivalence classes for dynamical systems, defines
the vertices of a network of cognitive dual languages. Each
vertex then represents a different information source dual to
a cognitive process. This is not a direct representation as in
a neural network, or of some circuit in silicon. It is, rather,
an abstract set of ‘languages’ dual to the cognitive processes
instantiated by biological structures, machines, social process,
or their hybrids. Our particular interest, however, is in an
interacting network of cognitive processes.

This structure generates a groupoid, in the sense of the
Appendix. Recall that states aj , ak in a set A are related
by the groupoid morphism if and only if there exists a high-
probability grammatical path connecting them to the same
base point, and tuning across the various possible ways in
which that can happen – the different cognitive languages –
parametizes the set of equivalence relations and creates the
groupoid.

We now envision an average mean field mutual informa-
tion linking different information sources associated with the
transitive groupoids defined by this network. Call that mean
field I. Another possible interpretation is of an average prob-
ability of nondisjuctive ‘weak’ ties P (sensu Granovetter,
1973) linking the different ergodic dual information sources.
Then, for the Groupoid Free Energy calculation above, take
K ∝ 1/I, 1/P. Increasing I or P then, increases the linkage
across the transitive groupoids of the cognitive system, lead-
ing, in a highly punctuated way, to larger and larger processes
of collective cognition using progressively larger ‘alphabets’
and having, in the sense of Ash above, progressively larger
values of the associated dual information source.

A second model arises in a natural manner by taking 1/K
as the mean number, N , of linkages between dual information
sources in the abstract network. This leads to generalizations
of the Erdos/Renyi random network formalism, and its inher-
ent phase transitions.

Both approaches can be extended to second order as an
analog to hierarchical regression. The first generalization is
via a kind of universality class tuning, and the second by
means of a renormalization in which couplings at or above
a tunable limit are set to 1 and those below to 0. A Morse
Theory topological tuning results directly from the latter ap-
proach. Evolutionary process, or engineering design, are not
necessarily restricted, however, to these two exactly solvable
models.
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Wallace (2005) and Wallace and Fullilove (2008) use simpli-
fied forms of this argument to characterize consciousness and
distributed institutional cognition, respectively. Our particu-
lar interest, however, is in the ways such cognitive structures
respond to challenges in real time: individual and institu-
tional distributed cognition do not occur in a vacuum, but in
the context of demands for prompt action from an embedding
ecological structure. We will attempt to characterize patholo-
gies of such real time response. To do this we must iterate
the argument.

5 Real Time Systems

5.1 Cognitive Dynamics in Real Time

Real time problems are inherently rate distortion problems:
The implementation of a complex cognitive structure, say a
sequence of control orders generated by some dual informa-
tion source Y , having output yn = y1, y2, ... is ‘digitized’ in
terms of the observed behavior of the regulated system, say
the sequence bn = b1, b2, .... The bi are thus what happens in
real time, the actual impact of the cognitive structure on its
embedding environment. Assume each bn is then determin-
istically retranslated back into a reproduction of the original
control signal,

bn → ŷn = ŷ1, ŷ2, ...

Define a distortion measure d(y, ŷ) which compares the
original to the retranslated path. Suppose that with each path
yn and bn-path retranslation into the y-language, denoted ŷn,
there are associated individual, joint, and conditional proba-
bility distributions

p(yn, p(ŷn), p(yn|ŷn).

The average distortion is defined as

D ≡
∑
yn

p(yn)d(yn, ŷn).

(9)

It is possible, using the distributions given above, to define
the information transmitted from the incoming Y to the out-
going Ŷ process using the Shannon source uncertainty of the
strings:

I(Y, Ŷ ) ≡ H(Y )−H(Y |Ŷ ) = H(Y ) +H(Ŷ )−H(Y, Ŷ ).

If there is no uncertainty in Y given the retranslation Ŷ ,
then no information is lost, and the regulated system is per-
fectly under control.

In general, this will not be true.

The information rate distortion function R(D) for a source
Y with a distortion measure d(y, ŷ) is defined as

R(D) = min
p(y,ŷ);

∑
(y,ŷ)

p(y)p(y|ŷ)d(y,ŷ)≤D
I(Y, Ŷ ).

(10)

The minimization is over all conditional distributions p(y|ŷ)
for which the joint distribution p(y, ŷ) = p(y)p(y|ŷ) satisfies
the average distortion constraint (i.e., average distortion ≤
D).

The Rate Distortion Theorem states that R(D) is the min-
imum necessary rate of information transmission which en-
sures the transmission does not exceed average distortion D.
Thus R(D) defines a minimum necessary channel capacity.
Cover and Thomas (1991) or Dembo and Zeitouni (1998) pro-
vide details. The rate distortion function has been calculated
for a number of systems. Cover and Thomas (1991, Lemma
13.4.1) show that R(D) is necessarily a decreasing convex
function of D, that is, always a reverse J-shaped curve. For a
Gaussian channel having noise with zero mean and variance
σ2,

R(D) = 1/2 log[σ2/D], 0 ≤ D ≤ σ2

R(D) = 0, D > σ2.

(11)

Recall, now, the relation between information source un-
certainty and channel capacity (e.g., Ash, 1990; Cover and
Thomas, 1991):

H[X] ≤ C,

(12)

where H is the uncertainty of the source X and C the
channel capacity, defined according to the relation,

C ≡ max
P (X)

I(X|Y ),
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(13)

where P (X) is the probability distribution of the message
chosen so as to maximize the rate of information transmission
along a channel Y .

The rate distortion function R(D) defines the minimum
channel capacity necessary for the system to have average
distortion less than or equal D, placing a limits on informa-
tion source uncertainty. Thus, we suggest distortion measures
can drive information system dynamics. That is, the rate dis-
tortion function also has a homological relation to free energy
density.

We can model the disjunction between intent and impact
of a cognitive system interacting with an embedding environ-
ment using a simple extension of the language-of-cognition
approach above. Recall that cognitive processes can be for-
mally associated with information sources, and how a formal
equivalence class algebra can be constructed for a complicated
cognitive system by choosing different origin points in a par-
ticular abstract ‘space’ and defining the equivalence of two
states by the existence of a high probability meaningful path
connecting each of them to some defined origin point within
that space. Disjoint partition by equivalence class is analo-
gous to orbit equivalence relations for dynamical systems, and
defines the vertices of a network of cognitive dual languages
available to the system: Each vertex represents a different in-
formation source dual to a cognitive process. The structure
creates a large groupoid, with each orbit corresponding to a
transitive groupoid whose disjoint union is the full groupoid.
We can apply the spontaneous symmetry breaking argument
to increasing disjunction between cognitive intent and system
impact as follows:

With each element of the (large) cognitive groupoid Gi we
can associate a dual information source HGi . Let R(D) be
the rate distortion function between the message sent by the
cognitive process and the observed impact. Remember that
both HGi

and R(D) are free energy density measures.
The essential argument is that R(D) is an embedding con-

text for the underlying cognitive process. The argument-by-
abduction from physical theory is, then, that R(D) consti-
tutes a kind of thermal bath for the processes of cognition.
Thus we can write the probability of the dual cognitive infor-
mation source HGi as

P [HGi ] =
exp[−HGi

/κR(D)]∑
j exp[−HGj

/κR(D)]
,

(14)

where κ is an appropriate dimensionless constant charac-
teristic of the particular system. The sum is over all possi-
ble elements of the largest available symmetry groupoid. By

the usual arguments, compound sources, formed by the union
of underlying transitive groupoids, being more complex, will
have higher free-energy-density equivalents than those of the
base transitive groupoids.

