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Abstract. Many philosophers would concede that mathematics contributes
to the abstractness of some of our most successful scientific representations.
Still, it is hard to know what this abstractness really comes to or how to make
a link between abstractness and success. I start by explaining how mathe-
matics can increase the abstractness of our representations by distinguishing
two kinds of abstractness. First, there is an abstract representation that
eschews causal content. Second, there are families of representations with a
common mathematical core that is variously interpreted. The second part of
the paper makes a connection between both kinds of abstractness and suc-
cess by emphasizing confirmation. That is, I will argue that the mathematics
contributes to the confirmation of these abstract scientific representations.
This can happen in two ways which I label “direct” and “indirect”. The
contribution is direct when the mathematics facilitates the confirmation of
an accurate representation, while the contribution is indirect when it helps
the process of disconfirming an inaccurate representation. Establishing this
conclusion helps to explain why mathematics is prevalent in some of our suc-
cessful scientific theories, but I should emphasize that this is just one piece
of a fairly daunting puzzle.
I. Modern science is incredibly successful when it comes to representing the
world, and these representations seem to employ a lot of mathematics. Most
philosophers of science seem uninterested in finding out if this correlation
indicates any underlying relationship between the use of mathematics and
the success of science. It is not clear why this is, but one problem with
the topic of mathematics in science is that it has encouraged overly broad
conclusions, as with Kant
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I maintain, however, that in every special doctrine of nature only
so much science proper can be found as there is mathematics in
it.

or Wigner

The miracle of the appropriateness of the language of mathemat-
ics for the formulation of the laws of physics is a wonderful gift
which we neither understand nor deserve.

It is hard to know what to make of such sweeping claims or how they could be
defended based on what we know about science and its success. By contrast,
my approach will be to start with a series of questions that allow a variety of
mutually supporting answers: what does mathematics contribute to the suc-
cess of a given scientific representation? How does it make this contribution?
What does this contribution presuppose? Here I aim to explore the answer
that what mathematics contributes in many cases is abstractness. But, as
we will see, there are two sorts of abstract contributions from mathematics.
Once they are distinguished I will argue that both sorts of contribution re-
late to the confirmation of a scientific representation. If this sort of answer
can be sustained, then we will see a link between mathematics and scien-
tific knowledge. This is more modest than what it seems Kant or Wigner
intended, but it might support a proposal like Daniel Bernoulli’s: “There is
no philosophy which is not founded upon knowledge of the phenomena, but
to get any profit from this knowledge it is absolutely necessary to be a math-
ematician.”1 Despite its modesty, even this sort of epistemic answer would
raise important questions about the source of the mathematical knowledge
that is deployed in science and whether it might require some kind of a priori
basis.
II. To start, let’s clarify what I mean by “scientific representation”. Much
of the discussion of representation in science contrasts theories and models.
Models are said to be autonomous from theories by one side, while the other
side responds that theories just are collections of models (e.g. [17] vs. [9]). It
is thus useful to have a generic term that embraces both theories and models,
and this is how I use “scientific representation”. Put briefly, a scientific
representation is anything that has content, i.e. has conditions under which
it is true of its target system and conditions under which it is false of its target

1Quoted in [13], p. 22, citing Truesdell.
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system. There are important questions about how scientific representations
get their content and where exactly they should be placed in our overall
metaphysics. I will try to set these questions aside whenever possible so that
we can focus on the specific case of a mathematical scientific representation.

There are two ways in which mathematics enters into the content of a
given scientific representation. I call these “intrinsic” and “extrinsic”. The
basic idea is that the intrinsic mathematics is necessary to fix the content
of the representation, while the extrinsic mathematics is not. To fix the
distinction more clearly I present a simple example of a traffic model ([12],
ch. 8). Suppose we have a system of N cars traveling down a single-lane
road. The lead car’s front bumper’s position will be represented by the real-
valued function of time x1(t), the second car’s position by x2(t), and so on
through xN(t). With L representing the length of each car, we impose the
constraint that xi(t)+L < xi−1(t), i.e. no car can be closer to the front of the
car ahead of it than the length of the car. Violation of this constraint would
imply a collision. Our representation also invokes a constant reaction time
τ for each driver which is intuitively the time between when the driver sees
a change on the road ahead and begins her accelerating/braking maneuver.
Two qualitative assumptions can be used to motivate a representation of the
braking force of each car after the lead car:

(a) The greater the difference in velocity between the two cars, the greater
the braking force will be.

(b) The greater the distance between the two cars, the lesser the braking
force will be.

