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1 Two Kinds of Symmetry

Abstractly, a symmetry of a structure is an automorphism� a transformation
that maps the elements of an object back onto themselves so as to preserve the
structure of that object.
A physical theory speci�es a set of models� mathematical structures� that

may be used to represent various di¤erent situations, actual as well as merely
possible, and to make claims about them. Any application of a physical the-
ory is to a situation involving some system, actual or merely possible. Only
rarely is that system the entire universe: typically, one applies a theory to some
subsystem, regarded as a relatively isolated part of its world. The application
proceeds by using the theory to model the situation of that subsystem in a
way that abstracts from and idealizes the subsystem�s own features, and also
neglects or idealizes its interactions with the rest of the world.
We can therefore enquire about the symmetries of the class of models of a

theory; or we can enquire about the symmetries of a class of situations, whether
or not we have in mind a theory intended to model them. The �rst enquiry
may reveal some theoretical symmetry : the second may reveal some empirical
symmetry. An empirical symmetry can be recognized even without a physical
theory to account for it. But it does not cease to be empirical if and when such
a theory becomes available. A theory may entail an empirical symmetry.
Galileo[2](1967, pp.186-7) illustrated his relativity principle by describing a

famous empirical symmetry of this kind.

Shut yourself up with some friend in the main cabin below decks
on some large ship, and have with you there some �ies, butter�ies
and other small �ying animals... When you have observed all these
things carefully..., have the ship proceed with any speed you like,
so long as the motion is uniform and not �uctuating this way and
that. You will discover not the least change in all the e¤ects named,
nor could you tell from any of them whether the ship was moving or
standing still.

His implicit claim is that a situation inside the cabin when the ship is in
motion is indistinguishable from another situation inside the cabin when the
ship is at rest by observations con�ned to those situations. The claim follows
from a principle of the relativity of all uniform horizontal motion. While we
know today that an unquali�ed form of Galileo�s claim is false, in a modi�ed
form it continues to play an important role in physics.
Galileo�s implicit claim is that situations related by a uniform collective

horizontal motion are empirically symmetrical. Speci�cally
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A 1-1 mapping ' : S ! S of a set of situations onto itself is an
empirical symmetry if and only if any two situations related by '
are indistinguishable by means of measurements con�ned to each
situation.

A measurement is con�ned to a situation just in case it is a measurement
of intrinsic properties of (one or more objects in) that situation. Note that
the reference to measurement is not super�uous here, in so far as a situation
may feature unmeasurable intrinsic properties. If every function ' 2 � is an
empirical symmetry of S, then S is symmetric under �-transformations. Note
that situations in S related by a transformation 'may be in the same or di¤erent
possible worlds: if ' is an empirical symmetry, then '(s) may be in the same
world w as s, but only if w is itself su¢ ciently symmetric.
One may distinguish symmetries of the set of situations to which a theory

may be applied from symmetries of the set of the theory�s models.

A 1-1 mapping f : M ! M of the set of models of a theory �
onto itself is a theoretical symmetry of � if and only if the following
condition obtains: For every model m of � that may be used to
represent (a situation s in) a possible world w, f(m) may also be
used to represent (s in) w.

If every function f 2 F is a symmetry of �, then � is symmetric under
F -transformations. Theoretical symmetries may be purely formal features of
a theory, if all they do is to relate di¤erent but equivalent ways the theory
has of representing one and the same empirical situation. One model may be
more conveniently applied to a given situation than another model related to
it by a theoretical symmetry, but the theoretical as well as empirical content of
any claim made about that situation will be the same no matter which model
is applied. But a theoretical symmetry of a theory may entail a corresponding
empirical symmetry, in which case it is not a purely formal feature of the theory.
The empirical symmetry associated with uniform velocity boosts in special

relativity is a consequence of a theoretical symmetry of special relativity, if one
associates each model of that theory with an inertial frame with respect to which
a given situation is represented. For then the empirical symmetry becomes a
consequence of the Lorentz invariance of the theory� the fact that the Lorentz
transform of any model is also a model of the theory. The Lorentz transform of
any model may be used to represent the same situation as the original model
(from the perspective of a boosted inertial frame); but it may also be used
to represent a boosted duplicate of that situation (from the perspective of the
original frame). (Here a duplicate of a situation is a situation that shares all
its intrinsic properties.) The special theory of relativity entails the empirical
symmetry associated with Lorentz invariance by implying that these empirically
equivalent situations are not merely empirically indistinguishable by means of
measurements con�ned to those situations, but indistinguishable by reference
to any intrinsic properties or relations of entities each involves.
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Relativity principles assert empirical symmetries. If local gauge transforma-
tions re�ect some similar empirical symmetry, then they also represent distinct
but indistinguishable situations. But I shall defend the conventional wisdom
that the successful employment of Yang-Mills theories warrants the conclusion
that local gauge transformations are only theoretical symmetries of these the-
ories that re�ect no corresponding non-trivial empirical symmetries among the
situations they represent. Local gauge symmetry is a purely formal feature of
these theories.

