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Abstract: I contrast two modes of error-elimination relevant to evaluating

evidence in accounts that emphasize frequentist reliability. The contrast

corresponds to that between the use of of a reliable inference procedure and

the critical scrutiny of a procedure with regard to its reliability, in light of

what is and is not known about the setting in which the procedure is used.

I propose a notion of security as a category of evidential assessment for the

latter. In statistical settings, robustness theory and misspecification testing

exemplify two distinct strategies for securing statistical inferences.
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1 Introduction

I highlight a distinction between two notions of error elimination at work

in the error-statistical (ES) philosophy of scientific evidence advocated by

Deborah Mayo, and discuss the methodological implications of that distinc-

tion. The shift between these two notions is connected with a shift from the

context in which a model is used to that in which it is criticized. Corre-

spondingly, they are distinguishable in that one notion is unrelatived, while

the other relative to epistemic situation.

ES proposes that evidence derives from testing procedures that con-

stitute severe error probes. In statistical settings, ES employs a modified

version of Neyman-Pearson Theory (NPT). Like NPT, the error-statistical

approach uses probability distributions as models of the reliability of test-

ing procedures, i.e., the rate at which they yield specific types of errors.

Roughly, good tests in the ES view are those with appropriately low rates

of error in indicating discrepancies from a family of competing hypotheses

under consideration, and good evidence for a hypothesis results from the

appropriate use of good tests. Mayo writes, “Data in accordance with hy-

pothesis H indicate the correctness of H to the extent that the data result

from a procedure that with high probability would have produced a result

more discordant with H, were H incorrect” (Mayo 1996, 445n). Putting this

idea in more schematic terms, the ES theory of evidence can be articulated

in terms of Mayo’s ‘severe test’ requirement: Supposing that hypothesis H

is subjected to test procedure T , resulting in data E, E constitutes evidence
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for H just in case:

SR1 E fits H, and

SR2 the probability of H passing T with an outcome such as E (i.e., one

that fits H at least as well as E does), given that H is false, is very

low (Mayo 1996, esp. 178–87).

The features of testing procedures (their error rates) that probability

statements are meant to capture in this context are putatively objective

features that obtain or not independently of what is known or believed

by any individual. That a particular probability distribution is an adequate

model of such features is a judgment that the researcher must make from the

perspective of her epistemic situation; it is held as a virtue of the approach

that such judgments are themselves potentially erroneous (they may fail

to correspond to the facts) but also corrigible (further testing, if carried

out reliably, will probably bring judgment into closer correspondence to the

facts).

Here I seek to articulate an additional dimension of epistemic ap-

praisal, which I call security, to complement that embodied in the ES ac-

count of evidence, and to relate that dimension to efforts in theoretical

statistics to systematize the critical assessment of model assumptions. In

particular, I consider the development of robust statistics and the program

of misspecification testing/model respecification as two modes of response,

in the context of model criticism, to the problem of insecure evidence.

I proceed as follows: In section two I seek to clarify the epistemic char-

acter of ES evidence by situating it within what I call a “reliable indicator”

view of evidence. A central characteristic of reliability in these accounts

is that it is to be understood in terms of frequencies of various types of

error. In section three I contrast two perspectives on claims about ES evi-

dence, insofar as these involve reliability. Roughly put, it is the distinction

between whether a reliability claim is true, a matter of fact that is unrel-
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ativized to any epistemic situation, and whether a given agent is justified

in making an evidence claim. I argue that the latter is not only relativized

to epistemic situation, but that it involves a category of epistemic appraisal

distinct from reliability. I propose a definition for this category of epistemic

appraisal, which I call the security of inferences or evidence claims. Section

four surveys some work in the field of robust statistics, which I present as a

theoretical approach to securing inferences by means of a strategy of weak-

ening one’s conclusions. In section five I discuss the contrasting approach

of misspecification testing, presented as an example of security through the

strengthening of support for premises. I conclude in section six by consid-

ering the prospects for a systematic approach to security, focusing on the

lessons that we might draw from work in robustness theory and misspecifi-

cation testing.

2 Reliable indicators

In this section, I present Mayo’s ES account of scientific evidence as a reliable

indicator (RI) account. By this I mean that it incorporates two related yet

distinct conceptual dimensions: reliability and semiotic function. Both of

these can be understood as characteristics of the testing procedures from

which ES evidence derives.

Consider a rather ordinary kind of reliable indicator: a magnetic com-

pass. In describing a particular compass as a reliable indicator, I indicate

that, used appropriately, one can take the direction of its needle as indicating

the approximate direction of magnetic north (this is its semiotic function),

and that in doing so, one would not at all often draw the wrong conclu-

sion in this regard (this is reliability). Obviously, reliability is a matter of

degree. Moreover, whether we choose to call a particular indicator reliable

will rest on contextual matters: a degree of reliability sufficient for find-

ing one’s way back to the trail head may not suffice for guiding a nuclear

submarine through a coral reef. That said, whether a particular indicator is
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sufficiently reliable to meet a particular standard is an objective matter with

a dual basis in the physical functioning of the device itself and the procedure

employed in arriving at conclusions on the basis of that functioning.

The ES account of evidence can be thought of as a kind of general-

ization of the way in which we use such every-day devices. Although ES

evidence is not restricted to contexts in which quantitative statistical mea-

sures are employed, an overtly statistical example may help to make the

conceptual components most apparent, as well as pave the way for the dis-

cussion robust statistical estimation to come.

Suppose that we are interested in estimating the “location parame-

ter” µx for a distribution function F governing a series of random variables

X1, X2, . . . , Xn. We know that F is normal, with unknown mean µx and

unknown variance σ2
0. We might follow the standard instructions for con-

structing a confidence interval as such: First, we use as an estimator for the

population mean µx the sample mean x̄ = n−1
∑n

1 xi, and as an estimator

for the population variance the sample variance s2x = (n−1)−1
∑n

i (xi− x̄)2.
Now, suppose that we already know what standard of reliability we have in

mind. For example, we might want to make the estimate by means of an

instrument with no greater than a 5% error rate. Using the quantities x̄ and

sx̄ = n−1/2sx (the standard deviation of the sample mean), and with the

help of a statistical table giving t-variate probabilities, one can determine

a confidence interval with just that characteristic. Specifically, it can be

shown that, under these assumptions,

Pr(x̄− tα/2sx̄ < µx < x̄+ tα/2sx̄) = 1− α. (1)

Supposing then that we let α = 0.05 and that n = 20, this becomes

Pr(x̄− 2.093sx̄ < µx < x̄+ 2.093sx̄) = 0.95. (2)

This result derives from the distribution of the estimator itself, under

the assumed underlying distribution F , and can be understood as follows:

The method of constructing an interval estimate just described is such that

5



95% of the intervals thus constructed will include the true value of the

location parameter µx. Our conclusion might then be that the data give

evidence that µx = x̄± 2.093sx̄.

