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The Principle of Sufficient Reason

I. INTRODUCTION

Many attempts to refute Leibniz’s Principle of the Identity of Indiscernibles and Principle of Sufficient Reason turn upon symmetries. If a symmetric world were possible, then the Principle of the Identity of Indiscernibles (PII) would stand refuted—since such a world would include multiple objects with identical qualitative and relational properties. If there were a class of possible worlds whose shared geometry and laws are invariant under some set of symmetries—in the way that Newtonian worlds are invariant under Euclidean symmetries—then the Principle of Sufficient Reason (PSR) would stand refuted: the indifference of space and dynamics to the placement of matter would imply the existence of distinct but qualitatively identical worlds; in this world, the center of the solar system is here, in that one it is there, although the worlds are qualitatively identical.


Ian Hacking once observed that symmetry-driven counterexamples to PII are inherently inconclusive.
 One can always deny that the description proffered manages to accurately characterize any possible world, maintaining instead that the only genuine possibility in the neighborhood arises when the qualitatively identical objects of the original description are taken to be numerically identical.

I claim that PSR can be given a similar line of defense: a description of a set of possible worlds which includes pairs of worlds with identical qualitative structures can always be taken to correspond to the sparser set of possibilities which arises when qualitatively identical worlds are identified.

This paper falls into two parts, held together by an admittedly loose interpretation of Leibniz: the later sections form a commentary on some theorems concerning symmetries and the structure of the spaces of physical possibilities in classical mechanics; the first few sections are intended to set this discussion in context.

II. HACKING’S STRATEGY

Consider Max Black’s famous challenge: “Isn’t it logically possible that the universe should have contained nothing but two exactly similar spheres?” If this is granted, then “every quality and relational characteristic of the one would also be a property of the other,” and PII is soundly refuted. 
 

Symmetry plays a crucial role in arguments like Black’s. A two-sphere world is a potential counterexample to PII only if the spheres are images of one another under reflection in the plane bisecting the segment joining their centers—if they were different sizes or colors, for instance, PII would of course be perfectly safe. Similarly, if we describe a two-dimensional Euclidean world containing three point-objects, each labeled by a color, then PII is threatened if and only if there is a symmetry of space which maps the triangle determined by the three points onto itself while preserving the colors of the vertices. Thus no scalene triangle threatens the principle, while an isosceles triangle poses a threat if and only if reflection in its axis of symmetry interchanges vertices of the same color. An equilateral triangle poses a threat if and only if some pair of vertices are the same color (in which case colors are preserved by reflection in the axis perpendicular to the segment which joins these points); if all three vertices are the same color, then colors are also preserved by rotations of 120 and 240 degrees about the center of the triangle (these rotations permute the vertices without interchanging any pair). 

More generally, suppose that we are given a description of a set of material bodies, possessing certain properties and standing in certain geometric relations to one another.
 If this arrangement is symmetrical—so that there is some non-trivial combination of reflections, rotations, and translations which maps the arrangement on to itself in a way that preserves properties—then, as in Black’s example, there will be a pair of objects that share all of their qualitative and relational properties in virtue of playing identical roles in the pattern of relations and properties instantiated. Thus the situation described, if a genuine possibility, constitutes a counterexample to PII. On the other hand, if there is no such symmetry of the situation, then PII is in effect, since each object is distinguished from every other in virtue of some property it possesses, or the role that it plays in the pattern of geometric relations holding between the objects. 

Hacking’s defense of PII exploits the close relationship between PII and asymmetry. His paper proceeds via ingenious elaborations of a simple theme: any description of a symmetric arrangement of bodies can be taken to be a misdescription of an asymmetric state of affairs involving fewer bodies. When Black asks Leibniz to imagine a world containing only two identical iron spheres, Leibniz can respond—as he did to Samuel Clarke—that “To suppose two things indiscernible, is to suppose the same thing under two names.” (L.IV.6.)
 

When presented with a story about a world comprising only two identical drops of water whose surfaces reflect one another, Hacking’s Leibniz responds that what has in fact been described is a world containing a single drop whose surface reflects itself. Intuitively, this one-drop world is constructed from the ‘world’ originally described by identifying points of space and bits of matter which are mirror images of one another. 

