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ABSTRACT 
 

The semantic approach to scientific representation is now long established as a favourite 

amongst philosophers of science. One of the foremost strains of this approach—the model-

theoretic approach (MTA)—is to represent scientific theories as families of models, all of 

which satisfy or 'make true' a given set of constraints. However some authors (Brown 2002, 

Frisch 2005) have criticised the approach on the grounds that certain scientific theories are 

logically inconsistent, and there can be no models of an inconsistent set of constraints. Thus it 

would seem that the MTA fails to represent inconsistent scientific theories at all, and this 

raises concerns about the way it represents in general. In a series of papers (1990, 1993, 

1995) and a recent book (2003) da Costa and French have developed a variant of the MTA 

approach which they call 'partial structures', and which they claim can accommodate 

inconsistent theories. I assess this claim, looking to two theories which have been called 

‘inconsistent’: Bohr’s theory of the atom and classical electrodynamics. 
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1  Introduction 

 

During the 1960s, 70s and 80s the “semantic” view took over from the “syntactic” or 

“received” view as the preferred method of the representation of scientific theories 

and models for philosophers of science. No longer were theories to be represented as 

partially interpreted, logically closed axiomatic systems in first order logic, as 

Carnap, Reichenbach and other logical empiricists suggested in the 1940s and 50s. 

Now they were to be represented as families, or classes, of models.  

Precisely what should be meant by ‘model’ is still an area of open debate, 

although two conceptions of ‘model’ are central to the position. On the one hand 

there is the branch of the semantic view known as the model-theoretic approach 

(MTA), which ultimately draws on the work of Tarski and others in the 1930s and 

40s. A ‘model’ in this sense is a structure which satisfies a set of sentences by 

interpreting them in such a way that they come out true. On the other hand there are 

‘models’ in science which are meant to represent a state of affairs, such as the Met 

Office’s model of how the weather in the London area will develop over the next 24 

hours. Rather than making true a set of uninterpreted sentences, or satisfying a set of 

constraints, such a model is strictly speaking false, since it deviates from the actual 

situation in various ways by making approximations and idealizations. In short 

(roughly speaking), models of the first kind interpret to make true, whereas models 

of the latter kind represent falsely. 

 There are complicated stories to tell about these two conceptions of ‘model’, and 

how they relate to each other. Thomson-Jones (2006, pp.527-8) provides a helpful 

discussion, distinguishing between three different roles for models: (i) serious 

interpreters are structures which ‘make true’ a set of (partially) uninterpreted 

sentences (of first order logic, say) by interpreting them; (ii) description fitters are 

structures, or other types of entity, which fit an interpreted description (in the 

language of set theory, mathematics, natural language, etc.); (iii) mathematical 

models are models which represent a given system, often by means of a state-space 

with a trajectory defined thereon. He argues, to my mind persuasively, that the 

semantic approach does best to leave behind models in the sense of serious 

interpreters. But this still leaves the role of description fitting, and this is enough for 
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present purposes. It is impossible for any entity to fit an inconsistent description, just 

as it is impossible for any structure to make true an inconsistent set of sentences (of 

first order logic, say). Thus our question of concern is, does the MTA—whether 

interpreted in terms of models as serious interpreters or mere description fitters—

have the resources to accommodate inconsistent theories?1 

 The MTA was criticised in the 1980s for being too inflexible in certain respects. 

Either a structure is a model of a set of constraints or it is not, and there is no room 

for the kind of approximate representations and partial correspondences which are 

part and parcel of real science. In answer da Costa, French and others developed a 

variant of the approach in the 1990s, called the ‘partial structures’ approach. It is 

within this approach that the satisfaction and representation of inconsistent scientific 

theories is supposedly accomplished. As da Costa and French put it, 
 

[R]egarding theories in terms of partial structures offers a straightforward and natural 

way of accommodating inconsistency. (da Costa and French 2003, p.85) 

 

However, the semantic approach remains woefully underdeveloped on this issue, as 

the following discussion will reveal. 

 In §2 the basic concepts of the partial structures approach will be presented, and 

it is shown how an inconsistent set of constraints can be satisfied. The discussion is 

in terms of structures as ‘serious interpreters’, but a translation into the language of 

set-theory would be simple enough (cf. van Fraassen 1972, p.310). In §3 the 

discussion is extended to inconsistent scientific theories, and I respond to Frisch’s 

(2005) objection to the partial structure representation of classical electrodynamics. 

In §4 two concerns are raised, the first about how the partial structures program 

would accommodate different types of inconsistent theory, and the second about the 

professions of the semantic approach to answer the question ‘What is a scientific 

theory?’ §5 is the conclusion. 
 