This yields, for 1 < i ≤ N ,

ẍi(t + τ) = λ
ẋi(t)− ẋi−1(t)

|xi(t)− xi−1(t)| (1)

where λ = A/m, m the mass of each car and A some constant. Appealing
to our constraint allows us to simplify the equation further and integrating
gives us the velocity for each car after the lead car in terms of its relative
position at an earlier time: for 1 < i ≤ N ,

ẋi(t + τ) = λ ln |xi(t)− xi−1(t)|+ αi (2)

where αi is a constant. Through the specification of λ, τ , the αi and some
further choices, we could develop this representation into a complete specifi-
cation of the trajectory of each car over some time interval.
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(2) and these additional components constitute our representation of a
given traffic system. It should be clear how the mathematics that explicitly
appears in (2) is intrinsic. This part of the mathematics is used to represent
where the cars are over time. The intrinsic mathematics needs to be distin-
guished from the other extrinsic mathematics that was used to derive (2). In
particular, (1) and the mathematics that gets us from (1) to (2) is extrinsic
to (2). An account of how the traffic system has to be for (2) to be correct
need not invoke the extrinsic mathematics of the representation. To see the
value of this distinction, note that (2) could wind up being accurate even if
(1) was not. Similarly, the main mediating link between (1) and (2) is

ẋi(t)− ẋi−1(t)

|xi(t)− xi−1(t)| =
d

dt
ln |xi(t)− xi−1(t)| (3)

when xi(t) < xi−1(t). (3) does not enter into the content of the representa-
tion. Even when such mediating equations are false, it need not undermine
the accuracy of the resulting representation.

With the intrinsic/extrinsic distinction in hand, we can turn to the two
respects in which this representation fails to be abstract even though it makes
crucial use of mathematics. First, its mathematical components have a fixed
physical interpretation. xi indicates the position of the i-th car, τ the re-
action time, and so on. This fixed association between the elements of the
mathematics and certain physical magnitudes is consistent with some degree
of variation in the content of the representation from case to case. For ex-
ample, we might use this very same representation to investigate a traffic
case in Pennsylvania, and then use it to consider a traffic system in Indiana.
But this degree of flexibility is quite minimal. What is more interesting, and
what is lacking with this representation, is the possibility of taking xi to
stand for something else, e.g. the position of a gas molecule. If we abstract
away from the fixed content of (2), what results is what I will call an abstract
varying representation. Such a representation is really a family of represen-
tations within which each member of the family involves a more concrete
specification of which parts of the mathematics are associated with which
magnitudes. If we take this abstraction to its utmost, then what results is a
wholly mathematical representation with no physical content. For example,
we can discuss the linear harmonic oscillator model as a mathematical entity
without reference to its various concrete interpretations.2 It is important to

2Cf. the discussion of modeling in [22].
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note that members of abstract varying representations need not totally agree
in their mathematics, and that often a merely partial overlap is sufficient.

There is a second sense of abstractness, however, which should not be
confused with the sense just introduced. Notice that in addition to having a
fixed interpretation, (2) purports to represent the causal interactions of the
cars in the traffic system. The causal content is reflected in the tracking of the
position of each car over time and the coupling between the difference in rela-
tive position of two cars at t and the velocity of the lagging car at t+τ . Such
a representation satisfies the tests imposed for most accounts of causation.
For example, its content supports the right kind of counterfactuals related
to changing circumstances and it purports to capture the underlying mech-
anisms responsible for the phenomena.3 The only thing missing from this
representation are the microphysical details. But only the most restrictive
notion of causal representation would view the inclusion of the microphysics
as a necessary condition. The main point of what follows is to argue that
there are important cases of non-causal representation where mathematics
makes a crucial contribution. Anyone advocating even the strictest notion of
causal representation will presumably agree that these are non-causal repre-
sentations.

We can start with a causal representation and move to an abstract acausal
representation if we remove the elements necessary for tracking the dynamics
of the system as it evolves through time. Examples of the results of this
process of abstraction are representations of the system at some specified
equilibrium.4 By jumping to how the system will look at this equilibrium
we can gain crucial information about features of the system and we can
study how it will behave if the equilibrium is disturbed. This is, in fact, one
standard way of proceeding after one obtains (2). The reasons for this are
not hard to appreciate once one notices how difficult it would really be to
make any progress with (2). To begin with, there are many equations to
work with. More importantly, to add realistic constraints would require a
great deal of information about the system. For example, how are the cars
initially arrayed, and what fixes the various αi? Additional motivation for
shifting to an equilibrium representation will become clear shortly. After that
we will return to a discussion of the different sorts of contributions of the
mathematics as we move from a fixed, causal representation to both abstract

3[24], [15].
4I should emphasize that this is just one kind of abstract acausal representation.
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acausal and abstract varying representations.
III. We develop an acausal representation of a traffic system by defining an
equilibrium point to be a case where the velocity of each car is the same and
the distance between each car is the same:

∀i, j ẋi = ẋj

∀i > 1 xi(t)− xi−1(t) = d

The choice made here is not ad hoc as a review of (1) shows that these sys-
tem’s cars, except the lead car, must have constant velocity. At equilibrium
we have a well-defined density function ρ:

ρ(x0, t) =
number of cars in [x0 − ε, x0 + ε] at t

2ε
(4)

where L ¿ 2ε ¿ the length of the road. At equilibrium, ρ is independent of
the choice of ε and becomes

ρ =
1

d + L
(5)

We assume that v(x, t), the velocity of cars at point x at time t, is a function
just of the density ρ(x, t). This allows us to distinguish two crucial equi-
librium points for the system. First, there is the point of minimal velocity,
which will occur at the maximum density ρmax = 1

L
when the distance d

between the cars goes to zero. At this point, v(ρmax) = 0 and the cars stand
still. Second, there is a maximal velocity for which we label the density ρcrit.
We are interested in how the velocity varies as a function of the density as we
move from vmax = v(ρcrit) to v(ρmax). Intuitively, as the density is increased,
the velocity will decrease.