Opponents of PII can offer more and more elaborate worlds as counterexamples. But because they will inevitably involve symmetric arrangements of matter, proponents of PII will always be able to defuse the threat by identifying qualitatively identical objects to generate asymmetric worlds which obey the principle. Implementing this strategy may sometimes require unseemly contortions. Some truths about the proffered symmetric world will carry over to its asymmetric replacement (“each drop reflects some drop”); some truths will not (“no drop reflects itself”). Thus, as Hacking notes, it can happen that the symmetric world admits a simple description, beside which any description of the asymmetric world appears baroque. Hacking insists, though, that this sort of thing can at most embarrass Leibniz—it cannot force him to abandon PII. 

III. ONCE MORE, ABSTRACTLY

I think it helpful to have in view a more abstract description of Hacking’s strategy. (Readers who do not like that sound of that may prefer to skip this section.) We are interested in structures and their symmetries.
 A structure consists of a set of objects, A, together with a set, {R}, of relations on A (including, possibly, one-place relations—namely, properties).
 A symmetry of a structure is a permutation of its objects which fixes each of its relations.
 We equip ourselves with a first order language with identity that includes: a predicate symbol for each relation of our structure; a set of variables which range over objects; and a set of constants large enough to provide a name for each object.

This language provides two principal modes for describing our structure. We can use variables but no names, and focus on theories—(arbitrary) sets of true sentences about our structure which employ neither constants nor free variables. Alternatively, we can choose to employ names but no variables: setting up a nomenclature—an assignment of a constant of our language to each object of the structure—we can regard the constants as names for objects, and formulate true statements about the objects named. In particular, each nomenclature is associated with a complete description—the set of all true atomic sentences about the structure relative to this system of naming. A complete description of a structure does what no theory about an infinite structure can do—determine it up to isomorphism.

Let us fix a structure, and consider a nomenclature and its associated complete description. Each permutation of the set of objects of our structure induces a new nomenclature and a new complete description. Symmetries are the permutations which leave our initial complete description invariant. Thinking of symmetries as permutations of names rather than objects, we can see that they leave invariant the list of true sentences describing the structure. 

The  existence of a symmetry mapping object a to object b indicates that a and b  play the same role in our structure. Thus if a and b  are distinct possible physical objects, then the structure under consideration provides a counterexample to PII. Conversely, if a structure admits no symmetries, this indicates that each of its objects plays a distinct role.
 Thus a structure (of physical objects) contains non-identical indiscernibles if and only if it admits a non-trivial symmetry.

We can now describe Hacking’s strategy as follows. Having fixed an arbitrary structure, we construct a closely related quotient structure by identifying objects related by symmetries. We define an equivalence relation on the set of objects our original structure by declaring that a~b if there exists a symmetry of that structure, :AA, with (a)=b; we write [a] for the equivalence class of a, {b: a~b}. The set of objects of the quotient structure is {[a]: aA}, the set of equivalence classes of objects of the original structure. The quotient structure has a relation [R] for each relation R of the original structure; [R] is the smallest relation such that if R(a1, …,an) for some n-tuple of objects of the original structure, then [R]([a1], …,[an]).


We can use the same language to describe both structures (using the same predicate symbol, ‘R’, as a name for both R and [R]). We can choose names for our new objects and generate a complete description of the quotient structure. This will also be a complete description of the original structure (relative to some nomenclature) if and only if the two structures are isomorphic—that is, if and only if the original structure possesses no non-trivial symmetries. 

 
When the original structure does admit non-trivial symmetries, the complete descriptions of the two structures are still closely related. A complete description of the original structure can be transformed into a complete description of the quotient structure by taking names of objects related by symmetries to name identical objects.
 Thus a complete description of the original structure can be taken to be the sort of misleading description of the quotient structure which results when some objects are given multiple names. 