Here again, as in the example of the compass, we have a semiotic

function (i.e., the interval constructed) which is an indicator that points to

a range of possible values for µx. Moreover, the limiting of the probability

of error can serve to ensure the reliability of this semiotic function. The

test’s semiotic function and its reliability are determined by the probabilistic

dependence on the value of µx of the values recorded for x1, x2, . . . , xn and

by the appropriate choice of an estimator (itself in turn dependent on those

same values) so as to achieve the requisite limits on error rates. As in the case

of the compass, the appropriate standard of reliability may be contextual,

but whether the standard is met by the test as constituted is an objective

matter in that it is independent of what anyone knows or believes about the

test or the hypotheses under consideration.

To put the point differently, the investigator employing a particular

statistical testing procedure judges its reliability by means of the probability

values calculated according to the statistical model employed (in the present

example, this model includes the use of the normal distribution, for exam-

ple). That the model used is an adequate representation of the relevant

aspects of the testing procedure is a judgment made by the investigator. It

is precisely because reliable semiotic function is an objective matter that

there is always the possibility of such a judgment being in error. Moreover,

as emphasized by Mayo, such errors themselves may be discovered and cor-

rected. Therefore, those claims about the evidence relevant to a particular

hypothesis that depend on such tests are also susceptible to error — and

those errors, too, may be discovered and corrected. Mayo quotes approv-

ingly Henry Kyburg’s assertion that this possibility of error is “almost a

touchstone of objectivity” (Kyburg 1993, 147, quoted in Mayo 1996, 83).

Thus, the first notion of error-elimination at work in the ES account is
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the notion of using a severe error probe, i.e., a rule for drawing conclusions

about hypotheses via the evidence given by experimentally-generated data

that, when applied to hypotheses about a particular question, would only

rarely lead one to infer a conclusion, supposing it to be false. It is this that

allows the investigator to draw an inference with the assurance that she

has, with high probability, ruled out an erroneous conclusion. Determining

whether a given testing procedure meets that severity standard requires

relying on some assumptions. The problem can be seen most clearly in the

kind of quantitative statistical context exemplified in the estimation example

given above, where the relevant assumptions serve to define a statistical

model. In such cases, the distinction at issue is that between using the

model and criticizing it. Two questions immediately arise concerning model

criticism. First, what does it mean for a model to be adequate? Second,

how can one establish the adequacy of a model?

I propose here to show how a notion of error-elimination distinct from

the severe-test notion just mentioned plays a central role both in character-

izing model adequacy and in the evaluation of statistical models (hence also

in the evaluation of evidence claims that rely upon such models).

The kind of uncertainty that is addressed by error probabilities is of

the following sort: Is the procedure presently used to draw conclusions one

that is very often leads to errors? How probable is it, given the procedure

at hand, that one will draw an incorrect conclusion? The researcher’s sit-

uation is also characterized by uncertainty of a different sort, which model

criticism seeks to address: What are the various ways in which error might

arise, and which are ruled out by what is already known? Answers to these

questions are necessarily relative to epistemic situation of the researcher in

a way that error rates are not. Or, to put it in another light, ES evidential

relations, being independent of epistemic situations, enjoy a more robust

objectivity than evidential claims, the epistemic status of which is relative

to some epistemic situation.1 In the next section I will elaborate on this
1Note that this is a different distinction than that drawn by Peter Achinstein between
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point, introducing a concept that will help to clarify the nature of the latter

perspective on the epistemic status of evidence claims.

3 Security in the evaluation of evidence claims

The viewpoint of the researcher making an evidential judgment thus brings

into perspective two distinct notions of error elimination not previously dis-

tinguished by ES advocates. The first is unrelativized: testing procedures

have their error rates independently of our judgments about them. One

eliminates error by using a procedure that as a matter of fact rarely leads

to false conclusions, a matter that is independent of ones epistemic situa-

tion. The second is relativized: one eliminates error by showing that, given

what one knows, the ways in which ones premises or underlying assumptions

might be wrong can be ruled out, or else make no difference to the evidential

conclusion one is drawing.

I propose a division of labor between these two notions. In accordance

with ES, the first, unrelativized notion of frequency reliability is appropriate

to the concept of evidence itself. The second notion is appropriate for the

appraisal of claims about evidence (or reliability). I employ the term security

for this latter concept.

The concept of security that I develop is meant to capture an intuitive

notion regarding how investigators make claims about evidence. Let an

evidence claim be a claim of the form ‘Data E (resulting from test T ) are

evidence for the hypothesis that H.’ At the time that such a claim is made,

the claimant will believe or rely upon many propositions, some of which,

for all she knows, may be wrong. Assuming she does not want to make an

relativized and unrelativized evidence concepts (Achinstein 2001). Achinstein’s point is

that evidence concepts of both kinds are invoked on different occasions by scientists, a

point that I do not dispute. My point is that, even restricting ourselves to the kind of

unrelativized evidence concept that is the subject of the ES theory, the epistemic status

(as opposed to simply the truth) of evidence claims using that unrelativized concept is

relative to epistemic situation.
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evidence claim that might subsequently be refuted, she has reason therefore

to consider the ways in which her claim might fail. More specifically, she

should, I argue, wish for her evidence claims to be secure in the following

sense:

Definition 1 (secure evidence) Suppose that Ω0 is the set of all epistem-

ically possible scenarios relative to epistemic situation K, and Ω1 ⊆ Ω0. An

evidence claim C is secure throughout Ω1 relative to K iff for any scenario

ω ∈ Ω1, C is true. If C is secure throughout Ω0 then it is fully secure.2

Before proceeding, some explanation of terminology is in order. Fol-

lowing Chalmers (2008), I use the term scenario to refer to what might be

intuitively thought of as a “maximally specific way things might be.” In

practice, no one ever considers scenarios as such, of course, but rather fo-

cuses on salient differences between scenario and another. Scenarios thus

function rather like possible worlds, although here the relevant modality is

distinct from the subjunctive use to which possible worlds are typically put.

The modality of interest here is epistemic possibility, which can be

thought of as the modality invoked in such expressions as “For all I know,

there might be a third-generation leptoquark with a rest of mass of 250

GeV/c2” and “ For all I know, I might have left my sunglasses on the train.”

Hintikka, whose (1962) provides the origins for contemporary discussions,

took expressions of the form “It is possible, for all that S knows, that P”

to have the same meaning as “It does not follow from what S knows that

not-P .” Just how to formulate the semantics of such statements is, however,

contested (see, e.g., DeRose 1991 and Chalmers 2008).3 The central claims
2There may be reasons for the investigator to consider someone else’s epistemic situa-

tion to be more relevant than her own. The choice of the relevant epistemic situation for

a given evidence claim is an outstanding problem of the theory of secure reasoning.
3To note one difficulty for Hintikka’s original understanding, consider the status of

mathematical theorems. Arguably, if Goldbach’s conjecture is true, then it does follow

from what I know (though I do not realize this), if I know the axioms of number theory.

Yet it also seems correct to say that it is possible, for all I know, that Goldbach’s conjecture
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of the present proposal are independent of disputed issues regarding the

semantics of epistemic possibility.

