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Abstract

We first see that the inertia of Newtonian mechanics is absolute and troublesome. General relativ-
ity can be viewed as Einstein’s attempt to remedy, by making inertia relative, to matter—perhaps
imperfectly though, as at least a couple of freedom degrees separate inertia from matter in his
theory. We consider ways the relationist (for whom it is of course unwelcome) can try to over-
come such undetermination, dismissing it as physically meaningless, especially by insisting on
the right transformation properties.
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1. Introduction

The indifference of mechanical phenomena and the classical laws governing them to absolute
position, to translation has long been known. This ‘relativity’ extends to the first derivative,
velocity, but not to the second, acceleration, which—together with its ‘opposite,’1 inertia—has
a troubling absoluteness, dealt with in §2.1. General relativity can be seen as Einstein’s attempt
to overcome that absoluteness (§2.2), by making inertia relative, to matter. But we can wonder
about the extent and nature of the ‘relativisation.’

Following Einstein we take matter (§3.1) to be represented by the energy-momentum tensor2

T ab —rather than by Uµν = Tµν +tµν , which includes the gravitational energy-momentum tµν whose
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1In the sense that motion is inertial when acceleration vanishes. Inertial motion can also be understood, in more

Aristotelian terms, as “natural” as opposed to “violent” (accelerated) motion. Weyl (2000, p. 138) has a corresponding
dualism between inertia and force: “gravity, in the dualism between inertia and force, belongs to inertia, not to force.
In the phenomena of gravitation therefore the inertial- or, as I prefer to say, the guidance-field [ . . . ].” Cf. Weyl (1924,
p. 198): “Dualism between guidance and force.” (The translations from German and from French are ours.)

2Indices from the beginning of the Roman alphabet are abstract indices specifying valence, contraction (the once-
contravariant and twice-covariant trilinear mappingAabc = BabdcC

d : V∗×V×V→ R, for instance, turns one covector
and two vectors into a number) etc., whereas Greek letters are used for spacetime coordinate indices running from 0 to
3, and i, j and l for ‘spatial’ coordinate indices running from 1 to 3. Sometimes we write V for a four-vector V a, α for
a one-form αa, g for the metric gab, and 〈α, V 〉 for the scalar product αaV a = 〈αa, V a〉. The abstract index of the
covector dxµ = dxµa , whose valence is obvious, will usually be omitted.



transformation properties make it too subjective and insubstantial to count. The role of distant
matter is looked at in §3.2. Inertia can be identified with affine or projective structure, as we see in
§3.3. In §3.5 matter appears to underdetermine inertia by ten degrees of freedom, eight of which
are made (§3.6) to ‘disappear into the coordinates.’ We take such coordinate transformations
to be physically meaningless and concentrate on the significance of the remaining quantities
instead, which represent the polarisation of gravitational waves.

The physics of gravitational waves seems vulnerable to (admittedly radical) coordinate sub-
stitutions, as we see in §3.7: their generation, energy, perhaps even their detection can be ‘trans-
formed away’ if the full range of substitutions, on which general relativity was built, is available.
Belief in the production of gravitational radiation is bound up with the binary star PSR 1913 +16,
which is considered in §3.14 and supposed to lose kinetic energy as it spirals inwards; if energy
is conserved, the energy lost in one form must be converted, into a perturbation of the surround-
ing spacetime one presumes. But the conservation law is flawed (§3.9), involving, in its integral
form, a distant comparison of directions which cannot be both generally covariant and unam-
biguously integrable. Even the ‘spiral’ behaviour itself, the loss of kinetic energy, and perhaps
the oscillation on which detection (§3.15) is based can be transformed away; as can the energy
of the gravitational field, which is customarily assigned using the pseudotensor tµν : while an
observer in free fall sees nothing at all, an acceleration would produce energy out of nowhere,
out of a mere transformation to another ‘point of view’ or rather state of motion. To exploit this
fragility of gravitational waves, the relationist wanting inertia to be ‘entirely relative’ to matter
will be mathematically intransigent and attribute physical significance only to notions with the
right transformation behaviour—and none to those that can be transformed away—thus allowing
him to dispute the reality of the unwelcome freedoms separating matter and inertia, which he can
dismiss as mere opinion, as meaningless decoration. If general covariance has to hold, matter
would seem to determine inertia rather strongly . . .

In the early years of general relativity, Hilbert, Levi-Civita, Schrödinger and others attributed
physical meaning only to objects, like tensors, with the right transformation behaviour. Ein-
stein was at first less severe, extending reality to notions with a more radical dependence on the
observer’s state of motion. With a mathematical argument (§3.10) giving a favourable representa-
tion of the integral conservation law’s transformation properties he persuaded the community to
share his tolerance; but he would soon, having meanwhile read a manuscript by Cassirer (§3.12),
change his mind (§3.11) and also require general covariance for physical significance. The rela-
tionist can wonder about an argument, and of a widespread indulgence it helped produce, whose
proponent and advocate soon adopted the intransigence of his previous opponents.

Meyerson (§3.16) provides a further principle—the requirement of conservation for genuine
causality and explanation—the relationist can invoke to attenuate belief in gravitational waves:
their bare detection can be dismissed as mere légalité, as a ‘legal’ correlation between binary star
and detector; to speak of causalité, of explication (which surely correspond to a stronger form of
belief) Meyerson would require the gravitational radiation to persist ‘robustly’ on its way to the
detector. And the relationist can reasonably demand appropriate transformation behaviour for
such persistence.

But rather than as a defence of relationalism—for we have no axe to grind—this should be
viewed as an exploration of the logical landscape, of certain logical gaps or possibilities the re-
lationist can exploit, especially one that (perhaps unwisely) takes fundamental principles like
general covariance more seriously than the lenient pragmatics of day-to-day practice, computa-
tion, prediction and success.

The various ways we help or hinder the relationist may sometimes seem arbitrary; to some
2



extent they are arbitrary, or rather influenced by our tastes and interests; but they also take account
of the literature and the very full treatments it contains, to which in many cases we have nothing
to add.3

2. Absolute inertia

2.1. Newtonian mechanics

Newton distinguished between an “absolute” space he also called “true and mathematical,” and
the “relative, apparent and vulgar” space in which distances and velocities are measured. Abso-
lute position and motion were not referred to anything. Leibniz identified unnecessary determi-
nations, excess structure4 in Newton’s ‘absolute’ kinematics with celebrated arguments resting
on the principium identitatis indiscernibilium: as a translation of everything, or an exchange of
east and west, produces no observable effect, the situations before and after must be the same, for
no difference is discerned. But there were superfluities with respect to Newton’s own dynamics
too,5 founded as it was on the proportionality of force and acceleration. With his gran navilio,
Galileo (1632, Second day) had already noted the indifference of various effetti to inertial trans-
formations; the invariance6 of Newton’s laws would more concisely express the indifference of
all the effetti they governed.7

Modern notation, however anachronistic, can help sharpen interpretation. The derivatives
ẋ = dx/dt and ẍ = dẋ/dt are quotients of differences; already the position difference

∆x = x(t+ ε)− x(t)
= x(t+ ε) + u− [x(t) + u]

is indifferent to the addition of a constant u (which is the same for x both at t and at t+ ε). The
velocity

ẋ = lim
ε→0

∆x
ε

is therefore unaffected by the three-parameter group S of translations x 7→ x + u acting on the
three-dimensional space E. The difference

∆ẋ = ẋ(t+ ε)− ẋ(t)
= ẋ(t+ ε) + v − [ẋ(t) + v]

of velocities is likewise indifferent to the addition of a constant velocity v (which is the same for
ẋ both at t and at t+ ε). The acceleration

ẍ = lim
ε→0

∆ẋ
ε

3For instance we hesistate to help the relationist with the distant masses (which of course constrain inertia) whose
influence in the initial-value formulation has been so abundantly considered by Wheeler and others.

4For a recent treatment see Ryckman (2003, pp. 76-80).
5Cf. Dieks (2006, p. 178).
6Newton (1833), Corollarium V (to the laws).
7On this distinction and its significance in relativity see Dieks (2006), where the effetti are called “factual states of

affairs.”
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is therefore invariant under the six-parameter group S × V which includes, alongside the trans-
lations, the group V of the inertial transformations x 7→ x + vt, ẋ 7→ ẋ + v acting on the
space-time E = E × R.

The difference

∆x = x(t+ ε)− x(t) = xa(t+ a+ ε)− xa(t+ a) = ∆xa

is also invariant under the group T of time translations. The translation t 7→ t + a ∈ R can be
seen as a relabeling of instants which makes x, or rather xa, assign to t+ a the value x assigned
to t: xa(t+ a) = x(t). The difference ∆ẋ = ∆ẋa has the same invariance—as do the quotients
∆x/ε, ∆ẋ/ε, and the limits ẋ, ẍ.

Newton’s second law8 is ‘covariant’ with respect to the group R = SO(S) of rotations R :
E → E, which turn the “straight line along which the force is applied” with the “change of
motion,” in the sense that the two rotations F 7→ RF, ẍ 7→ Rẍ, taken together, maintain the
proportionality of force and acceleration expressed by the law: [F ∼ ẍ] ⇔ [RF ∼ Rẍ].
We can say the second law is indifferent9 to the action of the ten-parameter Galilei group10

G = (S × V) o (T ×R) with composition

(u,v, a, R) o (u′,v′, a′, R′) = (u +Ru′ + a′v,v +Rv′, a+ a′, RR′),

o being the semidirect product. So the absolute features of Newtonian mechanics—acceleration,
force, inertia, the laws—emerge as invariants of the Galilei group, whose transformations change
the relative ones: position, velocity and so forth. A larger group admitting acceleration would
undermine the laws, requiring generalisation with other forces.

Cartan (1923)11 undertook such a generalisation, with a larger group, new laws and other
forces. The general covariance of his Newtonian formalism (with a flat connection) may seem to
make inertia and acceleration relative, but in fact the meaningful acceleration in his theory is not
d2xi/dt2, which can be called relative12 (to the coordinates), but the absolute

(1) Ai =
d2xi

dt2
+

3∑
j,l=1

Γ i
jl

dxj

dt

dxl

dt

(i = 1, 2, 3 and the time t is absolute). Relative acceleration comes and goes as coordinates
change, whereas absolute acceleration is generally covariant and transforms as a tensor: if it
vanishes in one system it always will. The two accelerations coincide with respect to inertial
coordinates, which make the connection components13 Γ i

jl = 〈dxi,∇∂j∂l〉 vanish. The absolute

8“Mutationem motus proportionalem esse vi motrici impressæ, et fieri secundum lineam rectam qua vis illa imprimi-
tur.”

9For Newton’s forces are superpositions of fundamental forces F = f(|x2 − x1|, |ẋ2 − ẋ1|, |ẍ2 − ẍ1|, . . . ),
covariant under G, exchanged by pairs of points.

10See Lévy-Leblond (1971, pp. 224-9).
11See also Friedman (1983, §III), Penrose (2005, §17.5).
12In Baker (2005) there appears to be a confusion of the two accelerations as they arise—in much the same way—

in general relativity. The acceleration d2xµ/dτ2 6= 0 Baker sees as evidence of the causal powers possessed by an
ostensibly empty spacetime with Λ 6= 0 is merely relative; even with Λ 6= 0 free bodies describe geodesics, which
are wordlines whose absolute acceleration vanishes. The sensitivity of projective or affine structure to the cosmological
constant would seem to be more meaningful, and can serve to indicate similar causal powers.

13The abstract index representing the valence of the ‘partial derivation’ vector ∂i = ∂ai = ∂/∂xi tangent to the ith
coordinate line will be omitted.
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acceleration of inertial motion vanishes however it is represented—the connection being there to
cancel the acceleration of noninertial coordinates.

So far, then, we have two formal criteria of inertial motion:

• ẍ = 0 in Newton’s theory

• Ai = 0 in Cartan’s.

But Newton’s criterion doesn’t really get us anywhere, as the vanishing acceleration has to be
referred to an inertial frame in the first place; to Cartan’s we shall return in a moment.

Einstein (1916, p. 770; 1988, p. 40; 1990, p. 28) and others have appealed to the simplicity of
laws to tell inertia apart from acceleration: inertial systems admit the simplest laws. Condition
ẍ = 0, for instance, is simpler than ÿ + a = 0, with a term a to compensate the acceleration of
system y. But we have just seen that Cartan’s theory takes account of possibile acceleration ab
initio, thus preempting subsequent complication—for accelerated coordinates do not appear to
affect the syntactical form14 of (1), which is complicated to begin with by the connection term.
One could argue that the law simplifies when that term disappears, when the coefficients Γ i

jl all
vanish; but then we’re back to the Newtonian condition ẍ = 0. And just as that condition requires
an inertial system in the first place, Cartan’s condition Ai = 0 requires a connection, which is
more or less equivalent: it can be seen as a convention stipulating how the three-dimensional
simultaneity surfaces are ‘stitched’15 together by a congruence of (mathematically) arbitrary
curves defined as geodesics. The connection would then be determined, a posteriori as it were,
by the requirement that its coefficients vanish for those inertial curves. Once one congruence
is chosen the connection, thus determined, provides all other congruences that are inertial with
respect to the first. So the initial geodesics, by stitching together the simultaneity spaces, first
provide a notion of rest and velocity, then a connection, representing inertia and acceleration.
The Newtonian condition ẍ = 0 presupposes the very class of inertial systems given by the
congruence and connection in Cartan’s theory. So we seem to be going around in circles: motion
is inertial if it is inertial with respect to inertial motion.