We can also consider the relations between theories describing the two structures. Some sorts of (constant-free) sentences are true of the quotient structure if they are true of the original structure. This holds for sentences which are negation-free and those which mention only one-place relations. More can be proved: if a sentence is in negation normal form (so that all of its negation symbols apply to atomic formulas) and all of its negation symbols apply to one-place relations, then it is true in the quotient if it is true in the original structure.
 But not too much more: suppose that the original structure includes an irreflexive binary relation, R, and objects, a and b such that R(a,b) and a~b; then in the quotient structure, we have [R]([a],[b]), with [a]=[b]; so the sentence x ¬R(x,x), attributing irreflexivity to R and [R], is true in the original structure but false in the quotient structure. 

The upshot: whenever we have a structure which admits non-trivial symmetries, we can factor these out. The new quotient structure is closely related to the original one. In special cases—such as when all of the relations of the structures are one-place—every theory true of the original structure is also true of its quotient. 
 

But in general, the two structures will be described by related but distinct theories. Hacking argues that the committed advocate of PII can brush off one worry aroused by this divergence: that theories describing the quotient world may be complex compared to those describing the original structure. 

There is, however, a second worry in the neighborhood: theories of the quotient may be too simple in comparison to those of the original world. The following cases were suggested to me by Kit Fine. Consider a countable set of objects, whose only structure is a two-place relation isomorphic to the order relation for the integers or the rationals. The quotient of such a structure is just a single object, related to itself. Here we have somewhat rich structures which collapse to a disappointingly simple one when we pass to their quotients. How can we be sure that taking the quotient of a ‘world’ will yield a possible world? 

Again, the committed Leibnizean need not be troubled: “Things which are uniform, containing no variety, are always mere abstractions.”
 But the more moderate among us will probably conclude that both of these worries render it necessary to examine the relation between a structure and its quotient on a case by case basis in order to discern whether the two can indeed by taken to correspond to the same sorts of complexes of possibilities.

IV. HACKING’S CONCLUSION

Hacking sets out to show that PII can be defended against a certain sort of counterexample: presentations of symmetric worlds. He proposes that any description of a symmetric world, in which multiple objects play the same role in the pattern of properties and relations instantiated can always be taken to be a misdescription of an asymmetric world in which the principle holds. That this strategy is available—even if there is room to doubt its prudence in many cases—shows that PII can be protected from counterexample by spatiotemporal symmetry. If we indulge in a little rational reconstruction, and take PII to amount to the denial of the possibility of symmetric worlds, then we reach Hacking’s conclusion—“the pursuit of … logical questions might settle the issue of [PII], but mere reflection on spatiotemporal examples is never enough.”
 

Hacking himself has proposed a conception of the nature of logic which does imply a version of PII.
 At the same time, it fails to underwrite the catechetical principle that identity implies necessary identity.
 In defending this lapse of orthodoxy, Hacking registers his doubts about views concerning rigid designation which form the very basis of the faith. He rejects the claim that in naming two actual qualitatively identical drops of water Jake and Jesse we gain the ability to describe two distinct possible worlds Beta and Gam, the first inhabited only by Jake, the second only by Jesse:

by cold naked stipulation we produce not two possibilities but one. Beta and Gam, for all our naming, are the same world, populated by one drop, with just so many properties. I am not here arguing a case for or against “trans-world identification.” I am arguing that there is no sense in postulating two distinct worlds which have no point of distinction except in the sheer names of their inhabitants. (ibid., p. 626) 

As Hacking goes on to point out, “this is not an argument about the identity of indiscernibles,” as he construes that principle.
 

But the question of the existence of such pairs of qualitatively identical worlds is closely related to PSR, as Leibniz deployed it in his dispute with Clarke.  

V. LEIBNIZ AND CLARKE

Early in his correspondence with Clarke, Leibniz asserts that the reversal of the decay of natural religion in England will never be accomplished by means of that country’s native, mathematical, principles. Metaphysical principles are required. The principle of contradiction suffices to found arithmetic and geometry, but “in order to proceed from mathematics to natural philosophy, another principle is requisite, as I have observed in my Theodicy: I mean, the Principle of Sufficient Reason, viz. that nothing happens without a reason why it should be so, rather than otherwise” (L.II.1). 