2 Warm-up Exercise: Faraday�s Cube

Michael Faraday constructed a hollow cube with sides 12 feet long, covered it
with good conducting materials but insulated it carefully from the ground, and
electri�ed its exterior to such an extent that sparks �ew from its surface. He
made the following entry in his diary in 1836:
�I went into this cube and lived in it, but though I used lighted candles,

electrometers, and all other tests of electrical states, I could not �nd the least
in�uence on them�[6, p.53]
Both Faraday and Galileo described observations of symmetries in nature.

In each case, di¤erent situations are compared, and it is noted that these are
indistinguishable with respect to a whole class of phenomena. But while velocity
boosts are paradigm empirical symmetries, gauge symmetry is usually taken to
be a purely formal feature of a theory. In this case, adding the same constant
to all electrical potentials is a symmetry of classical electromagnetism. Why
doesn�t Faraday�s cube provide a perfect analogue of Galileo�s ship for local
gauge symmetry? (Note that the electric potential transformation '! '+ a is
an example of a local gauge transformation A� ! A�+@�� with A� = (';�A)
and � = at.)
There is an important disanalogy between the Lorentz boost symmetry im-

perfectly illustrated by Galileo�s ship and the local gauge symmetry illustrated
by Faraday�s cube. While both are theoretical symmetries of the relevant theo-
ries, only in the former case does this theoretical symmetry imply a correspond-
ing empirical symmetry.
In order that charging the exterior of Galileo�s cube should provide an exam-

ple of the relevant kind of empirical symmetry, two conditions must be satis�ed.
It must produce a situation inside the cube that di¤ers from its situation when
uncharged in a way that corresponds to performing a local gauge transforma-
tion on its interior. But despite this di¤erence, the transformed situation must
remain internally indistinguishable from the original situation.
To see how it might be possible to meet both conditions, consider the anal-

ogous case of a Lorentz-boosted (space!)ship. Even though the situation inside
the ship is a perfect duplicate of its situation before boosting, the theory itself
implies that these situations are related by a boost transformation: because
the only theoretical models that represent both situations at once are models in
which the two situations are related by a velocity boost.
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But classical electromagnetic theory has no analogous implication in the case
of Galileo�s cube. It contains models, each of which represents the cube both
before and after charging, that represent the cube�s interior as being in exactly
the same state, independent of the charge on its exterior! There is no theoret-
ical or experimental reason to suppose that charging the cube�s exterior does
anything to alter the electromagnetic state of its interior. Charging the exterior
of Faraday�s cube is not a way of performing a local gauge transformation on
its interior: it is no more e¤ective than painting it blue, or simply waiting for a
day! (See [5] for further discussion of this case.)

3 The ��Vacuum
The ground state of a quantized non-Abelian Yang-Mills gauge theory is usually
described by a real-valued parameter �� a fundamental new constant of nature.
The structure of this vacuum state is often said to arise from a degeneracy of the
vacuum of the corresponding classical theory. The degeneracy allegedly follows
from the fact that "large" (but not "small") local gauge transformations connect
physically distinct states of zero �eld energy. In a classical non-Abelian Yang-
Mills gauge theory, "large" gauge transformations apparently connect models
of distinct but indistinguishable situations. This seems to show that at least
"large" local gauge symmetry is an empirical symmetry.
In clarifying the distinction between "large" and "small" gauge transforma-

tions we will be driven to a deeper analysis of the signi�cance of gauge symme-
try. But understanding the �-vacuum will require re�ning, not abandoning, the
thesis that local gauge symmetry is a purely theoretical symmetry.
Before moving to the quantum theory, consider a classical SU(2) Yang-Mills

gauge theory with action

S =
1

2g2

Z
Tr(F��F

��)d4x (1)

where F�� = @�A� � @�A� + [A�;A� ]

and A� = Aj�
�j
2i transform as

A� ! A0
� = UA�U

y + (@�U)U
y
; F�� ! UF��U

y (2)

under a local gauge transformation U(x; t). (Here �j (j = 1; 2; 3) are Pauli spin
matrices.)
The �eld energy is zero if F�� = 0: that condition is consistent with

A� = 0 and gauge transforms of this. Now restrict attention to those gauge
transformations for which A0

0 = 0, @0A
0
j = 0 i.e.

