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Abstract

‘We present some recent results concerning the identification of the modular
structure of von Neumann algebras with spacetime symmetries within the
framework of the algebraic formulation of conformal quantum field theory in
2 dimensions. We discuss the localization properties of a new class of KMS-
states invariant under representations of the Moebius group generated by
higher modes of the Virasoro algebra and show that the usual formulation of
locality within the algebraic approach fails in this setting. This can either be
circumvented by modifying the notion of spacelike separation or by starting
out with multilocalized von Neumann algebras. We argue that this violation
of the locality condition is closely connected to the KMS-states not being
faithful on the algebra.
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1 Introduction

The connection between the mathematical structure of modular theory on von
Neumann algebras and quantum physics was established in the mid-seventies and
has proven to be the basis of many new concepts in QFT, e.g. the thermal as-
pects of QFT and the formulation of equilibrium quantum statistical mechanics
by Haag, Hugenholz and Winnink. Another important aspect was first realized by
Bisognano and Wichmann. They were able to re-identify the modular operator as
the generator of the Lorentz boosts for the algebra generated by fields restricted
to the wedge region. Recent works of Schroer and Wiesbrock have shown that this
is a rewarding ansatz especially in chiral conformal field theories in 2 dimensions.
The modular group of chiral nets turns out to be the automorphism group of dila-
tions, which is part of the Moebius group, the conformal extension of the Poincaré
group in two dimensions.

On the other hand the notion of locality is at the conceptual and therefore
mathematical basis of the algebraic approach to Quantum Field Theory, in which
the results above are accessible. It implies a certain degree of independence to
objects located at spacelike distances. This is usually encoded by the requirement
that algebras that are spacelike separated must commute. But various formula-
tions of this idea have been discussed, e.g. strict locality, Haag Duality or the
Schlieder property. Although all of them are expressing more or less the same
physical content, the relations between these formulations is (in some cases) far
from being clear. In addition the analysis of the locality condition in algebraic
quantum theory is further complicated since other assumptions like causality or
relativistic covariance import more ”local” structure into the theory.

In this report we shortly present the idea of the modular structure for the
higher Virasoro modes generating the Moebius group. It appears that in the set-
ting of a chiral theory invariant under transformations generated by the higher
Virasoro modes the naive locality condition cannot be applied to this situation,
simply because spacelike separated algebras do not necessarily commute. The
physical interpretation of this situation is not an easy task. We argue that one
is forced to adopt either a modified notion of spacelike separation or regard what
we call multilocalized algebras, i.e. algebras with localization in different, dis-
connected regions of spacetime as the fundamental building blocks of the theory.
While the first solution appears to be rather ad hoc and matched just to the ge-
ometrical situation at hand, the ansatz with multilocalized algebras has another
important drawback. The states associated to the multilocalized algebras are no
longer faithful states. What first appeared to be a technical detail turned out to
be closely connected to the violation of locality, since the attempt to restore the
faithfulness of the states by restricting the algebra leads to a situation where the
locality problem is no longer present. This may also support the widespread belief
that all physically ”sensible” states are faithful states. But either way one is left
with a puzzling "non-local” picture of this situation. We hope that the investiga-
tion of localization properties sheds new light on the interpretation of the locality
condition of the algebraic approach to quantum field theory.



This report is organized as follows: In the next section we briefly review the
algebraic approach to QFT, modular theory and the KMS property. We present
the model of a chiral conformal net and discuss the identification of the dilation
group as the modular group of the theory in section 3. In section 4 this ansatz is
generalized to the higher modes of the Virasoro algebra in the compact geometric
setting of the unit circle. We show that the usual locality condition is violated and
discuss the two alternative solutions. We end this article by connecting the locality
problem to the non-faithfullness of the states on the multilocalized algebras.

2 Algebraic QFT and Modular Structure

In this section we would like to remind the reader of the basic definitions and
structure of the algebraic approach to quantum field theory3. We present briefly
the connection between the modular theory of von Neumann algebras developed
mainly by M. Takesaki and algebraic field theory given by the Kubo-Martin-
Schwinger (KMS) condition.