Based on these assumptions and (2) we can find v as a function of ρ when
ρ > ρcrit:

v(ρ) = vmax ln[
ρmax

ρ
][ ln

ρmax

ρcrit

]−1 (6)

Notice how the otherwise undetermined λ and αi of (2) have been removed.
To plot (6) we need only determine the density at which the maximum ve-
locity is reached.

A second magnitude of interest is the flux at a given point, i.e. the number
of cars that cross a given point per unit of time:

j(ρ) = ρv(ρ) (7)
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Figure 1: Velocity and Flux as Functions of Density ([12], p. 155)

Using (6), we can find the density ρ0 with maximum flux by solving j̇(ρ) = 0.
This yields

ρ0 =
ρmax

e
(8)

e = 2.71828 . . . here is the base of the natural logarithm. See figure 1 for a
graph of the density and flux.

How is the concrete causal representation (2) different from the abstract
acausal representation (6), (8)? They clearly have different contents. The
causal representation includes details about each car’s position and velocity
over time as well as information about the causal interactions between the
cars. The acausal representation lacks this causal content or any other causal
content. We can see this by noting that (6), (8) taken in isolation give us no
information about how a particular system would change in counterfactual
circumstances and the mechanisms responsible for the features of the system
are not given. A second change pertains to the intrinsic mathematics of the
acausal representation. If we consider the mathematical entities invoked by
the two representations in their specification of how the system is, then we see
that quite different constants and functions appear. There is, of course, some
relationship between the two representations. We have linked them through
some simple mathematical steps. Still, the functions ρ and v that appear
in (6), (8) are not part of (2). We made various assumptions in defining
these functions that could be questioned by someone who assented to (2). In
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general, abstract acausal representations involve mathematical entities and
idealizing assumptions that outstrip the content of a causal representation.
So, it is only in special cases that we could find a transparent relationship.
In some cases scientists cannot even formulate a causal representation and
work solely with an acausal representation.
IV. So far we have seen one way in which mathematics can contribute to
a scientific representation. This is to allow the formulation of an abstract
acausal representation from a concrete causal representation.5 The mathe-
matics here provides an extrinsic link between the two representations and
permits the scientist to arrive at one representation from the other. This is
really only the first step, though, in helping to explain what the mathematics
contributes to the success of science. For as it stands, we have no account
of what is so good about the equilibrium representation or why the scientist
would be interested in it. Mathematics might allow the formulation of all
sorts of acausal representations, but this is beside the point unless there is
something better about these new representations. There are several dif-
ferent strategies that one could adopt here when it comes to championing
equilibrium representations. I will pursue what seems to me to be a fairly
uncontroversial and deflationary line.

One proposal, which I will not pursue here, is that acausal representations
have distinct explanatory features over and above what a causal representa-
tion can offer. If mathematics contributes to the development of these more
explanatory representations, and we understand why explanatory represen-
tations are desirable, then we have a simple solution to our puzzle about the
contribution of mathematics, at least in these cases. This idea is explicit
in [14], who argue that mathematics contributes to the explanatory power
of their example involving phase spaces.6 The main concern I have about
an appeal to non-causal conceptions of explanation in the context of under-
standing the contribution of mathematics is that there is little agreement on
what is responsible for the explanatory power in these cases or what exactly
the mathematics is doing. So, while I do not want to deny these points about
explanation and mathematics, I will explore what seems to me to be a more

5Batterman has argued for this conclusion for some time, but he may not wish to
endorse the way I have drawn the causal/acausal distinction here. See [4], [3] and [6].

6The proposal is also consistent with an emphasis on special kinds of explanation in
sciences like biology. Sober, for example, argues for a distinctive kind of equilibrium
explanation ([19]), and Potochnik has delineated a notion of optimality explanation in
models of natural selection ([18]).
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tractable alternative.
My proposal is that the abstract acausal representations are often easier

to confirm than their concrete causal counterparts. As the mathematics al-
lows the formulation of the acausal representation, the mathematics permits
us to arrive at representations that are easier to confirm. The main reason
for this is that the acausal representation imposes fewer conditions on its
target systems and its target systems are a proper subset of the target sys-
tems of the causal representation. In this sense, I would argue that acausal
representations typically have less content than their causal partners. This
makes it easier to directly confirm such representations when they are ac-
curate. Even when they are inaccurate, it is easier to find this out. This
makes the scientific process of testing work better because it indicates to the
scientist that she should look elsewhere for a better representation. As this
is an indirect contribution to the process of testing, I call this a contribution
to indirect confirmation.

