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1 Introduction

The steady march of Moore’s law—predicting the exponential increase in
computing power—and the striking accretion of computer-assisted mathe-
matical results have drawn increasing attention to the role and promise of
computers in mathematics.! Computers have become important at many
different stages of mathematical practice: they help to build intuitions, for-
mulate conjectures, expedite computations and manipulations, and even pro-
duce proofs. Philosophical treatments of computers in mathematics have
produced insights into central problems in mathematical ontology (what is
mathematics about?) and epistemology (how do we know mathematical
truths?). In particular, the burgeoning utility of computers has bolstered
arguments against mathematics as a purely deductive science, suggesting
that certain of its aspects and practices are ineluctably shaped by inductive
observations and reasoning.

It is often stressed that computer methods allow mathematical researchers
to explore phenomena whose initial complexity makes them effectively inac-
cessible to pen-and-paper modes of investigation. Computers have a great
power to store and rapidly process large amounts of information in a system-
atic way which, with clever human insight and guidance, can yield results to
varying degrees of rigor. Ever-growing databases and ever-more-sophisticated

'For an entry point into this literature, see the papers in the bibliography below and
sources cited therein.



software are making more and more mathematical problems tractable for
more and more mathematicians.

These computational tools lead to two broad classes of results. One type
produces proofs which make direct use of computation as part of a math-
ematical argument, the most famous examples of which include proofs of
the Four Color Theorem and Kepler’s Conjecture. Particularly within for-
mal mathematics and mathematical logic, computer-assisted and computer-
verified proofs are now commonplace, and sometimes even preferred over
their more traditional counterparts. This paper describes a case study in the
second type of result, where computers provide essential intuitions and aid in
the formulation of problems, but do not play a role in formally establishing
proofs of conclusions.

The first class might be called computer-assisted results, where the sec-
ond might better be understood as computer-inspired proofs. Computers
play fundamentally different roles in each case. In the first, they act as sup-
plemental mathematicians, performing work that is instrumental to the prop-
erly mathematical reasoning of an argument or proof. In the second, they
are supplements to mathematicians, providing essentially non-mathematical
assistance to facilitate a strictly mathematical investigation or demonstra-
tion.

Yet, as supplements to mathematicians, computers used for the second
purpose are not innocent bystanders to mathematical production. Comput-
ers can define new areas of inquiry and make old problems more or less
important by furnishing new applications or ways of thinking. In the case
considered here, the use of computers informs both the selection of problems
and the range of possible solutions. So, even as their role is secondary—
supplying intuitions and ruling out unpromising theoretical avenues—they
have direct effects on the primary mathematical work of proving.

The work described here differs in some ways from the standard case
studies in computer mathematics. The problem under consideration and
the body of theorems and proofs thusfar amassed toward its solution are
strictly non-computational: computers aid intuitions and suggest directions
of study without entering into what is often called the ‘mathematics itself.’
At the same time, computation has been the principal tool of investigation,
with formal proofs entering only at a very late stage. The research is not
driven by cutting-edge computer algorithms or techniques; instead, its use of
computers is in the rapid analysis of large data sets—turning patterns into
formulas, which are turned into numbers, which are then used to understand



the system at hand. Thus, computers are simultaneously at the core and the
periphery of the mathematical practice in play here. They are indispensable
tools for creative mathematical work while remaining just that: mere tools.

2 Harmonic Analysis on Fractals

Computer exploration has long been at the center of the study of dynamical
systems and fractals. Dynamical systems are systems whose states change
according to a fixed set of rules. Computers can store single system states
and apply their respective rules over and over to give information to vary-
ing degrees of rigor about the behavior of the system as it changes. There
are two main ways of defining fractals. One, closely linked with dynamical
systems, defines fractals as chaotic systems produced by deceptively simple
rules. Famous examples include the Mandelbrot and Julia sets (figure 1),
and a wide family of ‘strange attractors’. Computers have been indispens-
able in visualizing and understanding these fractals, although many of the
most important results about these sets have been derived without the aid
of computers. The second kind of fractal, the one considered below, is a
self-similar system defined, like its chaotic cousin, by a collection of simple
rules which gives the fractal a high degree of structure. These fractal objects
challenge one’s typical intuitions from geometry or analysis, generally having
non-integer dimensions and other unusual properties. (The ones considered
below, for instance, can host entirely localized waves.)