                                                 
1 Of course, the ‘MTA interpreted in terms of mere description fitting’ might sounds like a 
contradiction in terms, since it is only in ‘serious-interpreting’ that model-theory can be said 
to play a role (thanks to Martin Thomson-Jones for pointing this out). In what follows I 
nevertheless continue to use ‘MTA’ to refer to this variant of the semantic approach, merely 
as a label for the approach in question. 
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2  Partial structures and inconsistency 
 

In his 2006 paper Thomson-Jones presents the following example of a truth-making 

structure. The sentence to be ‘made true’ is, 

 

)( QxPxx →∀  

 

and the structure making it true is S = <D, P, Q>, where D is the domain over which 

the quantifier ranges, and P and Q are sets which define the predicates in the 

sentence. In the domain D we have five things, the Spice Girls: Posh, Ginger, Baby, 

Sporty and Scary. In P we have only one Spice Girl, Posh. It might be supposed that 

Thomson-Jones’ P stands for ‘_is married to David Beckham’, and that this is why 

Posh is the only member of the domain that satisfies the requirement. In Q we have 

two elements of the domain, Posh and Ginger. It might be supposed that Q stands for 

‘_has her birthday in a month beginning with the letter ‘A’’. Then the sentence is 

interpreted to say ‘Take any Spice Girl: if she’s married to David Beckham then her 

birthday is in either April or August’. This is true, so the structure is a model of the 

sentence; it makes it true.2 

 The crucial difference in the case of partial structures is the role played by the 

relations. Note that when we give an extension for P we have only two choices for 

each element in the domain: either put the element in P or leave it out. This makes 

sense if P really is meant to stand for ‘_is married to David Beckham’: for each girl 

in the domain either she is married to David Beckham or she is not. However, 

sometimes we might not know whether we should put a given element of the domain 

in the extension of a given predicate, or we might simply want to leave it open 

whether a given element belongs in that extension. With partial structures this is 

made possible, since the extension of each predicate (or relation) has three sections, 

R1, R2 and R3. R1 includes those elements of the domain which belong to the 

predicate, R2 includes those elements of the domain which do not belong to the 
                                                 
2 Strictly speaking the model doesn’t interpret the predicates intensionally, by providing 
definitions such as ‘_is married to David Beckham’, but merely extensionally, by providing a 
set of members of the domain. The intensional part of the discussion is merely used to put 
across the basic idea, and should not be considered an intrinsic part of the MTA. 
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predicate, and R3 includes those elements of the domain for which we are not sure, or 

for which we want to leave it open.3 

 So, for example, suppose that we want to express the fact that we don’t know for 

sure that Posh Spice is married to David Beckham (they could have divorced on the 

quiet). And we’re not sure that David Beckham hasn’t subsequently married Baby 

Spice (again, on the quiet). Then we can present the structure S = <D, P, Q> where, 

 

P = < Ø, {Ginger, Sporty, Scary}, {Posh, Baby} > 

Q = < {Posh, Ginger}, {Sporty, Scary, Baby}, Ø > 

 

Now S gives us a partial structure for our original sentence, it partially satisfies it. 

The reason for this is that there is a way to partially extend the structure which would 

make the sentence true in the original sense; in other words there is a way one can 

move the elements from R3 into R1 or R2 such that the structure becomes ‘full’ (non-

partial) and the sentence is made true in the usual sense. When S is made ‘full’ in this 

way the final result is called an ‘S-normal structure’. As da Costa and French put it, 

 
‘[W]e say that S [‘some sentence’] is pragmatically [or partially] true in the 

structure A if there exists an A-normal B in which S is true, in the 

correspondence sense.’ (da Costa and French 2003, p.19) 

 

 One might also note at this stage that this definition of a partial structure allows 

for structures which ‘make a sentence partially true’, but in a completely 

uninformative way. For example, the following partial structure (with domain D as 

before) also makes our sentence )( QxPxx →∀  ‘partially true’: 

 

P = < Ø, Ø, {Ginger, Sporty, Scary, Posh, Baby} > 

Q = < Ø, Ø, {Posh, Ginger, Sporty, Scary, Baby} > 

 

                                                 
3 For further details see da Costa and French 1990; for a rigorous logical presentation see 
Mikenberg, da Costa and Chuaqui 1986. 
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The reason is that, as required, there is a way to partially extend the structure to make 

our sentence true in the traditional ‘full’ sense. But our structure is totally 

uninformative: it ‘stays silent’ on which elements of the domain belong to P (are 

married to David Beckham) and which elements of the domain belong to Q (have 

birthdays in April or August). 

 But this is no criticism of the partial structures approach. It merely needs to be 

acknowledged that there are degrees to which a given partial structure is informative. 

The totally uninformative structure given above can, in a loose sense, be said to 

make the sentence ‘partially true’, but it is totally uninteresting to the philosopher of 

science. On pp.51-52 of their book, da Costa and French discuss the relationship 

between two structures, and how that is a matter of degree: there is a degree of 

correspondence, expressible in terms of respects and degrees, depending on how 

many relations they have in common, and then how many elements are in R3 in those 

relations. This idea can be extended to express the degree to which a given structure 

makes a given sentence partially true. We can have partial structures ranging from 

‘totally uninformative’ to ‘full’. 