We should not be too surprised that purely formal criteria are of little use on their own for
the identification of something as physical as inertia. But are more physical, empirical criteria
not available? Suppose we view Newton’s first law, his ‘principle of inertia,’ as a special case
of the second law F = mẍ with vanishing force (and hence acceleration). So far we have been
concentrating on the more mathematical right-hand-side, on vanishing acceleration; but there is
also the more physical left-hand-side F = 0: can inertial systems not be characterised16 as free
and far from everything else? Even if certain bodies may be isolated enough to be almost entirely
uninfluenced by others, the matter remains problematic. For one thing we have no direct access
to such roughly free bodies, everything around us gets pulled and accelerated. And the absence
of gravitational force is best assessed with respect to an inertial system,17 which is what we were
after in the first place.

Just as the absence of force has been appealed to for the identification of inertia, its presence

14Cf. Dieks (2006, p. 186).
15See Earman (1989, §§1,2), for instance.
16Einstein (1916, p. 772; 1988, p. 40; 1990, p. 59)
17An anonymous referee has pointed out that inertial systems can be large and rigid in flat spacetimes, but not with

curvature; where present, tidal effects prevent inertial motion from being rigid, and even rule out large inertial frames.
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can be noted in an attempt to characterize acceleration; various passages18 in the scholium on
absolute space and time show that Newton, for instance, proposed to tell apart inertia and ac-
celeration through causes, effects, forces.19 In the two experiments described at the end of the
scholium, involving the bucket and the rotating globes, there is an interplay of local causes and
effects: the rotation of the water causes it to rise on the outside; the forces applied to opposite
sides of the globes cause the tension in the string joining them to vary. But this doesn’t get us
very far either; our problem remains, as we see using the distinction drawn above between ab-
solute acceleration Ai and relative acceleration d2xi/dt2, which surprisingly corresponds to a
distinction Newton himself is groping for in the following passage from the scholium:

The causes by which true and relative motions are distinguished, one from the other,
are the forces impressed upon bodies to generate motion. True motion is neither
generated nor altered, but by some force impressed upon the body moved; but rela-
tive motion may be generated or altered without any force impressed upon the body.
For it is sufficient only to impress some force on other bodies with which the former
is compared, that by their giving way, that relation may be changed, in which the
relative rest or motion of this other body did consist. Again, true motion suffers
always some change from any force impressed upon the moving body; but relative
motion does not necessarily undergo any change by such forces. For if the same
forces are likewise impressed on those other bodies, with which the comparison is
made, that the relative position may be preserved, then that condition will be pre-
served in which the relative motion consists. And therefore any relative motion may
be changed when the true motion remains unaltered, and the relative may be pre-
served when the true suffers some change. Thus, true motion by no means consists
in such relations.20

The absolute motus of a body β requires a force on β, but to produce relative motus the force can
act on the reference body γ instead; and relative motus can even be cancelled if force is applied
to both β and γ. The translators, Motte and Cajori, render motus as “motion” throughout, but
the passage only makes sense (today) if we use acceleration, for most occurrences at any rate:
Newton first speaks explicitly of the generation or alteration of motion, to establish that ‘accel-
eration’ is at issue; having settled that he abbreviates and just writes motus—while continuing
to mean acceleration. And he distinguishes between a true acceleration and a relative accelera-
tion which can be consistently interpreted, however anachronistically, as Ai and d2xi/dt2. Of
course Newton knows neither about connections nor affine structure, nor even matrices; but he

18“Distinguuntur autem quies et motus absoluti et relativi ab invicem per proprietates suas et causas et effectus”;
“Causæ, quibus motus veri et relativi distinguuntur ab invicem, sunt vires in corpora impressæ ad motum generandum”;
“Effectus, quibus motus absoluti et relativi distinguuntur ab invicem, sunt vires recedendi ab axe motus circularis”;
“Motus autem veros ex eorum causis, effectibus, et apparentibus differentiis colligere, et contra ex motibus seu veris seu
apparentibus eorum causas et effectus, docebitur fusius in sequentibus.”

19Cf. Rynasiewicz (1995).
20“Causæ, quibus motus veri et relativi distinguuntur ab invicem, sunt vires in corpora impressæ ad motum generan-

dum. Motus verus nec generatur nec mutatur nisi per vires in ipsum corpus motum impressas: at motus relativus generari
et mutari potest absq; viribus impressis in hoc corpus. Sufficit enim ut imprimantur in alia solum corpora ad quæ fit
relatio, ut ijs cedentibus mutetur relatio illa in qua hujus quies vel motus relativus consistit. Rursus motus verus a viribus
in corpus motum impressis semper mutatur, at motus relativus ab his viribus non mutatur necessario. Nam si eædem vires
in alia etiam corpora, ad quæ fit relatio, sic imprimantur ut situs relativus conservetur, conservabitur relatio in qua motus
relativus consistit. Mutari igitur potest motus omnis relativus ubi verus conservatur, et conservari ubi verus mutatur; et
propterea motus verus in ejusmodi relationibus minime consistit.”
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is clearly groping for something neither he nor we can really pin down using the mathematical
resources then available. It may not be pointless to think of a ‘Cauchy convergence’ of sorts to-
wards something which at the time is unidentified and alien, and only much later gets discovered
and identified as the goal towards which the intentions, the gropings were tending.

When Newton states, in the second law, that the mutationem motus is proportional to force,
he could mean either the true acceleration or the relative acceleration; indeed it is in the spirit
of the passage just quoted to distinguish correspondingly—pursuing our anachronism—between
a true force F i = mAi and a relative force f i = md2xi/dt2. This last equation represents
one condition for two unknowns, of which one can be fixed or measured to yield the other. But
the relative force f i is the wrong one. The ‘default values’ for both force and acceleration, the
ones Newton is really interested in, the ones he means when he doesn’t specify, the ones that
work in his laws, are the ‘true’ ones: true force and true acceleration. And even if F i = mAi

also looks like one condition for two unknowns, the true acceleration Ai in fact conceals two
unknowns, the relative acceleration d2xi/dt2 and the difference Ai − d2xi/dt2 representing the
absolute acceleration of the coordinate system. Nothing doing then, we’re still going around in
circles: the inertia of Newtonian mechanics remains absolute, and cannot even be ‘made relative’
to force.

But what’s wrong with absolute inertia? In fact it can also be seen as ‘relative,’ but to
something—mathematical structure or the sensorium Dei or absolute space—that isn’t really
there, that’s too tenuous, invisible, mathematical, ætherial, unmeasurable or theological to count
as a cause, as a physically effective circumstance, for most empiricists at any rate.21 The three
unknowns of F i = mAi are a problem because in Newtonian mechanics affine structure, which
determines Ai − d2xi/dt2, is unobservable. By relating it to matter Einstein would give inertia
a solid, tangible foundation.

2.2. Einstein

General relativity can be seen as a response to various things. It suits our purposes to view it
as a reaction to two ‘absolute’ features of Newtonian mechanics, of Newtonian inertia, to which
Einstein objected: i. an observable effect arising out of an unobservable cause; and ii. action
without passion. In §3 we will wonder how complete a response it proved.

i. We have just seen that Newton proposed to find absolute acceleration throught its causes
and effects. Einstein also speaks of cause and effect—and practically seems to be address-
ing Newton and his efforts to sort out absolute and relative motus—in his exposition of the
thought experiment at the beginning of “Die Grundlage der allgemeinen Relativitätstheorie”
(1916, p. 771). There he brings together elements of Newton’s two experiments—rotating fluid,
two rotating bodies: Two fluid bodies of the same size and kind, S1 and S2, spin with respect
to one another around the axis joining them while they float freely in space, far from everything
else and at a considerable, unchanging distance from each other. Whereas S1 is a sphere S2

is ellipsoidal. Einstein’s analysis of the difference betrays positivist zeal and impatience with
metaphysics. Newton, who could be metaphysically indulgent to a point of mysticism, might—
untroubled by the absence of a manifest local cause—have been happy to view the deformation
of S2 as the effect of an absolute rotation it would thus serve to reveal. Einstein’s epistemolog-
ical severity makes him more exacting; he wants the observable cause22 of the differing shapes;

21Cf. Einstein (1916, pp. 771-2; 1917, p. 49; 1990, p. 57), Cassirer (1921, pp. 31, 38, 39), Rovelli (2007, §2.2.2).
22Einstein (1916, p. 771); cf. footnote 21 above. Einstein wants visible effects to have visible causes; cf. Poincaré
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seeing no local cause, within the system, he feels obliged to look elsewhere and finds an external
one in distant masses which rotate with respect to S2.

ii. Einstein (1990) also objects to “the postulation,” in Newtonian mechanics, “of a thing (the
spacetime continuum) which acts without being acted upon.”23 Newtonian spacetime structure—
inertial structure in particular—has a lopsided, unreciprocated relationship with matter, which
despite being guided by it does nothing to it in return.

General relativity responds to absolute inertia by relating inertia to matter, which has a more
obvious physical presence than merely mathematical spacetime structure or the sensorium Dei.
In “Prinzipielles zur allgemeinen Relativitätstheorie” (1918a) Einstein goes so far as to claim
that inertia24 in his theory is entirely determined25 by matter, which he uses Tab to represent:

Since mass and energy are the same according to special relativity, and energy is
formally described by the symmetric tensor (Tµν), the G-field is determined by the
energy tensor of matter.26

He explains in a footnote (p. 241) that this Machsches Prinzip is a generalisation of Mach’s
requirement (1988, §2.6) that inertia be derivable from interactions between bodies.27

So we seem to be wondering about what Einstein calls Mach’s principle, which provides
a convenient label, and is something along the lines of matter determines inertia. We have
seen what a nuisance absolute inertia can be; to remedy Einstein made it relative, to matter;
we accordingly consider the extent and character of his ‘relativisation,’ of the determination of
inertia by matter.

3. The relativity of inertia

3.1. Matter

To begin with, what is matter? Einstein (1918a), we have seen, used T ab to characterise it, but
maybe one should be more permissive and countenance less substantial stuff as well. Einstein
proposed

(2) tµν =
1
2
δµν g

στΓλ
σρΓ

ρ
τλ − g

στΓµ
σρΓ

ρ
τν

(1908, pp. 64-94), who sees “chance” when “large” effects have “small” causes—which can even be too small to be
observable; and Russell (1961, p. 162): “[ . . . ] a very small force might produce a very large effect. [ . . . ] An act of
volition may lead one atom to this choice rather than that, which may upset some very delicate balance and so produce a
large-scale result, such as saying one thing rather than another.”

23P. 58: “Erstens nämlich widerstrebt es dem wissenschaftlichen Verstande, ein Ding zu setzen (nämlich das zeiträum-
liche Kontinuum), das zwar wirkt, auf welches aber nicht gewirkt werden kann.”

24In fact he speaks of the “G-field” (1918a, p. 241), “the state of space described by the fundamental tensor [ . . . ],”
by which inertia is represented: “Inertia and weight are essentially the same. From this, and from the results of the
special theory of relativity, it follows necessarily that the symmetrical ‘fundamental tensor’ (gµν ) determines the metrical
properties of space, the inertial behaviour of bodies in it, as well as gravitational effects.”

25Ibid. p. 241: “Mach’s principle: The G-field is completely determined by the masses of bodies.” See Hoefer (1995)
on “Einstein’s formulations of Mach’s principle.”

26Ibid. 241-2: “Da Masse und Energie nach den Ergebnissen der speziellen Relativitätstheorie das Gleiche sind, und
die Energie formal durch den symmetrische Energietensor (Tµν ) beschrieben wird, so besagt dies, daß dasG-Feld durch
den Energietensor der Materie bedingt und bestimmt sei.”

27Barbour & Pfister (1995) is full of excellent accounts; see also Earman (1989, pp. 105-8), Mamone Capria (2005)
and Rovelli (2007, §2.4.1).
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for the representation of gravitational mass-energy; matter without mass, or mass away from
matter, are hard to imagine; so perhaps we can speak of gravitational matter-mass-energy.28 How
about Uµν = Tµν + tµν then, rather than just T ab ? Several drawbacks come to mind. The right-hand
side29 of (2) shows how such ‘matter’ would be related to the notoriously untensorial connection
components. In free fall, when they vanish, the pseudotensor tµν does too,30 which means that
gravitational matter-mass-energy would be a matter of opinion,31 its presence depending on the
state of motion of the observer. The distribution of matter-mass-energy in apparently empty
spacetime would accordingly depend on the choice of coordinates. To be extremely liberal one
could even fill the whole universe, however empty or flat, on grounds that matter-mass-energy is
potentially present everywhere: an appropriate acceleration could introduce it anywhere.

