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ABSTRACT.  Motivated by examples from general relativity and Newtonian gravitation, this essay
attempts to distinguish between the dynamical structure associated with a theory in physics, and its
kinematical structure.  This enables a distinction to be made between a structural realist interpretation of
a theory based on its dynamical structure, and a structural realist interpretation of spacetime, as
described by a theory, based on its kinematical structure.  I offer category-theoretic formulations of
dynamical and kinematical structure and indicate the extent to which such formulations deflect recent
criticism of the radical ontic structural realist's conception of structure as "relations devoid of relata".

Keywords:  structural realism, spacetime, category theory
1. Introduction
2. Jones Underdetermination:  Realism With Respect to What?
3. Is Structure Jones-Underdetermined?
4. What is Structure?
5. Conclusion

1.  Introduction
This essay is concerned with ways of motivating an ontic structural realist
interpretation of spacetime.  I'll begin in Section 2 by first considering a particular
underdetermination argument against scientific realism due to Jones (1991).  This
argument claims that the existence of alternative formulations of a single theory that
differ at the level of ontology effectively undermines the scientific realist's inclination to
interpret theories literally.  Examples of "Jones Underdetermination" from general
relativity will suggest a distinction between the dynamical structure associated with a
given theory in physics and its kinematical structure.  My claim will be that this
provides a means to distinguish between a structural realist interpretation of a theory
based on its dynamical structure, versus a structural realist interpretation of spacetime
as described by a given theory, based on its kinematical structure.

Section 3 indicates how the distinction between dynamical and kinematical structure
addresses a recent argument raised by Pooley (2006) against using Jones
Underdetermination as a means to motivate ontic structural realism.  Briefly, the
argument is that different formulations of the same theory not only underdetermine
individuals-based ontologies, but also the structures these individuals may instantiate;
hence appeals to alternative formalisms cannot motivate structural realism.  I will claim
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that structural realist interpretations of different formulations of GR do not suffer from
underdetermination of dynamical structure; and while different formulations of GR
admit different structural realist interpretations of spacetime, the underdetermination
involved is less severe than that associated with individuals.  Whereas the individuals-
based ontologies associated with alternative formulations of spacetime in GR are in-
principle underdetermined, the structures they instantiate are open to empirical
investigation in the form of extensions of GR to quantum gravity.  Such extensions are
currently research programs with little if any empirical support, but their advocates
foresee a time at which they, and hence the structures they attribute to spacetime, may
be distinguished by empirical evidence.

Finally, Section 5 considers how the dynamical and kinematical structure of a theory in
physics might be given a category-theoretic formulation.  This formulation, I will argue,
goes some way in deflecting a recent criticism of a radical flavor of ontic structural
realism.  This radical flavor conceives of structures as existing independently of the
individuals that instantiate them, and the criticism is that, to the extent that this is a
conception of structure as consisting of relations devoid of relata, it is incoherent.  I will
argue that a conception of structure as consisting of relations devoid of relata amounts
to a literal interpretation of a set-theoretic definition of structure, and that shifting to
an alternative category-theoretic formulation may make the radical ontic structural
realist's concept of structure less problematic.

2.  Jones Underdetermination:  Realism With Respect to What?
Scientific realism can be associated with the general claim that successful theories in
science should be interpreted literally; in other words, we should take them at their face-
value.  Jones (1991) raised the following worry about this general view:  Successful
theories typically admit alternative mathematical formulations that disagree at the level
of ontology.  Thus, regardless of whether there are cogent arguments for being a
scientific realist, there's a prior worry about what scientific realists should be realists
about.  After Pooley (2006, pg. 87), call this type of underdetermination of ontology by
formalism, "Jones Underdetermination".  In this section, I'd like to consider, as an
example, General Relativity (GR, hereafter).

In the tensor formalism, models of GR are typically given by a pair (M, gab), where M is
a differentiable manifold and gab is a metric field defined on M and satisfying the
Einstein equations.  In the following I will briefly review three alternative formulations
of GR and suggest that on a literal interpretation, while they may disagree at the level
of "individuals-based" ontology, they agree at the level of structure, appropriately
construed.  Each of these alternative formalisms has been discussed in more detail in
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Bain (2006) in the case of general field theories in physics.  In the following, I will only
be concerned with their application to GR.