Finally, the notion of an epistemic situation is borrowed from Achin-

stein (2001), who describes an epistemic situation as a situation in which

“among other things, one knows or believes that certain propositions are

true, one is not in a position to know or believe that others are, and one

knows (or does not know) how to reason from the former to the hypothesis”

(ibid., 20). To this I would add as components of the epistemic situation that

one knows (or does not know) how to do things (such as the manipulation

of data or instruments, or the performance of speech acts) that facilitate the

inference from data and other propositions to the hypothesis of interest.

The basic idea is that an evidence claim is secure for an agent to the

extent that it holds true across a range of scenarios that are epistemically

possible for that agent. Exactly which scenarios are epistemically possible

for a given epistemic agent is opaque, and not all epistemically possible

scenarios are equally relevant, so the methodologically significant concept

turns out to be relative security : An investigator can make her evidence

claim more secure either by decreasing the range of epistemically possible

scenarios so as to exclude some in which her claim is false, or by expanding,

across the range of possible scenarios, the scope of those in which the claim

she makes is true.

I contend that numerous scientific practices already aim at enhancing

the security of evidence claims.We can tentatively classify such practices

within some broad categories, such as strategies for weakening an evidential

conclusion, for strengthening the support for assumptions employed in eval-

uating evidence, and for arguing from robustness, in the sense of appealing

to convergent results from independent tests (Staley 2004).4

is false, even if I do know the axioms of number theory.
4It appears to be an unfortunate coincidence that the term ‘robust’ and its cognates

enters this discourse in two rather distinct roles, one coming from philosophy of science,

and the other from statistics. Here the emphasis will be on the sense of the term as used
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The present paper focuses on the strengthening and weakening strate-

gies (see Staley 2004 and 2008b for a discussion of the robustness strategy).

The security framework here proposed allows for a unified understanding of

these strategies. In weakening, the conclusion of an evidential inference is

logically weakened in such a way as to remain true across a broader range of

epistemically possible scenarios than the original conclusion. Strengthening

strategies operate by adding to knowledge, reducing the overall space of epis-

temically possible scenarios so as to eliminate some in which the conclusion

of the evidential inference would be false.

In what follows I survey the pursuit of these two strategies through two

developments within theoretical statistics. The first of these is robust statis-

tics, a branch of mathematical statistics that has received little attention

from philosophers of science. The second is the program of misspecification

testing (M-S) and model respecification advocated by Aris Spanos (1999)

and by Mayo and Spanos (2004) from a standpoint firmly within the error-

statistical approach. The first can be viewed as an example of a weakening

strategy, while the latter operates by strengthening. I argue that viewing

both approaches as efforts to address the problem of securing evidence claims

yields insight into the evaluation of scientific knowledge.

4 Security through robust statistics

In this section, I argue that the development of robust statistics serves as

an example of how security considerations can guide (even if implicitly) the

development of rigorous theoretical frameworks with epistemic advantages

over their non-secure counterparts.

Robust statistics originates in the insight that many classical statisti-

cal procedures depend upon parametric models that may hold only approxi-

mately. Although one might hope that when those models are approximately

valid, so are the conclusions drawn, this is often not the case. In an oft-cited

by statisticians.
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and clever paper, Tukey (1960) considered the following situation, prompted

by his work at the end of World War II analyzing data on the effectiveness of

bomber machine-gun fire against attacking fighters. Suppose there are two

normal populations with identical means, but where the standard deviation

of one is three times larger than another, and suppose that a large sample

of data is generated from a population that is a mixture of the narrower

population with some small “contamination” from the wider population.

(Then, of course, the population sampled is no longer described by a single

normal distribution; the contamination data might be thought of as outliers

relative to the original narrower distribution.) Suppose, further, that one

wishes to estimate the scale parameter for the population sampled. Tukey

notes that for a normal distribution, the relative efficiency of the mean devi-

ation as compared to the standard deviation, as estimators of scale, is 88%.

But he shows that, not only does the addition of contributions from the

wider distribution to the narrower distribution render the mean deviation

more efficient, but that the point at which the mean deviation just matches

the standard deviation in efficiency is when a mere .008 of the population

sampled comes from the wider distribution.

What Tukey’s discussion shows is that, in spite of the fact that much

of statistical practice rests on the use of statistical measures the properties

of which are determined under the assumption that some parametric sta-

tistical model of the population holds exactly, small departures from such

an exact model can have dramatic effects on the performance of such mea-

sures. In particular, theorists have been concerned with three reasons why

a parametric model might fail to hold exactly (Hampel et al. 1986):

1. Rounding of observations

2. Occurrence of gross errors (bad data entry, instrument malfunction,

etc.)

3. Idealization or approximation in the model
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Awareness of these problems significantly pre-dates Tukey’s work. As

Stephen Stigler notes, “Scientists have been concerned with what we would

call ‘robustness’ – insensitivity of procedures to departures from assump-

tions . . . for as long as they have been employing well-defined procedures,

perhaps longer” (Stigler 1973, 872).5 Statisticians continue to use the term

‘robustness’ to refer broadly to this notion of insensitivity, and there are

several theoretical approaches to the development of frameworks for robust

statistical inference. Here I will survey some influential robustness notions

that originated in the 1960s in work by Peter Huber (1964) and Frank Ham-

pel (1968; 1971; 1974).

Many theoretical advances have been made since that early work, and

robustness has been extended beyond simple one-dimensional estimation

problems to multi-dimensional and testing contexts, but I will here simply

discuss some of the early developments on one-dimensional estimators. My

aim is not to survey the state of robust statistical theory, but to instead argue

that from the outset the theoretical work has been guided by a methodolog-

ical concern with the security of statistical conclusions, and that the theory

of robust statistics can serve as an exemplar for further systematic thinking

about security.

4.1 Huber’s minimax approach

In his groundbreaking 1964 paper, Peter Huber introduced a class of esti-

mators that he called “M -estimators.”6 Huber introduces these as a kind

of generalization of least-squares estimators. Consider, in our original ex-

ample attempting to estimate the location parameter of the distribution F ,

our choice of test statistic T = 1
nΣixi. This emerges as the solution to a

5In the history of statistics, Stigler traces the first mathematical contributions to robust

estimation back to Laplace, but focuses on the work of Simon Newcomb and of P. J. Daniell

as exemplars of early work on robust estimation that was both clear and rigorous.
6Cf. Huber 1964. The discussion that follows also owes much to Hampel et al. 1986,

esp. 36–39, 172–78.
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problem of minimizing the sum of the squares of the differences between the

observed values and those that would be predicted under the hypothesis cho-

sen by that estimator (the “errors”). In other words, supposing T initially

to be some unspecified function of random variables x1, x2, . . . xn, we seek

to choose T so that Σi(xi − T )2 takes its minimum value. The solution to

this particular minimization problem is in fact to define T to be the sample

mean T = 1
nΣixi.