To see this, notice that there is a barrier to confirming the causal repre-
sentation that is absent for the acausal representation. The nature of this
barrier depends on what sort of account of causation we prefer. Whatever it
is, the account will impose more conditions on a causal representation than
on an acausal representation. That is, a representation could track the tra-
jectories of all the cars over time and still fail to correctly represent the causes
of these trajectories. To take one example, most would require that causal
claims support the right kind of counterfactuals. It follows that to correctly
represent the causes operating in a traffic system the representation must
also include information about how the system would change if a given car
drove differently. This means that the confirmation of a causal representa-
tion must involve experiments on many traffic systems, and a determination
of how changes in causes affect the traffic across these various systems. A
related point of difference between the two representations is their scope.
The equilibrium representation purports to represent the system only when
it is in a very restricted kind of state, namely equilibrium. The causal rep-
resentation aims to capture these cases, as well as all the others. A limited
scope makes the equilibrium representation easier to confirm if we can set
up systems in these equilibrium states and verify their behavior. But even
confirming the causal representation for some cases would do little to assure
us of its overall accuracy unless we somehow considered a meaningful sample
of traffic systems.

The content of the causal representation is more complicated, then, than
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our associated acausal representation. It is this complexity which makes the
causal representation harder to confirm. To the extent that these difficul-
ties are absent in the case of an acausal representation, it will be easier to
confirm. The mathematics makes this possible, and so we can conclude that
here mathematics contributes to the success of science by allowing the con-
firmation of some scientific representations. If a scientist failed to know the
relevant mathematics, and so could not formulate and work with the acausal
representation, then she would not have access to this well-confirmed repre-
sentation.

There is a temptation to go further than I have and take the success of the
equilibrium representation as evidence of some new underlying metaphysics
associated with the mathematics. A diagnosis of this tendency depends on
taking seriously a controversial interpretation of the successful causal repre-
sentations that we have at our disposal. Here it seems like the mathematics
is making its contribution by tracking the genuine causal relations between
the entities. On this general picture, successful mathematical representa-
tion involves reflecting mathematical aspects of a situation. If we then have
a successful mathematical acausal representation, it seems like we should
conclude that there are new mathematical aspects of the situation that are
missed by the causal representation. For an equilibrium representation, we
might then think that there are new “emergent” features of the system and
start to investigate the metaphysical status of these features. On this more
metaphysical approach, my focus on confirmation will seem too timid and to
miss the heart of the matter. Mathematics guides us to a new kind of feature
of systems, and not just to representations of ordinary features that we can
now more easily confirm.

This metaphysical interpretation of at least some mathematical repre-
sentations is offered by Franklin: “there are properties, such as symmetry,
continuity, divisibility, increase, order, part and whole which are possessed
by real things and are studie[d] directly by mathematics, resulting in neces-
sary propositions about them” ([10], p. 17). Keeping this picture in mind
is also one way to make sense of the debate surrounding Batterman’s views
on non-fundamental theories like classical thermodynamics. See, e.g., [4],
[7] and [5]. Batterman argues that the need to employ various limit as-
sumptions, like that the number of particles is infinite, shows that there are
genuine features of the world that are missed by our so-called fundamental
theories. These features, such as the existence of phase transitions, are said
to be represented by the less fundamental theories because of their different
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mathematical character. Belot responds by refusing to assign the relevant
mathematics any novel physical interpretation:

The mathematics of the less fundamental theory is definable in
terms of that of the more fundamental theory; so the requisite
mathematical results can be proved by someone whose repertoire
of interpreted physical theories includes only the latter; and it is
far from obvious that the physical interpretation of such results
requires that the mathematics of the less fundamental theory be
given a physical interpretation ([7], p. 151).

Without taking a stand on this issue, it seems clear that abstract acausal rep-
resentations can be successful without tracking new emergent features. In
the traffic case, at least, this metaphysical approach is unwarranted. There
is nothing more to the system than the cars and their motions. Shifting our
representation from causes to equilibrium need not give us a representation
of anything that is genuinely new in a metaphysical sense. Successful mathe-
matical representation need not track the underlying metaphysics, and there
are many cases where taking this metaphysical approach leads to a distorted
understanding of why the representation is working so well. There may be
cases where genuinely emergent properties arise, and where mathematical
representations afford access to them. But simply using mathematics as we
have done in the traffic case does not require this perspective.
V. So far we have emphasized only the causal vs. acausal distinction. But
this is just one sense in which mathematics can contribute to successful ab-
stract representations. I turn now to the other sense of “abstract”: the
contrast between a representation with a fixed interpretation and an ab-
stract varying representation where the physical interpretation of the com-
mon mathematics varies within a family. The equilibrium traffic represen-
tation that we have developed can be extended into a more abstract rep-
resentation of a system with a density function ρ(x, t) and a flux function
j(x, t) = v(ρ)ρ(x, t), i.e. the velocity at a point is solely a function of the
density. Assuming that the material in question is conserved and making
various continuity assumptions, we can derive the conservation law

ρt + jx = 0 (9)

Here subscripts indicate partial differentiation. But j is solely a function of
ρ, so we obtain

ρt + j′(ρ)ρx = 0 (10)
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Here the prime indicates differentiation with respect to ρ. Assuming that the
initial density ρ0 is given, we have what is called an initial value problem.