We can apply the Groupoid Free Energy phase transition
arguments from above, remembering that the Rate Distortion
Function R(D) is always a decreasing convex function of D
(Cover and Thomas, 1991). For real time cognitive systems,
increasing average distortion between cognitive intent and ob-
served impact will ‘lower the temperature’ so as to drive the
cognitive process, in a highly punctuated manner, relentlessly
toward simpler and less rich behaviors.

5.2 Rate Distortion Dynamics

Here we iterate the model yet again, examining the time be-
havior of the Rate Distortion Function itself. R(D) may not
simply play the passive role of a temperature-analog in real
systems, but can have its own internal dynamics. These can,
by the mechanisms above, drive the dynamics of the underly-
ing cognitive structure.

Recall equations (12) and (13) and the definition of the rate
distortion function from equation (10).
R(D) defines the minimum channel capacity necessary for

the system to have average distortion less than or equal D,
placing a limits on information source uncertainty. Thus, we
suggest that, since R(D) is itself homologous to free energy
density, distortion measures can drive rate distortion dynam-
ics.

That is, we are led to propose, as a heuristic for real sys-
tems, that the Rate Distortion Function itself will have a dy-
namics that can be described using a distortion parameter.
In general, take R as parametized, not only by the distortion
D, but by some vector of variates D = (D1, ..., Dk), for which
the first component is the average distortion. The assumed
dynamics are, following the general theory of section 11.2 be-
low, then driven by gradients in the rate distortion disorder
defined as

SR ≡ R(D)−
k∑
i=1

Di∂R/∂Di,

(15)

leading to the deterministic and stochastic systems of equa-
tions analogous to the Onsager relations of nonequilibrium
thermodynamics:

dDj/dt =
∑
i

Lj,i∂SR/∂Di

(16)
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and

dDj
t = Lj(D1, ..., Dk, t)dt+

∑
i

σj,i(D1, ..., Dk, t)dBit,

(17)

where the dBit represent added, often highly structured,
stochastic ‘noise’ whose properties are characterized by their
quadratic variation (e.g., Protter, 1995).

A simple Gaussian channel with noise having zero mean
and variance σ2 = 1, has a Rate Distortion function

R(D) = 1/2 log[1/D],

so that,

SR(D) = R(D)−DdR(D)/dD = 1/2 log(1/D) + 1/2.

(18)

The simplest possible Onsager relation becomes

dD/dt ∝ −dSR/dD =
1

2D
,

(19)

where −dSR/dD represents the force of an entropic torrent,
a kind of internal dissipation inevitably driving the system
toward greater distortion.

This has the solution

D ∝
√
t.

(20)

Similar results will apply to any of the reverse-J-shaped
relations which must inevitably characterize R(D). That is,
the rate distortion function is necessarily a convex decreas-
ing function of the average distortion D, whatever distortion

measure is chosen. The implication is that real time cogni-
tive systems, that must inevitably interact with an embedding
context, will be subject to a relentless entropic force, requiring
a constant energy expenditure for maintenance of some fixed
average distortion D in the relation between system effort and
system impact.

Absent such a contravening constraint,

D = f(t),

(21)

with f(t) monotonic increasing in t.
This relation has considerable implication for the stability

of the internal cognitive processes driving the real-time in-
teraction. The mean number and field models of cognition
in real time systems are, then, characterized here by a series
of critical distortions DCi representing transitions to succes-
sively simpler symmetry groupoids that impose a progressive
degradation on cognitive function. Absent the constant input
of free energy to a real time cognitive system, then, progres-
sive punctuated degradation in overall cognitive function is
inevitable. This should apply to biological, social, and me-
chanical systems and their hybrids.

Application of a standard Onsager-Machlup large devia-
tions argument suggests thatD can undergo predictable large-
scale excursions that may greatly challenge the stability of real
time cognitive systems.

6 Large Deviations

Section 5 described how a homology with free energy allows
construction of a dynamical theory for the rate distortion
function associated with the mismatch between structure im-
plementation and structure impact, using a formalism similar
to the Onsager relations of nonequilibrium thermodynamics.
Below we will relate the average distortion defined by that
mismatch to pathological resilience shifts affecting internal
structure function, as defined by the information source dual
to internal cognition. Inversely, the rate distortion function,
from its homology with free energy, can drive sudden, jet-like
large deviations of average distortion which are finely pat-
terned by a Hamiltonian-like function. This permits a formal
classification of seemingly ‘idiosyncratic’ fluctuations in aver-
age distortion between structure implementation and struc-
ture impact which can, in turn, trigger internal system re-
silience transitions in the sense we will describe later.

Thus a broad class of seemingly-random failures of cogni-
tive, real-time structures may, in fact, be subject to formal
description and even prediction.

We first begin with a condensed review of the standard
theory of large deviations.
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The macroscopic behavior of a complicated physical system
in time is assumed to be described by the phenomenological
Onsager relations giving large-scale fluxes as

∑
i

Wi,jdKj/dt = ∂S/∂Ki,

(22)

where the Wi,j are appropriate constants, S is the system
entropy and the Ki are the generalized coordinates which
parametize the system’s free energy.

Entropy is defined from free energy F by a Legendre trans-
form:

S ≡ F −
∑
j

Kj∂F/∂Kj ,

where the Kj are appropriate system parameters.
Neglecting volume problems for the moment, free energy

can be defined from the system’s partition function Z as

F (K) = −1/K log[Z(K)].

The partition function Z, in turn, is defined from the sys-
tem Hamiltonian – defining the energy states – as

Z(K) =
∑
j

exp[−KEj ],

where K is an inverse temperature or other parameter and
the Ej are the energy states. See any good statistical me-
chanics text for details, e.g. Landau and Lifshitz, (2007).

Inverting the Onsager relations gives

dKi/dt =
∑
j

Li,j∂S/∂Kj = Li(K1, ...,Km, t) ≡ Li(K, t).

(23)

The terms ∂S/∂Ki are macroscopic driving forces depen-
dent on the entropy gradient.

Let a white Brownian noise ε(t) perturb the system, so that

dKi/dt =
∑
j

Li,j∂S/∂Kj + ε(t) = Li(K, t) + ε(t),

(24)

where the time averages of ε are < ε(t) >= 0 and <
ε(t)ε(0) >= µδ(t). δ(t) is the Dirac delta function, and we
take K as a vector in the Ki.

