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Abstract

Cosmologists often use certain global properties to exclude “phys-
ically unreasonable” cosmological models from serious consideration.
But, on what grounds should these properties be regarded as “physi-
cally unreasonable” if we cannot rule out, even with a robust type of
inductive reasoning, the possibility of the properties obtaining in our
own universe?

1 Introduction

Recent results show a sense in which the global structure of spacetime cannot
be fully established.1 It seems that, excluding certain pathological examples,
every cosmological model is empirically underdetermined; no amount of ob-
servational data we could ever (even in principle) accumulate, can force one
and only one cosmological model upon us. Additionally, one can show that
even under the assumption of an inductive principle – that the physical laws
we determine locally are applicable throughout the universe – these general
epistemological difficulties remain.

However, it may be that we are able to make partial determinations con-
cerning important global properties. For example, it might be possible to
discover whether or not our universe is causally well-behaved in some respect.
The first task of this paper will be to demonstrate that for many global prop-
erties of interest, even this partial determination is impossible. This certainly
exacerbates the epistemic plight of the cosmologist. But, in addition, these
underdetermination results seem to have implications for what counts as a
“physically reasonable” cosmological model.

∗I wish to thank David Malament and John Norton for helpful comments.
1See Manchak (2009a) for details.
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Cosmologists often use certain global properties (for example, those relat-
ing to causal misbehavior) to exclude some models from serious consideration.
But, on what grounds should these properties be regarded as “physically
unreasonable” if we cannot rule out, even with a robust type of inductive
reasoning, the possibility of the properties obtaining in our own universe?
The second task of this paper is to carefully investigate this question.

2 Background structure

We start by reviewing the relevant background formalism of general relativ-
ity.2 A relativistic spacetime is a pair of mathematical objects (M, gab). M
is a connected four-dimensional manifold (without boundary) that is smooth
(infinitely differentiable). Here, gab is a smooth, non-degenerate, pseudo-
Riemannian metric of Lorentz signature (+,−,−,−) defined on M . Each
point in the manifold represents an “event” in spacetime. For each point p in
the manifold, the metric assigns a light cone structure in the tangent space
Mp. Any tangent vector ξa in Mp will be timelike (if gabξ

aξb > 0), null (if
gabξ

aξb = 0), or spacelike (if gabξ
aξb < 0). Null vectors create the “cone”

structure. Timelike vectors are inside the cone while spacelike vectors are
outside. A time orientable spacetime is one that has a continuous timelike
vector field on M . A time orientable spacetime allows us to distinguish be-
tween the future and past lobes of the light cone. In what follows, we assume
that spacetimes are time orientable.

For some interval I ⊆ R, a smooth curve γ : I → M is timelike if the
tangent vector ξa at each point in γ[I] is timelike. Similarly, a curve is null
(respectively, spacelike) if its tangent vector at each point is null (respectively,
spacelike). A timelike curve is future-directed if its tangent vector at each
point lies in the future lobe of the light cone. For any two points p, q ∈ M ,
q is to the timelike future of p (written p << q) if there exists a timelike,
future-directed curve γ from p to q. A future-directed curve from p to q that
is either timelike or null indicates that q is to the causal future of p (written
p < q). These relations allow us to define the following sets of points in M :
I−(p) = {q : q << p}, I+(p) = {q : p << q}, J−(p) = {q : q < p}, and
J+(p) = {q : p < q}. The set I−(p) will be used extensively throughout
the paper and is called the observational past of p. This set represents those

2Details can be found in Hawking and Ellis (1973) and Wald (1984).
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points which can possibly be observed from p.3

A point p ∈ M is a future endpoint of a future-directed causal curve
γ : I →M if, for every neighborhood O of p, there exists a point t0 ∈ I such
that γ(t) ∈ O for all t > t0. A past endpoint is defined similarly. For any set
S ⊆ M , we define the past domain of dependence of S (written D−(S)) to
be the set of points p ∈ M such that every causal curve with past endpoint
p and no future endpoint intersects S. The future domain of dependence of
S (written D+(S)) is defined analogously. The entire domain of dependence
of S (written D(S)) is just the set D−(S) ∪D+(S).

A set S ⊂ M is achronal if no two points in S can be connected by a
timelike curve. The edge of a closed, achronal set S ⊂ M is the collection
of points p ∈ S such that every open neighborhood O of p contains a point
q ∈ I+(p), a point r ∈ I−(p), and a timelike curve from r to q which does
not intersect S. A set S ⊂ M is a slice if it is closed, achronal, and without
edge. A set S ⊂ M is a spacelike hypersurface if S is an three-dimensional
submanifold such that every curve in S is spacelike.