2.1 The algebraic approach to QFT

The basic entities in the algebraic approach* are C*-algebras A or von Neumann
algebras A and states w i.e. linear, positive, normalized functionals on the alge-
bras®. These algebras are associated to spacetime regions (), which localizes the
algebras and enables a physical interpretation in terms of observables. Heuristi-
cally, the algebra N (O) contains the bounded fields ¢(f) and ¢*(f) with f being a
test function with support in O with the consequence that multiplication of fields
is well defined. Hence the following mapping is of fundamental interest:

O — N (0)

with O being open, bounded regions of Minkowski spacetime M. The causal
complement of a spacetime region O is the set of all points that are spacelike
separated from O and is denoted by O'. The commutant N’ of an algebra N
is defined as the set of all elements that commute with all other elements of the
algebra8. The basic assumptions of the algebraic approach can be summarized as
follows”:

e Isotony: O; C O3 = N(01) C N(0s)
This condition defines the algebraic structure of a net on N (0;). An un-
bounded region may also be taken into account, since the inductive limit
of a sequence of monotonously expanding, bounded regions exists. The von

3For a very recent review of the current state of algebraic QFT see [8].

4Cf. for detailed exposition [20, 21, 22].

5For the sake of convenience we will proceed with von Neumann algebras only.

6ACB(H), A :={BcB(H)| AB= BAVYA ¢ A}, B(H) is the set of all bounded operators
on the Hilbert space H.

"For a discussion of various formulations of the axioms of AQFT see [1].



Neumann algebra N (M) associated to Minkowski spacetime is called the
global algebra.

° Locality: O1 C Ozl = [N(Ol),N(Oz)] =0
This in the first place enables compatibility of observables measured at a
spacelike distance.

e Causality: For any family of regions O; with (J; 0;)’ = 0, one has

N(J o) =N (M).

This condition states that the quantities describing the system propagate
causally and their values at any initial time moment determine the values at
any other time.

e Covariance: There is a representation of the symmetry group P(e.g. Poincaré
group, conformal group) with automorphisms o, on the net such that

VgeP:a,(N(0)) =N (g0).

Note that these conditions of the algebraic approach in contrast to the Wightman
axioms mention neither a vacuum vector nor a Hilbert space. The Hilbert space is
reconstructed from the algebra and a state on this algebra via the famous Gelfand-
Naimark-Segal (GNS) construction.

Yet, generally one extends for physical reasons the purely algebraic assumptions
above by an analytic stability condition, i.e. a so-called spectrum condition. It is
assumed that there exists a so-called particle representation, i.e. a non-degenerate
representation 7 of the algebra A (O) on a Hilbert space, with an implementation
of the automorphism «, by continuous unitary operators:

Ur(9)m (AU (9)" = m(ay(4)).
The stability of the theory is now guaranteed by the

e Spectrum condition: The spectrum of the generator P, of the translations
U (gz) is contained in the closed forward light cone V.

Furthermore the physical vacuum enters this approach by the assumption of the
existence of a state on the net which is invariant under the symmetry group P.
Via the GNS-construction a vacuum representation, i.e. a particle representation
containing a vector state invariant under the unitary representation of the sym-
metry group can be constructed.

We would like to add the following definitions that will become useful later on in
the text [22]:

A state is called faithful if and only if (iff) it is strictly positive on the (closure of
the) convex cone of positive elements of the Algebra.

VAe Ay :w(A) >0



A vector |¢) € H is called separating iff
VAe A: Alp)=0=> A =0.

The vector representation of a faithful state is separating and vice versa.
Given a C*-algebra A, one is able to construct a von Neumann algebra N by
taking the double commutant:

N = ((A)) = A".

2.2 Modular Theory and the KMS-property

Consider a von Neumann algebra A in standard form which means that A" acts
on a Hilbert space H with a cyclic and separating vector |Q2). Then due to the
famous Tomita-Takesaki-Theorem?® one can associate a unique modular structure
(A, J) with the tuple (N, |Q)).