Following Luchinsky (1997), if the probability that the sys-
tem starts at some initial macroscopic parameter state K0 at
time t = 0 and gets to the state K(t) at time t is P (K, t),
then a somewhat subtle development (e.g., Feller 1971) gives
the forward Fokker-Planck equation for P :

∂P (K, t)/∂t = −∇ · (L(K, t)P (K, t)) + (µ/2)∇2P (K, t).

(25)

In the limit of weak noise intensity this can be solved using
the WKB, i.e., the eikonal, approximation, as follows. Take

P (K, t) = z(K, t) exp(−s(K, t)/µ).

(26)

z(K, t) is a prefactor and s(K, t) is a classical action satis-
fying the Hamilton-Jacobi equation, which can be solved by
integrating the Hamiltonian equations of motion. The equa-
tion reexpresses P (K, t) in the usual parametized negative
exponential format.

Let p ≡ ∇s. Substituting and collecting terms of similar
order in µ gives

dK/dt = p+ L,

dp/dt = −∂L/∂Kp,

−∂s/∂t ≡ h(K, p, t) = pL(K, t) +
p2

2
,

(27)

with h(K, t) the Hamiltonian for appropriate boundary con-
ditions.

Again following Luchinsky (1997), these Hamiltonian equa-
tions have two different types of solution, depending on p. For
p = 0, dK/dt = L(K, t) which describes the system in the ab-
sence of noise. We expect that with finite noise intensity the
system will give rise to a distribution about this determinis-
tic path. Solutions for which p 6= 0 correspond to optimal
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paths along which the system will move with overwhelming
probability.

In sum, to again paraphrase Luchinsky (1997), large fluctu-
ations, although infrequent, are fundamental in a broad range
of processes, and it was recognized by Onsager and Machlup
(1953) that insight into the problem could be gained from
studying the distribution of fluctuational paths along which
the system moves to a given state. This distribution is a fun-
damental characteristic of the fluctuational dynamics, and its
understanding leads toward control of fluctuations. Fluctu-
ational motion from the vicinity of a stable state may occur
along different paths. For large fluctuations, the distribution
of these paths peaks sharply along an optimal, most probable,
path. In the theory of large fluctuations, the pattern of opti-
mal paths plays a role similar to that of the phase portrait in
nonlinear dynamics.

The essential insight is that, by invoking the results of the
section on rate distortion dynamics, we can substitute the
rate distortion function for free energy in this argument and
paramatize it by a number of variates including average dis-
tortion between the implementation of a cognitive system and
its actual impact on the embedding environment.

From the perspective of this section, then, solutions with
p 6= 0 correspond to optimal paths that will drive fluctuations
in the average distortion between structure implementation
and structure impact. As contexts, these can, we will argue,
cause sudden shifts in a structure’s internal resilience domain,
in the sense of the development below. Thus understanding
the large deviations possible to the implementation/impact
mismatch would be a useful tool in predicting, mitigating, or
remediating a spectrum of ‘idiosyncratic’ behavioral patholo-
gies of a real time cognitive structure.

7 Extending the Model

We have proposed that an entropic torrent or sudden distor-
tion jet can degrade both the communication between internal
structural workspaces and the effect of the structure’s output
on the embedding context with which it interacts. We now
propose that the relation between such effects will be syner-
gistic and nonlinear, highly dependent on both architecture
and demand.

If we focus entirely on the internal cognitive process or pro-
cesses, then a number of ‘natural’ models emerge. For a single
workspace internal cognitive process, the simplest generaliza-
tion of equation (3) is just

P [HGi
] =

exp[−HGi/T ]∑
j exp[−HGj

/T ]

with

T ∝ PαR(D)β

or

T ∝ NαR(D)β

where P is the mean strength of weak ties linking nodes of
the internal cognitive groupoid network, N the mean num-
ber, and R(D) the Rate Distortion function for the linkage of
the internal cognitive process to its impact on the external,
embedding environment.

Wallace and Fullilove (2008) describe institutional dis-
tributed cognition – effectively a collective consciousness – in
terms of multiple internal cognitive workspaces, which must
not only interact with an external environment, but must
collaborate with other, internal, workspaces. Then we have,
most simply, for this three-fold structure,

T ∝ NαRβR(D)δ,

where R is the average rate distortion function for com-
munication between internal workspaces, essentially a mea-
sure of internal bandwidth, and the exponents are all positive
real numbers. Thus the dynamics are driven by interactions
within and between internal global broadcasts and by the in-
teraction between the cognitive system and its environment.

The synergistic product arises from the fact that failure
at any one stage represents failure of the system, a linear
chain model for which the strength of all is determined by the
weakest link.

More generally, we can characterize T as a ‘synergism func-
tion’, monotonic-increasing in its components, and zero if any
component is zero.

Declines in T drive punctuated declines in internal cogni-
tive richness via a groupoid version of spontaneous symmetry
breaking.

One can envision circumstances under which T would rep-
resent a product of eigenvalues, i.e., a determinant of some
transformation, and hence a generalized volume, and that,
for example, fundamental symmetry restrictions might well
preclude T = 0, giving a kind of thermodynamic third law to
the system. We explore this below in more detail

Next we examine extend the development to some patholo-
gies affecting real time cognitive systems.

8 No Free Lunch: Inattentional
Blindness

The rate tuning theorem analysis of the Appendix permits an
inattentional blindness perspective on the famous computa-
tional ‘no free lunch’ theorem of Wolpert and Macready (1995,
1997). As English (1996) states the matter

...Wolpert and Macready... have established that
there exists no generally superior function optimizer.
There is no ‘free lunch’ in the sense that an optimizer
‘pays’ for superior performance on some functions
with inferior performance on others... if the distri-
bution of functions is uniform, then gains and losses
balance precisely, and all optimizers have identical
average performance... The formal demonstration
depends primarily upon a theorem that describes
how information is conserved in optimization. This
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Conservation Lemma states that when an optimizer
evaluates points, the posterior joint distribution of
values for those points is exactly the prior joint dis-
tribution. Put simply, observing the values of a ran-
domly selected function does not change the distri-
bution...

[A]n optimizer has to ‘pay’ for its superiority on
one subset of functions with inferiority on the com-
plementary subset...

Anyone slightly familiar with the [evolutionary
computing] literature recognizes the paper template
‘Algorithm X was treated with modification Y to
obtain the best known results for problems P1 and
P2.’ Anyone who has tried to find subsequent re-
ports on ‘promising’ algorithms knows that they are
extremely rare. Why should this be?

A claim that an algorithm is the very best for
two functions is a claim that it is the very worst,
on average, for all but two functions.... It is due
to the diversity of the benchmark set [of test prob-
lems] that the ‘promise’ is rarely realized. Boosting
performance for one subset of the problems usually
detracts from performance for the complement...

Hammers contain information about the distri-
bution of nail-driving problems. Screwdrivers con-
tain information about the distribution of screw-
driving problems. Swiss army knives contain infor-
mation about a broad distribution of survival prob-
lems. Swiss army knives do many jobs, but none
particularly well. When the many jobs must be done
under primitive conditions, Swiss army knives are
ideal.