A superabundance of matter would help constrain inertia and hence make ‘Mach’s principle’—
indeed any relationist claim or principle—easier to satisfy, perhaps to a point of vacuity. The
relationist would also be brought uncomfortably close to his ‘absolutist’ opponent, who believes
there is more to inertia than one may think, that it goes beyond and somehow transcends de-
termination by matter. Indeed if we spread matter too liberally we hardly leave the relationist
and absolutist room to differ. Their debate has already been called outmoded (Rynasiewicz,
1996); the surest way to hasten its complete (and regrettable) demise is to impose agreement, by
a questionable appeal to a dubious object, which can cover the universe with slippery coordinate-
dependent matter that disappears in free fall and reappears under acceleration. We began with
Newton, Leibniz and Galileo, have been guided by a continuity connecting their preoccupations
with Einstein’s, and accordingly adopt a notion of matter that differs as little as possible (within
general relativity) from theirs: hence T ab , rather than Uµν = Tµν + tµν .

3.2. Distant matter
This paper is much more about general relativity than about Mach himself; it is certainly not
about Mach’s own formulations of his principles. The vagueness and ambiguities of Mach (1988,
§2.6) have given rise to an abundance of ‘Mach’s principles,’ many of which are represented in
Barbour & Pfister (1995). Mach and Einstein (1916, p. 772) both speak of “distant” matter, which
indeed figures in several versions of ‘Mach’s principle’: one can say it is part of the ‘Machian
tradition,’ conspicuously associated with Einstein, Wheeler, Barbour and others. But distant
matter can affect inertia in two very different ways: i. the ‘deceptive continuity’ or ‘average
character’ of ρ; and ii. ‘field-theoretical holism.’

i. Einstein’s equationGab(x) = Tab(x) seems to express a circumscribed (direct) relationship
between inertia and matter at (or around) point x. The matter-energy-momentum tensor

T ab(x) = ρ(x)V aV b,

for instance, describing a dust with density ρ and four-velocity V a, would (directly) constrain
inertia at x, not at other points far away. But much as in electromagnetism, the ‘continuity’ of ρ

28Cf. Russell (1927, p. 82): “We do not regard energy as a “thing,” because it is not connected with the qualitative
continuity of common-sense objects: it may appear as light or heat or sound or what not. But now that energy and mass
have turned out to be identical, our refusal to regard energy as a “thing” should incline us to the view that what possesses
mass need not be a “thing.””

29Its convenient form is assumed with respect to coordinates satisfying 1 =
√
−g, where g is the determinant of the

metric.
30Issues related to the domain of Wegtransformierbarkeit are considered in §3.7. Wegtransformierbarkeit or ‘away-

transformability’ is a useful notion for which there seems to be no English word.
31Cf. Earman & Norton (1987, p. 519).
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is deceptive. Once the scale is large enough to give a semblance of continuity to the density ρ,
almost all the celestial bodies contributing to the determination of ρ(x) will be very far, on any
familiar scale, from x. Einstein (1917a) sees ρ as an average, and speaks of ‘spreading’:

The metrical structure of this continuum must therefore, as the distribution of matter
is not uniform, necessarily be most complicated. But if we are only interested in the
structure in the large, we ought to represent matter as evenly spread over enormous
spaces, so that its density of distribution will be a function that varies very slowly.32

Needless to say, all the matter involved in the determination of ρ(x) will be very close to x on the
largest scales; but matter far from x even on those scales has a role too, a field-theoretical role,
as we shall now see.

ii. Riemann (1854) considered the possibility of a discrete manifold D, with denumerable
elements D1, D2, . . . . Of course the value ϕr = ϕ(Dr) of a (scalar) field ϕ at Dr will be
completely unconstrained by the values ϕs at other points Ds if no restrictions are imposed. On
its own the ‘boundary condition’ ϕs → 0 as s→∞—or even the stronger condition ϕs = 0 for
s > 1—will not constrain ϕ1 at all. But the further requirement that, say,

|ϕr − ϕs| <
1
2

min{|ϕr|, |ϕs|}

for adjacent points (i.e. |r − s| = 1) gives, by heavily constraining either value once the other is
fixed, the crudest idea of how boundary conditions act.

Of course the manifolds involved in general relativity are continuous, with smooth fields on
them, which leads to subtler, less trivial constraint: such fields can undulate, propagate pertur-
bations, drag and so forth; the constrained relationship between neighbouring values can ripple
across the universe at the speed of light. The value R(x) of a field R at point x can be indi-
rectly constrained through restrictions imposed by another field T on the values R(x′) at points
x′ far away; or directly, by the physicist, who may require for instance that R itself vanish
somewhere—here one speaks of ‘boundary conditions.’ If the universe foliates into spatially
non-compact simultaneity surfaces, such boundary conditions have to be imposed, typically
asymptotic flatness. But this, wrote Einstein (1917a), is at odds with the relativity of inertia:
“inertia would be influenced but not determined by matter”33—since the full determination re-
quires the ‘additional,’ physically ‘extraneous’ stipulation of boundary conditions. So he did
away with boundary conditions by doing away with the boundary: he proposed a universe foli-
ating into spatially compact simultaneity surfaces (without boundary), which lend themselves to
‘global’ Machian interpretations by favouring the determination of inertia by matter.34

Even if the determination is partly field-theoretical, holistic, global, non-local,35 we will con-
centrate on the ‘punctual’ determination, on the arithmetic and comparison of freedom degrees

32P. 135: “Die metrische Struktur dieses Kontinuums muß daher wegen der Ungleichmäßigkeit der Verteilung der
Materie notwendig eine äußerst verwickelte sein. Wenn es uns aber nur auf die Struktur im großen ankommt, dürfen
wir uns die Materie als über ungeheure Räume gleichmäßig ausgebreitet vorstellen, so daß deren Verteilungsdichte eine
ungeheuer langsam veränderliche Funktion wird.”

33P. 135: “Somit würde die Trägheit durch die (im Endlichen vorhandene) Materie zwar beeinflußt aber nicht bedingt.”
34Both kinds of foliation have received ample attention in the literature; see Wheeler (1959), Choquet-Bruhat (1962),

Ó Murchadha & York (1974), Isenberg & Wheeler (1979), Choquet-Bruhat & York (1980), Isenberg (1981), York (1982),
Ciufolini & Wheeler (1995, §5), Lusanna & Pauri (2006a,b,c), Lusanna (2007), Lusanna & Alba (2007).

35Lusanna & Pauri (2006a, pp. 719-20 for instance) consider such non-locality in the Hamiltonian formulation.
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at a point. Words like “determination,” “over/underdetermination” or “freedom” are often re-
ferred to a single point—by Einstein and others—even in field-theoretical contexts (where more
holistic influences are also at work), and seem neither illegitimate, meaningless nor inappropriate
when applied so locally.

It is worth mentioning that Einstein’s own position on the matter of punctual rather than
field-theoretical, non-local determination is confusing. In “Kosmologische Betrachtungen zur
allgemeinen Relativitätstheorie” (1917a), which is all about field-theoretical holism, he writes:

According to general relativity, the metrical character (curvature) of the four-dimensional
spacetime continuum is determined at every point by the matter that’s there, together
with its state.36

And he often counts degrees freedom at a point, saying that one object there over- or under-
determines another.

3.3. Inertia

Inertial motion is free and not forced by alien influences to deviate from its natural course. The
characterisation is general, its terms take on specific meaning in particular theories: in general
relativity, inertial motion is subject only to gravity and not to electromagnetic or other forces; we
accordingly identify inertia with the structures that guide the free fall of small37 bodies (perhaps
the hands of clocks too) by determining the (possibly parametrised) geodesics they describe.38

We have seen that Einstein identifies inertia with the metric g, which in general relativity—
where ∇g vanishes (along with torsion)—corresponds to the affine structure given by the Levi-
Civita connection∇ = Π0, with twenty degrees of freedom. It gives the parametrised geodesics
σ0 : (a0, b0) → M ; s0 7→ σ0(s0) through ∇σ̇0 σ̇0 = 0, and represents the ‘inertia’ of the
parameter, hence of the hands of clocks (perhaps of time itself), along with that of matter. (M is
the differential manifold representing the universe.)

But time and clocks may be less the point here than plain free fall. Weyl39 identified inertia
with the weaker projective structure Π, which gives the ‘generalised geodesics’40 σ : (a, b) →
M ; s 7→ σ(s), through ∇σ̇σ̇ = λσ̇. Projective structure just represents free fall, in other words
the inertia of bodies alone, not of bodies and the hands of accompanying clocks. One can say it
is purely ‘material,’ rather than ‘materio-temporal.’

In the class Π = {Πα : α ∈ Λ1(M )} of connections projectively equivalent to∇, a particular
connection Πα is singled out by a one-form α, which fixes the parametrisations s of all the
generalised geodesics σ. So projective structure has twenty-four degrees of freedom, four—
namely α0, . . . , α3—more than affine structure; αµ = 〈α, ∂µ〉. We can write

〈dxµ,Πα∂ν∂κ〉 = Γµ
νκ + δµνακ + δµκαν ,

36P. 135: “Der metrische Charakter (Krümmung) des vierdimensionalen raumzeitlichen Kontinuums wird nach der
allgemeinen Relativitätstheorie in jedem Punkte durch die daselbst befindliche Materie und deren Zustand bestimmt.”

37We only know that test bodies follow geodesics, as an anonymous reviewer has emphasized. Bodies large enough
to influence projective structure may be guided by it in a different way: “Since we do not know how to solve Einstein’s
equations with matter, we do not know whether ‘dynamical masses’ follow geodesics.”

38Cf. Dorato (2007).
39See footnote 1, and Weyl (1921); or Malament (2006) for a more modern treatment.
40Or alternatively the unparametrised geodesics, in other words just the image I(σ) = I(σ0) ⊂M .
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where the Γµ
νκ are the components of the Levi-Civita connection. The most meaningful part of

the added freedom appears to be the ‘acceleration’

λ = −2〈α, σ̇〉 = −2αµ
dσµ

ds
= −

(
ds

ds0

)2
d2s0
ds2

of the parameter s along the generalised geodesic σ determined by Πα.
In fact not all of the added freedom in projective structure is empirically available: as ‘second

clock effects’ are never seen, α really should be exact.41 We have to make a choice, and will take
affine structure to represent inertia; but if (duly restricted) projective structure is preferred, the
arithmetic can be adjusted accordingly.42

3.4. Curvature and low-dimensional idealizations
Before moving on to the underdetermination of inertia by matter we should discuss the extent
to which curvature interferes with low-dimensional (zero- or one-dimensional) idealizations that
have a role here. We have associated inertia with the geodesics of a connection;43 and a geodesic
is a (parametrized) one-dimensional manifold, a worldline that (if timelike) can be described
by an ideally small—essentially zero-dimensional—object with negligible mass and spatial ex-
tension. Masses can be large enough to produce observable distortions of spacetime—or small
enough to distort only unmeasurably: whatever the threshold of instrumental sensitivity, masses
falling below the threshold can always be found. And even if the relationships between the world-
lines making up the worldtube of an extended object may not be uninteresting—geodesic devia-
tion will not always vanish—there will always be geodesics whose separation is small enough to
bring geodesic deviation under the threshold of measurability.

Synge (1964, pp. ix-x) was

never [ . . . ] able to understand th[e] principle [of equivalence]. [ . . . ] Does it mean
that the effects of a gravitational field are indistinguishable from the effects of an
observer’s acceleration? If so, it is false. In Einstein’s theory, either there is a
gravitational field or there is none, according as the Riemann tensor does not or
does vanish. This is an absolute property; it has nothing to do with any observer’s
world-line.

It is right to distinguish between curvature and flatness; but also to distinguish between mathe-
matical distinguishability and experimental distinguishability.

[ . . . ] The Principle of Equivalence performed the essential office of midwife at the
birth of general relativity, but, as Einstein remarked, the infant would never have got
beyond its long-clothes had it not been for Minkowski’s concept. I suggest that the
midwife be now buried with appropriate honours and the facts of absolute space-
time faced.

41See Afriat (2008) and Ehlers, Pirani & Schild (1972). We thank an anonymous referee for reminding us about second
clock effects.

42The four additional degrees of freedom would be subject to the differential restriction dα = 0; the two-form dα has
six independent quantities.

43Cf. Lusanna (2007, p. 79): “a global vision of the equivalence principle implies that only global non-inertial frames
can exist in general relativity [ . . . ].” In our language: since low-dimensional frames are too small to make sense, they
have to be global; global frames are too large to be inertial; hence only non-inertial frames can exist in general relativity.
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We suggest more tolerance for the midwife, and certainly not burial; for even in a curved re-
gion one can always find a cell (‘Einstein’s elevator’) small enough to make tidal effects exper-
imentally negligible throughout.44 Of course an elevator that’s small enough for one level of
instrumental sensitivity may not be for another. The strategy is familiar from analysis: for any
tolerance ε > 0 one can always find a δ that gives rise to effective indistinguishability by falling
under the tolerance. Mathematical physics is full of linear approximations; one often takes the
first term in a Taylor expansion and ignores the others.

Tidal effects already get ‘idealized away’ in the sixth corollary (to the laws), where Newton
points out that a system of bodies45 will be indifferent46 to a common “accelerative force.”47 He
presumably means a ‘universal’ force subjecting all of them to the same acceleration, and clearly
has gravity in mind, but doesn’t mention it explicitly, for it would produce tidal effects at odds
with the claimed invariance. He idealizes the difficulty away by specifying conditions that would
(strictly speaking) be incompatible if the accelerations were indeed gravitational: they have to be
“equal”48—which would put the bodies at the same distance from the source—and in the same
direction49—which would put them on the same ray. Together the two conditions would confine
the bodies to the same spot.