N, 19)) «— (A, )

With A being a self adjoint, positive operator and J a usually antiunitary conju-
gation. The operators A and J have the following properties:

Al = [9) JI9) =2
JNIT = N
ANATE = N
ATNTATH = N, teR. (1)

A defines an one-parameter unitary group on A/, the modular group which maps
the von Neumann algebra A/ and its commutant N’ onto itself, while the Tomita-
conjugation J maps the algebra onto its commutant. Since the present work is
solely dedicated to the geometrical interpretation of A% we will not investigate the
properties of the Tomita-conjugation J any further. So to put it in short terms, the
main result is that given a von Neumann algebra in standard form one is able to
identify an automorphism group A% on this algebra. In the context of algebraic
field theory the question naturally arises if there is a physical interpretation of
this mathematical structure in terms of symmetry operations [7]. A first partial
result in this direction was derived by Bisognano and Wichmann [5]. They were
able to show that under certain circumstances? the modular structure of the von
Neumann algebra of Wightman fields'® localized in the (left or right-)wedge of
Minkowski spacetime M can roughly be identified with the Lorentz boost in the
1-direction and the CPT operator:

A% = U(Aw(-27t))
J = U(R;)Ocpr. (2)

8For a detailed exposition see e.g. [21, 22].

9See e.g. in [6] for a nice exposition of this point.

AN (W) = AW)", A is the algebra of Wightman fields localized in the wedge
W= {z € M| z! > |z°|}.




Starting with a von Neumann algebra and a state on it, another step in this enter-
prise was to realize that a symmetry operation by a one-parameter automorphism
group on the von Neumann algebra could be re-identified as the unigue modular
structure essentially by showing that the state fulfills the Kubo-Martin-Schwinger
(KMS) condition for this automorphism group [20]. Hence, the KMS condition
works as a “hinge” between the modular group and the symmetry group of the
theory. The KMS condition is a generalization of the characterization of Gibbs
equilibrium states for systems with infinite degrees of freedom [16, 21]. Given a
von Neumann algebra N and a one-parameter automorphism group (7,t € R)
acting on this algebra, a state w is a ™-KMS state for § € R, iff the following is
true:

w(Arig(B)) =w(BA) VA,BeN. (3)

If this condition holds for 8 = 1 and w is faithful and normal on A/, then the
automorphism group 7; is the unique modular group of (N ,w) [22].

This connection has mainly been studied in the setting of the algebraic approach
to two dimensional chiral conformal field theory, i.e. chiral conformal nets. We
will come back to this point in section 3.3.

3 Chiral Conformal Nets

In the following section we introduce two dimensional conformal field theory
(CFT) in the geometric setting of a compact picture S' x S' and its symme-
try group, the so-called Moebius group. The definition of a chiral CFT; in the
aforementioned frame of algebraic QFT, i.e. the chiral conformal net, is stated.
As an example and working model the U (1)-chiral-current-algebra on the circle St
is presented. We end with the Bisognano-Wichmann property for chiral conformal
nets, and the geometric identification of the associated modular structure for the
U(1)-model in the vacuum sector via the KMS-property.

3.1 Chiral Conformal Field Theory in 2 dimensions

Conformal Field Theory in two dimensions (CFTz) [19] provides a well-suited
realm for algebraic quantum field theory [3], especially for problems concerning
the geometric identification of the modular structure [5, 7].

Two dimensional Minkowskian C'FT, may be represented on the product of two
circles, S' x S'-spacetime (the ”compact-picture”). The global symmetry group
of the CFT5, is the Moebius-group PSU(1,1) x PSU(1,1). In CFT, there are so-
called chiral fields invariant under lightlike translations. The corresponding theory
of chiral fields may be considered as localized on one circle only. We will therefore
concentrate on one of the groups:

PSU(1,1) := SU(1,1)/{*1},

SU(,1) = {(; g)

aaﬂe(ca |O‘|2 _|ﬁ|2= 1}7




which is the conformal extension of the Poincaré group in 1 + 1 dimensions [12].
As an example the Lorentz-boosts reduce to the form:
_ [ ch(2nt) sh(2nt)