The class of M-estimators is then introduced as those that solve the

more general problem of minimizing some function ρ of the errors (possibly

not the sum of their squares). I.e., M-estimators are those functions that

minimize Σiρ(xi − T ), for some non-constant function ρ.7 Huber’s motiva-

tion here is initially just that “It is quite natural to ask whether one can

obtain more robustness by minimizing another function of the errors” (Hu-

ber 1964, 74). Tukey and others had already noticed that other statistics

besides the mean performed better as location estimators when assumed

exact parametric models failed. Since the choice of the mean as a loca-

tion estimator could be defended on the grounds of it’s solving a particular

minimization problem, perhaps alternative, more robust estimators would

emerge as solutions to alternative, but related, minimization problems.

Of course, to determine whether this is the case, one needs some means

of evaluating robustness. Here it should be noted that Huber’s discussion is

not perfectly general, but assumes that the unknown underlying distribution

F can be represented in the form of a mixture of a normal distribution

Φ with another, possibly non-normal but symmetric distribution H: F =

(1− ε)Φ + εH. This is sometimes called a “model of indeterminacy.” (Note

that although H is assumed unknown, ε is assumed to be known.) In this

setting, Huber opts to use the supremum of the asymptotic variance of an

estimator as an indicator of its robustness.
7As Huber notes, this class turns out to include as special cases the sample mean

(ρ(t) = t2), the sample median (ρ(t) =| t |), and all maximum likelihood estimators

(ρ(t) = −logf(t), where f is the assumed density of the distribution.
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More specifically: suppose that ψ is an estimator to be applied to

observations x1, x2, . . . , xn drawn from a family Pε of models that have the

form of F just given, for some value of ε (call the resulting estimate ψn).

Then the asymptotic variance of ψ at a distribution G ∈ Pε is understood

to be the expected value of the squares of the differences between estimator

values and the expected estimator values, evaluated at F0, as n → ∞, i.e.,

V (ψ,G) = En→∞[(ψn −E(ψn))2]. Then the most robust M-estimator for a

given family F of distributions would be that which minimizes the maximal

asymptotic variance across Pε. Huber’s approach, in other words, is to

select as most robust that M-estimator ψ0 that satisfies the condition:

sup
G∈Pε

V (ψ0, G) = min
ψ

sup
G∈Pε

V (ψ,G) (3)

Huber then goes on to show, among many other important results,

that the solution to this problem corresponds to determining first the “least

favorable distribution” F0, which is the distribution that minimizes the

Fisher information over all G ∈ Pε. The estimator that satisfies the ro-

bustness criterion above is then the maximum likelihood estimator for that

least favorable distribution. Intuitively, the approach is to pick the approach

that is the optimum choice for the “worst case scenario,” i.e., the scenario

in which the observed random variable is the least informative about the

value of the estimated parameter.

4.2 Hampel’s influence function/breakdown point approach

Beginning in his 1968 thesis and in a series of subsequent papers (Hampel

1968; 1971; 1974), Frank Hampel laid the foundations for the “infinitesimal”

approach to robust statistics, beginning as Huber did with one-dimensional

estimation problems. Huber’s approach begins by replacing the usual ex-

act parametric model with a model of indeterminacy (originally, a normal

distribution with a specified degree of “contamination”) and then seeks to

formulate a generalized minimization problem for that particular model,
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Hampel’s approach begins with an exact parametric model (not necessarily

normal) and then considers the behavior of estimators in “neighborhoods”

of that model.

First consider a qualitiative definition of robustness, as introduced

in Hampel (1971).8 Suppose that we consider a sequence of estimates

Tn = Tn(x1, x2, . . . , xn), where the xi are independent and identically dis-

tributed observations, with common distribution F . Let LF (Tn) denote the

distribution of Tn under F . The sequence Tn is robust at F = F0 iff, for a

suitable distance function d,9 for any ε > 0, there is a δ > 0, and an n0 > 0,

such that for all distributions F and all n ≥ n0,

d(F0, F ) ≤ δ ⇒ d(LF0(Tn),LF (Tn)) ≤ ε (4)

To express qualitative robustness intuitively, Hampel’s definition re-

quires that an estimator be such that closeness of the assumed distribution

of the observations to their actual distribution ensures that the assumed

distribution of the estimator is close to its actual distribution.

Such a definition allows for the systematic use of the designation “ro-

bust,” but one might also wish to know how much difference a particular

error in one’s assumptions will make to the behavior of an estimator or test

statistic T . Hampel introduced the notion of the influence function (IF) to

address specifically the question of how much the value of T would change

with the addition of a single new data point with a particular value x. The

motivation seems in particular to have been to deal with questions of how to

handle gross errors that turn up as outliers in the data. (The sample mean,

for example, as a location estimate, responds dramatically to the addition
8The following discussion owes much to Huber 1981. Many technical details are omit-

ted, as the aim is to convey an intuitive notion that only approximates the more rigorous

mathematical approach taken by Hampel.
9Just what makes a function d “suitable” to be a distance function in this context is

not perfectly clear. See Huber 1981, 25–34, and the appendix for some functions that have

received the attention of theorists.
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of a single observation with x large relative to the rest of the sample.)

In his first publication on what he was then calling the “influence

curve,” after having introduced the notion in his 1968 dissertation, Hampel

described it as “essentially the first derivative of an estimator, viewed as a

functional, at some distribution” (Hampel 1974, 383). More specifically, the

following definition is the one Hampel gives for dealing with an estimator

functional T , a probability measure F on a subset of the real line R, and

x ∈ R:

IFT,F (x) = lim
ε↓0

T ((1− ε)F + εδx)− T (F )
ε

(5)

where δx denotes the pointmass 1 at x.

In practice, the importance of the influence function lies in various

derived quantities that serve as measures of different kinds of robustness.

Three of these deserve mention here, as they are adapted to quite distinct

worries involving robustness. The point I would like to emphasize about

these quantities is that they all seek to capture behaviors of estimators in

some kind of generic “worst-case scenario.” (Here I will only introduce them

with their intuitive interpretations. Mathematical definitions are given in

the appendix; all of their definitions involve the influence function.)

The first (“and most important,” according to Hampel et al. 1986, 87)

of these derived concepts is the gross-error senstivity γ∗, a measure of the

“worst (approximate) influence which a small amount of contamination of

fixed size can haver on the value of the estimator” (ibid., 87). The gross-error

sensitivity is thus useful for understanding how estimators react to outliers

or other “contamination” – what Hampel calls the results of “throwing in”

operations (Hampel 1974, 387).

A rather different concern motivates the use of the local-shift sensitiv-

ity λ∗. Here the concern is with the effects of small changes in the values of

observations, such as might result from either rounding or grouping of obser-

vations, among other sources. Supposing that one thinks of such a change

in terms of removing an observation at point x and replacing it with an
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observation at a neighboring point y, one can think of this as asking about

the change in the estimate brought about by such a change, standardized

by dividing out the difference between y and x. Local-shift sensitivity is

thus a a “measure for the worst (approximate and standardized) effect of

‘wiggling”’ (Hampel et al. 1986, 88; also Hampel 1974, 389).