Now, in its original, non-partial version it seems clear enough that the MTA 

cannot handle inconsistent scientific theories. Thus we find passages such as the 

following: 

 
Since there are no models of inconsistent sets of sentences, straightforward semantic 

accounts fail. (Brown 1992, p.397) 

 
[I]f we think of a theory’s models as structures in which the theory’s laws or axioms 

are true [the MTA], then the laws of the theory need to be consistent. For a theory 

with inconsistent laws has no models. (Frisch 2005, p.7) 

 

However, it is equally clear that on the new approach inconsistent theories can be 

accommodated. For starters, we can (trivially) make an inconsistent theory partially 

true using a totally uninformative structure. Consider the theory made up of two 

sentences ‘ xPx∃ ’ and ‘ xPx∃~ ’. This is made partially true by a structure with a 

domain of one element ‘a’, and an extension of P which puts ‘a’ in R3: 
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S = < D, R > = < {a}, < Ø, Ø, {a} > > 

 

This makes ‘ xPx∃ ’ partially (or pragmatically) true because there is a way to 

partially extend S (by putting ‘a’ in R1) such that it comes out true, and it also makes 

‘ xPx∃~ ’ partially true because there is a way to partially extend S (by putting ‘a’ in 

R2) such that it comes out true. Of course we can’t make both true at the same time, 

but that is something the advocate of partial structures is happy to concede. Indeed, 

that is one of the motivations for partial structures.4 

 Several questions now follow. Can informative structures make inconsistent 

theories partially true? Can they make them partially true in an interesting and 

revealing way? And what special considerations arise when we move from ‘toy’ 

examples like the one just given to the statements of scientific theories? 

  
 

3  Application to scientific theories 

 

Two theories are especially relevant to the present debate: classical electrodynamics 

and Bohr’s theory of the atom. Frisch (2005) has argued that the partial structures 

approach does not adequately accommodate the inconsistency in CED, whereas da 

Costa and French (2003) have argued that partial structures do adequately 

accommodate the inconsistency in Bohr’s theory of the atom. The two theories will 

be taken in turn. 
 

3.1  Classical electrodynamics 

 

Here is an example of an inconsistent ‘theory’—call it CED*—with three sentences 

(labelled ME*, LFE* and EC* for reasons which will soon become clear), which can 

be made partially true by a partial structure that is largely informative: 
                                                 
4 A problem arises here. I have been working on the assumption that an inconsistent theory is 
partially true in a structure iff each individual statement of the theory is partially true in that 
structure. But this means that it will be impossible to make partially true an inconsistent 
theory that is represented as a single conjunction of its individual claims. Perhaps the best 
way out of this is to say that an inconsistent theory is partially true in a structure iff each of its 
individual claims or conjuncts is made partially true in that structure. 
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ME*: )( QxPxx →∀  

LFE*: )( RxQxx →∀  

EC*: )~( RxPxx ∧∃  

 

One structure that makes CED* partially true is S = <D, P, Q, R>, where, 

 

D = {a, b} 

P = <{a, b}, Ø, Ø > 

Q = < {a}, Ø, {b} > 

R = < Ø, Ø, {a, b} > 

 

In fact, this makes it true in a special way: depending on how you partially extend S 

to give an S-normal structure, you can make any two of the three statements true. If 

you put everything in R1 you make ME* and LFE* true, but EC* false; if you put 

everything in R1 except the ‘b’ in R, you make ME* and EC* true, but LFE* false; 

finally, if you put the two ‘b’s in R2 (in Q and R), and the ‘a’ in R1 (in R), you make 

EC* and LFE* true, but ME* false. 

 This seems to be the appropriate way to represent how partial structures could 

accommodate the “inconsistency” in classical electrodynamics (CED).5 Frisch 

(2005) presents four statements which, he feels, represent the content of CED. The 

three most substantial of these are the Maxwell equations (ME), the Lorentz force 

equation (LFE), and energy conservation (EC). Now as Frisch presents them, these 

statements are inconsistent, and thus there can be no model of them in the model-

theoretic sense. But the example given above shows how such a theory might be 

satisfied by a partial structure. Of course the logical content of the sentences I have 

labelled ME*, LFE* and EC* does not faithfully represent the equations of CED, but 

                                                 
5 In fact, in the end it doesn’t seem to be appropriate to label CED inconsistent: see §4.2, 
below. However, it might have been appropriate, and it is certainly useful to consider how 
partial structures could have accommodated CED if it was inconsistent in the way Frisch 
(2005) claims.  
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there doesn’t seem to be any reason in principle why CED could not be represented 

if CED* can. 