A2mt) = (sh(?wt) ch(2nt) ) (4)

One may equivalently present the CFT5 on a product of lines, R x R-spacetime
(the ”non-compact-picture”). The coordinate transformation from the circle to
the line is provided by the stereographic projection (Cayley-transformation) [9]:

R

! |

0 X(2)

The global symmetry group PSU(1,1) maps under this projection isomorphically
onto the real group PSL(2,R) [9]:

axr+b

T @)= oy

ad—bc=1,z€eR
On the lightcone elements Ly = {z4 := ¢ & 71| (¥, 71) € R'T!} these boosts
become scaling transformations, i.e. dilations (7) :

(Z(l’) = A(2t) (i;’) (5)

vo+uyr) _ [ 0 zo+x1\ _ [ €™z + 11)
:(yl—yo)_< 0 et ) \wg—21) = \er(mo—m) ) ©

Therefore, of special interest is the one-parameter group of dilations which have
the following form:

Dil(t)z = e~ >z, z,t € R, Dil(t) € PSL(2,R). (7)

On the real line the dilations are scaling transformations and are easy to handle.
These mappings leave the points {0,00} € R ({1,—1} € S!) invariant. Therefore
the upper and lower semicircle, S}r respectively S1 (R, ,R ), are mapped by
dilations onto themselves. One of the peculiar features of the conformal symmetry
is that the dilation-group may be attached to an arbitrary, proper interval Z C S*.
This dilation has the limit points of the interval 7 as fixpoints. It can be construed
as follows:

Dilz(t) := g; ' Dil(t)gz, gz,Dilz € PSU(1,1), gz7=S}. (8)



The interval 7 is mapped bijectively to the upper semicircle, dilated and mapped
back. This is illustrated by the following diagram:

Di
7Dz o

o

1 1
St Dil St

The spectrum generating algebra of reparametrizations of the circle is generated

by the Virasoro algebra (with central charge c¢) £.:

i(n3 = N)0ntm,0, T E L. 9)

[Lp, L] = (n—m)Lpym + D

The group PSU(1,1) is globally well-defined on the circle and has the underlying
generators L_1, Lo, Ly, fulfilling a sl(2, C)-algebra:

[L1,L_1] =2Lg, [Lii1,Lo] ==+L4;. (10)

But the Virasoro algebra £, contains an infinite number of sl(2, C)-algebras, gen-
erated by the modes L_,,, Lo, L,, n > 1:

pl faee. o

L ,—L_,:= %L,n
~ 2
Lo~ {,0 ::%L0+i(nn_1) {
L+n — L_;,_n = %L.‘rn

The corresponding finite transformations leaving the unit-circle S! invariant are

of the form: )
az™ n
gn(2) = (,aniig) , (; g) € PSU(1,1). (12)
It is slightly more cumbersome to handle the transformations analogue to (12) in
the non-compact picture [2]. For this reason we perform the calculations in the
compact picture representation. It will, however, be instructive to discuss aspects
of localization (see section 4.2) in the non-compact picture representation.

The definition of chiral CFT, within the algebraic approach is the following [14].
Spacetime regions reduce to proper intervals on the unitcircle. Let J be the set of
proper intervals on S'. The net may be characterized by indexed von Neumann
algebras J 3 T — N(Z) C B(Ho) on some Hilbert space Hg containing a unique
ground state vector |2). Isotony (now for intervals) and the spectrum condition are
the same way as before. The theory contains a continuous unitary representation
U, of the Moebius group g € PSU(1,1) on Hy. Every U, invariant vector in Hg
is a multiple of |2). A comparison of the locality condition with the one given in
section 2 shows that spacelike separation is expressed by disjoint intervals on the
circle [12, 10].

[ LOC&lity: 11,2 S 3, NI =9 => [N(Il),N(IQ)] =0.



3.2 The Weyl algebra of U(1)-currents on the circle S*

For the following discussion we would like to introduce the algebra of exponentials
of the smeared U(1)-current-algebra on the circle as a model for a chiral conformal
net [10]. The U(1)-currents J(z) on the circle S are the product of a Fermi field
with its complex conjugated at one point z € S'. The constituting relation of
the U(1)-algebra is the current-current commutation-relation (with the circle as
base-space):

[J(2),J(w)] = —8:6(z — w).