Here too, then, there is a sense in which gravity can only be transformed away at a point.
The absence of curvature nonetheless makes inertia easier to represent in Newtonian mechanics,
where it can be ‘global’ (rather than low-dimensional); but since we are wondering to what extent
the ‘relative’ inertia of general relativity represents a satisfactory response to the absolute inertia
of Newtonian mechanics, we have to represent inertia in general relativity too. Affine structure
seems to represent it well—even if real objects are extended and distort spacetime.

Then there is the Wegtransformierbarkeit of gravitational energy. Though punctual (zero-
dimensional) Wegtransformierbarkeit has the merit of being logically clean—some objects sat-
isfy it, others don’t—it may perhaps be too easily satisfied to be meaningful. Larger domains
tend to make it harder; they complicate the logic and mathematics of Wegtransformierbarkeit by
introducing differential constraints tying the fates of certain points to those of others. Curvature
might appear to prevent broader Wegtransformierbarkeit, but nonvanishing connection compo-
nents do not keep tµν from vanishing: Schrödinger (1918) proposed coordinates that make tµν
vanish everywhere in an entirely curved universe; so one should not even think of a ‘bump in the
carpet’ that can be moved around but not altogether eliminated. As we shall see in §3.8, Ein-
stein (1918c) made Schrödinger’s example look pathological by showing that two objects (kept
apart by a rod!) are enough to prevent tµν from vanishing everywhere. But since useful gen-
eral statements (like a satisfactory classification of cases) about how tµν is affected by coordinate
transformations over an arbitrary region seem hard to make, one is tempted to stick to a single
point. Though many quasi-local characterizations of matter-energy have been proposed, they all
appear to have their shortcomings; Szabados (2004, p. 9) writes:

44Cf. Lusanna (2007, p. 80): “Special relativity can be recovered only locally by a freely falling observer in a neigh-
borhood where tidal effects are negligible,” and p. 91: “[the equivalence principle] suggested [ . . . ] the impossibility
to distinguish a uniform gravitational field from the effects of a constant acceleration by means of local experiments in
sufficiently small regions where the effects of tidal forces are negligible.”

45“corpora moveantur quomodocunque inter se”
46“pergent omnia eodem modo moveri inter se, ac si viribus illis non essent incitata,” “corpora omnia æqualiter (quoad

velocitatem) movebunt per legem II. ideoque nunquam mutabunt positiones et motus eorum inter se.”
47“a viribus acceleratricibus æqualibus”
48“æqualibus,” “æqualiter”
49“secundum lineas parallelas”
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However, contrary to the high expectations of the eighties, finding an appropri-
ate quasi-local notion of energy-momentum has proven to be surprisingly difficult.
Nowadays, the state of the art is typically postmodern: Although there are several
promising and useful suggestions, we have not only no ultimate, generally accepted
expression for the energy-momentum and especially for the angular momentum, but
there is no consensus in the relativity community even on general questions (for ex-
ample, what should we mean e.g. by energy-momentum: only a general expression
containing arbitrary functions, or rather a definite one free of any ambiguities, even
of additive constants), or on the list of the criteria of reasonableness of such expres-
sions. The various suggestions are based on different philosophies, approaches and
give different results in the same situation. Apparently, the ideas and successes of
one construction have only very little influence on other constructions.

The considerable efforts devoted to such constructions are probably due to the legitimacy energy
and its conservation rightly have in the rest of physics, and to a sense that they must somehow be
made just as legitimate in general relativity. But one can wonder whether a legitimacy acquired
in flat contexts should be maintained even where it is undermined by curvature. We will confine
ourselves to punctual Wegtransformierbarkeit, which is mathematically more straightforward
and tractable, and logically much cleaner than broader kinds.

The physical significance of tensors is not unrelated to these matters—a tensor being an
object that cannot be transformed away; but at a point. A field that’s wegtransformierbar at a
point may not be over a larger region.

3.5. The underdetermination of inertia by matter

We can now try to characterise and quantify the underdetermination, at a point, of inertia by
matter. The relationship between affine structure and curvature is given by

Bµνκλ = 2Γµ
ν[λ,κ] + Γ τ

νλΓ
µ
τκ − Γ τ

νκΓ
µ
τλ.

The curvature tensorBabcd has ninety-six (6×42) independent quantities, eighty if the connection
is symmetric, only twenty if it is metric, in which case Babcd becomes the Riemann tensor Rabcd.
Einstein’s equation expresses the equality of the matter tensor Tab and Einstein tensor

Gab = Rab −
1
2
Rgab,

where the Ricci scalar R is the contraction gabRab of the Ricci tensor Rab = Rcacb. Many
Riemann tensors therefore correspond to the same Ricci tensor, to the same Einstein tensor. By
removing the ten freedom degrees of a symmetric index pair, the contraction Rab = Rcacb leaves
the ten independent quantities of the Ricci tensor; the lost freedoms end up in the Weyl tensor

Cabcd = Rabcd − ga[cRd]b + gb[cRd]a +
1
3
Rga[cgd]b.

To the disappointment of the relationist, local matter would therefore seem to underdetermine
inertia by ten degrees of freedom—some of which may prove less meaningful than others, how-
ever, as we shall soon see.
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But first let us briefly consider a point raised by Ehlers50 and others: matter-energy would
appear to make no sense without the metric. How can matter-energy underdetermine a more
fundamental object that it requires and presupposes?

To begin with, no metric is needed to make sense of one conceptually important matter-
energy tensor, namely T ab = 0. The next-simplest matter-energy tensor is T ab = ρV aV b, with
matrix representation 

ρ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .

To rule out tachyonic dust one may seem to need the metric, to impose gabV aV b < 0; but since
conformally equivalent metrics eλgab all agree, in the sense that

[gabV aV b < 0]⇔ [eλgabV aV b < 0]

for every λ, conformal structure is enough. The next-simplest matter-energy tensor is

Tab = ρVaVb + p(gab + VaVb),

with matrix 
ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 .

The number p typically gets identified with pressure, which does involve the metric, being de-
fined as force per unit area. The metric is also needed to raise and lower indices: to turn V a into
Va or gab into gab, or even (by converting Tab into T ab ) to speak of ρ or p as eigenvalues, or of V a

as an eigenvector. Electromagnetism in general relativity also requires the metric, which appears
in the second term of the energy-momentum tensor

Tab =
1

4π

(
FacF

c
b −

1
4
gabFdeF

de

)
,

and is also needed to relate Fab or F ab to F ab . But even if we have decided to represent matter
with T ab however it is constituted, the ‘materiality’ of pure electromagnetism is suspect and open
to question; it can be viewed as lower-grade matter than dust or fluid. And it must be remembered
that we are interested in the relationship between matter and inertia: admittedly inertia is closely
related to the metric in standard general relativity (by ∇g = 0); but that relationship, which
can be seen as contingent, has been relaxed by Einstein (1925)51 and others. We shall continue
to explore the underdetermination of inertia by matter, which will be altogether absent in §3.6

50Ehlers (1995, p. 467): “So far, any description of the properties and states of matter involves a metric as an indispen-
sible ingredient. Consequently, quite apart from mathematical technicalities the idea that “matter determines the metric”
cannot even be meaningfully formulated. Besides matter variables, a metric [ . . . ] seems to be needed as an independent,
primitive concept in physics [ . . . ].”

51The connection and metric were first varied independently by Einstein (1925), but he, influenced by Pauli, wrongly
attributed the method to Palatini (1919)—who had in fact varied the metric connection; see Ferraris, Francaviglia &
Reina (1982).
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and can otherwise be thought of, with a loss of generality that needn’t be too troubling, as a
pressureless dust.

To understand how gauge choices eliminate eight degrees of freedom let us now turn to
gravitational waves52 in the linear approximation.

3.6. Inertia without matter

Through Einstein’s equation, then, matter determines the rough curvature given by the Ricci
tensor. The absence of matter,53 for instance, makes that curvature vanish identically—but not
the finer Riemann curvature, which can oscillate nonetheless, and in many different ways. Here
we will see the purely ‘Weyl’ freedom left by the absence of matter.

The weak perturbation hµν = gµν − ηµν would (being symmetrical) first appear to maintain
the ten freedoms of the Weyl tensor. It is customary to write γµν = hµν − 1

2ηµνh, where h is the
trace hµµ. A choice of coordinates satisfying the four continuity conditions ∂νγµν = 0 allows us
to set γµ0 = 0, which does away with the four ‘temporal’ freedoms. There remains a symmetric
‘purely spatial’ matrix 

0 0 0 0
0 γ11 γ21 γ31

0 γ21 γ22 γ32

0 γ31 γ32 γ33


with six degrees of freedom. We can also make h vanish, which brings us back to hµν = γµν
and eliminates another freedom, leaving five. To follow the fates of these remaining freedoms
we can consider the plane harmonic

(3) hµν = Re{Aµνei〈k,x〉}

obeying �hµν = 0. If the wave equation were �chµν = (∂2
0 − c2∇2)hµν = 0 instead, with

arbitrary c, the wave (co)vector k would have four independent components kµ = 〈k, ∂µ〉:

• the direction k1 : k2 : k3, in other words k/|k| (two)

• the length |k| =
√
k2

1 + k2
2 + k2

3 (one)

• the frequency ω = k0 = 〈k, ∂0〉 = c|k| (one).

Since c = 1 is a natural constant, the condition �hµν = 0 reduces them to three, by identifying
|k| and ω, which makes the squared length kaka = k0k

0 − |k|2 vanish. And even these three
degrees of freedom disappear into the coordinates if the wave is made to propagate along the third
spatial axis, which can be recalibrated to match the wavelength, leaving two (5 − 3) freedoms,
of polarisation. The three orthogonality relations

3∑
j=1

Aijk
j =

3∑
j=1

A(∂i, ∂j)〈dxja, ka〉 = 0

52For a recent and readable account see Kennefick (2007).
53Einstein (1917a, p. 132), it is worth mentioning, wrote that without matter there is no inertia at all: “In a consistent

theory of relativity there can be no inertia with respect to ‘space,’ but only an inertia of the masses with respect to one
another.”

16



(i = 1, 2, 3) follow from ∂νγµν = 0 and situate the polarisation tensor A with components Aij
in the plane k⊥ ⊂ k⊥ orthogonal to the three-vector k ∈ k⊥. Once the coordinates are realigned
and recalibrated so that 〈k, ∂3〉 = 1 and 〈k, ∂1〉 = 〈k, ∂2〉 = 0, the three components A(∂3, ∂j)
also vanish, leaving a traceless symmetric matrix

0 0 0 0
0 h11 h21 0
0 h21 −h11 0
0 0 0 0


with two independent components, h11 = −h22 and h12 = h21.

The above gauge choices therefore eliminate eight degrees of freedom:

• the four ‘temporal’ coordinates γµ0 eliminated by the conditions ∂νγµν = 0

• the freedom eliminated by h = 0

• the three freedoms of k eliminated by realignment and recalibration.

One may wonder about the use of an only ‘linearly’ covariant approximation in a paper that
so insistently associates physical legitimacy with general covariance. The linear approximation
has been adopted as the simplest way of illustrating how two degrees of freedom remain after
gauge choices eliminate eight; but the same count (2 = 10 − 8) can be shown, though much
less easily, to hold in general. Very briefly: The ten vacuum field equations Gµν = 0 are not
independent, being constrained54 by the four contracted Bianchi identities ∇aGa0 = · · · =
∇aGa3 = 0; another four degrees freedom are lost to constraints on the initial data, leaving
two.55 For details we refer the reader to Lusanna (2007, pp. 95-6), Lusanna & Pauri (2006a,
pp. 696, 699, 706-7) and Lusanna & Pauri (2006b, pp. 193-4); but should point out that their
(related) agenda makes them favour a different, ‘double,’ ‘canonical’ arithmetic (2 · 2 = 2 ·
[10 − 4 − 4]) of freedom degrees provided by the ADM Hamiltonian formalism, which they
use to distinguish between four—two configurational and two canonically conjugate—“ontic”
(or “tidal” or “gravitational”) quantities and the remaining “epistemic” (or “inertial” or “gauge”)
degrees of freedom.56 The ontic-tidal-gravitational quantities—the Dirac observables—are not
numerically invariant57 under the group G8 of gauge transformations; Lusanna & Pauri seem to
view a gauge choice Γ8 ∈ G8 as determining a specific realization (or ‘coordinatization’?) ‘Ω4 =
Γ8(Ω̃4)’ of a single “abstract” four-dimensional symplectic space Ω̃4.58 The ontic state can

54See Brading & Ryckman (2008) and Ryckman (2008) on Hilbert’s struggle, with similar constraints, to reconcile
causality and general covariance.

55In the general nonlinear case the two remaining freedoms can be harder to recognize as polarizations of gravitational
waves; Lusanna & Pauri speak of the “two autonomous degrees of freedom of the gravitational field.” Having based our
arithmetic on the linear approximation we will continue to speak of polarization.

56Lusanna & Pauri also take the four eigenvalues of the Weyl tensor, and gravitational ‘observables’ characterized in
various ways by Bergmann and Komar, to express ‘genuine gravity’ as opposed to mere ‘inertial appearances.’