At Cornell University, from 2006-2007, I worked with Robert Strichartz
and Luke Rogers to investigate second order differential equations on the
Sierpinski Gasket. Similar equations can be used to describe the propaga-
tion of waves on a string, of heat on a metal rod or sheet, or of sound through
a three-dimensional medium. Because of its association with the propagation
of sound and the techniques used for such studies, this area of mathemat-
ics is often called harmonic analysis. From the early 1990s, mathematics
researchers have investigated how similar phenomena might work in media
which are fundamentally different from the Euclidean line, plane, or space.
A standard object of study is the triangular Sierpinski gasket (figure 2). The
Sierpinski gasket (SG) is formed by taking a triangle and repeatedly recon-
structing it out of three smaller copies of itself. The limiting object has a
dimension of log 3/log 2, and is made up of three smaller copies of itself.

Early in the study of harmonic analysis on SG, it was established by



Figure 1: The Mandelbrot set and an associated Julia set, from
http://aleph0.clarku.edu/~djoyce/julia/.

Figure 2: Construction of the Sierpinski Gasket.

Kigami and others that one can determine basic information about second
derivatives (such as are needed for second order differential equations) by
merely examining the relationship between the first and second stages of SG’s
construction. Its self-similarity properties then guarantee that any mathe-
matics performed on these crude approximations can be extended to the
actual gasket. For SG, these basic calculations can be performed by hand,
and their results can be used by computers to model the flow of waves on
the actual gasket (figure 3).

My work explored a different direction for the relation between crude
approximation and computer extension. Keeping just to the crudest approx-
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Figure 3: ‘Sine-waves’ on the Sierpinski Gasket, generated in Matlab by
Adam Allan.



imations to the fractal, I studied the relationship between second derivatives
on SG and its higher dimensional analogues. The next dimension up from
the triangular SG is the tetrahedral SGy (figure 4). By sequentially adding
vertices and edges to the starting figures for constructing a gasket, one can
produce a gasket with meaningful second derivatives with any finite number
of ‘boundary vertices’. Shapes thus expand from triangles, to tetrahedra, to
hyper-pyramids of increasing dimension. Our question was whether some-
thing could be said in the case where, instead of three or four boundary
points, there was an infinite number of them. It was quickly established that
the most straightforward way of producing second derivatives on increasingly
large-boundaried gaskets gave, in the limit, a trivial outcome, one in which no
theoretical wave could propagate. To explore other constructions, we turned
to computers.

Figure 4: Construction of SGy, a tetrahedral Sierpinski Gasket.

In the first several attempts to produce a non-trivial infinite gasket, com-
puter computations helped to establish negative results. We started with dif-
ferent techniques which successfully produced variations on SG, abstracted
those techniques into general patterns, and input those patterns into a com-
puter program. This first computer program used the derived patterns to
generate formulas describing increasingly large gaskets. These formulas were
fed into a second computer program which performed numerical calculations
to indicate whether a given technique from SG might successfully be adapted
for higher-dimensional gaskets. Eventually, the first computer program was
designed to generate a full sequence of commands for the second computer
program, so that the two could be run in sequence with minimal input on
our part. This allowed us to test variations on gaskets with full descriptions
whose size meant that we could not practically write them down by hand

6



with any confidence in our accuracy.

The computer thus played the role typically taken in computer-assisted
proofs, processing large amounts of data behind the scenes based upon human-
inputed patterns and instructions for transforming those known patterns into
proper surrogates for the mathematical objects under investigation. On the
one hand, our computers functioned in the same way as computer-provers.
They plodded through large numbers of cases which would not be hand-
checkable. On the other hand, they had a more genuinely experimental role,
searching through a selected subset of possible cases for evidence to suggest
whether similar cases held any promise for theoretical or further computer
investigation. Transforming patterns into formulas, the computers worked as
mechanical mathematicians. Testing these formulas for theoretical fruitful-
ness, the computers shifted into new roles as rapid handlers of large amounts
of numerical data.

After a large number of possible avenues had been ruled out, our com-
puters transitioned into a more strictly experimental usage. They still used
human-inputed patterns to generate computer protocols which in turn yielded
numerical information about the systems in question. But instead of test-
ing whether a particular mathematical approach was likely to succeed, they
were used to explore the details of an approach which we already believed
would work, but were just not sure how. Computer analyses served to build
intuitions to aid in the study of an abstract mathematical system.

The approach in this second stage of work derived from Sabot’s analysis
of these gaskets in terms of lower-dimensional sub-gaskets (figure 5). Sabot
established that second derivatives of gaskets of the sort we were studying
could be understood in terms of the fixed points of an iterative map relating
two sets of parameters: the first describing the edges of the fractal and the
second describing how they are scaled to produce the next level of in the
fractal’s construction. Iterating relationships between two sets of parameters
is something computers happen to do quite well, and is a basic technique in
the study of dynamical systems.