One technique for approaching such an abstract problem involves what
is known as the method of characteristics. Essentially, we start by assuming
that a unique solution to the problem exists and isolate it using ρ0. Applying
the method delivers curves, known as the characteristic base curves, along
which ρ is constant. The arrangement of these curves tells us whether or
not there really is a unique solution. When this assumption breaks down,
the base curves can still provide useful information on the evolution of the
system. For example, they can be used to isolate where discontinuities in
ρ known as shock waves develop. We consider a simple example of such an
analysis so the insight it provides into such systems becomes clearer.

We start by making j(ρ) = 4ρ(2 − ρ) and imagine the initial density ρ0

to be 1 for all x ≤ 1, 1/2 for 1 < x ≤ 3 and 3/2 for x > 3. In the traffic
case, this corresponds to the maximal density being 2, so to the left of x = 1
we have the cars spaced with one car length between them and in the other
domains they are less densely spaced. We would expect a rightward flow of
cars then, increasing the density. To say something more precise, we find the
characteristic base curves along which the density remains constant as time
increases. Their slope turns out to be

0 if x ≤ 1

4 if 1 < x ≤ 3

−4 if x > 3

The details of this derivation are in [12], ch. 9. If we plot a representative
sample of these base curves emanating from the x-axis, as in figure 2, we
notice two things. First, there is a gap at x = 1 where our method has
given us no information about how the density will change as time increases.
Second, there is a line coming from x = 3 where the base curves from two
initial domains intersect, seemingly indicating that there will be two different
densities at the same location. The former defect can be remedied in a
physically intuitive wave by smoothing out the transition in the density at
x = 1 from 1 to 1/2. This produces a rarefaction wave where a fan of lines
of gradually decreasing density are inserted into our original diagram. The
second discontinuity is more serious, however, as it shows the existence of
a shock wave where our representation of the changes in density over time
breaks down. The representation can still be useful as we can trace how
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Figure 2: Characteristic Base Curves ([12], p. 187)

the density will develop on both sides of the shock and how the shock will
propagate over time, e.g. how it will be affected by the development of the
rarefaction wave.7

From our traffic perspective, we can consider what a driver would ex-
perience as she crossed the rarefaction wave and then the shock. At the
beginning of the rarefaction wave the density decreases, i.e. the cars sud-
denly have more space between them. This leads the driver to accelerate.
This density levels out, so the driver will then assume a steady speed. How-
ever, as she enters the left side of the shock, there is a dramatic increase
in density. This requires sudden deceleration, presumably to a zero velocity
associated with the maximal density. As she emerges from the shock regime
on the right side, she finds a density below the maximal density, allowing her
to accelerate. Her velocity after the shock is less than her original velocity as
the density has increased. We see, then, that, whatever its artificial features,
our simple example allows us to reproduce something that drivers are all too
familiar with: a traffic jam produced by the volume of cars on the road.8

Now, even though we have used the traffic interpretation to guide our
understanding of this representation, its mathematical character allows us to

7An explicit solution for this system is given at [12], p. 189.
8See [11] for the claim that shock waves have been experimentally observed in traffic

systems, based on [21]. The models employed there are different from the simple repre-
sentation presented here.
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interpret it in terms of very different kinds of physical systems. Consider,
for example, the representation of shock waves in compressible fluids like
air. Here we will have a partial overlap of mathematics, most importantly
the changing density function ρ and the appearance of discontinuities that
we can track as shock waves. To make the comparison with the traffic case
as straightforward as possible we will imagine a fluid that is restricted to
a thin pipe that is oriented in the x direction. The basic equations for
fluid mechanics are the Navier-Stokes equations. These equations relate the
velocity vector field to the pressure at a point p with reference to the density
of the fluid ρ and additional forces such as gravity. The main simplification
we make is to ignore the viscosity µ of the fluid. This means that the fluid
elements do not resist internal circulation. This greatly simplifies the Navier-
Stokes equations because it allows us to drop certain terms with second-
order partial derivatives. Under this assumption, the Navier-Stokes equations
reduce to the Euler equations for an ideal fluid. We will restrict our discussion
to one-dimensional fluid flow and assume that the pressure p is a function
of the density ρ (barotropic). This allows us to see the flow in the pipe as
governed by the equations:

∂u

∂t
+ u

∂u

∂x
= −1

ρ

∂p

∂x
(11)

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0 (12)

The engine driving the development of a shock wave in such a fluid is the in-
teraction between the pressure, density and the speed at which a disturbance
from an initial state will propagate through the fluid. It turns out that we
can capture this speed c using the ratio of pressure to density: c2 = γp

ρ
. γ

is a constant that varies from fluid to fluid. If we think of a fluid like air at
some initial pressure p0 and density ρ0, then c0 =

√
γp0

ρ0
is the speed at which

a disturbed pressure and density wave would travel down the pipe. It is
thus labeled the speed of sound for the air in that state because sound waves
are instances of this kind of disturbance. Imagine, then, an initial density
distribution that is analogous to our traffic case: 2 for all x ≤ 1, 1 for x > 1.
The air in the more dense region will expand to the right with some speed
c1. But this compressed air will have a higher local speed than the air just to
the right of x = 1. As the air accumulates in the region around x = 1, more
air comes in than goes out. This further compresses the air, making the local
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speed even higher. What develops, then, is a discontinuous front where the
density drops dramatically. A shock wave appears in the compressible fluid
case because the velocity of the disturbance is affected by the compression
of the air.