57But Lusanna (2007, p. 101): “Conjecture: there should exist privileged Shanmugadhasan canonical bases of phase
space, in which the DO (the tidal effects) are also Bergmann observables, namely coordinate-independent (scalar) tidal
effects.”

58See Lusanna & Pauri (2006a, pp. 706-7); and also Lusanna (2007, p. 101): “The reduced phase space of this model
of general relativity is the space of abstract DO (pure tidal effects without inertial effects), which can be thought as four
fields on an abstract space-time M̃4 = equivalence class of all the admissible non-inertial frames M4

3+1 containing the
associated inertial effects.”
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perhaps be understood as a single invariant point ω ∈ Ω̃4, which acquires the four components
{q1(ω), . . . , p2(ω)} ∈ Ω4 with respect to the coordinates q1, q2, p1, p2 characterizing a particular
Ω4. At any rate, Lusanna & Pauri use the four ontic-tidal-gravitational observables to

• individuate spacetime points

• ‘dis-solve’ the hole argument59

• argue that change is possible in canonical gravity, for the ‘ontic’ quantities can evolve.60

Since so much hangs on their four observables, Lusanna & Pauri emphasize—with detailed
metrological considerations—that they really are observable, and go into possible schemes for
their measurement. In §3.15 we propose a Doppler effect in a similar spirit; but let us now return
to the two (configurational, as opposed to canonical) degrees of freedom left by the eight gauge
choices.

The physical meaning of coordinate transformations has been amply discussed, notably in the
literature on the hole argument.61 The relationist will take the eight degrees freedom eliminated
by the above gauge choices to be meaningless,62 to lessen the underdetermination of inertia—
and because as a relationist he would anyway. We will too, and concentrate on the status of the
double freedom of polarisation.63

Matter still underdetermines inertia, then, by two degrees freedom, which obstruct the satis-
faction of ‘Mach’s principle,’ as we are calling it. But are they really there? Or do they share the
fate of the eight freedoms eliminated by gauge choices, which we have dismissed as physically
meaningless? The relationist may prefer to discard them too as an empty mathematical fiction
without physical consequence; but we know their physical meaning is bound up with that of
gravitational waves, whose polarisation they represent.

3.7. Gravitational waves, transformation behaviour and reality
To deal with the polarisation obstructing a full determination of inertia the relationist can insist
on general covariance,64 which is not satisfied by gravitational waves in various ways. He will

59They point out that the diffeomorphism at issue is constrained by the fixed Cauchy data to be purely ‘epistemic’ and
not ‘ontic’; the covariance is not general.

60The Hamiltonian acting in the reduced phase space does not necessarily vanish; see Lusanna (2007, p. 97), for
instance. Cf. Belot & Earman (2001, §§4-6) for a complementary discussion of time and change in canonical gravity; or
Earman (2006) p. 451: “In the case of GTR the price of saving determinism is a frozen picture of the world in which the
observables do not change over time.”

61See Earman & Norton (1987), Butterfield (1987, 1989), Norton (1988), Earman (1989, §9), Maudlin (1993), Stachel
(1993), Rynasiewicz (1994), Belot (1996), Belot & Earman (1999), Belot & Earman (2001), Ryckman (2005, pp. 19-23),
Earman (2006), Dorato & Pauri (2006), Lusanna & Pauri (2006a), Lusanna (2007, pp. 99-100), Rovelli (2007, §2.2.5),
Esfeld & Lam (2008, §2) for instance.

62Cf. Rovelli (2007, §2.3.2).
63Cf. Earman (2006) p. 444: “In what could be termed the classical phase of the debate, the focus was on coordinate

systems and the issue of whether equations of motion/field equations transform in a generally covariant manner under
an arbitrary coordinate transformation. But from the perspective of the new ground the substantive requirement of
general covariance is not about the status of coordinate systems or covariance properties of equations under coordinate
transformation; indeed, from the new perspective, such matters cannot hold any real interest for physics since the content
of spacetime theories [ . . . ] can be characterized in a manner that does not use or mention coordinate systems. Rather, the
substantive requirement of general covariance lies in the demand that diffeomorphism invariance is a gauge symmetry of
the theory at issue.” A distinction between physically meaningful and mere gauge is at the heart of the new perspective.
Cf. Lusanna (2007, p. 104): “the true physical degrees of freedom [ . . . ] are the gauge invariant quantities, the Dirac
observables (DO).”

64General covariance and invariance are rightly confused in much of the literature, and here too. Whether it is a number
or Gestalt or syntax or the appearance of a law that remains unchanged is less the point than the generality—complete or
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argue that as the generation and energy, perhaps even the detection of gravitational waves can be
transformed away, they and the underdetermination of inertia by matter are about as fictitious as
the eight freedoms that have just disappeared into the coordinates.

If gravitational waves had mass-energy their reality could be hard to contest.65 We have
seen that general relativity does allow the attribution of mass-energy to the gravitational field, to
gravitational waves, through the pseudotensor tµν ; but also that tµν has the wrong transformation
behaviour.

Is the physical meaning of tµν really compromised by its troubling susceptibility to disappear,
and reappear under acceleration? A similar question arose in §3.1, when we wondered what
to count as matter. There we did not provide the relationist with the ‘gravitational matter’ that
would have favoured his agenda by making his principles easier to satisfy, on grounds that, being
mere ‘opinion,’ it was too insubstantial and tenuous to count. To be fair to the relationist we
should perhaps dismiss tµν once more as mere opinion. But we have no reason to be fair, and
are merely exploring certain logical possibilities. Perhaps ‘matter’ was something stronger, and
required more; maybe a quantity that comes and goes with the accelerations of the observer can
be real despite being immaterial; so we shall treat the physical meaning of tµν—as opposed to its
suitability for the representation of matter—as a further issue.

General relativity has been at the centre of a tradition, conspicuously associated with Hilbert
(1924, pp. 261 (Teil I), pp. 276-8 (Teil II)),66 Levi-Civita (1917, p. 382), Schrödinger (1918,
pp. 6-7; 1926, p. 492), Cassirer (1921), Einstein (1990, pp. 5, 13) himself eventually, Langevin
(1922, pp. 31, 54), Meyerson (1925, §48), Russell (1927, §VII) and Weyl (2000, §17), linking
physical reality or objectivity or significance to appropriate transformation properties, to some-
thing along the lines of invariance or covariance. Roots can be sought as far back as Democritus,
who is said to have claimed that “sweet, bitter, hot, cold, colour” are mere opinion, “only atoms
and void”—concerning which there ought in principle to be better agreement—“are real”; or
more recently in Felix Klein’s ‘Erlangen programme’ (1872), which based geometrical rele-
vance on invariance under the groups he used to classify geometries. Bertrand Russell, in his
version of neutral monism,67 identified objects with the class of their appearances from different
points of view—not really an association of invariance and reality, but an attempt to transcend
the misleading peculiarities of individual perspectives nonetheless. Hilbert explicitly required
invariance in “Die Grundlagen der Physik,” denying physical significance to objects with the
wrong transformation properties. Levi-Civita, Schrödinger (1918) and Bauer (1918, p. 165),
who saw the relation of physical meaning to appropriate transformation properties as a central
feature of relativity theory, likewise questioned68 the significance of the energy-momentum pseu-
dotensor. Schrödinger noted that appropriate coordinates make tµν vanish identically in a curved
spacetime (containing only one body); Bauer that certain ‘accelerated’ coordinates would give
energy-momentum to flat regions.

Einstein first seemed happy to extend physical meaning to objects with the wrong transfor-
mation properties. In January 1918 he upheld the reality of tµν in a paper on gravitational waves:

linear or Lorentz, for instance—of the transformations at issue.
65Cf. Dorato (2000): “Furthermore, the gravitational field has momentum energy, therefore mass (via the equivalence

between mass and energy) and having mass is a typical feature of substances.”
66See also Brading & Ryckman (2008) and Ryckman (2008).
67Accounts can be found in Russell (1921, 1927, 1956). But see also Russell (1991, p. 14), which was first published

in 1912. Cf. Cassirer (1921, p. 36).
68See Cattani & De Maria (1993).
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[Levi-Civita] (and with him other colleagues) is opposed to the emphasis of equation
[∂ν(Tνσ + tνσ) = 0] and against the aforementioned interpretation, because the tνσ
do not make up a tensor. Admittedly they do not; but I cannot see why physical
meaning should only be ascribed to quantities with the transformation properties of
tensor components.69

3.8. Einstein’s reply to Schrödinger
In February (1918c) Einstein responded to Schrödinger’s objection, arguing that with more than
one body the stresses tij transmitting gravitational interactions would not vanish: Take two bodies
M1 and M2 kept apart by a rigid rod R aligned along ∂1. M1 is enclosed in a two-surface ∂Θ
which leaves out M2 and hence cuts R (orthogonally one can add, for simplicity). Integrating
over the three-dimensional region Θ, the conservation law ∂νU

ν
µ = 0 yields

d

dx0

∫
Θ

U0
µd

3x =
∫
∂Θ

3∑
i=1

U iµd
2Σi :

any change in the total energy
∫
U0
µd

3x enclosed in Θ would be due to a flow, represented on
the right-hand side, through the boundary ∂Θ (where Uµν is again Tµν + tµν , and d3x stands for
dx1 ∧ dx2 ∧ dx3; we have replaced Einstein’s cosines with a notation similar to the one used, for
instance, in Misner et al. (1973)). Since the situation is stationary and there are no flows, both
sides of the equation vanish, for µ = 0, 1, 2, 3. Einstein takes µ = 1 and uses∫

∂Θ

3∑
i=1

U i1d
2Σi = 0.

He is very concise, and leaves out much more than he writes, but we are presumably to consider
the intersection R ∩ ∂Θ of rod and enclosing surface, where it seems ∂1 is orthogonal to ∂2 and
∂3, which means the off-diagonal components T 2

1 and T 3
1 vanish, unlike the component T 1

1 along
R. Since

−
∫
∂Θ

3∑
i=1

ti1d
2Σi

must be something like T 1
1 times the sectional area of R, the three gravitational stresses ti1 can-

not all vanish identically. The argument is contrived and full of gaps, but the conclusion that
gravitational stresses between two (or more) bodies cannot be ‘transformed away’ seems valid.

Then in May we again find Einstein lamenting that

Colleagues are opposed to this formulation [of conservation] because (Uνσ) and (tνσ)
are not tensors, while they expect all physically significant quantities to be expressed
by scalars or tensor components.70

69Einstein (1918b, p. 167): “[Levi-Civita] (und mit ihm auch andere Fachgenossen) ist gegen eine Betonung der
Gleichung [∂ν(Tνσ + tνσ) = 0] und gegen die obige Interpretation, weil die tνσ keinen T e n s o r bilden. Letzteres ist
zuzugeben; aber ich sehe nicht ein, warum nur solchen Größen eine physikalische Bedeutung zugeschrieben werden soll,
welche die Transformationseigenschaften von Tensorkomponenten haben.”

70Einstein (1918d, p. 447): “Diese Formulierung stößt bei den Fachgenossen deshalb auf Widerstand, weil (Uνσ)
und (tνσ) keine Tensoren sind, während sie erwarten, daß alle für die Physik bedeutsamen Größen sich als Skalare und
Tensorkomponenten auffassen lassen müssen.”
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In the same paper he defends his controversial energy conservation law,71 which we shall soon
come to.

3.9. Conservation under coordinate substitutions
Conservation is bound to cause trouble in general relativity. The idea usually is that even if the
conserved quantity—say a ‘fluid’ with density ρ—doesn’t stay put, even if it moves and gets
transformed, an appropriate total over space nonetheless persists through time; a spatial integral
remains constant:

(4)
d

dt

∫
ρ d3x = 0.

So a clean separation into space (across which the integral is taken) and time (in the course of
which the integral remains unchanged) seems to be presupposed when one speaks of conserva-
tion. In relativity the separation suggests a Minkowskian orthogonality

(5) ∂0 ⊥ span{∂1, ∂2, ∂3}

between time and space,72 which already restricts the class of admissible transformations and
hence the generality of any covariance. However restricted, the class will be far from empty; and
what if the various possible integrals it admits give different results? Or if some are conserved
and others aren’t?

An integral law like (4) can typically be reformulated as a ‘local’ divergence law

∂ρ

∂t
+∇ · j = 0,

which in four dimensions reads ∂µJµ = 0, where j stands for the current density ρv, the three-
vector v represents the three-velocity of the fluid, J0 is the density ρ and J i = 〈dxi, j〉. But the
integral law is primary; the divergence law derived from it only really expresses conservation to
the extent that it is fully equivalent to the more fundamental integral law. As Einstein puts it:

From the physical point of view this equation [∂Tνσ/∂xν + 1
2g
µν
σ Tµν = 0] cannot

be considered completely equivalent to the conservation laws of momentum and
energy, since it does not correspond to integral equations which can be interpreted
as conservation laws of momentum and energy.73

In flat spacetime, with inertial coordinates, the divergence law ∂µT
µ
ν = 0 can be unambiguously

integrated to express a legitimate conservation law. But the ordinary divergence ∂µTµν only
vanishes in free fall (where it coincides with ∇aT aν ), and otherwise registers the gain or loss
seen by an accelerated observer. If such variations are to be viewed as exchanges with the
environment and not as definitive acquisitions or losses, account of them can be taken with tµν ,
which makes ∂µ(Tµν + tµν ) vanish by compensating the difference.74 The generally covariant

71See Hoefer (2000) on the difficulties of energy conservation.
72Cf. Einstein (1918d, p. 450).
73Einstein (1918d, p. 449): “Vom physikalischen Standpunkt aus kann diese Gleichung nicht als vollwertiges Äquiv-

alent für die Erhaltungssätze des Impulses und der Energie angesehen werden, weil ihr nicht Integralgleichungen
entsprechen, die als Erhaltungssätze des Impulses und der Energie gedeutet werden können.”