Two spacetimes (M, gab) and (M ′, g′ab) are isometric if there is a diffeo-
morphism φ : M → M ′ such that φ∗(gab) = g′ab. For ease of presentation,
we will sometimes say that two manifolds M and M ′ are isometric when
it is clear which metrics are associated with M and M ′. Two spacetimes
(M, gab) and (M ′, g′ab) are locally isometric if, for each point p ∈ M , there
is an open neighborhood O of p and an open subset O′ of M ′ such that O
and O′ are isometric, and, correspondingly, with the roles of (M, gab) and
(M ′, g′ab) interchanged.

3 Observational Indistinguishability

We are now prepared to consider the notion of observationally indistinguish-
able spacetimes. Intuitively, a spacetime is observationally indistinguishable
from another if no observer in the first spacetime has grounds for deciding
which of the two she inhabits.4 Formally, we have the following.

3One uses the set I−(p) instead of J−(p) to represent the “observational past” of p for
reasons of mathematical convenience.

4There are various definitions of observational indistinguishability found in the litera-
ture. Here, we restrict our attention to one given by Malament (1977). For others, see
Glymour (1972, 1977).
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Definition. Let (M, gab) and (M ′, g′ab) be spacetimes. We say (M, gab) is
observationally indistinguishable from (M ′, g′ab) if, for every point p ∈ M ,
there is a point p′ ∈M ′ such that I−(p) and I−(p′) are isometric.

It should be clear from the definition that, given that a spacetime (M, gab)
is observationally indistinguishable from another spacetime (M ′, g′ab), no em-
pirical data could (even in principle) allow an observer in (M, gab) to distin-
guish between the two models.

It has been shown that, except for certain pathological models, not only
is every spacetime observationally indistinguishable from some other, but
the result holds even if we require the two spacetimes to have identical local
properties. In other words, cosmologists inherit a serious epistemic predica-
ment even under the inductive assumption that “the normal physical laws
we determine in our spacetime vicinity are applicable at all other spacetime
points” (Ellis 1975, p. 246). In order to present the result, consider the
following definition.

Definition. A property P on a spacetime is local if, given any two locally
isometric spacetimes (M, gab) and (M ′, g′ab), (M, gab) has P if and only if
(M ′, g′ab) has P . A property is global if it is not local.

Under this definition it should be clear that, for example, the property of
satisfying the standard energy conditions counts as local while the property
of being stably causal is classified as global.5

Now, consider a special class of spacetimes (M, gab) with the property
that for some point p in M , I−(p) = M . Such spacetimes necessarily contain
closed timelike curves and, in addition, have the property that all of space-
time may be observed from one point. We will call these spacetimes causally
bizarre.

Now we are ready to introduce the underdetermination result discussed
above.6

Theorem. Let (M, gab) be any spacetime having any set of local properties
P. If (M, gab) is not causally bizarre, then there exists a spacetime (M ′, g′ab)
such that (i) (M ′, g′ab) has the set P of local properties, (ii) (M, gab) is ob-

5See Wald (1984) for details concerning these properties.
6The proof for this claim is given in Manchak (2009a).
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servationally indistinguishable from (M ′, g′ab), and (iii) (M, gab) and (M ′, g′ab)
are not isometric.

So, even if one fixes the local structure of spacetime completely, there is a
sense in which the global structure of every model is underdetermined. This
poses quite a problem for the cosmologist. But, as we are about to see, the
epistemic situation is even worse than the theorem above seems to suggest.

4 Underdetermination of Global Properties

In this section, we restrict our attention to four global properties of interest:
inextendibility, isotropy, global hyperbolicity, and hole-freeness. Let us define
each of them in turn.

We say a spacetime (M, gab) is inextendible if it is not possible to prop-
erly embed it isometrically into another spacetime. So, the property of inex-
tendibility ensures that spacetime is “as large as it can be.”

A spacetime (M, gab) is (spatially) isotropic if there is a timelike vector
field ξa on M such that, for all p ∈ M and any two unit vectors σa

1 and σa
2

at p which are orthogonal to ξa, there is an isometry ϕ : M → M which
leaves p and the field ξa fixed but rotates σa

1 into σa
2 . Intuitively, isotropic

spacetimes, sometimes called the “Friedmann models”, have no preferred
spatial directions.7

A spacetime (M, gab) is globally hyperbolic if there is a slice S in M such
that D(S) = M . Roughly, a globally hyperbolic spacetime allows one to de-
termine, from initial conditions on S, the physical situation on all of M . For
this reason, global hyperbolicity is usually taken to be a necessary condition
of Laplacian determinism.

A spacetime (M, gab) is hole-free if, for any spacelike hypersurface Σ in
M there is no isometric embedding θ : D(Σ) → M ′ into another spacetime
(M ′, g′ab) such that θ(D(Σ)) 6= D(θ(Σ)). So, in a hole-free spacetime, the
Cauchy development of every spacelike surface is “as large as it can be”.