Archimedes’ postulate that “Equal weights at equal distances are in equilibrium, and equal weights at unequal distances are not in equilibrium but incline towards the weight which is at the greater distance” is a special case of this principle.
 Much of the controversy between Leibniz and Clarke hinges on the question of the extent to which God—unlike a balance or an ass—is capable of arbitrarily choosing between qualitatively identical alternatives. In pressing this question, Clarke raises the following difficulty: 

why this particular system of matter, should be created in one particular place, and that in another place; when, (all place being absolutely indifferent to all matter,) it would have been exactly the same thing vice versa, supposing the two systems (or the particles) of matter to be alike; there can be no other reason, but the mere will of God. Which if it could in no case act without a predetermining cause, any more than a balance can move without a preponderating weight; this would tend to take away all power of choosing, and to introduce fatality. (C.II.1.)
Leibniz never answers this objection to Clarke’s satisfaction any more than Clarke ever demonstrates to Leibniz his comprehension of the great principle under discussion.


But the particular example broached by Clarke in this passage leads to one of the most interesting of the many proliferating side-issues under discussion. Leibniz jumps at the chance to air his complaints about the Newtonian doctrine of absolute space. He opens with a bold bluff: “I have many demonstrations, to confute the fancy of those who take space to be a substance, or at least an absolute being. But I shall only use, at the present, one demonstration, which the author here gives me occasion to insist upon.” (L.III.5.) He goes on to recapitulate Clarke’s own argument “’tis impossible there should be a reason, why God, preserving the same situations of bodies among themselves, should have placed them in space after one certain particular manner, and not otherwise; why every thing was not placed the quite contrary way, for instance by changing East into West.” However, we are now to read this argument not as a refutation of PSR by counterexample, but as a reductio of the supposition of absolute space which proceeds via an appeal to that principle. This clears the way for Leibniz’s own conception of space: 
But if space is nothing else, but that order or relation; and is nothing at all without bodies, but the possibility of placing them; then those two states, the one such as it is now, the other supposed to be the quite contrary way, would not at all differ from one another. Their difference therefore is only to be found in our chimerical supposition of the reality of space in itself. But in truth the one would exactly be the same thing as the other, they being absolutely indiscernible; and consequently there is no room to enquire after a reason of the preference of the one to the other.
Where Clarke sees many possible arrangements of bits of matter consistent with any acceptable specification of their relative distances, Leibniz recognizes only one. We can think of Clarke as generating his space of possibilities by considering some particular way of embedding a material system in to Euclidean space which gives rise to the correct relative distances, then shifting, reflecting, and rotating this material distribution in absolute space to generate many more, each satisfying the same set of relations of relative distance. This is possible because of the “indifference” of space to matter, which also guarantees that each of the alternatives so generated will be qualitatively identical (in one world, this object is here, in that one, there; but these two parts of space share all of their qualitative properties and relations). Leibniz protects PSR by identifying alternatives related by the symmetries of Euclidean space. For him there is a single possibility here: the bodies, in space, with such and such relations between them. 

VI. PROTECTING PSR

Notice that the symmetries at stake in the Leibniz-Clarke correspondence are not symmetries of (typical) worlds—only very special arrangements of matter are invariant under rotations, reflections, or translations. Rather, the symmetries in question are symmetries of the space of possibilities: consider the set of possible dispositions of some material system in  absolute space; act on each possibility by (say) translating each particle by some given amount in some given direction; the list of possibilities is invariant under this action (and under the actions of reflections and rotations as well). 


Part of the content of PSR involves the denial of the existence of  qualitatively identical worlds.
 In this guise the principle appears to be vulnerable to symmetry-driven counter-examples. By analogy with Hacking’s defense of his construal of PII, we see, however, that this part of the content of PSR can be protected from this class of putative counterexamples if we insist that symmetries should be factored out of the space of possible worlds. 

Note that the apparatus of §III can be deployed whenever we have a set structured by some relations. In Hacking’s defense of PII, the structured sets in question were possible worlds, whose objects corresponded to material objects, endowed with properties and standing in geometric relations to one another. Hacking advises us to factor out symmetries from such sets to ensure that they do not include objects sharing all of their qualitative properties and relations. In order to defend PSR against symmetry objections, we need to turn our attention to structured sets whose objects are possible worlds, factoring out symmetries from such sets to ensure that there do not exist pairs of qualitatively identical worlds.