Finally, the rejection point ρ∗ can be used to describe approaches to

estimation that simply reject outliers – the most time-honored approach to

robust estimation, whether based on “objective” or “subjective” criteria.

The rejection point can be thought of as the smallest absolute value that an

observation might have that would lead to its being rejected outright, thus

having no influence on the value of the estimate. If data are never to be

rejected, regardless of their value, then ρ∗ = ∞.

It should be noted that the influence function and its associated ro-

bustness measures are all local in the sense that they are evaluated at a

particular distribution, with the effects of deviations from that distribution

evaluated in a piecemeal manner. In order to arrive at a global characteriza-

tion of an estimator, Hampel introduced the breadown point, a measure that

“describes up to what distance from the model distribution the estimator

still gives some relevant information” (Hampel et al. 1986, 96), in the sense

of “excluding part of the parameter space” (Hampel 1971, 1894). Hampel

has also stresed the usefulness of the breakdown point as guiding how far

from the assumed model F the IF can be used (Hampel et al. 1986, 41).

The theoretical interest of robustness theory in statistics derives from

its methodological significance: In practice, data analysis often uses estima-

tors or test statistics10 that do not behave at all like they are supposed to in

the presence of even small violations of the parametric models on which they

depend. Put another way, the reliability properties that are understood to
10Henceforth, in making general points about robustness theory, I shall refer only to

estimators. It must be born in mind that robustness theory has been developed for

testing as well as estimation and all the same general points obtain in that context, but

with attention shifted from the properties of estimators to those of test statistics.
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hold for these estimators are an indicator of the evidential strength provided

by the results of their application – but only if those properties really to hold.

In many situations in which calculations based on a parametric model at-

tribute such reliability properties to an estimator (and hence the results of

its application), the model does not in fact hold exactly, and in many of

those situations, the result is that the attributed reliability properties do

not even hold approximately.

Robust statistics responds to this problem by giving investigators

tools for evaluating how well statistical conclusions drawn with a partic-

ular claimed reliability hold up in the face of particular kinds of departures

from a given parametric model. Or, to put it in terms used in the definition

of security: robustness notions in statistics aim to allow the investigator to

determine and employ an estimator that would allow her evidence claims

to remain valid for various ways in which, for all she knows, her initial

(parametric statistical) assumptions might be wrong.

Without invoking security explicitly under the terms I have used to

characterize it, robustness theorists have shown how to treat problems of the

security of statistical inference in a systematic way. Specifically, the mathe-

matical frameworks above provide frameworks for building models of various

ways in which a particular parametric model used to calculate the long-run

error behavior of an estimator might fail, so as to permit understanding of

how such failure influences the behavior of that estimator. The particu-

lar robustness concepts developed seem to depend both on their suitability

for capturing the relevant aspects of prominent model-defeating scenarios

(gross errors, contamination, etc.) and on their mathematical tractability:

at least in principle, one can use these concepts for discussing the behavior

of estimators within such scenarios.

The general approach that the Huber/Hampel framework takes to

enhancing security is a weakening strategy: the security of the inference is

enhanced by weakening its conclusion. This can be seen very clearly by
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considering Hampel’s comparison of the robustness properties of the mean

to those of others at the Standard Normal distribution (Table 1, based on

a similar table in Hampel 1974). Apart from the local-shift sensitivity λ∗

(typically used to evaluate sensitivity to rounding errors), the mean fares

poorly in comparison to the robustness properties of some other common

estimators. It is the only one of these to fail to be qualitatively robust, and

has a strong susceptibility to gross errors. (Since none of these estimators

is defined to reject values on the basis of their magnitude as such, they

all have infinite rejection points.) However, the mean has one very strong

advantage at the Normal distribution, which is that its variance is so much

smaller, making it a much more efficient estimator than its more robust

counterparts.

As the emphasis in that last sentence indicates, this last advantage

is illusory if in fact the process generating data is not adequately modeled

using the Normal distribution. The use of a more robust estimator is then

a more secure choice for the inquirer who has assumed a statistical model

based on the Normal distribution, although for all she knows the process

might not be correctly described by a Normal distribution. The price paid

is that the less sharply distributed, but more more robust estimators will

in general lead to less precise estimates, making less efficient use of the

information in the data than one would if the Normal model were valid and

one used the mean as an estimator. The strategy is clearly a weakening one

in the sense that one draws a weaker conclusion (an estimate that results in a

larger interval for the same confidence level), but relies on what is implicitly

a “compound” or disjunctive premise: the conclusion is sound so long as

either the assumed model or an alternative that is “close” to it (in a sense

defined by the relevant robustness measure) is valid. The contrast between

weakening and strengthening will emerge more clearly as we turn in the next

section to an alternative strengthening strategy: rather than draw a weaker

conclusion that remains sound across a range of models of epistemically
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estimator qra σ2 γ∗ λ∗ ρ∗

mean − 1.00 ∞ 1.00 ∞
Hodges-Lehmannb + 1.047 1.77 1.41 ∞
median + 1.571 1.25 ∞ ∞
5% trimc + 1.026 1.83 1.11 ∞
10% trimd + 1.060 1.60 1.25 ∞

Table 1: Robustness properties of some common estimators at the Normal

distribution (based on Hampel 1974)
aqr = qualitative robustness
bmedian of pairwise means of observations
cmean after smallest/largest [.05n] observations are removed
dmean after smallest/largest [.10n] observations are removed

possible scenarios, focus on determining a statistically adequate model, and

then choose the optimal inferential strategy for that model.

A final note regarding these robustness notions. The basic strategy

employs models of error that incorporate their own assumptions. For exam-

ple, recall that Huber’s initial work on M-estimators used an error model

that assumed the contaminating distribution was symmetric, an assump-

tion unlikely to be exactly met in most applications. Of course, this was

an early attempt, and subsequent work by Huber and others has extended

the mathematical treatment of security to more general scenarios involving

much weaker assumptions. Nonetheless, the point remains that more defi-

nite statements regarding security can be made when one has more resources

for representing what one does not know.

5 Security through misspecification testing

As argued by Aris Spanos (2008), such robustness arguments suffer from two

disadvantages. The first is that just noted: applying the mathematical tools

of robustness theory typically requires considerable knowledge of the nature
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of the error in the original model, in particular the “form and structure of

potential misspecifications”. In the case where we lack such knowledge, those

tools are inapplicable and the tendency to invoke robustness nonetheless

leads to a “false sense of security” (ibid., 22). In the case we are able to

determine the nature of the problem, this will be precisely through some sort

of testing of the original model, just as advocated by the misspecification

testing ( M-S) approach, and the natural next step would be, not to use the

less efficient robust estimators, but to respecify the model and choose an

optimal estimator based on the new, statistically adequate model.