 Now, Frisch is keen to reject partial structures as a suitable representative device 

for CED. He writes, 

 
[T]he partial structures approach would appear to recommend that different regions 

of space-time which contain systems of particles and fields (i.e., different subsets of 

A [the domain]) satisfy some of the fundamental equations of the theory, but not all 

of them: Some particle-field systems satisfy the Lorentz equation of motion, while 

others satisfy the Maxwell equations and energy conservation, say. But this 

misconstrues the commitment scientists appear to have to the theory. It is not the case 

that we take some electrons to be governed by the Lorentz force equation and others 

by the Maxwell equations—our commitment to the approximate truth … of the 

Maxwell-Lorentz equations, extends to all classical systems of charges and fields. 

(Frisch 2005, p.39f.) 

 

So, the claim is, we think that the Maxwell-Lorentz equations are approximately true 

of all systems of charges and fields, not that they really are true of some systems of 

charges and fields and false of others. It isn’t immediately clear that Frisch has 

applied partial structures here, though. If Frisch’s understanding of the approach is 

correct then we have three options: systems of particles and fields are either true of 

the equations, false of them, or it is indeterminate (or left silent) whether they are 

true of them. Still, if Frisch has applied the approach correctly his criticism appears 

to hold: the attitude taken by scientists is the same towards all different systems of 

particles and fields. 

 Now, if things were as in CED*, then Frisch’s criticism would not stand up. In 

that case it’s not the case that some elements satisfy ME* and others satisfy LFE* 

(say). Instead, whether ME* and LFE* are satisfied depends on which elements are 

in which part of the extension of the different predicates P, Q and R. In the structure 

given, our commitment to the approximate (partial) truth of the sentences can extend 

to every element in the domain (‘a’ and ‘b’). This seems to be exactly as Frisch 

would wish it, when he says that our commitment to the Maxwell-Lorentz equations 
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should extend to all the elements in the domain (all systems of charges and fields). In 

fact this seems to link up nicely with what Frisch says next. He writes, 

 
[F]or a given system we use only a proper subset of the theory's equations to model 

its behavior, where the choice of equations depends on what aspect of the interaction 

between charges and fields we are interested in. (2005, p.40, original emphasis) 

 

Within the partial structures approach this ‘choice’ would be represented by the fact 

that, in the example of CED*, we have a choice about how we partially extend our 

structure, depending on which two “equations” (out of ME*, LFE* and EC*) we 

want to satisfy. 

 So are things as in CED*, with elements in the domain going in the extension of 

predicates within the equations, or are things as Frisch suggests, with elements of the 

domain going in the extension of relations which are the equations? It is crucial here 

to distinguish between two different ways in which the partial structures approach 

can be applied. Frisch follows Pincock (2005), who in turn follows Van Fraassen 

(1972), Suppe (1989) and others, in adopting a state-space approach. In the domain 

one puts ordered tuples representing possible states of the system which could be 

plotted as points in a state-space. One then defines the equations by putting elements 

(tuples) from this domain in the extension of the structure’s relations. Typically, the 

elements in a given extension are decided by looking to one or another equation of 

the theory in question (cf. Suppe 1989, p.155f.). Thus Frisch envisions a domain of 

particle-field states, and then a dilemma as to which states to put in the extension of 

which relation, where the relations represent particular equations, such as the LFE. 

 Now, the partial structures program was developed by da Costa, French and 

others in the style of the CED* example. As noted above, one shouldn’t use first 

order logic, but should instead formulate the statements of a given theory in the 

language of set-theory, and then construct a set-theoretical structure which satisfies 

the given statements (see van Fraassen 1972, p.310). One can define the class of 

structures via a set-theoretical predicate which articulates the constraints in the set-

theoretical axioms. In this approach the structures have a domain of individuals 

(rather than ordered tuples representing states), and relations Ri which represent 
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properties of, and relations between, the individuals (rather than simply representing 

the laws of the given theory). So, in Suppes’ famous 1957 model-theoretic 

representation of classical mechanics the structures take the form <P, T, s, m, f, g >, 

where P is a set of particles, T is an interval of real numbers representing times, s(p,t) 

is a function which gives the position of particle p at time t, m(p) is a function giving 

the mass of particle p, f(p,q,t) gives us the force of p on q at time t, and g(p,t) gives 

other (external) forces on p at time t. Crucially, the sets s, m, f and g do not represent 

the equations of the theory, and some of these elements feature in more than one of 

the ‘axioms’ of the theory. For example, f(p,q,t) features in axioms P5, P6 and P7 

(see Suppes 1957, p.294). This looks much more like the CED* example than 

Frisch’s reconstruction: compare how predicate Q in CED* features in both ME* and 

LFE*.  