The tool literally carries information about the
task... optimizers are literally tools-an algorithm im-
plemented by a computing device is a physical en-
tity...

Another way of looking at this is to recognize that a com-
puted solution is simply the product of the information pro-
cessing of a problem, and, by a very famous argument, in-
formation can never be gained simply by processing. Thus
a problem X is transmitted as a message by an information
processing channel, Y , a computing device, and recoded as an
answer. By the ‘tuning theorem’ argument of the Appendix
there will be a channel coding of Y which, when properly
tuned, is most efficiently transmitted by the problem. In
general, then, the most efficient coding of the transmission
channel, that is, the best algorithm turning a problem into
a solution, will necessarily be highly problem-specific. Thus
there can be no best algorithm for all equivalence classes of
problems, although there may well be an optimal algorithm
for any given class. The tuning theorem form of the No Free
Lunch theorem will apply quite generally to cognitive bio-
logical and social structures as well as to massively parallel
machines.

Rate distortion, however, occurs when the problem is col-
lapsed into a smaller, simplified, version and then solved.

Then there must be a tradeoff between allowed average dis-
tortion and the rate of solution: the retina effect. In a very
fundamental sense – particularly for real time systems – rate
distortion manifolds present a generalization of the converse of
the Wolpert/Macready no free lunch arguments. The neural
corollary is known as inattentional blindness (Wallace, 2007).

We are led to suggest that there may well be a consider-
able set of no free lunch-like conundrums confronting highly
parallel real-time structures, and that they may interact in
distinctly nonlinear ways.

9 Comorbid Pathologies: Develop-
mental Dysfunctions and Critical
Periods

Suppose we can operationalize and quantify degrees of
both inattentional blindness (IAB) and of overall struc-
ture/environment distortion (D) in the actions of a highly
parallel cognitive system. The essential assumption is that
the (internal) dual information source of a cognitive struc-
ture that has low levels of both IAB overfocus and struc-
ture/environment distortion will tend to be richer than that
of one having greater levels. This is shown in figure 1a, where
H is the source uncertainty dual to internal cognitive pro-
cess, X = IAB, and Y = D. Regions of low X,Y , near the
origin, have greater source uncertainty than those nearby, so
H(X,Y ) shows a (relatively gentle) peak at the origin, taken
here as simply the product of two error functions.

We are, then, focusing on the internal cognitive capacity of
the structure itself, as paramatized by degree of overfocus and
by the (large scale) distortion between structure implementa-
tion and structure impact. That capacity, a purely internal
quantity, need not be convex in the parameter D, which is
taken to characterize interaction with an external environ-
ment, and thus becomes a context for internal measures.

The generalized Onsager argument is shown in figure 1b,
where S = H(X,Y ) − XdH/dX − Y dH/dY is graphed on
the Z axis against the X − Y plane, assuming a gentle peak
in H at the origin. Peaks in S, according to theory, constitute
repulsive system barriers, which must be overcome by exter-
nal forces. In figure 1b there are three quasi-stable topological
resilience modes, in the sense of Wallace (2008a), marked as
A,B, and C. The A region is locked in to low levels of both
inattentional blindness and distortion, as it sits in a pocket.
Forcing the system in either direction, that is, increasing ei-
ther IAB or D, will, initially, be met by homeostatic attempts
to return to the resilience state A, according to this model.

If overall distortion becomes severe in spite of homeostatic
mechanisms, the system will then jump to the quasi-stable
state B, a second pocket. According to the model, however,
once that transition takes place, there will be a tendency for
the system to remain in a condition of high distortion. That
is, the system will become locked-in to a structure with high
distortion in the match between structure implementation
and structure impact, but one having lower overall cognitive
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Y=D

Figure 1: a. Source uncertainty, H, of the dual informa-
tion source of internal structure cognition, as parametized
by degrees of inattentional blindness, X = IAB and distor-
tion Y = D between structure implementation and struc-
ture impact. Note the relatively gentle peak at low values
of X,Y . Here H is generated as the product of two error
functions. b. Generalized Onsager treatment of figure 1a.
S = H(X,Y ) − XdH/dX − Y dH/dY . The regions marked
A,B, and C represent realms of resilient quasi-stability, di-
vided by barriers defined by the relative peaks in S. Transi-
tion among them requires a forcing mechanism. From another
perspective, limiting energy or other resources, or imposing
stress from the outside – driving down H in figure 1a, would
force the system into the lower plain of C, in which the sys-
tem would then become trapped in states having high levels
of distortion and inattentional blindness.

capacity, i.e., a lower value of H in figure 1a.
The third pocket, marked C, is a broad plain in which both

IAB and D remain high, a highly overfocused, poorly linked
pattern of behavior which will require significant intervention
to alter once it reaches such a quasi-stable resilience mode.
The structure’s cognitive capacity, measured by H in figure
1a, is the lowest of all for this condition of pathological re-
silience, and attempts to correct the problem – to return to
condition A, will be met with very high barriers in S, accord-
ing to figure 1b. That is, mode C is very highly resilient,
although pathologically so, much like the eutrophication of a
pure lake by sewage outflow. See Wallace (2008a, b) for a
discussion of resilience and literature references.

We can argue that the three quasi-equilibrium configura-
tions of figure 1b represent different dynamical states of the
system, and that the possibility of transition between them
represents the breaking of the associated symmetry groupoid
by external forcing mechanisms. That is, three manifolds rep-
resenting three different kinds of system dynamics have been
patched together to create a more complicated topological
structure. For cognitive phenomena, such behavior is likely
to be the rule rather than the exception. ‘Pure’ groupoids
are abstractions, and the fundamental questions will involve
linkages which break the underlying symmetry.

In all of this, system convergence is not to some fixed state,
limit cycle, or pseudorandom strange attractor, but rather to
some appropriate set of highly dynamic information sources,
i.e., behavior patterns, rather than a fixed ‘answer to a com-
puting problem’ (Wallace, 2009).

What this model suggests is that sufficiently strong exter-
nal perturbation can force a highly parallel real-time cognitive
structure from a normal, almost homeostatic, developmental
path into one involving an analog to a widespread, comorbid,
developmental disorder. This is a widely studied pattern for
humans and their institutions, reviewed at some length else-
where (Wallace and Fullilove, 2008; Wallace, 2008b). Indeed,
the results of this section might well serve as the foundation
of a fairly comprehensive model of chronic developmental dys-
function across a broad class of cognitive systems. One ap-
proach might be as follows:

A developmental process can be viewed as involving a se-
quence of surfaces like figure 1, having, for example, ‘critical
periods’ when the barriers between the normal state A and the
pathological states B and C are relatively low. During such a
time the system would become highly sensitive to perturba-
tion, and to the onset of a subsequent pathological develop-
mental trajectory. Critical periods might occur during times
of rapid learning and/or high system demand for which an en-
ergy limitation imposes the need to focus via something like
a rate distortion manifold. Cognitive process requires energy
through the homologies with free energy density, and more
focus at one end necessarily implies less at some other. In
a distributed zero sum developmental game, as it were, some
cognitive processes must receive more attentional energy than
others.