A� = 0! A0
j(x) = f@jU(x)gUy(x); A0

0 = 0 (3)

These are generated by functions U : R3 ! SU(2).
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Those functions that satisfy U(x)! 1 for jxj ! 1 constitute smooth maps
U : S3 ! SU(2), where S3 is the 3-sphere. Some of these may be continu-
ously deformed into the identity map U(x) = 1. But others cannot be. The
maps divide into a countable set of equivalence classes, each characterized by
an element of the homotopy group �3(SU(2)) = Z called the winding number.
Maps in the same equivalence class as the identity map are said to generate

"small" local gauge transformations: these are taken to relate alternative repre-
sentations of the same classical vacuum. But A0

�, A
00
� generated from A� = 0 by

maps U(x) from di¤erent equivalence classes are often said to represent distinct
classical vacua, and A0

�, A
00
� are said to be related by "large" gauge trans-

formations. (It is important to distinguish this claim from the quite di¤erent
proposition, according to which degenerate quantum vacua may be related by
a global gauge transformation in cases of spontaneous symmetry breaking. We
are concerned at this point with a possible degeneracy in the classical vacuum
of a non-Abelian Yang-Mills gauge theory.)
But if local gauge symmetry is a purely formal feature of a theory, then

a gauge transformation cannot connect representations of physically distinct
situations, even if it is "large"! And yet, textbook discussions of the quantum
�-vacuum typically represent this by a superposition of states, each element of
which is said to correspond to a distinct state from the degenerate classical
vacuum.

4 Two Analogies

Such discussions frequently appeal to a simple analogy from elementary quan-
tum mechanics. Consider a particle moving in a one-dimensional periodic po-
tential of �nite height, like a sine wave. Classically, the lowest energy state
is in�nitely degenerate: the particle just sits at the bottom of one or other of
the identical wells in the potential. But quantum mechanics permits tunnelling
between neighboring wells, which removes the degeneracy. In the absence of
tunnelling, there would be a countably in�nite set of degenerate ground states
of the form  n(x) =  0(x � na) where a is the period of the potential. These
are related by the translation operator T̂a: T̂a (x) =  (x � a). T̂a is unitary
and commutes with the Hamiltonian Ĥ. Hence there are joint eigenstates j�i
of Ĥ and T̂a satisfying T̂a j�i = exp(i�) j�i.
Such a state has the form

j�i =
+1X

n=�1
expf�in�g jni (4)

where  n(x) is the wave function of state jni. When tunnelling is allowed
for, the energy of these states depends on the parameter � 2 [0; 2�). It is as if
quantum tunneling between the distinct classical ground states has removed the
degeneracy, resulting in a spectrum of states of di¤erent energies parametrized
by �, each corresponding to a di¤erent superposition of classical ground states.
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An alternative analogy is provided by a charged pendulum swinging from a
long, thin solenoid whose �ux � is generating a static Aharonov-Bohm potential
A. The Hamiltonian is

Ĥ =
1

2m
[�i(r� ieA)]2 + V (5)

With a natural "tangential" choice of gauge for A this becomes

Ĥ = � 1

2ml2

�
d

d!
� ielA

�2
+ V (!) (6)

where the pendulum has mass m, charge e, length l and angle coordinate !. If
the wave function is transformed according to

 (!) = exp

24ie !Z
0

lAd!0

35'(!) (7)

then the transformed wave function satis�es the Schrödinger equation with sim-
pli�ed Hamiltonian

Ĥ' = �
1

2m

d2

d!2
+ V (!) (8)

The boundary condition  (! + 2�) =  (!) now becomes

'(! + 2�) = expf�ie�g'(!) (9)

which is of the same form as in the �rst analogy: T̂2�' = expfi�g', with
� = �e�.
Unlike the periodic potential, the charged pendulum features a unique clas-

sical ground state. The potential barrier that would have to be overcome to
"�ip" the pendulum over its support can be tunnelled through quantum me-
chanically, but the tunnel ends up back where it started from! This produces
a �-dependent ground state energy as in the analogy of the periodic potential.
But in this case there is a single state corresponding to an external parameter
� rather than a spectrum of states labeled by an internal parameter �.
Which is the better analogy? Is the �-vacuum in a quantized non-Abelian

gauge theory more like a quantum state of the periodic potential, or a state of
the charged quantum pendulum?
Rubakov[7] describes both analogies. He notes that vacua of a classical Yang-