 A more recent, and more relevant, example is Muller’s suggested model-

theoretic reconstruction of relativistic CED (Muller 2007, p.254f.). Here the structure 

given is S = >< Ltot ffJFQmM ,,,,,,,,, εμη , where M and η are a manifold 

representing space-time, μ and ε represent the medium, m represents the mass of the 

charge-matter distribution, Q represents the total charge under consideration, F is a 

function on M which represents the electromagnetic field, J is a function on M which 

represents the charge-current density, ftot represents the total force acting on the 

charge-matter density, and fL represents the electromagnetic force. F, for example, 

plays a role in three of the equations of CED Muller puts forward, so again one finds 

that the elements of the structure S do not represent equations themselves, but instead 

play a role within equations, in the manner of the CED* example.6 

 So why has Frisch criticised the partial structures approach within the state-space 

presentation if it was developed with the set-theoretical-predicate presentation? The 

reason is that the two approaches are inter-translatable. In Suppes’ representation of 

classical mechanics the functions representing the masses of the particles in the 

domain and the positions of the particles at different times, could be done away with 

by using a domain of ordered tuples representing states of the system. Instead of 

structures of the form S = <P, T, m, s, f, g>, the information encoded in P, T, m and s 

                                                 
6 See also Bartelborth (2000) for a Suppesian reconstruction of CED. 
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is moved into a single domain of ordered tuples representing states of the system at 

times, whilst f and g remain as the relations to be satisfied.7 However, the lesson of 

inter-translatability goes both ways. The Suppesian has to appreciate that her 

structures could be made to look like the structures of the state-space approach 

criticised by Frisch, but Frisch has to appreciate that the state-space structures could 

equally be translated into the Suppesian style. The beauty of the latter is that it makes 

especially explicit options for representation which are somewhat hidden in the state-

space approach. For example, one could put elements of the domain in the R3 of s or 

m in Suppes’ representation of classical mechanics, to represent our ‘not knowing’ or 

‘staying silent’ on the mass or position of a given particle at a given time. Such 

possibilities for representation are easy to overlook when one divides a 

representation into ‘states’ and ‘laws’ as Frisch does.8 

 However, now Frisch might proceed with his objection in the following way. 

Looking at the CED* example, although our commitment can extend (contra Frisch) 

to all of the elements in the domain (a and b), we still have to have a rationale for 

putting b in the R3 part of the extension of Q, and a and b in the R3 part of the 

extension of R. So we are singling out elements of the domain, and taking a different 

attitude to some than others. In the case of the representation of CED this would 

mean that, in order to present a partial structure satisfying the equations of the theory 

in the manner of CED*, we would have to take a different stance on the properties or 

relations of some particles, fields, or particle-field systems to others. 

 However, there doesn’t seem to be anything wrong with this. Scientists working 

on CED in the early 20th century didn’t have exactly the same attitude to all particles, 

fields and particle-field systems vis-à-vis the equations of the theory. Some parts of 

the theory, in certain contexts, were considered suspect and problematic from the 

very beginning. As Frisch himself notes on p.35, 

 
 [T]he inconsistency is most plausibly seen as arising from the fact that the Lorentz 

                                                 
7 Elements f and g are functions on Suppes’ reconstruction, but they could be translated into 
relations. Functions and relations look the same when they are represented extensionally. 
8 In fact, it’s not obvious how such information could be represented within the state-space 
approach. The best way to do it would probably be to use partial functions and even weighted 
functions. Thanks to Otávio Bueno for advice on this point. 



 13

force equation of motion ignores any effect that the self field of a charge has on its 

motion. The standard scheme treats charged particles as sources of fields and as 

being affected by fields—yet not by the total field, which includes a contribution 

from the charge itself, but only by the field external to the charge. 

 

And scientists using the LFE knew full well that there was this problem with its 

formulation: this was manifested in the fact that, over the years, different versions of 

the LFE were devised. These include the Abraham-Lorentz equation, the ‘delayed 

differential-difference equation’, the Lorentz-Dirac equation and the ‘regularized 

equation of motion’ (see Frisch 2005, ch.3). The worries are magnified in particular 

situations, for example when charged particles are accelerated in synchrotrons so that 

they emit a great deal of radiation. 

 So scientists really do have a reason to treat some particles differently to others 

in certain situations relevant to electrodynamics. For example, the greater the 

acceleration of a particle the less the LFE (as Frisch presents it) can be trusted. So we 

might want to put one particle in the R1 part of a relation representing the LFE, and 

another particle in the R3 part, just as I have put ‘a’ in the R1 part of Q in CED*, and 

‘b’ in the R3 part. Of course the difficult job of representing CED rigorously via 

partial structures remains to be done, but these preliminary considerations seem to 

show that Frisch’s objections can be answered, at least. 

 It should finally be emphasised that there isn’t just one partial structure for CED, 

but a whole class of partial structures. There will be many different ways to represent 

the inconsistent assumptions with a partial structure, just as the particular partial 

structure given above is just one way to represent CED*. So, when it comes to 

representing the theory of CED as a whole, it isn’t necessary for us to ‘make a 

decision’ as to which elements go in the R3 part of which properties and relations. 

Instead there is a whole class of partial structures, with all different ways of 

representing the inconsistent assumptions, with all different elements in the R3 parts 

of different relations. Which of these are interesting—faithful to how the relevant 

science was actually practiced, for example—is a question for another day. 