Mathematical treatments of classical mechanics provide one of the few setting in which structured spaces of possible worlds arise in a natural way—and also constitute the natural context for the questions raised by Leibniz and Clarke. So let us focus on that case. We are given a phase space whose points represent physically possible instantaneous dynamical states of our system—initial data. Alternatively, since the physics is deterministic, we know that the space of physically possible histories must be isomorphic to the space of initial data (choosing a time at which to pose the initial data determines an isomorphism). So we can, as it suits us, take the points of phase space to correspond to either possible worlds or to temporal slices of possible worlds. 

A classical mechanical phase space carries a sort of geometric structure which wants only the specification of a distinguished function on phase space, the Hamiltonian, to determine a unique curve through each of its points.
 If we think of points of phase space as representing instantaneous states, then each dynamical trajectory describes a physically possible history of states.
 In the most common case, the phase space will parameterize the set of possible positions and momenta of some set of particles or fields in Euclidean space. Such a phase space carries a canonical geometric structure, and the standard dynamics arise when the Hamiltonian is taken to be the function which assigns to each state its total energy. Typically our Hamiltonians are written as sums of kinetic energy terms (encoding inertial effects) and potential energy terms (encoding information about the action of forces).

 Now let us suppose, as is in fact quite typical, that we have a classical mechanical theory which is invariant under some symmetries—so that there are bijections from the phase space to itself which leave invariant the geometric structure and Hamiltonian of our theory. The set of trajectories through two points of phase space related by such a symmetry will have the same structure (since the dynamics are determined by the geometric structure and the Hamiltonian, which are themselves invariant under the symmetry in question). And this is to say that at the level of description that we are working at—where all and only dynamical variables are included in our descriptions of possible states and worlds—that these two points represent qualitatively indistinguishable possible states or worlds. So the existence of symmetries of our dynamical theory poses a threat to PSR.  

The advocate of PSR will observe that this threat can be deflected if we hold that it is not this original phase space but its quotient structure—the space of possibilities which arises when points of the original phase space which are related by symmetries are identified—which parameterizes the space of dynamically possible worlds. 


What is the price of this defense of PSR? We started with an elegant mathematical formulation of a physical theory. In moving to a theory of equivalence classes of our original states, it is natural to worry that we will end up with something hopelessly ad hoc, perhaps with little claim  to be considered a physical theory in its own right . In the next few sections, I will make some remarks about important theorems in geometric mechanics which are meant to allay this fear.

VII. EXAMPLE: CELESTIAL MECHANICS

Let us apply this strategy to a familiar example—the classical theory of N gravitating point particles. It is helpful to have two spaces in view here: the 3N dimensional configuration space of the system (encoding the possible instantaneous dispositions of the N particles in three dimensional Euclidean space); and the corresponding 6N dimensional phase space (parameterizing the possible instantaneous positions and velocities of the particles).
 The phase space carries a canonical geometric structure, and the Newtonian dynamics are determined by taking as our Hamiltonian the sum of the kinetic energy and the gravitational potential energy. 


If we consider some isometry of Euclidean space—a product of translations, rotations, and reflections—then we can see how it maps each point of the configuration space of the theory to some other: allowing the isometry to act on each of the positions of the individual particles leads to a new configuration of the system. Of course, since isometries preserve distance, the initial configuration and the transformed configuration instantiate the same pattern of relative distances between particles. 


This action of the Euclidean group on the configuration space induces an action of the group on the phase space. If we know how a given Euclidean isometry acts on each point along a curve in the configuration space, then we know how it acts on the curve itself; and this allows us to define an action of the group on tangents to curves in configuration space; which is just to say that we know how each isometry transforms the velocities of each of our particles. The action is in fact straightforward: a translation does not alter a velocity vector; a rotation or reflection acts on such a vector in the obvious way (rotating or reflecting it). 


Now the important fact for us is that the group of Euclidean isometries is in fact a symmetry group for our theory, leaving invariant the Hamiltonian and the geometric structure of the phase space—and, therefore, mapping dynamical trajectories to dynamical trajectories.