Lin and Segel note that it remains “a remarkable fact” ([13], p. 549) that
this discontinuity can be handled by adopting the policing of refraining from
using this representation to understand what is going on within the shock
wave while still taking seriously what is represented in the other regions.
Conservation relations between the two sides of the shock tell us, for example,
what is happening on either side of the shock, and in certain circumstances
we can plot where the shock will travel over time. As Wilson has put it when
discussing this sort of case, also with reference to the analogy with traffic
jams, “if we can examine a situation from several sides and discern that
some catastrophe is certain to occur, we needn’t describe the complete details
of that calamity in order to predict when it will occur and what its likely
aftermath might be” ([23], p. 188). The procedure of selectively interpreting
such representations, then, is not some strange abberation associated with
some peculiar mathematics. To the contrary, it often provides our only means
of representing phenomena of widespread scientific significance.
VI. I want to argue now that the way mathematics makes its contributions
to abstract varying representations is also via a boost in potential confirma-
tion. Still, the story here is quite different from what we saw for the case of
abstract acausal cases. While both direct and indirect confirmation play a
role, the way in which both sorts of confirmation arise is not due to relative
amounts of content, but instead to a partial overlap of mathematical con-
tent. Abstract varying representations involve a great increase in content by
linking together a family of more concrete representations via their shared
mathematical structure. As we saw, the move to an abstract acausal rep-
resentation produced a limited and impoverished content that targeted only
selected aspects of the system in question. This might make it seem that
considering an abstract varying representation would decrease our chances
of arriving at a well-confirmed representation. This would be a mistake, how-
ever. While it is true that it is hard to confirm the entire family, when we
have independently confirmed one member of the family that confirmation
can contribute to the confirmation of another member of family in both a
direct and indirect way.

To see how this can work in a best case scenario, imagine a scientist who
knows the mathematics that we have reviewed for shock waves, has extensive
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experimental confirmation of its application for the case of fluids and has
tentatively adopted the hypothesis that the same mathematics is part of an
accurate representation of traffic jams. We have, then, a two member family
of variously interpreted mathematical scientific representations, where one
member of the family has accrued a high degree of confirmation through
ordinary scientific testing.

The key claim I want to defend for such a case is that a small amount
of experimental testing of the traffic representation should give it a larger
boost in confirmation than if that representation was not mathematically
linked to the successful fluid representation. This is because the independent
confirmation of the way the mathematics is deployed for the fluids gives the
scientist a template against which to judge the success of the traffic repre-
sentation. Initially when using the notion of a discontinuity in density in
the fluid case, the scientist would reasonably have some doubts about the
appropriateness of using mathematics this way. She may worry that the
mathematics will lead to absurd predictions or predictions that fail to track
any genuine features of the fluids under investigation. This is not so much
a concern about the mathematics itself, which I am taking for granted is
confirmed independently by purely mathematical standards. The scientist
who knows the mathematics still has a right to wonder if it is being deployed
coherently for this kind of physical system. I claim that these doubts should
be allayed by the success of the fluid representation at prediction and descrip-
tion of actual fluid flows. This success gives the scientist a reason to expect
that a limited success with deploying the same mathematical apparatus in
the traffic case will continue. Analogous doubts about the appropriateness
of the mathematics for the traffic case should be more quickly put to rest
based on the success with treating fluids. The more the mathematics of the
two cases run in parallel, the more this benefit for confirmation will obtain.

Our discussion so far has focused squarely on the confirmation of al-
ready existing representations. As a result, I have not said anything about
how the existence of mathematical similarities contributes to the formula-
tion or discovery of new scientific representations. Like explanation, the role
of mathematics in the discovery of new representations is a large and con-
troversial topic ([20]). I would suggest, though, that the epistemic benefits
of having families of variously interpreted representations can at least help
us to understand why they are desirable. That is, a scientist might hope
to formulate or discover a mathematically linked series of representations of
different physical systems because if she found such a family, then this would



Abstract Representations and Confirmation 17

contribute significantly to the success of those representations. This point is
reinforced once we grant the difficulty of actually working with mathematical
scientific representations. Extracting solutions to systems of equations is not
a trivial task, and so it is more or less a waste of time to formulate such sys-
tems if the scientist knows of no way to solve them or to at least approximate
a solution. This implies that it is a sensible heuristic on scientific discovery
for a scientist, other things being equal, to aim to deploy a mathematical
theory that is well understood and that has a track record of success.