A structure trapped in region C might be said to suffer
something much like what Wiegand (2003) describes as the
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loss of gradient problem, in which one part of a multiple pop-
ulation coevolutionary system comes to dominate the others,
creating an impossible situation in which the other partici-
pants do not have enough information from which to learn.
That is, the cliff just becomes too steep to climb. Wiegand
(2003) also characterizes focusing problems in which a two-
population coevolutionary process becomes overspecialized on
the opponent’s weaknesses, effectively a kind of inattentional
blindness.

Thus there seems some consonance between our asymptotic
analysis of cognitive structural function and current studies
of pathologies affecting coevolutionary algorithms (e.g. Fi-
cici et al., 2005; Wallace, 2009). In particular the possibility
of historic trajectory, of path dependence, in producing in-
dividualized failure modes, is highly disturbing. Under such
circumstances there can be no one-size-fits-all amelioration
strategy.

10 Topological Constraints

It seems possible to extend this treatment using the methods
of section 7, including, then, an inverse index of IAB, say B,
in the definition of a synergism function, e.g.,

T ∝ NαRβR(D)δBγ ,

where each component and exponent is real and the under-
lying components are all positive and nonzero.

More generally, taking T as a product of eigenvalues, we
can define it as the determinant of a particular Hessian ma-
trix representing a Morse Function, f , on some underlying,
background, manifold, M , characterized in terms of (as yet
unspecified) variables X = (x1, ..., xn), so that

T ∝ det(Hi,j),

Hi,j ≡ ∂2f/∂xi∂xj .

See the Appendix for a brief outline of Morse Theory.
By construction H has everywhere only nonzero, and in-

deed, positive, eigenvalues, whose product thereby defines T
as a generalized volume. H becomes, in this model, simply
a Jacobean matrix. Thus, and accordingly, all critical points
of f have index zero, that is, no eigenvalues of H are ever
negative at any point, and hence at any critical point Xc

where df(Xc) = 0. This defines a particularly simple topolog-
ical structure for M : If the interval [a, b] contains a critical
value of f with a single critical point xc, then the topology of
the set Mb defined above differs from that of Ma in a man-
ner determined by the index i of the critical point. Mb is
then homeomorphic to the manifold obtained from attaching
to Ma an i-handle, the direct product of an i-disk and an
(m − i)-disk. One obtains, in this case, since i = 0, the two
halves of a sphere with critical points at the top and bottom
(Matsumoto, 2002; Pettini, 2007).

The physical natures of P,N , I,R, R(D), and B thus im-
pose very stringent constraints on this system, greatly re-
stricting, it appears, possible second order extensions of these
statistical models (as in Wallace, 2005, Wallace and Fullilove,
2008). It is as if hierarchical regressions, based on sets of
simpler regression models, were themselves to be sharply con-
strained by inherent structural factors.

11 Discussion and conclusions

A real time system is a composite of a basic computing struc-
ture and the embedding environment with which it interacts.
The structure, in this treatment, may be a biological system,
multiple-workspace distributed cognition social organization,
or a computing machine. The structure/environment com-
posite is subject to rate distortion constraints, as are inter-
nal processes. These will be driven by entropic torrents and
jets that can increase average distortion at all levels of hi-
erarchy. Stabilization, in the face of such degradation force,
requires energy and other resources, as implied by the homolo-
gies relating information source uncertainty, channel capacity,
and free energy density. Cognitive structures are further sub-
ject to complicated punctuated phase transition failures de-
pending on average distortion between intent and impact, as
well as in the communication between internal components.
These are not at all the graceful degradation under stress
so hoped for by engineers or managers, and may be greatly
compounded by sudden, if predictable, large deviation fluctu-
ations in distortion.

For multiple global workspace systems, for example insti-
tutions or high order cognitive machines, punctuated system
degradation can be driven by deterioration in communication
within or between internal workspaces, or by deterioration in
execution.

Further, No Free Lunch constraints similar to inattentional
blindness in natural neural processes are likely to become syn-
ergistic with distortion torrents and jets to produce complex,
path dependent, developmental pathologies that are unlikely
to scale well with system size or service load. Such behaviors
may make increasingly severe demands on resources to ensure
system stabilization. At some point, for a given architecture,
a crossover may be reached at which most added resources
must be used to simply ensure system stability. Thus it may
become necessary to very carefully tune architecture accord-
ing to both problem type and demand. For biological systems
this conundrum has long been recognized as allometric scaling
(e.g., White and Seymour, 2005; Speakman, 2005).

Not only will different architectures display different forms
of these pathologies, different individual real-time cognitive
structures, having particular long-term developmental paths,
will be subject to their own special patterns of dysfunction.
Remediation under such circumstances seems more akin to an
arduous psychiatric intervention than to a simple engineer-
ing or medical quick fix. The rate distortion model we have
embraced for real time systems sees the structure and its en-
vironment as a unit: Environments are always idiosyncratic,
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and can write images of themselves on developing cognitive
structures embedded in them.

Experience suggests that the problems explored here are
most likely to be viewed in a manner similar to the discus-
sions of nuclear waste disposal and system safety that took
place in the mid 1950’s, just as commercial power reactors
began to proliferate. Apparently, there must be a certain
number of Chernobyl-like failures before such matters gain
serious attention.

Indeed, Wallace and Fullilove (2008) and Wallace et al.
(2007) explore in some detail how traditions of law and reli-
gion have failed to constrain predatory institutional behaviors
of distributed cognition leading to more rapid proliferation of
HIV infection in the United States, so that, while Chernobyl-
like events may be necessary for change, under our socioeco-
nomic and political system, they can fail to be sufficient.

12 Mathematical Appendix

12.1 Groupoids

12.1.1 Basic Ideas

Following Weinstein (1996) closely, a groupoid, G, is defined
by a base set A upon which some mapping – a morphism – can
be defined. Note that not all possible pairs of states (aj , ak)
in the base set A can be connected by such a morphism.
Those that can define the groupoid element, a morphism
g = (aj , ak) having the natural inverse g−1 = (ak, aj). Given
such a pairing, it is possible to define ‘natural’ end-point maps
α(g) = aj , β(g) = ak from the set of morphisms G into A, and
a formally associative product in the groupoid g1g2 provided
α(g1g2) = α(g1), β(g1g2) = β(g2), and β(g1) = α(g2). Then
the product is defined, and associative, (g1g2)g3 = g1(g2g3).

In addition, there are natural left and right identity ele-
ments λg, ρg such that λgg = g = gρg (Weinstein, 1996).