The relationalism about space exhibited in Leibniz’s replies to Clarke suggests the following line of thought.
 The standard configuration space over-counts possible configurations of particles by recognizing many possible ways to instantiate each geometrically possible pattern of relative distances. We ought to replace this configuration space by the relative configuration space—parameterized by the geometrically possible patterns of relative distances between the particles—which arises when we identify points in the standard configuration space related by the action of the Euclidean group. We ought then to formulate a strictly relational dynamics, set in the relative phase space (parameterized by the possible instantaneous relative distances and velocities for the particles). 

It is easy to see, however, that this relative phase space is not rich enough to capture the empirical content of Newton’s theory: if I merely specify the initial relative distances and velocities of two (or more) particles, I have not given enough information to fix the future evolution of their relative distances and velocities—depending on the total angular momentum of the system, they may eventually fall towards one another, or they may form a stable or expanding orbit.


Thus a strictly relational reformulation of Newton’s theory is not to be had. What bearing does this fact have on our general strategy for protecting PSR? Let us count dimensions. The standard phase space has a 3N dimensional configuration space and a 6N dimensional phase space, and is invariant under the six dimensional group of Euclidean symmetries. It follows that the relative configuration space is 3N–6 dimensional and the relative phase space is 6N–12 dimensional. 


We can also construct a reduced phase space, by taking the quotient of the standard phase space by the action of the Euclidean group. The points of the this space are equivalence classes of points of the standard phase space related by isometries, carrying a geometric structure inherited from that of the standard phase space.
 Since the standard Hamiltonian is invariant under the group action, it projects down to a well-defined Hamiltonian on the reduced phase space. The resulting dynamical theory captures all of the invariant content of the standard theory.


The reduced phase space is 6N–6 dimensional, so this space is intermediate in size between the standard phase space and the relative phase space. In fact, we can think of it as being the result of augmenting the relative distances and velocities which parameterize the relative phase space with six further variables. These fall into two classes: constants of motion and true dynamical variables. Four of the six are constants of motion: if we fix their initial values, then we are guaranteed that dynamical evolution will not change them. The other two variables are dynamical—like the relative position and velocity variables, we expect dynamical evolution to alter their values. 


Three of the four constants of motion are redundant in the following sense. We can stipulate that they take some fixed value and examine the dynamical theory which results. It will consist of a space of states, parameterized by the relational variables, the remaining constant of motion, and the two non-relational dynamical variables. This space will carry a geometric structure and a Hamiltonian. Neither depend in any way on which value we choose for our three constants of motion. This is just to say that these constants of motion play no dynamical role in our theory and, from the point of view we are considering, that they ought to be dropped from the reduced phase space, yielding a space of dimension 6N–9. (These three dynamically inert variable describe the velocity of the center of mass of the system; they can be eliminated by identifying points of the original or reduced phase space related by Galileian boosts).


The remaining non-relational variables of the reduced phase space are very different. Above I observed that merely specifying the relative distances and velocities for our particles is insufficient to determine their future evolution—one also has to know something about their state of rotation. The remaining constant of motion, R, corresponds to the magnitude of the angular momentum of the system, while the two non-relational dynamical variables serve to fix a point on a sphere of radius R, encoding the direction of the angular momentum of the system in a frame rotating along with it. If we fix R we get a space of variables consisting of the relational variables and our two non-relational ones. The geometric structure and Hamiltonian on this space do depend on the value of R.


These three additional non-relational variables are required to handle the difference between rotating and non-rotating systems of particles—a difference that simply cannot be captured in the strictly relational framework of the relative phase space, which lacks the resources to draw the dynamically crucial distinction between various states of rotation. The reduced theory incorporates just enough variables to be able to recognize such differences, without running afoul of PSR by countenancing distinct physical possibilities which are related to one another by symmetries. The nine variables included in the standard theory but absent from the reduced theory—the position and velocity of the center of mass, and the orientation of the system about its center of mass—are closely associated with the symmetries of classical mechanics. They also play no dynamical role, and it is their elimination which allows one to protect PSR. 