This point does not entail that there is any good reason, prior to ex-
perimentation, to expect physical systems made up of different things to be
accurately represented by similar mathematical structures. Instead, our case
indicates how rare and exceptional even a partial overlap is. There are any
number of disanalogies between the traffic system and the compressible fluid
system that have been ignored in an attempt to highlight the salient mathe-
matical similarity. It is not too hard to imagine the genesis of an inaccurate
representation of a traffic system based on an attempt to transfer some of
the success from the fluid case to a new domain. Suppose, for example, that
a scientist knows all the relevant mathematics and has obtained good em-
pirical success treating compressible fluids along the lines discussed above.
In particular, she has learned how to handle the genesis and development
of shock waves in her representations and in her fluids, and as a result has
made a number of successful predictions. It is tempting, then, to take the
entire mathematical representation of shock waves in fluids and transfer it
over to the traffic case based on the following two similarities. First, traffic
systems, like compressible fluids, have varying density. Second, both fluids
and traffic systems are constituted out of individual objects that it seems can
be fruitfully ignored in an idealization as a continuous medium. The scientist
might try to use her understanding of the role of variation in the speed of
sound to somehow represent how traffic shock waves develop. Based on our
discussion, we can see that this is a mistake because the underlying reason
for the evolution of the traffic system has nothing to do with this. Instead, it
is because we assumed that velocity was a certain kind of function of density
that we were able to derive (10). The velocity here was the velocity of the
cars, not anything like the velocity of a disturbance in pressure and density.
We see, then, how an error could be committed by this kind of erroneous
transfer of mathematics. It is a delicate matter to decide which mathematics
to transfer over to a new case and how its interpretation should be adjusted
based on the new subject matter.
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Such a turn of events can still lead to a case indirect confirmation, though,
when the flawed representation is experimentally tested and found to be in
error. Indirect confirmation occurs when an inaccurate representation is dis-
covered to be inaccurate. While there is nothing about families of variously
interpreted representations per se that makes them any easier to test, I want
to argue that when a representation in the family is found to be inaccu-
rate the scientist has more information about how to proceed than if the
representation was not in the family. Essentially, the family of mathemat-
ically related representations gives the scientist a framework within which
to probe for the source of the inaccuracies. Two possibilities are especially
likely. First, each member of the family may be inaccurate because there
is some genuine underlying mathematical similarity to all the systems, but
the current family of representations has missed this in some respects. A
scientist can determine whether or not this is the case by testing other mem-
bers of the family for the features that were determined to be inaccurate for
one member. If all the members are found to be inaccurate in the same way,
then the scientist knows where to adjust her family of representations. A new
term may be needed for the equations, for example, or perhaps a magnitude
that was treated as a constant should be treated as a variable. The second
kind of scenario is what I had in mind when describing the overextension of
the fluid representation to the traffic case. This is where one member of the
representation is accurate, but a second representation is inaccurate in some
respects, even though it does ultimately agree with the original representa-
tion in other respects. In this case the failure of the second representation
can help to pinpoint precisely how the second kind of system differs from the
first representation. As a result, a failure of a prediction can alert the scien-
tist to some new and perhaps unappreciated features of the second system,
here the traffic system. She might then investigate what is responsible for
the difference between the two systems. This is a limited tool for discovering
new accurate representations based on the partial failure of a mathematical
analogy. A scientist can exploit her understanding of the mathematics to
help formulate new proposed representations that have a better chance of
being accurate.

In summary, then, the epistemic benefits of varying interpretations of
some mathematical scientific representation fall into both the direct and in-
direct categories. When the members of the family turn out to be accurate,
the mathematical similarities make it easier to confirm the accuracy of the
representations. Even when some parts of the reinterpretation wind up be-
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ing inaccurate, the scientist can use the mathematical links to more easily
diagnose the source of the failure, and even to help in the quest for the for-
mulation of a more accurate representation of the system in question. It is
important see how this story is different from what we saw in the abstract
acausal case. There it was the elimination of the causal content that made it
easier to obtain the confirmation. Here it is the variation in the interpreta-
tion of the mathematical components of the representation that is doing the
work. The two steps could of course work together and reinforce one another.
This is actually what has happened here. Neither the traffic representation
nor the fluid representation purport to represent the causes of the phenom-
ena in question. The whole apparatus of shock waves, in fact, seems to sit
poorly with a causal interpretation of either representation. Nevertheless,
they are successful representations of their respective domains. It seems that
the absence of causal content in these sorts of cases has led some to think that
acausal content is what mathematics contributes in all cases. But I hope to
have shown that there is a distinct contribution from the mathematics when
we vary the interpretation of the representation beyond what we get from
abstracting from causes.