 



 14

3.2  Bohr’s theory of the atom 

 

Bohr’s theory has long been described as an inconsistent theory. From the very 

beginning there was much complaint about the way the theory flew in the face of 

long-held physical principles. Thus von Laue remarked in 1914, 

 
This is nonsense! Maxwell’s equations are valid under all circumstances, an electron 

in an orbit must radiate. (cited in Jammer 1966, p.86) 

 

Von Laue refers to the way in which, according to Bohr’s theory, an atom is made up 

of negatively charged electrons orbiting a positively charged nucleus. Since the 

electrons orbit the nucleus they are accelerated and should, according to CED, emit 

radiation. This means that they should lose energy and spiral into the nucleus. But 

Bohr posited that the electrons do not emit radiation whilst in their orbits, and that 

there is a state—the ‘ground state’—closest to the nucleus from which an electron 

cannot possibly emit energy as radiation. As da Costa and French put it, 

 
[W]e have conflict between quantum and classical physics [in] … the assertion that 

the ground state was stable, so that an electron in such a state would not radiate 

energy and spiral into the nucleus as determined by classical physics. This is the 

central inconsistency. (da Costa and French 2003, p.91, original emphasis) 

 

 How is this ‘inconsistency’ to be accommodated?9 The clearest statement is 

given in French 2003. He writes, 

 
At the time the model was proposed … the notion of a stationary state was not 

understood at all, or at best, only partially, and if one were to represent Bohr’s model 

in terms of partial structures, the stationary states would have to be located among the 

R3, as relationships which had not yet been established to hold or not. Characterizing 

the model in this way one can accommodate the partial and conceptually “blurred” 

nature of the stationary states that allows for the internal “looseness of fit” between 

                                                 
9 As with CED, it isn’t altogether clear that it is appropriate to label Bohr’s theory 
inconsistent. See §4.2, below. 
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the component elements of the model. And this in turn, gives us an idea of how the 

model can still be said to represent: what it represents is a system that has elements of 

classical and quantum physics but has at its heart this poorly understood and 

conceptually indistinct notion. (French 2003, p.1481) 

 

As with CED, in Bohr’s theory we have an element about which we are much less 

confident than the other parts of our theory. Thus we have a rationale for putting 

certain elements in the R3 of certain relations. The theory is represented by a class 

of partial structures, and the MTA thereby manages to accommodate the 

inconsistency. 

 

4  Two concerns 

 

I wish to raise two concerns about the partial structures approach to inconsistent 

theories. The first is a worry about the partial structures program itself, and how it 

acts to represent the content of a given theory. The second is a concern about how a 

theory comes to be ‘given’ in the first place, how we should decide upon the 

theoretical content the partial structures program sets out to represent. 
  

4.1  Different types of inconsistent theory 
 

CED and Bohr’s theory (to the extent that they are inconsistent) are particular kinds 

of inconsistent theory. In each case the inconsistencies were well known, from the 

theory’s very inception, and there was one particular element of the theory which 

stood out as the trouble-maker: in CED it was the LFE, and in Bohr’s theory is was 

the stationary states. We might consider what the partial structures program would 

have to say about two other possible types of inconsistent theory which might be 

found in science: (i) inconsistent theories where we don’t know which part of the 

theory is to blame for the inconsistency, and (ii) inconsistent theories where we don’t 

even realise they are inconsistent. 

 An example of the first option, where we know about the inconsistency but we 

can’t decide upon a weak spot in our theory, would be Newtonian cosmology around 
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the turn of the 20th century (see Norton 1999, 2002; Vickers forthcoming (a)). The 

theory is naturally conceived as a set of assumptions about gravity, time and space, 

the structure of the universe, etc. As Norton writes, 
 

At one time or another, virtually every supposition of Newtonian cosmology has been 

a candidate for modification in the efforts to eliminate the inconsistency. These 

candidates include Newton’s law of gravitation, the uniformity of the matter 

distribution, the geometry of space and the kinematics of Newton’s space and time 

itself. (Norton 2002, p.191) 

 

In this situation it might be objected that we have no proper rationale for putting one 

thing in the R3 rather than another, and furthermore no rationale for choosing which 

relation to put something in the R3 of. Which is the ‘partially understood’ or ‘poorly 

understood and conceptually indistinct notion’ of Newtonian cosmology analogous 

to the stationary states of Bohr’s theory? 

 This objection rests on a misunderstanding of how partial structures are to be 

applied. When it comes to representing a theory one does not have to decide what to 

put “in the R3”, nor which relation’s R3 to make use of. The inconsistent set of 

assumptions define a class of partial structures, within which there will be individual 

structures which make use of the relations and their R3 parts in all different ways. In 

the case of Newtonian cosmology, some of these structures will represent Seeliger’s 

doubts about Newton’s inverse-square law of gravitation, whereas others will 

represent Charlier’s doubts about the homogeneity of the universe’s mass 

distribution (see Norton 1999, pp.293 and 306). The decision about what to doubt is 

not made within the partial structures representation of the theory, but in the choice 

of which structure in the class of structures we decide to work with. 