In order to bring the algebraic ansatz to the stage one has to smear the U(1)-
currents with real smooth testfunctions on the circle:

1= [ 521@I6)

The bounded operators W (f) := e*/(¥) fulfill the Weyl-relations:

W) =w(=/) (13)

W(HW(g) = e 27 FOW(f +g), (14)

o(f,9) = [ f—ﬁi f(2)g'(2) being a symplectic 2-form on the testfunction space
S(S1). These operators give rise to a von Neumann algebra via the double com-
mutant:

W(T) = {W(f) supp(f) €T C sl} , (15)

which is called (local) Weyl-algebra [10, 21]. The net of Weyl-algebras

I W), ITcst

fulfills the postulates of algebraic quantum field theory, i.e it forms a chiral confor-
mal net with respect to the vacuum state |Q). In particular the locality property
transfers from the (unbounded) U(1)-currents J(f) to the bounded Weyl-operators
W(f) [15] i.e. a Weyl element is localized in the region where its testfunction is
non-zero.

3.3 Bisognano-Wichmann property for chiral nets

It was shown!! that for arbitrary chiral conformal nets the representation of the
one-parameter group of dilations (8) gives (a geometric realization of) the unique
modular group {A¥; t € R} associated to the standard tuple (NV(Z),|Q)). It is a
peculiarity of chiral C'F'T» that arbitrary intervals can be mapped onto the upper
(or lower) semicircle and thereby allow to identify the modular group of algebras
localized in these regions with the above constructed dilations (8).

In the case of the net of Weyl-algebras (15) one can verify the identification of the

1See e.g. [14].



modular group with the dilation subgroup explicitly with the help of the relation
between the modular structure and the KMS-property. The vacuum expectation
values of Weyl-operators obey the KMS-condition with respect to (the represen-
tation of) the one-parameter group of dilations (8) [17]:

<Q|W(f) UDilz(t) [W(Q)HQ) = <Q|UDil1(t+i) [W(Q)] W(f)|Q), (16)

W(f), W(g) € W(T), B =1. In the case of the vacuum state this is a necessary
and sufficient condition to identify uniquely the one-parameter group of dilations
as the modular group [22] mentioned above.

4 Modular Origin of higher Virasoro-Modes

In this section we present briefly the Schroer and Wiesbrock ansatz [2] giving a
modular interpretation for all sl(2,C) algebras generated by the (modified) Vira-
soro modes Ly 0, n (11) within the U(1)-model. This result is based mainly on the
construction of a new class of KMS-states invariant under the group generated by
the modes f/n,O,—n (12). The localization properties of these states are investigated
and analyzed with respect to the general algebraic setting of conformal nets.

4.1 New KMS-states by Schroer and Wiesbrock

For the U(1)-model one can construct a state |(2,,), invariant under transformations
of the form (for n € N):

gn(2) = (gi:%i) %, (% g) € PSU(1,1) (17)

by a simple reparametrization of the unit-circle S* C C in terms of the conformal
mapping S' 3 z — 2", n € N. The case n = 1 reproduces the situation discussed
in section 3.

The correlation functions are defined in the following way:

(@l [ 7G0)12) = [ ne= @ T TG)9). (18)

Using the Moebius-invariance of the vacuum |Q2) one can show the invariance of
|2,) under transformations of the form (17)'2. For the sake of simplicity we choose
n = 2 for the rest of this paper.

It is easy to see that the transformation 22 maps both intervals Z;, i = 1,2 to the
upper semicircle.

12This is true for general conformal fields [11].