The data at hand were thus highly amenable to computation, but so too
was the mathematics. The systems under consideration were known to vary
continuously when perturbed, so the sorts of approximations necessitated in
our computations did not unduly affect their outcomes. Moreover, enough
general features of fractal gaskets were understood so as to make meaning-
ful the scattered data generated in computation, as well as to direct future
computations. It cannot be forgotten that computer-assisted or computer-
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Figure 5: Gasket decomposition.

inspired mathematics requires that computers be given meaningful inputs,
and in such a way as to produce meaningful outputs. Both inputs and out-
puts acquire their mathematical meaning not from the computer but from
the mathematician. In our case, computers were used to visualize how second
derivatives on various gaskets change when different parameters are modified
(figure 6), as well as to test extremal conditions and conjectured formulas

(figure 7).
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Figure 6: Computer evidence relating to continuity in our parameter space.

In each case, the computer confirmed successful approaches and suggested
general features of the systems in question. But they remained silent as to
how to produce the non-computational theorems whose validity was strongly
suggested by the data. The project of translating computer-aided intuitions
into formal mathematics remains, for Rogers and myself, an ongoing task.
In this sort of work, it is rare that the insights afforded by computation
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Figure 7: Computer tests of extremal properties and conjectures.

correspond directly to the modes of reasoning required of exact proofs. This
is particularly evident in our attempts to finish an existence proof. Where
the computer’s ability to produce a valid result indicates existence of our
desired mathematical object in the cases studied, a general existence proof
requires a more mathematically robust characterization of all possible cases,
not just the particular cases which are fit for computation.

3 Conclusions

What, then, can be said about the relationship between mathematics and
computer experiment in the present case study? First, the type of math-
ematics being conducted makes a substantial difference to the role played
by computers. Automated computation played a major role in studying
transformations of systems of parameters, and so computers became impor-
tant tools only at such points in the mathematical work as could be readily
viewed in terms of these transforming parameters. Moreover, because the
fractal objects of study conform to complicated but highly regular patterns,
computers could be easily programmed to manipulate not only the data but
the equations for their relationships themselves.

While the latter activity does not immediately seem like computer exper-
iment (what about it is experimental?), one must at the same time hesitate
to dissociate it from the more plausibly experimental work of testing out-
comes from different combinations of parameters. Part of the experimental



work involves the passage from pattern to formula, a passage which does
not itself become visible until after the computer-intensive trials make its
effects visible. To the extent that we were studying the patterns underlying
the constructions of our different gaskets, the part of our computer work
typically excluded from the category of mathematical experiment must be
reintegrated. This is so primarily because of the nature of the mathematical
objects under investigation.

Second, computer experiments relate to mathematical proofs in a way
which cannot be reduced to merely suggestion or inspiration and rigorous
justification. The computational character of our computer mathematics
reinforced our parameter space-based theoretical framework, closing off the-
oretical directions which could not be so readily adapted to computation. At
the same time, the computations did not map directly onto the theory. The
work of rigorous justification required an altogether different sort of mathe-
matics than would be required to simply formalize the computer’s activity.
It was neither a case of the computer supplying an answer from which an
entirely different mathematical justification might spring, nor a case of the
computer working in a way directly analogous to the mathematical theory.
Rather, the computer modeled a defined range of finite approximations to the
mathematical theory, suggesting how the infinite construction might proceed
without drawing from the mathematics necessary for that final step.

Finally, computers worked as both numerical and theoretical black boxes.
One might understand experimentation in the natural sciences as the attempt
to produce from the results of different inputs into the black box of nature
a better understanding of its inner-workings, or at least of its predictable
behavior. We have cause, then, to think of the computer’s formal work,
changing patterns into equations and further computer instructions, as just
as much a part of the experimental function of the computer as its more
conventional numerical derivations. In both cases, only the final outputted
data and their relation to the initial specification of foundational patterns are
practically comprehensible. The computer hides the transformations which
relate the one to the other, and we as mathematicians worked from either
side of the computer experiment to learn more about our objects of study.

Harmonic analysis, in opposition to more common case studies of com-
puter experiment, neither takes the work of the computer as its object of
study, nor uses computers as a merely instrumental route to an indepen-
dently verifiable answer. By studying the practical aspects of this boundary
case, we obtain a more complete picture of the complicated relationship be-
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tween computer experiment and mathematics. Doing so might suggest a
more meaningful theory of the practical workings of mathematical experi-
ments.
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