 What about the case where we don’t know that our theory is inconsistent? For 

example, consider Newtonian cosmology as it stood from c.1700-1895, before 

Seeliger wrote the paper which showed the scientific community that the theory was 

inconsistent (see Vickers forthcoming (a)).10 During this period there was, from time 

to time, a strong, serious commitment to all of the assumptions in question, without 

                                                 
10 The later Bohr theory is another such example. See below. 
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any realisation that the assumptions were jointly inconsistent. How can the MTA 

accommodate a case such as this, where there is no obvious reason to ‘go partial’ 

with one’s structures at all? If we don’t know about the inconsistency, won’t the 

advocate of the MTA attempt to apply full structures? 

 This can be answered by saying that partial structures are not a representational 

tool to be used only when we have inconsistency, or only when a theory includes 

‘poorly understood and conceptually indistinct’ elements. Any given theory is to be 

represented by a class of models: for a consistent theory this class will include both 

full structures and partial structures, whereas for an inconsistent theory it will only 

include partial structures. Thus the advocate of partial structures can represent early 

Newtonian cosmology by a class of partial structures, without worrying that this 

doesn’t do justice to the epistemic commitments of historical actors at the time. 

Partial structures can sometimes be used to represent the doubts, worries and 

misunderstandings of scientists, but other times they can be employed merely to 

represent possible doubts we could have. So, if we take a current theory such as 

quantum mechanics, and ask how that would be represented in the MTA, we can say 

that it is represented by the class of structures, both full and partial, which satisfy the 

relevant constraints. Now we might be wrong to think that there are any full 

structures, because we might be wrong to think it is a consistent theory—we can’t be 

one hundred percent sure that the theory is consistent. But this needn’t be a criticism 

of the partial structures approach: on the contrary, the partial structures approach 

shows us how the semantic approach can provide a representation of an inconsistent 

theory, even when it isn’t known to be inconsistent. 

 These considerations provide us with a response to one of the criticisms recently 

raised against the partial structures program. Morrison (2007) worries that we might 

not know what to put in the R3 in a given case, because ‘it is often not clear which 

relations/features are partially true’ (p.207). In addition she asks, ‘how much 

empirical support is required for something to be termed quasi-true?’ (ibid.). The 

assumption is that a decision will have to be made about which elements to put in the 

R3 of which relation in a given case. But if instead we see a theory as defining a class 

of partial structures, which will include individual structures covering all different 

partial representations, then these concerns dissolve. Instead the question will be why 
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we decide to work with one individual structure rather than another, or which 

individual structure best represents the commitments and practices of scientists. But 

this doesn’t constitute a criticism of the partial structures approach: the approach 

provides the appropriate structures within its class, and the objection reduces to the 

complaint that it might not be easy to decide which individual structures within the 

given class are the most interesting. 

 

4.2  When is a theory inconsistent? 

 

So it looks like the partial structures approach does indeed have the resources to 

represent inconsistent scientific theories. And it isn’t hard to see how the approach 

could be extended to cover cases of inter-theory inconsistency, such as that between 

general relativity and quantum theory: an inconsistent theory of quantum gravity 

could be represented by a class of partial structures. However, it isn’t altogether clear 

how much value there is in such partial structures. Advocates of the MTA often 

claim that the semantic approach provides ‘the most appropriate representation of 

theories’ (da Costa and French 2003, p.25). It is meant, in some sense, to stand as an 

answer to the question ‘What is a scientific theory?’ (for example, this question is the 

opening sentence of da Costa and French (1990)). The answer is, ‘A theory is (or is 

best represented as) a class of partial structures’. But this is to overlook crucial, more 

fundamental issues in our philosophical analysis of ‘theory’. 

 First of all it should be noted that, in all variants of the MTA, the class of models 

is the class of all models which ‘make true’, or fit the description given by, a certain 

set of ‘constraints’, ‘assumptions’ or ‘axioms’. For example, in the cases of CED and 

Bohr’s theory given above, we have an inconsistent set of assumptions and the 

challenge is to represent those assumptions model-theoretically. But why are we 

interested in those assumptions? How do we decide which assumptions we want our 

model-theoretic structures to satisfy in the first place? It should be clear that this is a 

more fundamental question than the question of how to represent the assumptions 

semantically. If we make a mistake in putting together the assumptions in the first 

place, then all attempts to represent those assumptions with structures will build 

upon our original error. 