There is close link between the benefits of families of variously interpreted
representations and the unification of similar representations by mathemati-
cal means. The power to unify, of course, is one feature that some have placed
at the heart of an account of scientific explanation. This is a different sort of
criticism of causal explanation than we noted earlier by those who emphasize
equilibrium or other stability notions of explanation. A much-discussed case
of mathematical explanation in science is Baker’s periodic cicada example.9

Here scientists asked why the life-cycle of a family of species of cicadas was
prime. The explanation offered was in terms of the mathematical fact that
prime cycles minimize intersections with competing species or predators. In
our terms, we have a family of representations of different species of cicadas
and we deploy the mathematical concept of primeness in each. This permits
scientists to represent similarities between systems that seem to have unifying
and explanatory benefits. This is, of course, consistent with my emphasis on
confirmation, but I have not followed Baker and others by focusing on expla-
nation because, as with the acausal case, it remains unclear what the source
of the explanatory power really is. Still, if this explanatory power can be
further clarified in the acausal and varying interpretation cases, there is the

9See [8], [16], [2] and [1].
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prospect of grounding an important inferential principle for scientific realists,
namely inference to the best explanation. For if we can independently argue
for the epistemic benefits of these sorts of mathematical scientific represen-
tations, and see that they tend to coincide with certain explanatory virtues,
then we can present an argument for inferring the correctness of an explana-
tory representation. Much more work would have to be done to forge these
links, but I hope this paper has made a useful first step.
VII. Let us conclude by returning to our original claim: mathematics con-
tributes to the abstractness of some of our most successful scientific repre-
sentations. First, I claimed that there are two sorts of abstract contributions
that mathematics can bring. These were labeled as abstract acausal and ab-
stract varying. Second, I argued that both sorts of contributions bring with
them associated boosts in either direct or indirect confirmation. Acausal
representations are often easier to confirm than their causal counterparts.
Varying representations that are grouped together by their mathematical
similarities provide a link between representations where support that has
accrued to one can be used to investigate another member of the group. We
see, then, that we can start to understand why mathematics is so prevalent
in successful scientific representations. This success is cashed out partly in
terms of the empirical confirmation of the representations. We can make
sense of how mathematics helps in science without sliding into a dubious
metaphysical interpretation according to which the mathematics must be
tracking otherwise inaccessible aspects of the physical world.

References

[1] Alan Baker. Mathematical explanation in science. British Journal for
the Philosophy of Science, forthcoming.

[2] Alan Baker. Are there genuine mathematical explanations of physical
phenomena? Mind, 114:223–238, 2005.

[3] Robert Batterman. Asymptotics and the role of minimal models. British
Journal for the Philosophy of Science, 53:21–38, 2002.

[4] Robert Batterman. The Devil in the Details: Asymptotic Reasoning in
Explanation, Reduction, and Emergence. Oxford University Press, 2002.



Abstract Representations and Confirmation 21

[5] Robert Batterman. Response to Belot’s “Whose devil? Which details?”.
Philosophy of Science, 72:154–163, 2005.

[6] Robert Batterman. On the explanatory role of mathematics in the
empirical sciences. http://philsci-archive.pitt.edu/archive/00004115/,
2008.

[7] Gordon Belot. Whose devil? Which details? Philosophy of Science,
72:128–153, 2005.

[8] Mark Colyvan. Mathematics and aesthetic considerations in science.
Mind, 111:69–74, 2002.

[9] Newton da Costa and Steven French. Science and Partial Truth: A
Unitary Approach to Models and Scientific Reasoning. Oxford University
Press, 2003.

[10] James Franklin. Mathematical necessity and reality. Australasian Jour-
nal of Philosophy, 67:11–17, 1989.

[11] Max Glaskin. Shockwave traffic jam recreated for first time. NewScien-
tist.com news service, March 4, 2008.

[12] R. Illner, C. S. Bohun, S. McCollum, and T. van Roode. Mathematical
Modelling: A Case Studies Approach. American Mathematical Society,
2005.

[13] C. C. Lin and Lee A. Segel. Mathematics Applied to Deterministic
Problems in the Natural Sciences. SIAM, 1988.

[14] Aidan Lyon and Mark Colyvan. The explanatory power of phase spaces.
Philosophia Mathematica, 16:227–243, 2008.

[15] Peter Machamer, Lindley Darden, and Carl F. Craver. Thinking about
mechanisms. Philosophy of Science, 67:1–25, 2000.

[16] Joseph Melia. Response to Colyvan. Mind, 111:75–79, 2002.

[17] Mary S. Morgan and Margaret Morrison, editors. Models as Mediators:
Perspectives on Natural and Social Science. Cambridge University Press,
1999.



Abstract Representations and Confirmation 22

[18] Angela Potochnik. Optimality modeling and explanatory generality.
Philosophy of Science (Proceedings), 74:680–691, 2007.

[19] Elliott Sober. Equilibrium explanation. Philosophical Studies, 43:201–
210, 1983.

[20] Mark Steiner. The Applicability of Mathematics as a Philosophical Prob-
lem. Harvard University Press, 1998.

[21] Yuki Sugiyama, Minoru Fukui, Macoto Kikuchi, and et. al. Traffic jams
without bottlenecks – experimental evidence for the physical mechanism
of the formation of a jam. New Journal of Physics, 10:033001, 2008.

[22] Michael Weisberg. Who is a modeler? British Journal for the Philosophy
of Science, 58:207–233, 2007.

[23] Mark Wilson. Wandering Significance: An Essay on Conceptual Behav-
ior. Oxford University Press, 2006.

[24] James Woodward. Making Things Happen: A Theory of Causal Expla-
nation. Oxford University Press, 2003.