10



2
T, 5 7T,i=1,2,
71 T

I
i.e. either interval Z;, ¢ = 1,2 is part of the image of the square root of the upper
semicircle, (S1)? = Z; UZ,.
Hence, the Weyl-algebras W(Z;) and W(Z,) are both mapped to the Weyl-algebra
localized on the upper semicircle:

(W (f) W(9)|Q) :==(QW (fy) W(gp)IQ), W(f), W(g) e W(Z), i = 1,(2- |
19
This reads for the localized currents:

(2] J(f) J(9)[22) = (2T (f3) J(g3)[D) (20)

with f; (2) := f((2)?7), supp(fy) C S%. Testfunctions localized in either Z; or T
are transformed into testfunctions with support in S_l|r (this, of course, is true for
general intervals 7)'3.

The modified dilations in (17) act in the following way:

Dil, ;3 (t) (2) (Dilz(t) (2)2)%

1
= (g7 Dil(t) 97 (2)?)* . (21)
This again can be illustrated by the following diagram:
Dil2 71
I3 ’ ~72
ORW . o)
D’le
7
9z l ‘[gz_ '
1 1 22
S} —5— St (22)

Tz stands for either interval Z;, i = 1,2 and 7 is an arbitrary proper interval on
S'. One can check that the Weyl-algebras W(Z;) and W(Z,) are both invariant

130ne should mention here that for defining the Weyl-algebras with respect to the state |Q2),
one has to use a modified symplectic 2-form here with regard to the modified 2-point functions
of the currents in (20).

11



under Dilg’zé (t).

The K M S-property for the state |Q22)
AW () Upa_, W @IS (lUpa 0o W @I W) (23)

transfers directly from the KMS-property of the vacuum using equation (19):

QW (f1) Upite (0 [W (9)1192) "= (Uit 44y [W (93)] W (£3)]92).- (24)

The KMS-property implies the faithfulness of the state defined by |Q2) on either
algebra W(Z;), i = 1,2 [22]:

w2 (W (£)) := (2| W(f)[22)

and therefore identifies the modified dilation group Dil, 1 (t) with the modular
group for both standard tuples (W(Z;), |Q2)), i =1, 2.

4.2 Localization properties

The locality condition for chiral conformal nets which we presented in section 3.1
is:
TiNI, =2 = [NT),N(I)] =0, (25)

because the criteria of spacelike separation is expressed by disjoint intervals on
the circle. This seemingly natural condition does not hold in the setting described
above. Consider the special case that the currents are localized in the first and
third quarter circle, i.e. supp(f) C Z; respectively supp(g) C Zo. Hence, they lie
in disjoint regions of S and therefore one should expect the left hand side of
equation (26) to vanish. But by an explicit calculation one finds that the right
hand side of this expression can still be nonzero:

(@[T, T(@)]1:2) E (QII(f3), T(g2)]10)- (26)

This is due to the fact that the supports of the transformed testfunctions lying in
the upper semicircle may have a nonzero overlap.
T1 z

192)=/)

T
Note, however, that it is in general only required that the testfunctions have

a non-zero overlap. Their domain still need not be identical. This shows that
the local commutativity condition as defined above fails for the |[22) state since
disjoint intervals may get connected in a non-local fashion by this state. But the
above example implicitly contains a way how the usual locality condition has to be
modified. In terms of localized algebras the following modified locality condition
for the case of n > 1 may be defined by:

12



e Locality: ~ B
Let A(Z), A(Z) be algebras localized in the interval Z C S and Z C St,
respectively. Locality with respect to the state |2,,), n > 1 € N is expressed
by:

1)INZ =@ and y
2V, ez : arg(z) - arg(w) # 0 mod(2) = [A@,AD)] =0. (1)
weET

So spacelike separation in a theory with the modified Moebius group (17) as its
symmetry is expressed by disjoint intervals modulo 27/n. In the non-compact
representation this modification is also taking care of the dependencies between
disjoint intervals introduced by the new KMS-states but its geometrical inter-
pretation is distorted by the Cayley-transformation and becomes less intuitive.
Nevertheless it manages to circumvent the locality problem described above for
both geometrical settings, since the chosen intervals Z; » (26) in the presented
example are exactly those that are interdependent with respect to the new state
|Q22), and therefore do not agree with the modification 2) in (27).