 19

 It is precisely at this more fundamental level that mistakes are made with respect 

to CED and Bohr’s theory, I want to argue. Following Frisch’s 2005 claim that CED 

is inconsistent there was an immediate backlash, with Belot (2007) and Muller 

(2007) leading the way. The claim was made by these authors that the assumptions 

put together by Frisch were not assumptions appropriate to CED, and that they 

should be replaced with a consistent set of assumptions. But how should we 

adjudicate between Frisch, Muller and Belot? In Vickers (2008) I argue that a theory 

is not the kind of thing which has an absolutely decidable content. The theory can be 

put together in the way Frisch does, so long as one has good reasons to do so. Frisch 

does indeed have some reasons: he focuses on the assumptions which scientists tend 

to use in practice, rather than what they might believe to be the case. But, in the end, 

there will be many different ways to put together assumptions relevant to 

electromagnetic phenomena depending on what one’s interests and goals are, and no 

single one of them ought to be called the theory above any other. For example, in the 

case of CED one will sometimes want to employ the LFE in one form, and 

sometimes in a different, contradictory form. Of course, this could be understood in 

terms of different classes of partial structures, but it seems more appropriate to do the 

work at the level of assumptions and sets of assumptions. This is more like how real 

science is practiced, and a convincing case has not yet been made that there is 

something to be gained from representing that practice in terms of classes of partial 

structures. 

 Similarly the inconsistency of Bohr’s theory can be doubted, such that the value 

of attempts to represent the ‘inconsistency of Bohr’s theory’ within the partial 

structures approach in French (2003) and da Costa and French (2003) are brought 

into question. Bartelborth (1989a), Hendry (1993) and Hettema (1995) all argue that 

the theory is not internally inconsistent at all. And Rutherford wrote in 1923, 

 
For the first time, we have been given a consistent theory to explain the arrangement 

and motion of the electrons in the outer atom. (In Kramers and Holst 1923, p.xi) 

 

The main thought here is that Bohr’s theory only makes use of electrostatics, and not 

electrodynamics. This allows for an electron which is held in its orbit by its attraction 
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to the nucleus without demanding that the electron, as an accelerating charged 

particle, emits radiation. Compare Millikan’s reconstruction of Bohr’s theory in 

1917: 

 
Bohr’s first assumption … when mathematically stated takes the form: 

man
a
eE 2

2 )2( π= , in which e is the charge of the electron, E that of the nucleus, a 

the radius of the orbit, n the orbital frequency, and m the mass of the electron. This is 

merely the assumption that the electron rotates in a circular orbit… The radical 

element in it is that it permits the negative electron to maintain this orbit or to persist 

in this so-called ‘stationary state’ without radiating energy even though this appears 

to conflict with ordinary electromagnetic theory. (Millikan 1917, p.211f., former 

emphasis added) 

 

Certainly Millikan admits an inconsistency between Bohr’s theory and 

electromagnetic theory, but this hardly means that Bohr’s theory itself is inconsistent. 

Indeed, Bartelborth (1989b) provides a model-theoretic representation of Bohr’s 

theory in terms of full structures. It isn’t at all clear what is to be gained by 

presenting Bohr’s theory in such a way that it is inconsistent, and then representing it 

in terms of a class of partial structures.11 

 So there is a much more fundamental question to be asked of theories before any 

model-theoretic techniques are employed. The question is, ‘What should the content 

of a given theory be taken to be on a given occasion?’ It seems clear that, in addition 

to theories being vague objects in the way that ‘heaps’ of sand are, there will be 

fundamentally different ways to put together theoretical assumptions depending on 

the particular investigation one is undertaking.12 For example, sometimes it will be 

                                                 
11 There are much better grounds for labelling the later Bohr theory ‘inconsistent’. Pauli 
derived a contradiction in 1926 from assumptions which really were central assumptions of 
the theory, and had been for about eight years (roughly speaking from when Ehrenfest 
introduced the adiabatic principle). See Mehra and Rechenberg 1982, pp.507-509. 
12 Cf. Wilson 2009: ‘[M]uch contemporary commentary on philosophical theories of matter 
in the eighteenth and nineteenth centuries strikes me as greatly compromised by its 
inclination to assume that phrases such as ‘classical mechanics’ or ‘the Newtonian picture’ 
capture surgically precise meanings, when, in fact, such terminology can be readily applied to 
deeply incompatible doctrines.’ 
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more appropriate to focus on the assumptions which were used by scientists, rather 

than the ones that were believed to be true. And how one identifies the target domain 

of a given theory will also affect the content it is appropriate to consider. Much work 

remains to be done here, and this area of debate seems to be a much more 

appropriate context in which to ask the question ‘What is a scientific theory?’ than in 

the context of model-theoretic representation.13 

 

 

5  Conclusion 

 

The partial structures approach provides an intriguing method for representing 

scientific theories and models, but it is still in the relatively early stages of 

development. It does indeed seem to be able to accommodate inconsistencies in 

science, although it isn’t yet clear that the manner in which it accommodates such 

science is a particularly revealing or interesting one. The position will stand or fall, 

in the end, depending on what it does for us when applied in detail to concrete cases. 

But concrete, detailed implementation of partial structures is still hard to find in the 

literature: Pincock (2005) is one example of attempted application, but he concludes 

with more questions than answers. More work in needed, and thus the jury is still out 

on the question of whether the approach will stand, as da Costa and French (1990, 

p.263) put it, as ‘a useful and powerful tool in the analysis of scientific theories’. 
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