An orbit of the groupoid G over A is an equivalence class
for the relation aj ∼ Gak if and only if there is a groupoid
element g with α(g) = aj and β(g) = ak. Following Cannas da
Silva and Weinstein (1999), we note that a groupoid is called
transitive if it has just one orbit. The transitive groupoids
are the building blocks of groupoids in that there is a natural
decomposition of the base space of a general groupoid into
orbits. Over each orbit there is a transitive groupoid, and
the disjoint union of these transitive groupoids is the original
groupoid. Conversely, the disjoint union of groupoids is itself
a groupoid.

The isotropy group of a ∈ X consists of those g in G with
α(g) = a = β(g). These groups prove fundamental to classi-
fying groupoids.

If G is any groupoid over A, the map (α, β) : G→ A×A is
a morphism from G to the pair groupoid of A. The image of
(α, β) is the orbit equivalence relation ∼ G, and the functional
kernel is the union of the isotropy groups. If f : X → Y is a
function, then the kernel of f , ker(f) = [(x1, x2) ∈ X ×X :
f(x1) = f(x2)] defines an equivalence relation.

Groupoids may have additional structure. As Weinstein
(1996) explains, a groupoid G is a topological groupoid over a
base space X if G and X are topological spaces and α, β and
multiplication are continuous maps. A criticism sometimes
applied to groupoid theory is that their classification up to
isomorphism is nothing other than the classification of equiv-
alence relations via the orbit equivalence relation and groups
via the isotropy groups. The imposition of a compatible topo-
logical structure produces a nontrivial interaction between the
two structures. Below we will introduce a metric structure on
manifolds of related information sources, producing such in-
teraction.

In essence, a groupoid is a category in which all morphisms
have an inverse, here defined in terms of connection to a base
point by a meaningful path of an information source dual to
a cognitive process.

As Weinstein (1996) points out, the morphism (α, β) sug-
gests another way of looking at groupoids. A groupoid over
A identifies not only which elements of A are equivalent to
one another (isomorphic), but it also parametizes the different
ways (isomorphisms) in which two elements can be equivalent,
i.e., all possible information sources dual to some cognitive
process. Given the information theoretic characterization of
cognition presented above, this produces a full modular cog-
nitive network in a highly natural manner.

Brown (1987) describes the fundamental structure as fol-
lows:

A groupoid should be thought of as a group with
many objects, or with many identities... A groupoid
with one object is essentially just a group. So the no-
tion of groupoid is an extension of that of groups. It
gives an additional convenience, flexibility and range
of applications...

EXAMPLE 1. A disjoint union [of groups] G =
∪λGλ, λ ∈ Λ, is a groupoid: the product ab is defined
if and only if a, b belong to the same Gλ, and ab is
then just the product in the group Gλ. There is an
identity 1λ for each λ ∈ Λ. The maps α, β coincide
and map Gλ to λ, λ ∈ Λ.

EXAMPLE 2. An equivalence relation R on [a
set] X becomes a groupoid with α, β : R → X the
two projections, and product (x, y)(y, z) = (x, z)
whenever (x, y), (y, z) ∈ R. There is an identity,
namely (x, x), for each x ∈ X...

Weinstein (1996) makes the following fundamental point:

Almost every interesting equivalence relation on
a space B arises in a natural way as the orbit equiv-
alence relation of some groupoid G over B. Instead
of dealing directly with the orbit space B/G as an
object in the category Smap of sets and mappings,
one should consider instead the groupoid G itself as
an object in the category Ghtp of groupoids and ho-
motopy classes of morphisms.

The groupoid approach has become quite popular in the
study of networks of coupled dynamical systems which can
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be defined by differential equation models, (e.g., Golubitsky
and Stewart 2006).

12.1.2 Global and Local Symmetry Groupoids

Here we follow Weinstein (1996) fairly closely, using his ex-
ample of a finite tiling.

Consider a tiling of the euclidean plane R2 by identical 2 by
1 rectangles, specified by the set X (one dimensional) where
the grout between tiles is X = H ∪V , having H = R×Z and
V = 2Z × R, where R is the set of real numbers and Z the
integers. Call each connected component ofR2\X, that is, the
complement of the two dimensional real plane intersecting X,
a tile.

Let Γ be the group of those rigid motions of R2 which leave
X invariant, i.e., the normal subgroup of translations by ele-
ments of the lattice Λ = H ∩ V = 2Z × Z (corresponding to
corner points of the tiles), together with reflections through
each of the points 1/2Λ = Z×1/2Z, and across the horizontal
and vertical lines through those points. As noted by Weinstein
(1996), much is lost in this coarse-graining, in particular the
same symmetry group would arise if we replaced X entirely
by the lattice Λ of corner points. Γ retains no information
about the local structure of the tiled plane. In the case of
a real tiling, restricted to the finite set B = [0, 2m] × [0, n]
the symmetry group shrinks drastically: The subgroup leav-
ing X ∩ B invariant contains just four elements even though
a repetitive pattern is clearly visible. A two-stage groupoid
approach recovers the lost structure.

We define the transformation groupoid of the action of Γ
on R2 to be the set

G(Γ, R2) = {(x, γ, y|x ∈ R2, y ∈ R2, γ ∈ Γ, x = γy},

with the partially defined binary operation

(x, γ, y)(y, ν, z) = (x, γν, z).

Here α(x, γ, y) = x, and β(x, γ, y) = y, and the inverses are
natural.

We can form the restriction of G to B (or any other subset
of R2) by defining

G(Γ, R2)|B = {g ∈ G(Γ, R2)|α(g), β(g) ∈ B}

[1]. An orbit of the groupoid G over B is an equivalence
class for the relation
x ∼G y if and only if there is a groupoid element g with

α(g) = x and β(g) = y.
Two points are in the same orbit if they are similarly placed

within their tiles or within the grout pattern.
[2]. The isotropy group of x ∈ B consists of those g in G

with α(g) = x = β(g). It is trivial for every point except
those in 1/2Λ∩B, for which it is Z2×Z2, the direct product
of integers modulo two with itself.

By contrast, embedding the tiled structure within a larger
context permits definition of a much richer structure, i.e., the
identification of local symmetries.

We construct a second groupoid as follows. Consider the
plane R2 as being decomposed as the disjoint union of P1 =
B ∩X (the grout), P2 = B\P1 (the complement of P1 in B,
which is the tiles), and P3 = R2\B (the exterior of the tiled
room). Let E be the group of all euclidean motions of the
plane, and define the local symmetry groupoid Gloc as the set
of triples (x, γ, y) in B × E × B for which x = γy, and for
which y has a neighborhood U in R2 such that γ(U ∩Pi) ⊆ Pi
for i = 1, 2, 3. The composition is given by the same formula
as for G(Γ, R2).

For this groupoid-in-context there are only a finite number
of orbits:
O1 = interior points of the tiles.
O2 = interior edges of the tiles.
O3 = interior crossing points of the grout.
O4 = exterior boundary edge points of the tile grout.
O5 = boundary ‘T’ points.
O6 = boundary corner points.
The isotropy group structure is, however, now very rich

indeed:
The isotropy group of a point in O1 is now isomorphic to

the entire rotation group O2.
It is Z2 × Z2 for O2.
For O3 it is the eight-element dihedral group D4.
For O4,O5 and O6 it is simply Z2.
These are the ‘local symmetries’ of the tile-in-context.