With these definitions in place, we are ready to strengthen the underdeter-
mination result from above. Let S be the set of global properties consisting
of inextendibility, isotropy, global hyperbolicity, and hole-freeness. We have

7Note that, under this definition, spatial isotropy implies spatial homogeneity. See Ellis
(2007, p. 1225)
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the following.

Theorem. Let (M, gab) be any spacetime having any set of local properties
P. If (M, gab) is not causally bizarre, then there exists a spacetime (M ′, g′ab)
such that (i) (M ′, g′ab) has all of the properties in P, (ii) (M ′, g′ab) has none
of the properties in S, (iii) (M, gab) is observationally indistinguishable from
(M ′, g′ab), and (iv) (M, gab) and (M ′, g′ab) are not isometric.

Proof. Let (M, gab) be any spacetime which is not causally bizarre having the
set of local properties P. Now construct (M ′, g′ab) according to the method
outlined in Manchak (2009a). Next, remove any point u in the M(1, β) por-
tion of the manifold M ′. It is easily verified that the resulting spacetime,
call it (M ′′, g′′ab), is such that (i) (M ′′, g′′ab) has all of the properties in P, (ii)
(M ′′, g′′ab) has none of the properties in S, and (iii) (M, gab) is observation-
ally indistinguishable from (M ′′, g′′ab), and (iv) (M, gab) and (M ′′, g′′ab) are not
isometric. �

We can understand the theorem to be saying that, not only is it impos-
sible to fully establish the global structure of spacetime, but we cannot even
make partial determinations concerning a handful of spacetime properties of
interest. It seems that, although our universe may be inextendible, isotropic,
globally hyperbolic, and hole-free, we can never know that it is. We mention
in passing, however, that if it turns out that our universe fails to have the
properties in S, it may be possible to determine that this is the case (see
Malament 1977).

5 Physical Reasonableness

Some may insist that the result just presented has little or no physical sig-
nificance.8 One view is to hold that the spacetime constructed in the proof
cannot be physically reasonable because it was assembled via a seemingly ar-
tificial “cut and paste” process. But, such an objection must be formulated
carefully because any spacetime can be fabricated by such a construction (see
Geroch 1971a, p. 78).

8See Norton (manuscript) for a related discussion of various ways a system can be
regarded “unphysical”.
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Some conditions for ruling out manufactured examples have been pro-
posed. But, none seem to be entirely satisfactory. Inextendibility is not
strong enough to forbid many cut and paste examples (see Earman 1995, p.
98). On the other hand, the property of local inextendibility, introduced by
Hawking and Ellis (1973, p. 59), was later shown to be much too strong
(see Beem 1980). And although the condition of hole-freeness seems to be
adequate for many purposes, as we will see below, it carries with it some
significant problems as well.

It must be remembered too that the theorem can have physical relevance
even if the particular model constructed in the proof does not. Geroch (1971a,
p. 78) explains.

The space-times obtained by cutting and patching are not nor-
mally considered as serious models of our universe. However, the
mere existence of a space-time having certain global features sug-
gests that there are many models – some perhaps quite reaonable
physically – with similar properties.

Some have held that any spacetime which fails to have one or more of
the properties in S is ipso facto physically unreasonable. In other words,
the conditions of inextendibility, isotropy, global hyperbolicity, and hole-
freeness have all been taken, at one time or another, to be satisfied by all
reasonable models of our universe. But how does one justify such position?
We know that, given the theorem above, this justification cannot be due to
any observational data we have collected or likewise any considerations of the
local structure of spacetime. In the remainder of this section, we will briefly
examine the rationale in support of each of the properties under investigation.
We hope to show that, in each case, the justification is dubious in certain
respects.

Inextendibilty. A spacetime which fails to be inextendible is often thought
to be physically unreasonable for metaphysical reasons (Earman 1995, p. 32).
In particular, Leibniz’s principles of plenitude and sufficient reason seem to
be at work. Geroch (1970, p. 262) asks, “Why, after all, would Nature stop
building our universe...when She could just as well have carried on?” Others
use similar reasoning (see Penrose 1969, p. 253; Clarke 1976, p. 17).

But, however compelling the metaphysics, it is sometimes problematic to
insist on inextendibility. For example, Clarke (1976, p. 20) has shown that
not every well-behaved spacetime admits a well-behaved inextendible exten-
sion. Should we cling to inextendibility at the expense of other desirable
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spacetime properties? The answer is far from clear. Additionally, a space-
time does not always have just one inextendible extension (Clarke 1993, p.
9). Thus, the principle of sufficient reason can actually be used to argue
against the property of inextendibility. After all, why should one extension
be preferred over another?