The second problem noted by Spanos is that both Huber’s minimax

approach and Hampel’s influence function approach are based on changes

in or distance measures applied to distributions as a whole – i.e., the as-

sumed vs. the actual distribution characterizing the asymptotic behavior

of estimators – when what is relevant to the evaluation of evidence in the

error-statistical setting is not the entire distribution, but rather the error

probabilities. Thus the basis for robustness assessment regarding claims

about error-statistical evidence should be the sensitivity of the error proba-

bilities to epistemically possible flaws in the assumed model.11

Thus, Spanos (1999; Mayo and Spanos 2004) argues that the appro-

priate strategy for addressing possible departures from assumed parametric

models is to carry out a systematic approach to testing those models (mis-

specification testing – M-S), replacing the model, if necessary, with one that

is more statistically adequately (model respecficiation).

A full explanation of the M-S testing approach would go beyond the
11Indeed, this is the way in which robustness often is considered when evaluating the

sensitivity of particular inferences to departures from model assumptions. Consider, for

example, G.E.P. Box’s (1953) demonstration that analysis of variance tests using Bartlett’s

modification of Neyman and Pearson’s L1 test that involve more than two variances are

very non-robust with regard to departures from Normality. The first table in the paper

shows, for various values of kurtosis, how the true probability of exceeding a nominal 0.05

significance level using Bartlett’s test statistic can vastly exceed 0.05, and the more so the

larger the number of variances being compared (Box 1953).
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aims of the present paper. My procedure here will be to discuss M-S testing

in general terms, with attention to its aims, and the theoretical appara-

tus it employs.12 The point I wish to emphasize is that M-S testing, like

the minimax and infinitesimal approaches to robustness, arises from the

need to address the security of evidence claims and their associated infer-

ences. Understanding the epistemological difficulty that M-S and robustness

theory aim to address will facilitate the evaluation of their quite different

approaches to the problem.

By its nature, M-S testing calls for testing outside of the original

parametric model. Indeed, because M-S aims to consider all possible distri-

butions as alternatives to that in the assumed model, it cannot proceed on

a fully parametric basis at all. As Spanos notes, “the implicit maintained

hypothesis [is] P, the set of all possible probability models,” including non-

parametric models (ibid., 733, emphasis in original). This poses a difficulty,

however. One might attempt to carry out a test of the assumed model by

treating it as a null that can be specified parametrically, thus defining a sub-

set Bθ ⊂ P, but given the absence of a parametrization of the alternative

P −Bθ, one seems to be forced into testing in an ad hoc and local manner,

with no framework for evaluating the power of such tests. The situation

seems to demand a Fisherian approach to testing in which the aim is really

to subject the null hypothesis to testing, but without the specification of

an alternative hypothesis (apart from the implicit alternative that the true

distribution lies within P−Bθ), thus leading one only to conclusions about

how compatible the data are with the null. Yet one would also like to be able

to systematize one’s search for possible departures from the assumed model

in a way that allows one to judge sensitivity of the test to such departures.

Spanos proposes to solve this difficulty by strategically employing a se-

ries of pseudo-Neyman-Pearson tests of the assumed model that situate that

model within an “encompassing” statistical model, not as a true Neyman-
12The discussion here follows closely that of Spanos (1999, 729–65).
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Pearson test, but as a kind of ansatz to allow for the kind of operationaliza-

tion of testing that a strict Fisher-type test does not allow. In other words,

rather than ad hoc scrutiny of single assumptions, Spanos’s M-S testing

approach uses techniques of data analysis (largely graphical) to look for

“specific directions of possible departures from the assumptions of the pos-

tulated model” (ibid., 763). Based on such information, one then postulates

a new model that includes the original model as a special (null) case, and

tests within the enlarged model for departures from that null. This allows

for the full parametrization of the M-S test, as required in Neyman-Pearson

approaches. Nonetheless, Spanos insists, these are not true Neyman-Pearson

tests because the context is one in which one is explicitly open to the pos-

sibility that the true model lies outside, not only the original postulated

model, but also outside the encompassing model. Moreover, the “basic ob-

jective” of M-S testing is that of Fisherian testing: “The significance level α,

interpreted in terms of what happens in the long run when the experiment

is repeated a large number of times, is irrelevant because the question the

modeler poses concerns the particular sample realization” (ibid., 764).

The statistical model in our example was the simple Normal model

and comprises probabilistic assumptions falling into three categories. Re-

garding distribution, the model assumes that random variables X1, . . . , Xn

are all Normally distributed. The dependence assumption is thatX1, . . . , Xn

are probabilistically Independent. Finally, the model assumption regard-

ing heterogeneity is that all random variables X1, . . . , Xn are Identically

Distributed (hence the abbreviation NIID). The aim of M-S would then

be to use the data in hand to test these assumptions against their alter-

natives: that X1, . . . , Xn are not Normally distributed, that some of them

are probabilistically dependent on others, that they are not all identically

distributed.

In the present case, then, the M-S testing approach of specifying an

encompassing statistical model that includes the original postulated model
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as a special case might lead one to replace the Independence assumption

with an assumption that allows for Markov dependence. Suppose that we

use notation f(x;θ) to denote a density function of random variable X with

parameters θ, that T is the “index set” used to represent the dimension

according to which the data are ordered, and that R is the Borel σ-field

generated by the real numbers R). Whereas the initial independence as-

sumption regarding {X} could be expressed in terms of the identity

f(x1, x2, . . . , xT ;φ) =
T∏
i=1

ft(xt;ψt) for all t ∈ T,

and all x := (x1, . . . , xT ) ∈ R, (6)

our new assumption would be that of Markov dependence:

fk(xk|xk−1, xk−2, . . . , x1;φk) = fk(xk|xk−1;ψk), k = 2, 3, . . . . (7)

Consistency then requires us also to replace the original heterogeneity as-

sumption of identical distribution with that of second-order stationarity. We

then have the following statistical generating model :

Xt = α0 + α1Xt−1 + ut, t ∈ T (8)

(here ut is the error term).

These modifications amount to the specification of an encompassing

model (the Normal autoregressive model) that allows one to carry out a

test of the hypothesis H0: that (X1, X2, . . . , XT ) are independent against

the alternative H1: that they are Markov dependent. In parametric terms

this is a matter of testing H0 : α1 = 0 against H1 : α1 6= 0. As Spanos

explains, the optimal test here is a t-test using an appropriately defined test

statistic (see appendix for details). Moreover, the Normal autoregressive

model can easily be extended to capture higher order Markov dependence,

thus allowing for an optimal test of the null against such alternatives by

means of the F-test (ibid., 757–60).
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This brings us naturally to the question of what to do with the results

of such tests. Although the mathematical apparatus is precisely that of

the Neyman-Pearson approach that is directed at underwriting the kind of

reliable indicator evidence claims at the heart of the ES approach, the aims

and interpretation of the tests are Fisherian, and some care is needed in the

interpretation of test outcomes.

A chief distinction between M-S testing and NP testing is the role

played by the statistical model. For an NP test, the statistical model must

be statistically adequate for it to guide the interpretation of test outcomes.