Mills gauge theory related by a "large" gauge transformation are topologically
inequivalent, since their so-called Chern-Simons numbers are di¤erent. The
Chern-Simons number nCS associated with potential A� is de�ned as follows:

nCS (A�) �
1

16�2

Z
d3x�ijk

�
Aai @jA

a
k +

1

3
�abcAaiA

b
jA

c
k

�
(10)

and if A00
�,A

0
� are related by a "large" gauge transformation of the form (3) with

winding number n, then nCS
�
A00
�

�
= nCS

�
A0
�

�
+ n. But in a semi-classical
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treatment, quantum tunneling between them is possible through quantum tun-
neling. This suggests that the classical vacua are indeed distinct, and that a
"large" gauge transformation represents a change from one physical situation
to another. If so, symmetry under "large" gauge transformations is not just
a theoretical symmetry but re�ects an empirical symmetry of a non-Abelian
Yang-Mills gauge theory. This favors the �rst analogy.
But Rubakov then goes on to o¤er an alternative (but allegedly equivalent!)

perspective, when he says (on page 277)

From the point of view of gauge-invariant quantities, topologically
distinct classical vacua are equivalent, since they di¤er only by a
gauge transformation. Let us identify these vacua. Then the situ-
ation becomes analogous to the quantum-mechanical model of the
pendulum.

From this perspective, even "large" gauge transformations lead from a sin-
gle classical vacuum state back into an alternative representation of that same
state! Is this perspective legitimate? If it is, how can it be equivalent to a
view according to which a "large" gauge transformation represents an empiri-
cal transformation between distinct states of a non-Abelian Yang-Mills gauge
theory?

5 Are "Large" Gauge Transformations Empiri-
cal?

Consider �rst a purely classical non-Abelian Yang-Mills gauge theory. If it has
models that represent distinct degenerate classical vacua, what is the physical
di¤erence between these vacua? Models related by a "large" gauge transfor-
mation are characterized by di¤erent Chern-Simons numbers, and one might
take these to exhibit a di¤erence in the intrinsic properties of situations they
represent. But it is questionable whether the Chern-Simons number of a gauge
con�guration represents an intrinsic property of that con�guration, even if a
di¤erence in Chern-Simons number represents an intrinsic di¤erence between
gauge con�gurations. Perhaps Chern-Simons numbers are like velocities in mod-
els of special relativity. The velocity assigned to an object by a model of special
relativity does not represent an intrinsic property of that object, even though
that theory does distinguish in its models between situations involving objects
moving with di¤erent relative velocities. As we saw, it is this latter distinction
that proves critical to establishing that Lorentz boosts are empirical symmetries
of situations in a special relativistic world.
So does a di¤erence in Chern-Simons number represent an intrinsic di¤er-

ence between classical vacua in a purely classical non-Abelian Yang-Mills gauge
theory? I see no reason to believe that it does. There might be a reason if
the theory included models representing more than one vacuum state at once,
where the distinct vacua were represented by di¤erent Chern-Simons numbers
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in every such model. Such distinct vacua extend over all space. So they could
all be represented within a single model only if it represented them as occurring
at di¤erent times. But topologically distinct vacua are separated by an energy
barrier, and in the purely classical theory this cannot be overcome. So there is
no representation within a single model of the purely classical theory of vacua
with di¤erent Chern-Simons numbers. That is why I see no reason to believe
that a "large" gauge transformation represents an empirical transformation be-
tween distinct vacuum states of a purely classical non-Abelian Yang-Mills gauge
theory.
According to a semi-classical theory, vacua with di¤erent Chern-Simons

numbers can be connected by tunnelling through the potential barrier that
separates them. So such a theory can model a single situation involving more
than one such vacuum state, each obtaining at a di¤erent time. Moreover, no
model of this theory represents these states as having the same Chern-Simons
numbers. Perhaps this justi�es the conclusion that in a world truly described
by such a theory a "large" gauge transformation would represent an empirical
transformation between distinct vacuum states. But we do not live in such a
world.
The ��vacuum of a fully quantized non-Abelian Yang-Mills gauge theory is