Isotropy. The Copernican principle is often used to support the claim
that realistic models of universe are (on sufficiently large scales) isotropic.
Although precise formulations vary, this principle is generally taken to be the
statement that we do not occupy a privileged position in spacetime. Since
observational data seem to indicate no preferred spatial direction from our
vantage point, the Copernican principle implies an isotropic universe (see
Wald 1984, p. 94). However, some have questioned the Friedmann models.
Wainwright and Ellis (1996) have shown that “intermediate isotropisation”
can occur in which spacetime exhibits (highly approximate) isotropic behav-
ior for arbitrarily long cosmic times despite being extremely anisotropic at
very early and very late epochs. In addition, we know that under the as-
sumption of some formulations of cosmic inflation, we would not even expect
our universe to be isotropic (Ellis 2007, p. 1227).

Elsewhere, it has been argued that although the Copernican principle
seems to modestly deny us a special status, this “seeming modesty is belied
by the immodest use to which the principle is put in justifying an inductive
extrapolation” (Earman 1995, p. 129). Indeed, induction on such large scales
would seem to be suspect given that we are able to observe only a “negligibly
small region” of the universe (see Wald 1984, p. 91).

Global Hyperbolicity. Motivated largely by considerations of causal de-
terminism, some insist on the (strong) cosmic censorship hypothesis – the
statement that all physically reasonable spacetimes are globally hyperbolic
(see Joshi 1993; Earman 1995). To support such a position, Penrose (1979,
p. 626) maintains that cosmological models which fail to be globally hy-
perbolic are unstable under certain types of perturbations. However, such
a claim is difficult to express precisely (see Geroch 1971b). And, although
some evidence does seem to indicate that instabilities are present in non-
globally hyperbolic spacetimes, still other evidence suggests otherwise (see
Chandrasekhar and Hartle (1982) and Morris, Thorne, and Yurtsever (1988)
for opposing perspectives).

A precise formulation of the cosmic censorship hypothesis due to Wald
(1984, p. 304) eschews any reference to stability and, instead, simply forbids
known counterexamples. But, one must be careful with such an approach. As
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Earman (1995, p. 80) has emphasized, the term “physically unreasonable”
should not be used as an “elastic label that can be stretched to include any
ad hoc way of discrediting putative counterexamples.” Finally, even if a
particular formulation can be agreed upon, it seems that a proof of cosmic
censorship is still a “long way” off (Penrose 1999, p. 245).

Hole-Freeness. The preservation of causal determinism also seems to be
the motivating force behind the assumption that all physically reasonable
spacetimes are hole-free. According to Clarke (1976, p. 17), hole-freeness is
needed to ensure that predictions are “not falsified by the spontaneous ap-
pearance of uncaused singularities.” Additionally, Geroch (1977, p. 87) has
suggested that, in order to uphold certain theorems concerning causal deter-
minism, we may want to modify general relativity such that only hole-free
spacetimes are permitted (see also Ellis and Schmidt 1977, p. 927). But, Ear-
man (1995, p. 98) has argued that this imposition of hole-freeness amounts to
little more than question begging. Indeed, it seems impermissible to justify
the modification of one’s physical theories (so as to maintain determinism)
merely because not doing so would put determinism in jeopardy.

Other problems are also associated with hole-freeness. It has recently
been shown that, contrary to claims made in the literature, some inex-
tendible, globally hyperbolic spacetimes are not hole-free (Manchak 2009b).
In other words, hole-freeness is not necessarily a property of some maximal
Cauchy developments. Also, there exist some (presumably physically reason-
able) models of spherically symmetric, radiating stars which are not hole-free
(Steinmüller, King, and Lasota 1975). Finally, we know that hole-freeness
can fail to mesh well with other properties of interest: not every hole-free
spacetime admits an inextendible hole-free extension (see Clarke 1976, p.
20).

6 Conclusion

It seems that one can certainly find principled reasons for believing that all
physically reasonable cosmological models are inextendible, isotropic, glob-
ally hyperbolic, and hole-free. Indeed, metaphysical considerations, the
Copernican principle, and a desire to preserve causal determinism all lead
one to certain conclusions concerning the global structure of spacetime.

But as we have seen, these guiding principles, as well as the conclusions
drawn from them, are far from uncontroversial. It is our position that the
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existence of this controversy, coupled with the underdetermination result
above, requires a certain modesty with regard to the situation. One should
simply be open to the possibility that our own universe is not best represented
by an inextendible, isotropic, globally hyperbolic, hole-free model. Of course,
this possibility demands that we apply great care when labeling as “physically
unreasonble” spacetimes which fail to have some or all of these properties.
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