The following example serves to illustrate the mutual dependence of spacelike
separated disconnected spacetime regions in the more intuitive 2d non-compact
picture R x R. We again set n = 2. The regions O, © = u,d,l,r (see below)
of localization of the field algebras A(O,) generate an interesting “tilling” of the
minkowskian plane shown below.

% 0480 AN g+
1 1 L/ %9,
r
Si'l—) O
T

N '
Oa G- -

The intervals 7;, Zo and fl, 7, are the localization regions on R x R, i.e. the
lightcones. The mappings I'(z), T~!(z), z € R correspond on each sector to
the complex mappings 22, 2% respectively. Region O is the image of the regions
Oy, © = u,d,l,r under the map I" x I'. It can now be seen that algebras localized
in the regions O, and O, which lie in each others causal complement (in the sense
of minkowskian geometry), get interdependent when mapped onto the region O.
Exactly this happens in equation (18) defining the geometrical state |{2,) (when
extended to both sectors). This non-local feature of the new (KMS-) states made
a modification of the locality condition necessary.

13



4.3 Multilocalized Algebras

The aforementioned modified locality condition is an ad hoc ansatz to control the
non-locality of the new states |[©2,,). Another and more elegant way is to introduce
multilocalized algebras, i.e.

W(IT?) = W) UW (D))" .

These von Neumann algebras are localized in both intervals Z; and Z,'*. They
therefore contain the geometrical information expressed by the modification of the
locality condition, since the intervals 7; 5 invariant under the modified dilations
(21) are also the ones interdependent with respect to the new KMS-state |(22).
Thus, the introduction of multilocalized algebras seems to be the natural choice
with respect to the non-locality of |22), because the locality condition (27) reduces
to the usual one if one starts out with multilocalized algebras in the first place:

Let A(Il% ), A(Zj) be field-algebras, (multi)localized in the region 11% Cc S! and
1
T2 C S', respectively. Locality with respect to the state |(2) is expressed by:

Thnzi =0= [A@h), Az =0. (28)

But, taking a closer look one finds that the new states suffer a serious problem
on these multilocalized algebras. They are non-faithful states!®, i.e. there are
non-zero elements of the algebra that are mapped to zero. One of these elements
can be easily reconstructed:

(21 = W(HW(9)[Q2) = (UL = W(f1)WV(g3)[).

In this equation the right hand side is zero for f = —g, supp(f) C T1, supp(g) C I
and supp(f) = —supp(g)! The very last condition implies that the supports of the
transformed testfunctions fi and g, are identical on the upper semicircle. For
the locality problem it is only required that the supports of transformed testfunc-
tions have a non-vanishing overlap on the upper semicircle. As a consequence the
problem of faithfulness and locality are closely related but appear not to be iden-
tical. The loss of faithfulness has serious consequences for the identification of the
modified dilations (21) as the modular group of the theory, since these dilations
no longer act as automorphisms on the multilocalized algebras. Therefore there is
no immediate geometrical interpretation of the modular group. In this situation
the first thing to try is to solve the faithfulness problem and then further study
the locality properties.

One ansatz followed by Schroer et al. [18] is to reduce to an algebra localized in
only one interval, either 7; respectively Zo. On both the modified dilations act
as the modular group. But which one to choose is not clear from any physical
reasons. Of course, the non-local properties of the state stay the same but one

1
14 As before, T; and T are the image of the interval Z under the map z2.

15This was not noticed till [18].
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forgets about the relation to algebras localized in different regions.

Another approach is to project out the problematic parts of the multilocalized
algebras. As in general there always exists a projection E in a von Neumann alge-
bra A rendering a non-faithful state faithful on the reduced von Neumann algebra
ENE. The hope is that as the locality and faithfulness problem are related but
not identical one can get rid of the former and still find some interesting aspects
about the non-local structure of the states. But the mathematical details of this
ansatz are still work in progress and it is believed that this finally leads to the case
discused by Schroer mentioned above.

It seems that restoring faithfulness always ensures the usual locality properties.
Therefore we are eventually lead to the conjecture that in the described setting
faithfulness ensures the proper locality structure. This is also natural from the
point of view that it is widely believed that physical senseful states ought to be
faithful.
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