74Cf. Brading & Ryckman (2008, p. 136).
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condition ∂µ(Tµν + tµν ) = 0, which is equivalent to∇aT aν = 0 and ∂µTµν + 1
2∂νg

abTab = 0, can
also be unambiguously integrated in flat spacetime to express a legitimate conservation law. But
integration is less straightforward in curved spacetime, where it involves a distant comparison of
direction which cannot be both generally covariant and integrable.

Nothing prevents us from comparing the values of a genuine scalar at distant points. But we
know the density of mass-energy transforms according to

(ρ,0) 7→ ρ√
1− |v|2

(1,v),

where v is the three-velocity of the observer. So the invariant quantity is not the mass-energy den-
sity, but (leaving aside the stresses that only make matters worse) the mass-energy-momentum
density, which is manifestly directional. And how are distant directions to be compared? Com-
parison of components is not invariant: directions or rather component ratios that are equal with
respect to one coordinate system may differ in another. Comparison by parallel transport will not
depend on the coordinate system, but on the path followed.

3.10. Einstein’s defence of energy conservation
Einstein tries to get around the problem in “Der Energiesatz in der allgemeinen Relativitätsthe-
orie” (1918d). Knowing that conservation is not a problem in flat spacetime, where parallel
transport is integrable, he makes the universe look as Minkowskian as possible by keeping all the
mass-energy spoiling the flatness neatly circumscribed (which is already questionable, for matter
may be infinite).

Einstein attributes an energy-momentum J to the universe, which he legitimates by imposing
a kind of ‘general’ (but in fact restricted) invariance on each component Jµ, defined as the spatial
integral

Jµ =
∫

U0
µd

3x

of the combined energy-momentum U0
µ = T0

µ+t0µ of matter and field (where Uµν = Uµν
√
−g etc.,

and the stresses seem to be neglected). To impose it he separates time and space through (5), and
requires the fields Tµν and tµν to vanish outside a bounded region B. Einstein is prudently vague
aboutB, which is first a subset of a simultaneity slice Σt, and then gets “infinitely extended in the
time direction,”75 to produce the world tube B∂0 described by B along the integral curves of the
“time direction” ∂0. The supports T and t of Tµν and tµν are contained in B∂0 by definition; but T
may be much smaller than t and henceB∂0 : we have no reason to assume that T does not contain
bodies that radiate gravitational waves—of which tµν would have to take account—along the
lightcones delimiting the causal future of Tt = T ∩ Σt. Gravitational waves could therefore, by
obliging B∂0 to be much larger than T, spoil the picture of an essentially Minkowskian universe
barely perturbed by the ‘little clump’ of matter-energy it contains.

The generality of any invariance or covariance is already limited by (5); Einstein restricts it
further by demanding Minkowskian coordinates gµν = ηµν (and hence flatness) outside B∂0 .76

He then uses the temporal constancy dJµ/dx0 = 0 of each component Jµ, which follows from
∂µU

µ
ν = 0, to prove that Jµ has the same value (Jµ)1 = (Jµ)2 on both three-dimensional si-

multaneity slices77 x0 = t1 and x0 = t2 of coordinate system K; and value (J ′µ)1 = (J ′µ)2 at

75Einstein (1918d, p. 450)
76Flatness cannot reasonably be demanded of the rest of the universe, as can be seen by giving Tab the spherical support

it has in the Schwarzschild solution, whose curvature diminishes radially without ever vanishing however.
77For a recent treatment see Lachièze-Rey (2001).
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x′0 = t′1 and x′0 = t′2 in another system K ′. A third system K ′′ coinciding with K around the
slice x0 = t1 and with K ′ around x′0 = t′2 allows the comparison of K and K ′ across time. The
invariance of each component Jµ follows from (Jµ)1 = (J ′µ)2. Having established that, Einstein
views the world as a ‘body’ immersed in an otherwise flat spacetime, whose energy-momentum
Jµ is covariant under the transformation laws—Lorentz transformations—considered appropri-
ate78 for that (largely flat) environment. Unusal mixture of transformation properties: four com-
ponents, each one ‘somewhat’ invariant, which together make up a four-vector whose Lorentz
covariance would be of questionable appropriateness even if the universe were completely flat.

Einstein’s argument was nonetheless effective, and persuaded79 the community, which be-
came and largely remains more tolerant of objects (including laws and calculations) with dubious
transformation properties.

In §§3.7-8 we saw what Einstein thought in the first months of 1918. Already in “Dialog
über Einwände gegen die Relativitätstheorie,” which came out in November, there’s a shift, a
timid concession to his opponents, a subtler tolerance. Einstein gives the impression80 he may
have been glad to do away with coordinates, if possible—but like Cassirer81 he thought it wasn’t:
“[ . . . ] cannot do without the coordinate system [ . . . ].”82 If he had known83 that one can write,
say, ∇V instead of

(6) ∂µV
ν + Γ ν

µκV
κ,

Einstein would simply have attributed ‘full’ reality to ∇V (without bothering with confusing
compromises). But he saw the complicated compensation of expressions like (6) instead, in
which various transformations balance each other to produce a less obvious invariance: “Only
certain, generally rather complicated expressions, made up of field components and coordinates,
correspond to coordinate-independent measurable (i.e. real) quantities.”84 He felt that “the grav-

78Despite Kretschmann (1917), who pointed out that even an entirely flat universe can be considered subject to general
(and not just Lorentz) covariance. Cf. Rovelli (2007, §2.4.3).

79See Cattani & De Maria (1993), Hoefer (2000).
80Einstein (1918e), middle of second column
81Cassirer (1921, p. 37)
82Einstein (1918e, p. 699): “Die wissenschaftliche Entwicklung aber hat diese Vermutung nicht bestätigt. Sie kann

das Koordinatensystem nicht entbehren, muß also in den Koordinaten Größen verwenden, die sich nicht als Ergebnisse
von definierbaren Messungen auffassen lassen.”

83Bertrand Russell (1927, p. 71) was perhaps the first to see the possibility of a formulation we would now call
‘intrinsic’ or ‘geometrical’: “Reverting now to the method of tensors and its possible eventual simplification, it seems
probable that we have an example of a general tendency to over-emphasize numbers, which has existed in mathematics
ever since the time of Pythagoras, though it was temporarily less prominent in later Greek geometry as exemplified in
Euclid. [ . . . ] Owing to the fact that arithmetic is easy, Greek methods in geometry have been in the background since
Descartes, and co-ordinates have come to seem indispensable. But mathematical logic has shown that number is logically
irrelevant in many problems where it formerly seemed essential [ . . . ]. A new technique, which seems difficult because
it is unfamiliar, is required when numbers are not used; but there is a compensating gain in logical purity. It should be
possible to apply a similar process of purification to physics. The method of tensors first assigns co-ordinates, and then
shows how to obtain results which, though expressed in terms of co-ordinates, do not really depend upon them. There
must be a less indirect technique possible, in which we use no more apparatus than is logically necessary, and have a
language which will only express such facts as are now expressed in the language of tensors, not such as depend on the
choice of co-ordinates. I do not say that such a method, if discovered, would be preferable in practice, but I do say that
it would give a better expression of the essential relations, and greatly facilitate the task of the philosopher.”

84Einstein (1918e, p. 699-700): “Nur gewissen, im allgemeinen ziemlich komplizierten Ausdrücken, die aus Feld-
komponenten und Koordinaten gebildet werden, entsprechen vom Koordinatensystem unabhängig meßbare (d. h. reale)
Größen.” A similar idea is expressed in Hilbert (1924, p. 278, D r i t t e n s. . . . ); cf. Brading & Ryckman (2008, p. 136):
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itational field [Γµ
νκ] at a point is neither real nor merely fictitious”85: not entirely real since it

has “part of the arbitrariness”86 of coordinates; not fictitious because it participates—“the field
components [ . . . ] with whose help we describe physical reality”—in the balancing act yielding
invariant reality: “nothing ‘physically real’ corresponds to the gravitational field at a point, only
to the gravitational field in conjunction with other data.”87

3.11. Einstein’s conversion

In May 1921 Einstein seems to have gone a good deal farther, approaching, perhaps even ex-
ceeding the positions of his former opponents:

With the help of speech, different people can compare their experiences to a certain
extent. It turns out that some—but not all—of the sensory experiences of different
people will coincide. To such sensory experiences of different people which, by
coinciding, are superpersonal in a certain sense, there corresponds a reality. The
natural sciences, and in particular the most elementary one, physics, deal with that
reality, and hence indirectly with the totality of such experiences. To such relatively
constant experience complexes corresponds the concept of the physical body, in
particular that of the rigid body.88

Admittedly he only speaks of the “sensory experiences of different people” and not explicitly
of the transformations that convert sensations between them, nor of general covariance for that
matter. Not explicitly, but almost: he eventually mentions physics; experiences in physics can
be called measurements, and they tend to produce numbers; theory provides the transformations
converting the numbers found by one person into those found by another. For measurements
yielding a single number, the interpersonal ‘coincidence’ at issue can be interpreted as numerical
equality: only genuine scalars—the same for everyone—would belong to the ‘superpersonal
reality.’ With measurements producing complexes of numbers the notion of ‘coincidence’ upon
which reality rests is less straightforward: since numerical equality, for each component of the
complex, would be much too strong, it will have to be a more holistic kind of correspondence, to
do with the way the components change together. Vanishing is an important criterion: a complex
whose components are wegtransformierbar cannot be physically real—one whose components

“Interestingly, Hilbert here cites the example of energy in general where the (‘pseudo-tensor density’) expression for the
energy-momentum-stress of the gravitational field is not generally invariant but nonetheless, if defined properly, occurs
in the statement of a conservation law that holds in every frame, i.e., is generally covariant.”

85Einstein (1918e, p. 700): “Man kann deshalb weder sagen, das Gravitationsfeld an einer Stelle sei etwas ”Reales“,
noch es sei etwas ”bloß Fiktives“.”

86Ibid. p. 699: “Nach der allgemeinen Relativitätstheorie sind die vier Koordinaten des raum-zeitlichen Kontinu-
ums sogar ganz willkürlich wählbare, jeder selbständigen physikalischen Bedeutung ermangelnde Parameter. Ein Teil
jener Willkür haftet aber auch denjenigen Größen (Feldkomponenten) an, mit deren Hilfe wir die physikalische Realität
beschreiben.”

87Ibid. p. 700: “dem Gravitationsfeld an einer Stelle entspricht also noch nichts ”physikalisch Reales“, wohl aber
diesem Gravitationsfelde in Verbindung mit anderen Daten.”

88Einstein (1990, p. 5): “Verschiedene Menschen können mit Hilfe der Sprache ihre Erlebnisse bis zu einem gewissen
Grade miteinander vergleichen. Dabei zeigt sich, daß gewisse sinnliche Erlebnisse verschiedener Menschen einander
entsprechen, während bei anderen ein solches Entsprechen nicht festgestellt werden kann. Jenen sinnlichen Erlebnissen
verschiedener Individuen, welche einander entsprechen und demnach in gewissem Sinne überpersönlich sind, wird eine
Realität gedanklich zugeordnet. Von ihr, daher mittelbar von der Gesamtheit jener Erlebnisse, handeln die Naturwis-
senschaften, speziell auch deren elementarste, die Physik. Relativ konstanten Erlebnis-komplexen solcher Art entspricht
der Begriff des physikalischen Körpers, speziell auch des festen Körpers.”
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all vanish cannot ‘coincide’ with one whose components don’t. Of course the characteristic class
of transformations is not the same in every theory; in general relativity it is the most general
class (of transformations satisfying mimimal requirements of continuity and differentiability).
So it does not seem unreasonable to interpret the above passage as saying that only generally
covariant notions represent reality in general relativity.

Eight pages on Einstein speaks of geometry in a similar spirit:

In Euclidean geometry it is manifest that only (and all) quantities that can be ex-
pressed as invariants (with respect to linear orthogonal coordinates) have objective
meaning (which does not depend on the particular choice of the Cartesian system).
It is for this reason that the theory of invariants, which deals with the structural laws
of invariants, is significant for analytic geometry.89

Here “objective meaning” is explicitly attributed to invariance under the characteristic class of
transformations.

In a letter to Paul Painlevé dated 7 December 1921 Einstein will be even more explicit,
claiming that coordinates and quantities depending on them not only have no physical meaning,
but do not even represent measurement results:

When one replaces r with any function of r in the ds2 of the static spherically
symmetric solution, one does not obtain a new solution, for the quantity r in itself
has no physical meaning, meaning possessed only by the quantity ds itself or rather
by the network of all ds’s in the four-dimensional manifold. One always has to
bear in mind that coordinates in themselves have no physical meaning, which means
that they do not represent measurement results; only the results obtained by the
elimination of coordinates can claim objective meaning.90

The tension with the passages quoted in footnotes 69 and 70 above is not without its signif-
icance for the relationist, who at this point can really question the legitimacy of a mathemati-
cal tolerance whose champion soon developed an intransigence surprisingly reminiscent of the
severity expressed by his previous opponents.