Let me point some other features of the reduced theory. First, notice that although from the perspective of the standard theory the three remaining non-relational variables bear a very close relationship to the total angular momentum of the system, we find that from the perspective of the reduced phase space they have no straightforward geometric interpretation.  Indeed, notice that we never fixed the value of N. Thus, we need the same three non-relational variables in our reduced phase space no matter how large our system is. This forces us to conclude that these three variables correspond to properties of the system as a whole, rather than to properties of any particular particle. Within the present framework—particles moving in Euclidean space—it is very difficult to see how we can give a geometrically reasonable interpretation of these non-relational variables.
  


Furthermore, notice that if R=0—if, from the traditional point of view, the angular momentum of the system vanishes—then the two remaining non-relational dynamical variables drop out of the picture (since they parameterize a sphere of radius zero). Thus we end up with a theory on the relative phase space, whose variables are just the relative distances and velocities. And, in fact, the dynamics of this sector of the reduced phase space coincide with the dynamics for the relative distances and velocities which results if the relational initial data are arbitrarily embedded in the standard phase space, subject to the constraint that the angular momentum vanishes, and their evolution is read off from the evolution of the standard variables. Since, as a matter of empirical fact, our universe has no discernible angular momentum, this strictly relational sector of the reduced is empirically adequate within the domain of Newton’s theory.

VIII. THE GENERAL CASE

The example of the preceding section is typical of one large class of cases. We begin with a configuration space for some set of particles or fields, and with a group of symmetries acting on that space; in this case, we expect that a reasonable theory constructed on the phase space of this system will admit that same group of symmetries. When this occurs, we can—so long as some relatively weak technical conditions hold—construct an alternative theory on the reduced phase space which arises when we identify points of the original phase space related by symmetries. We then find the following. (1) The reduced phase space includes variables in addition to those which arise when we begin by quotienting the original configuration space by its group of symmetries, and then augment the resulting set of relative configuration variables with their time rates of change. The further non-relational variables of the reduced theory fall into two groups—constants of motion and genuine dynamical variables.
 (2) These non-relational variables are closely related to the conserved quantities that Noether’s theorem associates with the symmetry group of the theory. The number of non-relational variables will be equal to the dimensionality of the group of symmetries. In particular, it will be independent of the size of the system under consideration—suggesting that these additional variables ought to be thought of as properties of the system as a whole. These variables are often implicated in awkward problems of interpretation. (3) Typically, the topology, geometry, and Hamiltonian of the reduced theory be distinctly more complex than that of the reduced theory. Almost always, the reduced Hamiltonian will include potential energy terms corresponding to forces absent in the original theory. (4) In the special case corresponding to the vanishing of the conserved quantities associated with our symmetries, we end up with a theory depending only upon the relative configuration and momentum variables variables. When this fragment is empirically adequate, we are able to achieve a fully relational theory.


This gives us some idea of the costs and benefits of saving PSR from symmetries within one large and important family of classical mechanical theories (similar remarks would apply to more general classes of theories). It turns out that devoted advocate of PSR can rest easy—we can (almost) always replace a theory admitting a symmetry group by a mathematically reasonable quotient. Others, in light of (3) above, will want to carefully examine the sacrifices required on a case by case basis—the reduced theory may appear less than attractive qua physics beside its more familiar, symmetric, counterpart,. But one has to be on one’s guard here—for judgments about what is natural and what is contrived are strongly conditioned by our upbringing and familiarity. 

It is only relatively recently that the reduction procedure we have been discussing was formulated in its full generality. But it has roots in the Nineteenth century. Hertz was very impressed by the possibility—analyzed in detail by Routh—of eliminating cyclic variables whose momenta are irrelevant to a given dynamical problem. 
 He hoped that the terms which this process introduces into the reduced Hamilatonian would provide one of the keys to eliminating the notion of force altogether from classical mechanics—he believed that the forces which appear in our theories of macroscopic phenomena are in part an artifact of our lack of knowledge of the true microscopic cyclic variables.
 We have, he thought, effectively performed a reduction without realizing it—what we think of as being the proper form for a physical theory is in fact highly misleading, the result of an ontologically inappropriate reduction.