12.2 Generalized Onsager Theory

Understanding the time dynamics of groupoid-driven infor-
mation systems away from the kind of phase transition criti-
cal points described above requires a phenomenology similar
to the Onsager relations of nonequilibrium thermodynamics.
This also leads to a general theory involving large-scale topo-
logical changes in the sense of Morse theory.

If the Groupoid Free Energy of a biological process is
parametized by some vector of quantities K ≡ (K1, ...,Km),
then, in analogy with nonequilibrium thermodynamics, gra-
dients in the Kj of the disorder, defined as

SG ≡ FG(K)−
m∑
j=1

Kj∂FG/∂Kj

(28)

become of central interest.
Equation (28) is similar to the definition of entropy in terms

of the free energy of a physical system.
Pursuing the homology further, the generalized Onsager re-

lations defining temporal dynamics of systems having a GFE
become
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dKj/dt =
∑
i

Lj,i∂SG/∂Ki,

(29)

where the Lj,i are, in first order, constants reflecting the
nature of the underlying cognitive phenomena. The L-matrix
is to be viewed empirically, in the same spirit as the slope and
intercept of a regression model, and may have structure far
different than familiar from more simple chemical or physical
processes. The ∂SG/∂K are analogous to thermodynamic
forces in a chemical system, and may be subject to override by
external physiological or other driving mechanisms: biological
and cognitive phenomena, unlike simple physical systems, can
make choices as to resource allocation.

That is, an essential contrast with simple physical systems
driven by (say) entropy maximization is that complex bio-
logical or cognitive structures can make decisions about re-
source allocation, to the extent resources are available. Thus
resource availability is a context, not a determinant, of be-
havior.

Equations (28) and (29) can be derived in a simple
parameter-free covariant manner which relies on the under-
lying topology of the information source space implicit to the
development (e.g., Wallace and Wallace, 2008b). We will not
pursue that development here.

The dynamics, as we have presented them so far, have
been noiseless, while biological systems are always very noisy.
Equation (29) might be rewritten as

dKj/dt =
∑
i

Lj,i∂SG/∂Ki + σW (t)

where σ is a constant and W (t) represents white noise. This
leads directly to a family of classic stochastic differential equa-
tions having the form

dKj
t = Lj(t,K)dt+ σj(t,K)dBt,

(30)

where the Lj and σj are appropriately regular functions of
t and K, and dBt represents the noise structure, and we have
readjusted the indices.

Further progress in this direction requires introduction of
methods from stochastic differential geometry and related
topics in the sense of Emery (1989). The obvious inference
is that noise – not necessarily ‘white’ – can serve as a tool
to shift the system between various topological modes, as a
kind of crosstalk and the source of a generalized stochastic
resonance.

Effectively, topological shifts between and within dynamic
manifolds constitute another theory of phase transitions (Pet-
tini, 2007),and this phenomenological Onsager treatment
would likely be much enriched by explicit adoption of a Morse
theory perspective.

12.3 The Tuning Theorem

Messages from an information source, seen as symbols xj from
some alphabet, each having probabilities Pj associated with
a random variable X, are ‘encoded’ into the language of a
‘transmission channel’, a random variable Y with symbols
yk, having probabilities Pk, possibly with error. Someone
receiving the symbol yk then retranslates it (without error)
into some xk, which may or may not be the same as the xj
that was sent.

More formally, the message sent along the channel is char-
acterized by a random variable X having the distribution

P (X = xj) = Pj , j = 1, ...,M.

The channel through which the message is sent is charac-
terized by a second random variable Y having the distribution

P (Y = yk) = Pk, k = 1, ..., L.

Let the joint probability distribution of X and Y be defined
as

P (X = xj , Y = yk) = P (xj , yk) = Pj,k

and the conditional probability of Y given X as

P (Y = yk|X = xj) = P (yk|xj).

Then the Shannon uncertainty of X and Y independently
and the joint uncertainty of X and Y together are defined
respectively as

H(X) = −
M∑
j=1

Pj log(Pj)

H(Y ) = −
L∑
k=1

Pk log(Pk)

H(X,Y ) = −
M∑
j=1

L∑
k=1

Pj,k log(Pj,k).

(31)

The conditional uncertainty of Y given X is defined as
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H(Y |X) = −
M∑
j=1

L∑
k=1

Pj,k log[P (yk|xj)].

(32)

For any two stochastic variates X and Y , H(Y ) ≥ H(Y |X),
as knowledge of X generally gives some knowledge of Y .
Equality occurs only in the case of stochastic independence.

Since P (xj , yk) = P (xj)P (yk|xj), we have

H(X|Y ) = H(X,Y )−H(Y ).

The information transmitted by translating the variable X
into the channel transmission variable Y – possibly with error
– and then retranslating without error the transmitted Y back
into X is defined as

I(X|Y ) ≡ H(X)−H(X|Y ) = H(X) +H(Y )−H(X,Y )

(33)

See, for example, Ash (1990), Khinchin (1957) or Cover and
Thomas (1991) for details. The essential point is that if there
is no uncertainty in X given the channel Y , then there is no
loss of information through transmission. In general this will
not be true, and herein lies the essence of the theory.

Given a fixed vocabulary for the transmitted variable X,
and a fixed vocabulary and probability distribution for the
channel Y , we may vary the probability distribution of X in
such a way as to maximize the information sent. The capacity
of the channel is defined as

C ≡ max
P (X)

I(X|Y )

(34)

subject to the subsidiary condition that
∑
P (X) = 1.

The critical trick of the Shannon Coding Theorem for send-
ing a message with arbitrarily small error along the channel
Y at any rate R < C is to encode it in longer and longer
‘typical’ sequences of the variable X; that is, those sequences
whose distribution of symbols approximates the probability
distribution P (X) above which maximizes C.

If S(n) is the number of such ‘typical’ sequences of length
n, then

log[S(n)] ≈ nH(X),

where H(X) is the uncertainty of the stochastic variable
defined above. Some consideration shows that S(n) is much
less than the total number of possible messages of length n.
Thus, as n→∞, only a vanishingly small fraction of all pos-
sible messages is meaningful in this sense. This observation,
after some considerable development, is what allows the Cod-
ing Theorem to work so well. In sum, the prescription is to
encode messages in typical sequences, which are sent at very
nearly the capacity of the channel. As the encoded messages
become longer and longer, their maximum possible rate of
transmission without error approaches channel capacity as a
limit. Again, Ash (1990), Khinchin (1957) and Cover and
Thomas (1991) provide details.

This approach can be, in a sense, inverted to give a tuning
theorem which parsimoniously describes the essence of the
Rate Distortion Manifold.

Telephone lines, optical wave, guides and the tenuous
plasma through which a planetary probe transmits data to
earth may all be viewed in traditional information-theoretic
terms as a noisy channel around which we must structure
a message so as to attain an optimal error-free transmission
rate.