One can wonder what made Einstein change his mind, after Levi-Civita, Schrödinger and
others had failed to persuade him. At the end of the foreword, dated 9 August 1920, to Cassirer’s
Zur Einstein’schen Relativitätstheorie (1921) we discover that Einstein had read the manuscript
and made comments. There Einstein would have found the first thorough justification of the
mathematical severity Einstein’s opponents had expressed a few years before. We know how
much the philosophical writings of Hume, Mach and Poincaré had influenced Einstein,91 and can

89“Offenbar haben in der euklidischen Geometrie nur solche (und alle solche) Größen eine objektive (von der beson-
deren Wahl des kartesischen Systems unabhängige) Bedeutung, welche sich durch eine Invariante (bezüglich linearer
orthogonaler Koordinaten) ausdrücken lassen. Hierauf beruht es, daß die Invariantentheorie, welche sich mit den Struk-
turgesetzen der Invariante beschäftigt, für die analytische Geometrie von Bedeutung ist.”

90Biezunski (1989, p. 243) only quotes the following “Trad. de l’allemand”: “Lorsque, dans le ds2 de la solution
statique à symétrie centrale, on introduit à la place de r une fonction quelconque de r, on n’obtient pas une nouvelle
solution, car la grandeur r n’a en soi aucune signification physique, signification que possède en revanche seulement la
grandeur ds elle-même ou plus précisément le réseau de tous les ds dans la variété quadridimensionnelle. Il faut sans
cesse garder à l’esprit que les coordonnées ne possèdent pas en soi de signification physique, ce qui veut dire qu’elles
ne représentent pas les résultats d’une mesure; seuls les résultats obtenus par l’élimination des coordonnées peuvent
prétendre à une signification objective.”

91See Howard (2005).
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conjecture that even here he was finally persuaded by a philosopher after the best mathematical
physicists of the day had failed.

Be that as it may, it was too late to repent: the damage had been done, the (new) cause was
already lost, and indeed the lenity Einstein promoted in 1918 continues to this day. General
covariance92 is often disregarded or violated in general relativity: if a calculation works in one
coordinate system, too bad if it doesn’t in another; if energy conservation is upset by peculiar
coordinates, never mind.

3.12. Cassirer

Before going on we can briefly consider what Einstein would have found in Cassirer’s manuscript.
Cassirer welcomed general relativity as confirming, even consolidating a philosophical and

scientific tendency he had already described in Substanzbegriff und Funktionsbegriff (1910); a
tendency that replaced the obvious things and substances filling the world of common sense,
with abstract theoretical entities, relations and structures. Even the cruder objects of the naı̈ve
previous ontology derived their reality from ‘invariances’ of sorts, but only apparent ones—
mistakenly perceived by the roughness of our unassisted senses—which would be replaced by
the more abstract and accurate invariants of modern theory.

Cassirer calls unity “the true goal of science.”93 It appears to have much to do with economy,
of finding

a minimum of assumptions, which are necessary and sufficient to provide an un-
ambiguous representation of experiences and their systematic context. To preserve,
deepen and consolidate this unity, which seemed threatened by the tension between
the principle of the constancy of the velocity of light, and the mechanical princi-
ple of relativity, the theory of relativity abandoned the uniqueness of measurement
results for space and time quantities in different systems.94

Introducing differences where there were none before would seem rather to undermine or disrupt
unity than to produce it . . .

But all these relativisations are so little in contradiction with the idea of the con-
stancy and unity of nature, that they rather are required and carried out in the name
of this very unity. The variation of space and time measurements represents the nec-
essary condition, through which the new invariants of the theory are first found and
established.95

92Cf. Norton (1993).
93Cassirer (1921, p. 28): “[die Einheit] ist das wahre Ziel der Wissenschaft. Von dieser Einheit aber hat der Physiker

nicht zu fragen, o b sie ist, sondern lediglich w i e sie ist – d. h. welches das Minimum der Voraussetzungen ist, die
notwendig und hinreichend sind, eine eindeutige Darstellung der Gesamtheit der Erfahrungen und ihres systematischen
Zusammenhangs zu liefern [ . . . ].”

94Ibid. p. 28: “Um diese Einheit, die durch den Widerstreit des Prinzips der Konstanz der Lichtgeschwindigkeit und des
Relativitätsprinzips der Mechanik gefährdet schien, aufrecht zu erhalten und um sie tiefer und fester zu begründen, hat
die Relativitätstheorie auf die Einerleiheit der Maßwerte für die Raum- und Zeitgrößen in den verschiedenen Systemen
verzichtet.”

95Ibid. p. 29: “Aber alle diese Relativierungen stehen so wenig im Widerspruch zum Gedanken der Konstanz und der
Einheit der Natur, daß sie vielmehr im Namen eben dieser Einheit gefordert und durchgeführt werden. Die Variation der
Raum- und Zeitmaße bildet die notwendige B e d i n g u n g, vermöge deren die neuen Invarianten der Theorie sich erst
finden und begründen lassen.”
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The foremost invariance is what we would typically call general covariance—which Cassirer
considers “the fundamental principle of general relativity”:96

Above all there is the general form itself of the laws of nature, in which we must
henceforth recognise the true invariant and as such the true logical basis of nature.97

Again, Cassirer sees Einstein’s theory as a fundamental step in the transition between a common
sense world made of (apparently invariant) ‘things,’ to a more abstract and theoretical world of
generally invariant mathematical objects, laws and relations.98 Only relations that hold for all
observers are genuinely objective,99 they alone can be objectively real “natural laws.”

We should only apply the term “natural laws,” and attribute objective reality, to
relationships whose form does not depend on the peculiarity of our empirical mea-
surement, on the special choice of the four variables x1, x2, x3, x4 which express
the space and time parameters.100

Cassirer even associates truth with general covariance:

The space and time measurements in each individual system remain relative: but the
truth and generality of physical knowledge, which is nonetheless attainable, lies in
the reciprocal correspondence of all these measurements, which transform according
to specific rules.101

Truth is not captured by a single perspective:

For relativity theory does not teach that whatever appears is real, but on the contrary
warns against taking appearances which only hold with respect to a single system
as scientific truth, in other words as an expression of the comprehensive and final
legality of experience.102

Nor is it fully captured by an incomplete collection of perspectives; nothing short of all of them
will give the whole truth:

This will not be reached and ensured with respect to observations and measurements
with respect to a single system, nor even with respect to arbitrarily many systems, but

96Ibid. p. 39: “den Grundsatz der allgemeinen Relativitätstheorie, daß die allgemeinen Naturgesetze bei ganz beliebi-
gen Transformationen der Raum-Zeit-Variablen ihre Form nicht ändern [ . . . ].”

97Ibid. p. 29: “Vor allem aber ist es die allgemeine F o r m der Naturgesetze selbst, in der wir nunmehr das eigentlich
Invariante und somit das eigentliche logische Grundgerüst der Natur überhaupt zu erkennen haben.”

98ibid. pp. 34-5
99Ibid. p. 35: “Wahrhaft objektiv können nur diejenigen Beziehungen und diejenigen besonderen Größenwerte heißen,

die dieser kritischen Prüfung standhalten – d. h. die sich nicht nur für e i n System, sondern für alle Systeme bewähren.”
100Ibid. p. 39: “Wir dürfen eben nur diejenigen Beziehungen Naturgesetze n e n n e n, d. h. ihnen objektive Allge-

meinheit zusprechen, deren Gestalt von der Besonderheit unserer empirischen Messung, von der speziellen Wahl der
vier Veränderlichen x1 x2 x3 x4, die den Raum- und Zeitparameter ausdrücken, unabhängig ist.”

101Ibid. p. 36: “Die Raum- und Zeitmaße in jedem einzelnen System bleiben relativ: aber die Wahrheit und Allge-
meinheit, die der physikalischen Erkenntnis nichtsdestoweniger erreichbar ist, besteht darin, daß alle diese Maße sich
wechselseitig entsprechen und einander nach bestimmten Regeln zugeordnet sind.”

102Ibid. p. 50: “Denn nicht, das jedem wahr sei, was ihm erscheint, will die [ . . . ] Relativitätstheorie lehren, sondern
umgekehrt warnt sie davon, Erscheinungen, die nur von einem einzelnen bestimmten System aus gelten, schon für
Wahrheit im Sinne der Wissenschaft, d. h. für einen Ausdruck der umfassenden und endgültigen Gesetzlichkeit der
Erfahrung zu nehmen.”
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only through the reciprocal correspondences between results obtained in all possible
systems.103

The point being that anything less than general covariance isn’t good enough: Uµν , tµν and Γµ
νκ

are ‘linearly’ covariant, in the sense that they behave like tensors with respect to linear transfor-
mations; but

Measurement in one system, or even in an unlimited plurality of ‘privileged’ systems
of some sort, would yield only peculiarities in the end, rather than the real ‘synthetic
unity’ of the object.104

And “overcoming the anthropomorphism of the natural sensory world view is,” for Cassirer, “the
true task of physical knowledge,” whose accomplishment is advanced by general covariance.105

Earman (2006, pp. 457-8) is “leery of an attempt to use an appeal to intuitions about what is
physically meaningful to establish, independently of the details of particular theories, a general
thesis about what can count as a general physical quantity”; we have seen that Cassirer was less
leery, and so—as Earman is suggesting—was Einstein . . .

3.13. Consistency
One hesitates—with or without Cassirer—to attach objective reality or even importance to things
overly shaped by the peculiarities, point of view, state of motion or tastes of the subject or
observer. Allowing him no participation would be somewhat drastic, leaving at most the meagrest
‘truly objective’ residue; but too much could make the object rather ‘unobjective,’ and belong
more to the observer than to the common reality. Appropriate transformation properties allow a
moderate and regulated participation.

Is there an easy way of characterising how much participation would be too much? Of
determining the ‘appropriateness’ of transformation properties? Again: vanishing, annihilation
seems an important criterion, as to which the relationist can demand agreement for physical
significance; he will deny the reality of a quantity that can be transformed away, that disappears
for some observers but not others.

But perhaps there is more at issue than just opinion or perspective. Much as one can wonder
whether the different witnesses in Rashomon are lying, rather than expressing reasonable differ-
ences in perspective; whether their versions are incompatible, not just coloured by stance and
prejudice—here the relationist may even complain about something as strong as inconsistency,
while his opponent sees no more than rival points of view.

Suppose observer Ξ with four-velocity V attributes speed w =
√
|g(w,w)| to body β with

four-velocity W , where the (spacelike) three-velocity w is the projection

PV⊥W =
3∑
i=1

〈dxi,W 〉∂i = W − g(V,W )V

103Ibid. p. 50: “Dieser wird weder durch die Beobachtungen und Messungen eines Einzelsystems, noch selbst durch
diejenigen beliebig vieler solcher Systeme, sondern nur durch die wechselseitige Zuordnung der Ergebnisse a l l e r
möglichen Systeme erreicht und gewährleistet.”

104Ibid. p. 37: “Die Messung in e i n e m System, oder selbst in einer unbeschränkten Vielheit irgendwelcher ”berech-
tigter“ Systeme, würde schließlich immer nur Einzelheiten, nicht aber die echte ”synthetische Einheit“ des Gegenstandes
ergeben.”

105Ibid. p. 37: “Der Anthropomorphismus des natürlichen sinnlichen Weltbildes, dessen Überwindung die eigentliche
Aufgabe der physikalischen Erkenntnis ist, wird hier abermals um einen Schritt weiter zurückgedrängt.”
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onto the three-dimensional simultaneity subspace V⊥ = span{∂1, ∂2, ∂3} orthogonal to V ; and
the projector PV⊥ = 〈dxi, · 〉∂i is the identity minus the projector PV = g(V, · )V onto the ray
determined by V . Another observer Ξ ′ moving at V ′ sees speed

w′ =
√
|g(w′,w′)| = ‖PV ′⊥W‖

(all of this around the same event). The short statements

• β has speed w

• β has speed w′

are contradictory. If w′ = 0 the contradiction becomes even more striking, for then β is moving,
and isn’t. Consistency can of course be restored with longer statements specifying perspective,
but the tension between the short statements is not without significance—if the number were a
scalar even they would agree. Similar considerations apply, mutatis mutandis, to covariance; one
would then speak of form or syntax being the same, rather than of numerical equality.

Consistency and reality are not unrelated. Consistency is certainly bound up with mathemat-
ical existence, for which it has long been considered necessary—perhaps even sufficient.106 And
in mathematical physics, how can the physical significance of a mathematical structure not be
compromised by its inconsistency? If inconsistency prevents part of a formalism from ‘existing,’
how can it represent reality? The relationist will argue that an object, like tµν , whose existence
is complicated—perhaps even compromised—by an ‘inconsistency’ of sorts (it’s there, and it
isn’t), cannot be physically meaningful.

3.14. The generation of gravitational waves

LEX I. [ . . . ] Majora autem planetarum et cometarum corpora motus suos et progressivos et
circulares in spatiis minus resistentibus factos conservant diutius.