(An aside about Hertz’s program. The idea was to start with a flat configuration space, then to reconstitute physics as we know it through the imposition of constraints on phase space, and the elimination of cyclic variables. All of physics would then follow from (Euclidean) kinetic energy and rigid connections between particles—force would play no role. The program is sometimes dismissed by philosophers as hopeless—What mechanism of hidden microscopic degrees of freedom could account for the gravitational force? But, in fact, it is all too easy to implement technically.
 The problem is that known implementations have little discernible physical interest. The kinetic energy in question bears no straightforward relation to any physical notion.
 Even worse: for almost all physical systems, it suffices to add a single hidden cyclic degree of freedom.) 


In a similar vein, our theory of the behavior of a charged particle in an electromagnetic field—which has the particle tracing out a curved trajectory in four dimensional spacetime in accord with the Lorentz force law—strikes us as being entirely natural. But this theory can be thought of as arising via reduction from a Kaluza-Klein theory, in which spacetime has a fifth (minuscule and circular) dimension and the charged particle moves along a straight line.
 Here the question of which is more natural or attractive is a difficult one—and we might well expect our intuitions to be hostage to the success of Kaluza-Klein-inspired strategies in string theory and elsewhere.


My point is this: while it is quite true that we have no guide here other than the sum-total of our judgments of simplicity, elegance, and so on, we must be willing to interrogate this guide rather carefully, and with as much self-consciousness as we can muster. 

IX. METHODOLOGICAL WORRIES

Very often, then, when presented with a physical theory invariant under a group of symmetries, we have the option of replacing it by a reduced theory with the same power. Ought we to do so? It is often asserted that symmetries are crucial in modern physics: they underlie conservation laws, they enforce relativity principles, they guide theory construction. Can we afford to sacrifice these virtues?


There is much to be said here. But the short answer is that no real sacrifices are required. Conservation laws are enforced in the reduced theory, just as in the original theory—indeed, they are encoded in the geometry of the reduced phase space in a rather interesting way. As for relativity principles and other heuristics, note that there is a sense in which the symmetry group is still present, in a more subtle form: by looking at the local geometry of the space of states, one can divine which group, if any, was factored out in its construction.
 So nothing need be lost in moving to the reduced theory. 

But there is something to be gained. Invariance a theory under (continuous groups of) symmetries implies that the phase space of the theory includes dynamically inert variables (since the action of the group on a point of phase space carries us to a point where the dynamics look exactly the same). By moving to the reduced phase space, we avoid the sort of redundancy in our space of possibilities which underwrote Clarke’s attack on PSR, without losing any of the (invariant) content of our dynamics.

X. PSR IMPLES PII?

I want to briefly discuss one final topic: the logical relationship, within the present context, between my version of PSR and Hacking’s version of PII. Above I mentioned that the construction of a reduced phase is contingent upon some technical conditions. One which is often imposed requires that the identity be the only symmetry which has any fixed points. If this fails, then the reduced phase space will not be a manifold: generic points of the original space, corresponding to asymmetric arrangements of matter, will project down to generic, well-behaved points of the reduced phase space; but the reduced phase space will also have singularities which correspond to those points of the original space which represent symmetrical arrangements of matter. 

 
Now, this seems to mean that enforcing PSR (in my sense) implies PII (in Hacking’s sense), since if one wants a nonsingular reduced phase space, one must exclude symmetric arrangements of matter from one’s original space of physical possibilities. And this seems meet and right, since Leibniz often proclaimed that his entire philosophy, including lesser principles such as PII, rested ultimately upon the Principles of Noncontradiction and Sufficient Reason.


Alas, the technical situation is more complex than this. It is not so much that the reduced theory makes no sense near singularities—the reduced phase space is well-behaved topological space, carrying enough geometric structure to underwrite dynamics—as that one must be more careful in formulating it, since the structure of the tangent space of the reduced phase space changes discontinuously as one moves from generic points to singular points.
 But perhaps one could still cobble together a Leibnizean argument from PSR to PII via the Law of Continuity (which might be thought to prohibit such jumps)?
 Or perhaps this last anachronistic epicycle is one too many….

GORDON BELOT

New York University
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