Telephone lines, wave guides, and interplanetary plasmas
are, relatively speaking, fixed on the timescale of most mes-
sages, as are most other signaling networks. Indeed, the
capacity of a channel, is defined by varying the probability
distribution of the ‘message’ process X so as to maximize
I(X|Y ).

Suppose there is some message X so critical that its prob-
ability distribution must remain fixed. The trick is to fix the
distribution P (x) but modify the channel – i.e., tune it – so
as to maximize I(X|Y ). The dual channel capacity C∗ can
be defined as

C∗ ≡ max
P (Y ),P (Y |X)

I(X|Y ).

(35)

But

C∗ = max
P (Y ),P (Y |X)

I(Y |X)

since

I(X|Y ) = H(X) +H(Y )−H(X,Y ) = I(Y |X).

Thus, in a purely formal mathematical sense, the message
transmits the channel, and there will indeed be, according
to the Coding Theorem, a channel distribution P (Y ) which
maximizes C∗.
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One may do better than this, however, by modifying the
channel matrix P (Y |X). Since

P (yj) =
M∑
i=1

P (xi)P (yj |xi),

P (Y ) is entirely defined by the channel matrix P (Y |X) for
fixed P (X) and

C∗ = max
P (Y ),P (Y |X)

I(Y |X) = max
P (Y |X)

I(Y |X).

Calculating C∗ requires maximizing the complicated ex-
pression

I(X|Y ) = H(X) +H(Y )−H(X,Y ),

which contains products of terms and their logs, subject
to constraints that the sums of probabilities are 1 and each
probability is itself between 0 and 1. Maximization is done
by varying the channel matrix terms P (yj |xi) within the con-
straints. This is a difficult problem in nonlinear optimization.
However, for the special case M = L, C∗ may be found by
inspection:

If M = L, then choose

P (yj |xi) = δj,i,

where δi,j is 1 if i = j and 0 otherwise. For this special case

C∗ ≡ H(X),

with P (yk) = P (xk) for all k. Information is thus trans-
mitted without error when the channel becomes ‘typical’ with
respect to the fixed message distribution P (X).

If M < L, matters reduce to this case, but for L < M infor-
mation must be lost, leading to Rate Distortion limitations.

Thus modifying the channel may be a far more efficient
means of ensuring transmission of an important message than
encoding that message in a ‘natural’ language which maxi-
mizes the rate of transmission of information on a fixed chan-
nel.

We have examined the two limits in which either the dis-
tributions of P (Y ) or of P (X) are kept fixed. The first pro-
vides the usual Shannon Coding Theorem, and the second a
tuning theorem variant, a tunable retina-like Rate Distortion
Manifold. It seems likely, however, than for many important
systems P (X) and P (Y ) will interpenetrate, to use Richard
Levins’ terminology. That is, P (X) and P (Y ) will affect each
other in characteristic ways, so that some form of mutual tun-
ing may be the most effective strategy.

12.4 Morse Theory

Morse theory examines relations between analytic behavior of
a function – the location and character of its critical points
– and the underlying topology of the manifold on which the
function is defined. We are interested in a number of such
functions, for example information source uncertainty on a

parameter space and ‘second order’ iterations involving pa-
rameter manifolds determining critical behavior, for example
sudden onset of a giant component in the mean number model
(Wallace and Wallace, 2008), and universality class tuning in
the mean field model of the next section. These can be re-
formulated from a Morse theory perspective. Here we follow
closely the elegant treatments of Pettini (2007) and Kastner
(2006).

The essential idea of Morse theory is to examine an n-
dimensional manifold M as decomposed into level sets of some
function f : M → R where R is the set of real numbers. The
a-level set of f is defined as

f−1(a) = {x ∈M : f(x) = a},

the set of all points in M with f(x) = a. If M is compact,
then the whole manifold can be decomposed into such slices
in a canonical fashion between two limits, defined by the min-
imum and maximum of f on M . Let the part of M below a
be defined as

Ma = f−1(−∞, a] = {x ∈M : f(x) ≤ a}.

These sets describe the whole manifold as a varies between
the minimum and maximum of f .

Morse functions are defined as a particular set of smooth
functions f : M → R as follows. Suppose a function f has
a critical point xc, so that the derivative df(xc) = 0, with
critical value f(xc). Then f is a Morse function if its critical
points are nondegenerate in the sense that the Hessian matrix
of second derivatives at xc, whose elements, in terms of local
coordinates are

Hi,j = ∂2f/∂xi∂xj ,

has rank n, which means that it has only nonzero eigen-
values, so that there are no lines or surfaces of critical points
and, ultimately, critical points are isolated.

The index of the critical point is the number of negative
eigenvalues of H at xc.

A level set f−1(a) of f is called a critical level if a is a
critical value of f , that is, if there is at least one critical point
xc ∈ f−1(a).

Again following Pettini (2007), the essential results of
Morse theory are:

[1] If an interval [a, b] contains no critical values of f , then
the topology of f−1[a, v] does not change for any v ∈ (a, b].
Importantly, the result is valid even if f is not a Morse func-
tion, but only a smooth function.

[2] If the interval [a, b] contains critical values, the topology
of f−1[a, v] changes in a manner determined by the properties
of the matrix H at the critical points.

[3] If f : M → R is a Morse function, the set of all the
critical points of f is a discrete subset of M , i.e., critical
points are isolated. This is Sard’s Theorem.

[4] If f : M → R is a Morse function, withM compact, then
on a finite interval [a, b] ⊂ R, there is only a finite number of
critical points p of f such that f(p) ∈ [a, b]. The set of critical
values of f is a discrete set of R.
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[5] For any differentiable manifold M , the set of Morse func-
tions on M is an open dense set in the set of real functions of
M of differentiability class r for 0 ≤ r ≤ ∞.

[6] Some topological invariants of M , that is, quantities that
are the same for all the manifolds that have the same topology
as M , can be estimated and sometimes computed exactly once
all the critical points of f are known: Let the Morse numbers
µi(i = 0, ...,m) of a function f on M be the number of critical
points of f of index i, (the number of negative eigenvalues of
H). The Euler characteristic of the complicated manifold M
can be expressed as the alternating sum of the Morse numbers
of any Morse function on M ,

χ =
m∑
i=1

(−1)iµi.

The Euler characteristic reduces, in the case of a simple
polyhedron, to

χ = V − E + F

where V,E, and F are the numbers of vertices, edges, and
faces in the polyhedron.

[7] Another important theorem states that, if the interval
[a, b] contains a critical value of f with a single critical point
xc, then the topology of the set Mb defined above differs from
that of Ma in a way which is determined by the index, i, of
the critical point. Then Mb is homeomorphic to the manifold
obtained from attaching to Ma an i-handle, i.e., the direct
product of an i-disk and an (m− i)-disk.

Again, Pettini (2007) contains both mathematical details
and further references. See, for example, Matusmoto (2002)
or the classic by Milnor (1963).
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