It is this feature that allows one to draw positive evidential conclusions both

in the case where the null hypothesis is accepted and in the case where it is

rejected, with regard to those hypotheses that are tested with high severity

(see Mayo and Spanos 2006). But the role of the statistical model in M-S

testing is different, as it serves only to allow for the development of tests that

potentially have high power in testing the null model (the assumed model

of the original inference) against alternatives in a particular direction. In

our example, we may have a t-test that tests the null model postulating

independence with potentially high power against alternatives postulating

some degree of Markov dependence. This high power is potential in the sense

that our determination of the power of the test relies on the encompassing

model, which in Fisherian mode we allow may be false.

Suppose, then, that the null model passes this test. We then can say

that, at least as far as the direction of departure from the null that is tested

with high power is concerned, we have evidence that the null model is not

deficient. This supports at least the provisional endorsement of the power

assessments of the M-S test. Our next step may be to consider other possible

directions of departure, by turning to our assumptions regarding dependence

or heterogeneity, for example, or by looking for higher order dependence. If

the null model passes such a series of M-S tests, then, insofar as we believe

that we have ruled out all of the relevant ways in which that model fails,
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we may also believe our power calculations for the M-S tests used, because

the null model is contained by all of its encompassing models. We may

in fact be in a position to say that we have reliable evidence, not only for

the hypothesis for which we claimed evidence in the original inference, but

also for the statistical model on which that original reliability assessment

depended. In this way, we have secured our original evidence claim by

strengthening the support for our original premises.

Things look rather different if the null model fails this M-S test. In an

NP test, data that leads to the rejection of the null hypothesis can potentially

be interpreted as evidence supporting the alternative, or some subset of the

alternative in the case of a compound alternative. In M-S testing, this is

not the case. In the absence of support for the null model, the adequacy

of the encompassing model is also called into question. Thus, rejecting the

null in an M-S test that was designed to have power against alternatives

in a particular direction “simply points the direction one should search for

a better model” (Spanos, personal communication). Such information is

useful for purposes of respecifying the assumed model. The methodology of

respecification goes beyond the scope of the present paper. For our purposes

it suffices to note that any such respecified model will itself need to be tested

before it can be securely employed.

The contrast with the Huber/Hampel approach can now be seen quite

clearly, if we consider the situation of the researcher who seeks to draw infer-

ences from a body of data using some statistical model. Supposing an initial

model to be postulated, perhaps on the basis of a combination of plausibil-

ity and convenience considerations, the researcher is then faced with the

problem that, for all she knows, that model might well be wrong. The

Huber/Hampel approach would have her consider a range of epistemically

possible error scenarios in which the postulated model is wrong, and then

seek an estimator or test statistic that would allow her to draw weaker evi-

dential conclusions that would remain sound across that range, as opposed
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to the stronger (but possibly false) conclusions that could be drawn using a

procedure that is optimal for the postulated model. The M-S approach, by

contrast, would advise the researcher to subject the posulated model to a

series of tests against epistemically possible errors in particular directions.

Such testing would lead either to the validation of the postulated model,

or to the respecification of the posulated model, whereupon the M-S proce-

dure would be reiterated, until at length a model would be specified that

would withstand and be validated by such testing. By thus strengthening

the support for the model employed, one would be in a position to derive

the strongest possible conclusion from the data compatible with one’s own

reliability standards.

However one views the relative merits of Huber/Hampel robustness

theory vs. the M-S tesing approach, it is clear that the context for both

belongs to the stage of inquiry in which one is engaged, not in the use of

a reliable inferential process, but in the scrutiny, relative to one’s epistemic

situation, of the possible modes of error for the assessment of such a process’s

reliability. For an advocate of the ES theory of evidence, which employs re-

liability as the core objective and unrelativized notion behind the evidential

relationship, either approach could be used to enhance security as a mode

of evidential assessment that is relativized to epistemic situation. Thus,

both the application of robustness theory and the M-S testing methodol-

ogy belong to that stage of inquiry that is sometimes referred to as “model

criticism,” which can be described in terms of a shift of perspective on the

part of the investigator from “tentative sponsor to tentative critic” (Box

and Tiao 1973, 8). In neither approach discussed here is model criticism

carried out blindly, but rather rests upon a prior reflection on what is and

is not known about the possible sources and modes of error in an initial set

of assumptions.

28



6 What next?

It should be clear by now that the most pressing problem for any attempt

to theorize systematically about security is the relevance problem: When

making an evidence claim, an agent need not worry equally about all the

ways in which she might err. There are possibilities of error, after all, that

are quite remote, and as Peirce pointed out long ago, the mere possibility

of error is not by itself grounds for genuine doubt.13 A sensible approach to

evaluating the security of evidence claims would seem to call for some sort

of ranking of which scenarios most demand scrutiny.

Here it must be acknowledged that the Bayesian enjoys an advantage.

The Bayesian apparatus comes equipped already with a measure over a set

of propositions, and isn’t that just what is needed?

Before proceeding to take up this question, let me hasten to note

that I do not propose here to consider the merits of an overall Bayesian

approach to scientific evidence. From the outset this discussion has been

concerned with articulating a more complete epistemological understanding

of ES evidence and how it is evaluated. Not only is the Bayesian account

(whether subjective or objective) not compatible with ES account, it is not

any kind of reliable indicator view of evidence, in the frequentist sense of

reliability here considered.

So the question for the present discussion is really whether an advocate

of an ES view of evidence should adopt a supplementary Bayesian framework

for the evaluation of evidence claims from the perspective of the epistemic

agent, as called for in section two?

Here there are two routes one might contemplate: the subjective or

the objective understanding of Bayesian probability. The first does such
13Indeed, it is important to note that a policy of withholding evidence claims unless

all possible ways of going wrong have been eliminated would introduce a new form of

unreliability : one would, with probability one, fail to infer a correct hypothesis from any

data, no matter how compelling (see Mayo 1996; Staley 2008).
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conceptual violence to the ES framework that is our starting point, that an

ES advocate should reject it outright. The latter, objective approach, might

be made compatible with the ES approach, if confined to this secondary

evaluative role, but brings along its own foundational difficulties.

The subjective Bayesian approach would presumably be to weight

the error-scenarios according to the agent’s personal probabilities for those

scenarios. Suppose that investigator S makes an evidence claim on the

basis that a particular hypothesis H has passed a severe test. On this

view, such a claim would be justified for S, even in the absence of any

testing of the assumed model of the test, and even though that model made

rather strong and possibly false assumptions, simply on the grounds that S

attaches only a negligible degree of belief to any of the scenarios in which the

assumed model is false. This should have little appeal for the ES advocate

who holds the truth conditions for evidence claims to be objective matters

of fact independent of belief, since it juxtaposes a strongly objective view

of the content of evidence claims with a strongly subjective view of their

justification. By contrast, the security concept here advocated, although

it is relativized to an epistemic situation, is nonetheless objective insofar

as what is epistemically possible relative to an epistemic situation is an

objective matter, at least in the sense of depending on what an epistemic

agent knows. (Here I do assume that there is more to knowing than simply

believing very strongly. At a minimum, to know that p requires that p is

true.)