non-degenerate and symmetric under "large" as well as "small" gauge transfor-
mations. Analogies with the periodic potential and quantum pendulum suggest
that it be expressed in the form

j�i =
+1X

n=�1
expf�in�g jni (11)

where state jni corresponds to a classical state with Chern-Simons number n.
But not only the ��vacuum but the whole theory is symmetric under "large"
gauge transformations. So a generator Û of "large" gauge transformations com-
mutes not only with the Hamiltonian but with all observables. It acts as a
so-called "superselection operator" that separates the large Hilbert space of
states into distinct superselection sectors, between which no superpositions are
possible. Physical states are therefore restricted to those lying in a single su-
perselection sector of the entire Hilbert space. Hence every physical state of the
theory, including j�i, is an eigenstate of Û .
Now there is an operator Û1 corresponding to a "large" gauge transformation

with winding number 1,
Û1 jni = jn+ 1i (12)

from which it follows that none of the states jni is a physical state of the theory!
This theory cannot model situations involving any state corresponding to a clas-
sical vacuum with de�nite Chern-Simons number, still less a situation involving
two or more states corresponding to classical vacua with di¤erent Chern-Simons
numbers. Consequently, "large" gauge transformations in a fully quantized non-
Abelian Yang-Mills gauge theory do not represent physical transformations, and
symmetry under "large" gauge transformations is not an empirical symmetry.
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There is no di¤erence in this respect between "large" and "small" gauge trans-
formations.

6 Are They Really Gauge Transformations?

There are several reasons why it remains important to better understand the
di¤erence between "large" and "small" gauge transformations. One reason is
that doing so will help to resolve the following apparent paradox.
Two beliefs are widely shared. The �rst belief is that local gauge transforma-

tions implement no empirical symmetry and therefore have no direct empirical
consequences. The second belief is that global gauge transformations have indi-
rect empirical consequences via Noether�s Theorem, including the conservation
of electric charge. The paradox arises when one notes that a global gauge trans-
formation appears as a special case of a local gauge transformation. If local
gauge symmetry is a purely formal symmetry, how can (just) this special case
of it have even indirect empirical consequences?
Another reason is to appreciate why some (e.g. Domenico Giulini) have

proposed that we make

a clear and unambiguous distinction between proper physical sym-
metries on one hand, and gauge symmetries or mere automorphisms
of the mathematical scheme on the other [4], p.289

The proposed distinction would classify invariance under "small" gauge sym-
metries as a gauge symmetry, but invariance under "large" gauge transforma-
tions as a proper physical symmetry. It is founded on an analysis of gauge in
the framework of constrained Hamiltonian systems.
The guiding principle is to follow Dirac�s proposal by identifying gauge sym-

metries as just those transformations on the classical phase-space representation
of the state of such a system that are generated by its �rst-class constraint func-
tions. In a classical Yang-Mills gauge theory, these are precisely those generated
by the so-called Gauss constraint functions, such as the function on the left-hand
side of equation

r:E = 0 (13)

in the case of pure electromagnetism.
Giulini[4] applies this principle to a quantized Hamiltonian system represent-

ing an isolated charge distribution in an electromagnetic �eld. He concludes that
the gauge symmetries of this system consist of all and only those local gauge
transformations on the quantized �elds that leave unchanged both the asymp-
totic electromagnetic gauge potential Â� and the distant charged matter �eld.
A global gauge transformation corresponding to a constant phase rotation in
the matter �eld does not count as a gauge symmetry since it is not generated
by the Gauss constraint (or any other �rst-class constraint) function. Rather,
global U(1) phase transformations would be associated with what Giulini calls
physical symmetries. According to Giulini[4] (p.308)
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This is the basic and crucial di¤erence between local and global
gauge transformations.

The formalism represents the charge of the system dynamically by an opera-
tor Q̂ that generates translations in a coordinate corresponding to an additional
degree of freedom on the boundary in the dynamical description. A charge su-
perselection rule, stating that all observables commute with the charge operator,
is equivalent to the impossibility of localizing the system in this new coordinate.
Consequently, conservation of charge implies that translations in this additional
degree of freedom count as physical symmetries for Giulini. So conservation of
charge is equivalent both to the existence of these symmetries, and (by Noether�s
�rst theorem) to the global gauge symmetry of the Lagrangian. But these phys-
ical symmetries do not correspond to gauge symmetries, either global or local,
since they a¤ect neither the gauge potential nor the phase of the matter �eld.
It is hard to argue that these novel physical symmetries are empirical. No