We can now turn from the reality of gravitational waves to their very generation, about which the
relationist can also wonder.

Belief in gravitational radiation rests chiefly on the binary star PSR 1913 +16, which loses
kinetic energy as it spirals inwards (with respect to popular coordinates at any rate). If the ki-
netic energy is not to disappear without trace, it has to be converted, presumably into radiation.
Since its disappearance is only ruled out by the conservation law, however, the very generation of
gravitational waves must be subject to the perplexities surrounding conservation.107 If the con-
servation law is suspicious enough to make us wonder whether the lost energy is really radiated
into the gravitational field, why take the polarization of that radiation—which stands in the way
of the full determination of inertia—seriously? As we were wondering in §3.7, couldn’t it be
no more than a purely decorative gauge, without reality or physical meaning? The binary star’s
behaviour and emission of gravitational waves can admittedly be calculated with great accuracy,
but the calculations are not generally covariant and only work in certain coordinate systems.

Even the ‘spiral’ behaviour, associated so intimately with the loss of kinetic energy, is weg-
transformierbar. A coordinate system leaving the two pulsars at the constant positions (t, 1, 0, 0)

106See Poincaré (1902, p. 59).
107Cf. Hoefer (2000), Baker (2005).
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and (t, 0, 0, 0) is easily found.108 If the pulsars don’t move, if they have no ‘kinesis,’ why should
they lose a kinetic energy they never had in the first place?

To question the reality or generation of gravitational waves, the relationist would demand
general covariance—one of the central principles of general relativity—as a matter of principle,
whereas his opponent will fall back on the more tolerant day-to-day pragmatism of the practising,
calculating, approximating physicist, who views the theory more as an instrumental collection of
recipes, perturbation methods, tricks and expedients, by which even the most sacred principles
can be circumvented, than as a handful of fundamental and inviolable axioms from which all is
to be deduced. General covariance—another midwife, it seems—may well have provided useful
guidance over eighty years ago, but surely general relativity has now outgrown it . . .

3.15. A Doppler effect
The absolutist will be doubly satisfied by the discovery of gravitational waves, which would not
only reinforce his belief in the underdetermination of inertia, but even allow absolute motion, as
we shall now see.

We began with Newton’s efforts to sort out absolute and relative motus, first took (certain
occurrences of) motus to mean acceleration, and accordingly considered absolute acceleration;
but are now in a position to countenance absolute motion more literally. The four ontic-tidal-
gravitational observables of Lusanna & Pauri may even give us absolute position: an observer
capable of measuring them would infer his absolute position from the ontic-tidal-gravitational
peculiarities of the spot—and even an equally absolute motion from the variation of those pe-
culiarities. But their measurement is anything but trivial, as one gathers from §2.2 of Lu-
sanna & Pauri (2006b). The importance of metrology to their programme is clear: if the four
ontic-tidal-gravitational observables are in fact unobservable, why bother with them? We avoid
all the formidable intricacies of metrology, faced with such competence and courage by Lu-
sanna & Pauri, by proposing a Gedankenexperiment that’s as simple as it is impossible: Let us
say that relative motion is motion referred to something—where by ‘thing’ we mean a material
object that has mass whatever the state of motion of the observer (materiality, again, is not an
opinion). Otherwise motion will be absolute. Suppose an empty flat universe is perturbed by (3).
Changes in the frequency ω measured by a roving observer would indicate absolute motion, and
allow a reconstruction, through ω = kaV

a, of the observer’s absolute velocity V a.
Is this undulating spacetime absolute, substantival,109 Newtonian? It is absolute to the extent

that according to the criterion adopted it admits absolute motion. But its absoluteness precludes
its substantival reification, which would make the motion relative to something and hence not
absolute. Newton, though no doubt approving on the whole, would disown it, for “Spatium
absolutum [ . . . ] semper manet similare et immobile,” and our undulating spacetime is neither
‘similar to itself’ (Rabcd oscillates, though Rbd vanishes identically) nor immobile.

We may remember that Newton spoke of revealing absolute motus through its causes and
effects, through forces. Absolute motion is precisely what our thought experiment would reveal,
and through forces, just as Newton wanted: the forces, for instance, registered by a (most sensi-
tive) dynamometer linking the masses whose varying tidal oscillations give rise to the described
Doppler effect.

108The pulsars are a bit large for low-dimensional idealization (see §3.4); but one can still transform away the motions
of representative worldlines—perhaps described by the centers of gravity—selected from their worldtubes. Cf. Weyl
(1924, p. 198).

109Newton never seems to use words resembling ‘substance’ in reference to his absolute space, whereas the literature
about it is full of them.
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The absolutist will claim, then, that gravitational waves are so real they wiggle the detector,
and in so doing reveal absolute motion. But wiggling, the relationist will object, is not generally
covariant: it can be transformed away. Let us continue to suppose, for simplicity, that the masses
(two are enough) making up the detector are in the middle of nowhere, and not on the surface of
the earth—whose gravitational field is not the point here. In what sense do they wiggle? As with
the binary star, we can find coordinate systems that leave them where they are, say at (t, 1, 0, 0)
and (t, 0, 0, 0). Both masses describe geodesics; how can objects wiggle if they stand still and
don’t even accelerate?110 The absolutist will reply that each mass, despite moving inertially,
accelerates absolutely with respect to the other, for the tensorial, generally covariant expression
d2ξa/dτ2 = Ra0c0ξ

c representing geodesic deviation cannot be transformed away (where ξa is
the separation, with components ξµ = 〈dxµa , ξa〉, and τ is the proper time of the mass to which
the acceleration of the other is referred). This puts the relationist in something of a corner,
mathematically—from which he can emerge experimentally by pointing out that the acceleration
in question, however tensorial and covariant, has yet to be measured.

3.16. Meyerson, belief and robust persistence

We have seen that the relationist has a case as long as gravitational waves are not discovered.
Discovery will be bad news, but needn’t be entirely fatal. Being back in a corner the relationist
will use whatever is available; and one thing he’ll have in abundance is the statistical noise the
signal will be buried in. Identification of the signal in all that noise will be a controversial act of
faith; and Émile Meyerson (1951, 1927) provides a principle, a further requirement the relationist
can invoke to undermine faith, to weaken belief in gravitational waves even where their most
faithful partisans see ‘detection’—a belief that can be seen as a comprehensive holistic verdict
on the whole phenomenon of gravitational waves, with many contributions, whose inextricable
entanglement prevents their logical isolation.

Meyerson argues that over and above mere légalité, science pursues causalité and explica-
tion, which have much to do with identity and its persistence. Causalité roughly amounts to
the ‘preservation’ of the cause as it evolves—or rather doesn’t evolve—into the effect. If the
identity of the cause cannot be followed through to the effect, remaining substantially unaltered,
there may be a ‘legal’ regularity, but the effect is not explained, in fact Meyerson would not
even speak of cause and effect. His concern with identity makes him attach importance to con-
servation laws, which after all assert persistence; indeed he requires conservation for causality.
Belief, he doesn’t explicitly speak of; but the relationist can nonetheless quite reasonably add
that Meyerson’s causalité and explication correspond to a better, stronger form of belief111 in the
whole process (especially the transmission) than mere légalité; that belief can be bound up with
a robust integrity of the cause as it progresses.

Suppose a gravitational wave detector seems to reveal a signal (resulting from an exchange
with the gravitational field) that appears to come from the decaying binary star. Meyerson would
at least see légalité in the correlated behaviours of star and detector. But due to what exactly?
To turn the mere correlation into a genuine causal relationship, into an explanation, Meyerson
would require whatever is exchanged with the detector to be the same—for everyone, surely—as

110Cf. Lusanna (2007, p. 80): “all realistic observers are accelerated,” for unaccelerated observers would have to be too
small to be realistic; but see §3.4 above.

111In such a context it goes without saying that belief is supposed to be ‘justified’; see Fano & Colagé (2008) on faith,
belief and justified belief.
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what left the star and crossed the gap in between. Otherwise there would be légalité without
causalité, and more timid belief.

However strengthened by a ‘detection,’ belief in gravitational waves could long remain frag-
ile; the separation of signal and noise is likely to be hard and controversial. The relationist can
aggravate the fragility by tying belief to explanation and explanation to a robust persistence, to
invariant conservation.112

But here we are on a level of abstract general principles too distant from direct experience for
the empiricist to approve; principles uncomfortably reminiscent of the a priori system-building
of recent centuries, imaginative and untroubled by the little imperfections of nature; principles
that smack of an archaic, cavalier disdain for disagreeable niceties.113 Indeed many physicists
may consider Einstein and his general covariance114 almost as suspiciously metaphysical as the
obsolete elucubrations of Spinoza, Kant or Hegel.

4. Final remarks

The reader may feel, perhaps uneasily, that these explorations have been. . . exactly that; that
they lack the factious zeal that so often animates the literature, giving it colour and heat and sen-
timent. But the enthusiast remains free to take sides, without being discouraged by our hesitating
ambivalence.

Having viewed general relativity as a response to the absolute inertial structure of Newto-
nian mechanics—which acts on matter despite being unobservable, and does not even react to
it—we have wondered about the extent to which the inertia of general relativity is determined
by matter and thus overcomes the absoluteness it was responding to. We have chosen to concen-
trate on punctual determination, paying little attention to the holistic, field-theoretical constraint
contributed by distant circumstances and stipulations. And at a point the matter tensor T ab under-
determines inertia by ten degrees freedom, eight of which can be eliminated by suitable gauge
choices. The remaining two represent the polarization of gravitational waves, whose reality
the relationist can contest by insisting on general covariance; for the generation and energy-
momentum of gravitational waves can, in appropriate senses, be transformed away. Their de-
tection, which may at first seem just as wegtransformierbar, is in fact generally covariant, but
statistically obfuscated by all the noise present.

So gravitational waves have an awkward status in general relativity: though not as mathe-
matically sturdy as one might want them to be, they aren’t so flimsy the relationalist can do away
with them without qualms. If gravitational waves could be legitimately dismissed as a fiction,

112Suppose a real-valued function called the visibility is defined on the entire signal, which includes all the noise. This
visibility might be taken to express the relationship between the noise and some ‘real’ signal that may be there too: the
higher the visibility, the better the detection, the more indisputable the presence of the signal. The faithful partisan may
at first be satisfied with a modest visibility, say 1/2 on a range from zero to one. But once his faith is undermined
by all the disturbing perplexities of causality, explanation, conservation, invariance and even Wegtransformierbarkeit
he will no longer look at experimental statistics with the innocent eyes of faith; his troubled scepticism will give rise
to more stringent statistical demands: genuine detection will now require a higher visibility, (say) at least 3/4! This
epistemological, psychological holism embracing transmission and detection (and perhaps much else) is not unrelated to
the experimental, logical holism of Duhem and Quine; see Afriat (2008).

113Cf. Lusanna & Pauri (2006a, p. 717): “[ . . . ] as soon as one leaves the rarefied atmosphere of full general covariance
and soils his hands with the dirty facts of the empirical front of GR [ . . . ].”

114Ibid. p. 697: “[ . . . ] people (philosophers, especially) should free themselves from the bewitching fascination of
manifest general covariance [ . . . ].”
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the determination of inertia by matter would be rather complete; and general relativity could be
viewed as a satisfactory response to the absolute features of Newtonian mechanics that bothered
Einstein.

Belot & Earman (2001, p. 227) write that “It is no longer possible to cash out the disagree-
ment in terms of the nature of absolute motion (absolute acceleration will be defined in terms of
the four dimensional geometrical structure that substantivalists and relationalists agree about).”
Relationists and absolutists—as we call them—may well agree that absolute motion, or rather
inertia, is represented by affine structure; but disagree about the nature of its determination by
matter: only a relationist would contest the physical significance of the mathematical underde-
termination at issue here.

Questioning the reality of gravitational waves is neither orthodox nor usual; but their bad
behaviour under transformations is worth emphasizing, as it does not seem entirely meaning-
less. While we await convincing, unambiguous experimental evidence, our belief in gravitational
waves will (or perhaps should) be bound up with our feelings about general covariance, about
general intersubjective agreement.

We thank Silvio Bergia, Roberto Danese, Dennis Dieks, Mauro Dorato, John Earman, Vincenzo
Fano, Paolo Freguglia, Pierluigi Graziani, Catia Grimani, Niccolò Guicciardini, Marc Lachièze-
Rey, Liana Lomiento, Luca Lusanna, Giovanni Macchia, Antonio Masiello, John Norton, Marco
Panza, Carlo Rovelli, Tom Ryckman, George Sparling and Nino Zanghı̀ for many fruitful dis-
cussions; and anonymous referees for helpful suggestions and comments.
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—— (1908) Science et méthode, Paris: Flammarion
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and N. Rescher, Pittsburgh: University of Pittsburgh Press

Synge, J. L. (1964) Relativity: the general theory, Amsterdam: North-Holland

35



Szabados, L. (2004) “Quasi-local energy-momentum and angular momentum in GR: a review article” Living reviews in
relativity 7, www.livingreviews.org/lrr-2004-4

Weyl, H. (1921) “Zur Infinitesimalgeometrie: Einordnung der projektiven und der konformen Auffassung (aus einem
Briefe an F. Klein)” Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, mathematisch-physikalische
Klasse (vorgelegt in der Sitzung vom 28. Januar) 99-112
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