Turning to objective versions of Bayesianism, things look rather dif-

ferent. Indeed, beyond just compatibility, there might even seem to be a

family resemblance between security and logical probability. Just as an evi-

dence claim is secure to the extent that it is true over all the scenarios that

are possible relative to an epistemic situation, logical probability has often

been framed in terms of the satisfaction of a formula by a class of models

consistent with a certain body of background knowledge. Thus one might
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entertain a kind of two-probability approach like Carnap’s (1962) in order

to rank those scenarios that are “most compatible” with a given epistemic

situation.

This challenge raises problems that cannot be satisfactorily addressed

in a brief discussion. Let me for now simply observe that, whatever the

advantages of such approach, it amounts to a multiplication of foundational

challenges, insofar as one adds the notorious problems of fixing a prior dis-

tribution, determining a likelihood for the catchall, etc., to whatever concep-

tual problems might be raised for frequentists. It is hard enough to defend

one interpretation of probability!

Better, then, to follow the examples of the model criticism approaches

surveyed here. One can, like the robustness theorists, try to “break off” par-

ticular categories of error-scenarios that can be represented in way that al-

lows them to be treated more or less rigorously. One can furthermore, as the

M-S approach advises, extend frequentist modes of testing to those modes

of insecurity that relate directly to the assumptions (involving distributions,

independence, and homogeneity) that define statistical models.

However, let us not stop there. Robust statistics emphasizes the read-

ily quantifiable aspects of security appraisal. As important as this is, investi-

gators also must, and often do, reflect on possible errors that are not readily

quantifiable in this way. Furthermore, possibilities of error that cannot be

approached quantitatively may nevertheless be approached systematically.

Returning to Deborah Mayo’s Error and the Growth of Knowledge, she there

called for the articulation of “canonical models of error” (Mayo 1996, e.g.,

450–51). By now we have seen how, in addition the canonical parametric

models so commonly used in statistical data analysis, robustness theorists

introduced additional canonical models of how those models might be vio-

lated, to facilitate the investigation of the behavior (whether asymptotic or

finite) of various estimators.

But just as there are qualitative, “informal” approaches to testing a
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hypothesis reliably (as when we give our students a test that it would be

hard for them to pass if they did not know the material), so there are ways

to secure our conclusions from severe tests that are not readily modeled in

a mathematical framework (such as when we space out their desks, thus se-

curing our estimate of the severity of the test based on its difficulty against

defeat due to cheating). To advance the cause of such informal, qualitative

efforts at securing our evidence claims, it may be less important to develop

sophisticated mathematical theories, and more important to reflect, as ex-

perimentalists have always done, on a kind of typology of causes of error

in different kinds of experimental undertakings. This kind of enterprise has

been joined by a handful of philosophers, pursuing various philosophical

agendas. A concern with the security of evidence might provide a setting in

which the work of various philosophers of science who have not embraced

error-statistics can be seen as nonetheless contributing to it (see, e.g., Hon

1998; 2003; Franklin 1986; 2002; Schickore 2005, among others).

However, for such categorization to constitute a real advance, I pro-

pose that we not rest content with compiling a kind of catalogue of types

of errors – rather the goal should be render such a catalogue useful for the

planning of experiment and the appraisal of experimental evidence. As in

the example of robustness theory, this requires that we not merely consider

the causes of error, but also its effects, and that we seek to draw general

conclusions about those.

7 Appendix

7.1 The weak topology and distance measures

Suppose that Ω denotes a topological space (i.e., a set on which a function d

is defined such that for any two points in Ω the four conditions on a distance

function given above are satisfied) that is complete (every Cauchy sequence

in Ω is convergent) and separable (Ω has a dense countable subset), and
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that B is the Borel-σ-algebra on Ω (i.e., the σ-algebra generated by the

open subsets of Ω). Let M be the space of all probability measures on

(Ω,B).

Supposing that F and G are distribution functions, the Lévy distance

between F and G is defined to be

dL(F,G) ≡ inf{ε|∀xF (x− ε)− ε ≤ G(x) ≤ F (x+ ε) + ε}. (9)

Next, suppose that F and G are two probability measures in M . The

Prohorov distance between F and G is defined to be

dP (F,G) = inf{ε > 0|F{A} ≤ g{Aε + εforallA ∈ B}. (10)

Here Aε is the closed ε-neighborhood of subset A ⊂ Ω, defined as

Aε ≡ {x ∈ Ω| inf
y∈A

d(x, y) ≤ ε}. (11)

Finally, suppose that the distance function d in Ω is bounded by 1 (other-

wise, replace d with d′ = d(x, y)/[1 + d(x, y)] to obtain a distance function

so bounded). Then consider the class Ψ of all functions ψ satisfying the

Lipschitz condition: |ψ(x) − ψ(y)| ≤ d(x, y). The bounded Lipschitz metric

is then defined as:

dBL(F,G) = sup
ψ∈Ψ

|
∫
ψdF −

∫
ψdG|. (12)

7.2 Definitions of IF-related concepts and breakdown point

Suppose that T is an estimator and F a distribution. Then the gross-error

sensitivity for (T, F ) is defined as:

γ∗(T, F ) = sup
x
|IFT,F (x)| (13)

The local-shift sensitivity for (T, F ) is defined as:

λ∗(T, F ) = sup
x 6=y

|IFT,F (y)− IFT,F (x)|/|y − x| (14)
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Finally, the rejection point for (T, F ) is defined as:

ρ∗(T, F ) = inf{r > 0; IFT,F (x) = 0 when |x| > r} (15)

Suppose that F and G are distributions in sample space X , {Tn} is

a sequence of estimators, and Θ is a parameter space (e.g., the real number

line R). Then the breakdown point ε∗ of {Tn} at F is defined as:

ε∗ ≡ sup{ε ≤ 1; there is a compact set Kε $ Θ such that

dP (F,G) < ε implies G({Tn ∈ Kε})
n→∞→ 1}. (16)

Here dP (F,G) is the Prohorov distance between the distributions F and G.

A finite-sample definition of the breakdown point involving no reference to

probability distributions was introduced by Donoho and Huber (1983; see

also Rousseeuw and Leroy 2003, 9-12). It is worth noting that an advantage

of the breakdown point over the influence function is that it is defined for

all estimators, whereas the IF is not.

7.3 The Normal autoregressive model and testing indepen-

dence

As noted above, the optimal test of independence against Markov depen-

dence within the Normal autoregressive model is a t-test. The test statistic

for such a test is defined as τ(X) =
√
T (α̂1)
s , where α̂1 =

PT
t=1(Xt−X̄)(Xt−1−X̄)PT

t=1(Xt−1−X̄)2
,

s2 = 1
T−2

∑T
t=1(Xt − α̂0 − α̂1Xt−1)2, α̂0 = X̄ − α̂1X̄−1, X̄ = 1

T

∑T
t=1Xt,

and X̄−1 = 1
T−1

∑T−1
t=1 Xt. Under the null hypothesis, the quantity τ(X) is

asymptotically approximated by Student’s t-distribution with n− 2 degrees

of freedom.
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