operational procedures are speci�ed to permit measurement of the additional
degrees of freedom, and these attach on a boundary which is eventually removed
arbitrarily far away. But even if such a new physical symmetry were empirical, it
would not correspond to any constant phase change. A global gauge symmetry
would still not entail any corresponding empirical symmetry.
This delicate relation between global gauge transformations and some other

physical symmetry helps to resolve the apparent paradox outlined above. A
global gauge transformation is not merely a special case of a local gauge trans-
formation. Indeed, the constrained Hamiltonian approach provides a valuable
perspective from which it is not even appropriately classi�ed as a gauge trans-
formation.
This perspective illuminates the distinction between "large" and "small"

gauge transformations more generally. As Giulini[3] put it, in Yang-Mills theo-
ries

it is the Gauss constraint that declares some of the formally present
degrees of freedom to be physically nonexistent. But it only gen-
erates the identity component of asymptotically trivial transforma-
tions, leaving out the long ranging ones which preserve the asymp-
totic structure imposed by boundary conditions as well as those not
in the identity component of the asymptotically trivial ones. These
should be considered as proper physical symmetries which act on
physically existing degrees of freedom. (p. 2069)

Whether the constrained Hamiltonian approach to gauge symmetry estab-
lishes that "large" gauge transformations correspond to empirical symmetries is
more sensitive to theoretical context than Giulini�s last sentence seems to allow.
But the approach certainly shows that not only a global gauge transformation
but any "large" gauge transformation not generated by a Gauss constraint is
very di¤erent from the local gauge symmetries that it does generate.
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7 The ��Vacuum in a Loop Representation

The availability of loop representations of quantized Yang-Mills theories has in-
teresting implications for the nature of the ��vacuum. Recall that when the
theory is non-Abelian, "large" gauge transformations with non-zero winding
number connect potential states with di¤erent Chern�Simons numbers, includ-
ing di¤erent candidates for representing the lowest-energy, or vacuum, state of
the �eld. Requiring that the theory be symmetric under such "large" gauge
transformations implies that the actual vacuum state is a superposition of all
these candidate states of the form

j�i =
+1X

n=�1
expf�in�g jni (14)

where � is an otherwise undetermined parameter� a fundamental constant of
nature.
Associated with the ��vacuum is an additional term proportional to

�����F
a��F a�� that enters the e¤ective Lagrangian density for quantum chromo-

dynamics

LQCD =  a(i
�D� �m) a �

1

4
Fa��F

a�� +
�

64�2
�����F

a��F a��

� unless the value of � is zero, in which case this term itself becomes zero.
It turns out that certain empirical consequences of quantum chromodynamics
are sensitive to the presence of this extra term: if it were present, then strong
interactions would violate two distinct discrete symmetries, namely parity and
charge conjugation symmetry. Experimental tests have shown that j�j � 10�10,
making one suspect that in fact � = 0. This fact� that of all the possible real
number values it could take on, � appears to be zero� is known as the strong
CP problem. Various solutions have been o¤ered, several of which appeal to
some new physical mechanism that intervenes to force � to equal 0. But from
the perspective of a loop representation, there is no need to introduce � as a
parameter in the �rst place. I quote Fort and Gambini[1], :

It is interesting to speculate what would happen if from the be-
ginning holonomies were used to describe the physical interactions
instead of vector potentials. Probably we would not be discussing
the strong CP problem. This would simply be considered as an ar-
tifact of an overdescription of nature, by means of gauge potentials,
which is still necessary in order to compute quantities by using the
powerful perturbative techniques. From this perspective, the strong
CP problem is just a matter of how we describe nature rather than
being a feature of nature itself. (p.348)

As Fort and Gambini explain, when a theory is formulated in a loop/path
representation, all states and variables are automatically invariant under both
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"small" and "large" gauge transformations, so there is no possibility of introduc-
ing a parameter � (as in equation (11)) to describe a hypothetical superposition
of states that are not so invariant. While the conventional perspective makes
one wonder why � should equal zero, from the loop perspective there is no need
to introduce any such parameter in the �rst place. Once formulated, the loop
representation will be equivalent to the usual connection representation with
� = 0.
One can introduce an arbitrary parameter � into a loop representation of

a more complex theory, as Fort and Gambini show. But from the holonomy
perspective there would have been no empirical reason to formulate such a more
complex theory, and the fact that even more precise experiments do not require
it would be a considered a conclusive reason to prefer the simpler theory� the
one that never introduced an empirically super�uous � parameter.
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