2.1.  Einstein Algebra Models of GR
Models of GR in the Einstein algebra (EA) formalism consist of a triple (R∞, R, g),
where R∞ is a commutative ring, R is a subring of R∞ isomorphic with the real
numbers, and g is a multilinear map defined on the space of derivations of (R∞, R) and
its dual space, and satisfying the Einstein equations (Geroch 1972).  A 1-1
correspondence between such models and tensor models exists, based on the 1-1
correspondence between the points of a differentiable manifold and the maximal ideals
of the commutative ring of smooth functions defined on M.1  This correspondence allows
all the relevant tensorial objects defined on M in tensor models of GR to be translated
into appropriate algebraic objects defined on (spaces constructed from) (R∞, R).  Thus
the Einstein algebra formalism is as expressive as the tensor formalism in the sense that
any model of GR in the latter corresponds to a model of GR in the former.

Now, arguably, on a literal construal, tensor models and EA models disagree at the level
of "individuals-based" ontology.  The individuals associated with tensor models are the
points of M, insofar as these points are the basic objects of predication in tensor models;
whereas the individuals associated with Einstein algebra models are (a bit more
abstractly) maximal ideals of smooth functions.  However, the isomorphism between
these models suggests they agree at the level of structure.  In general, tensor models of
GR are invariant under the actions of Diff(M), the group of diffeomorphisms on M.  EA
models of GR share this invariance property, although in the EA formalism, it gets
translated into actions of the group of homomorphisms that leave invariant (R∞, R, g).
In both cases, the structure associated with these transformations may be identified as
differentiable structure.  In tensor models, this is predicated on the points of M, whereas
in EA models, it is associated with the structure of a commutative ring of smooth
functions on M.

2.1.1.  Points vs Maximal Ideals:  Local vs Global Differentiable Structure
There is a sense in which the individuals in tensor models (i.e., manifold points) play a
greater role in formulating GR than do the individuals in Einstein algebra models (i.e.,
maximal ideals).  In particular, one might say that manifold points kinematically matter,
whereas maximal ideals do not.  To see this consider imposing certain types of
asymptotic boundary conditions on GR.  Examples include solutions to the Einstein

                                      
1 A maximal ideal of a commutative ring is the largest subset of the ring closed under the ring product.
Each point of a differentiable manifold M corresponds to a maximal ideal of smooth functions on M that
vanish at that point.
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equations that are asymptotically flat, and solutions involving certain types of curvature
singularities.  In such examples, the boundary conditions can be implemented
geometrically by encoding them in a boundary space ∂M (itself a differentiable
manifold) and attaching it to the manifold M.  The result is a manifold with boundary
M' = M  ∂M.  One then observes that, while tensor models (M, gab) without such
boundary conditions are invariant under the group Diff(M), tensor models (M', gab) with
such boundary conditions are in general invariant under the subgroup Diffc(M) of
diffeomorphisms on M with compact support (a diffeomorphism is in Diffc(M) just when
there is a compact region of M outside of which it is the identity).  One can think of
Diffc(M) as the group of "local" diffeomorphisms on M.  Intuitively, such local
diffeomorphisms are guaranteed to preserve the local structure of any manifold
(including boundary spaces).  Elements of the larger group Diff(M), on the other hand,
are only guaranteed to preserve the structure of a given M, and may fail to preserve the
structure of a boundary space distinct from M.  Thus, in general, there are no
morphisms (i.e., transformations) that preserve both M and M' (no d on M is
guaranteed to extend smoothly to a d on M').  Technically this means that manifolds
and manifolds with boundaries belong to different categories.

On the other hand, asymptotic boundary conditions of this type can be imposed on
Einstein algebra models of GR in two steps (cf., Heller and Sasin 1995, pg. 3657).  We
first replace the ring R∞ ≅ C∞(M) of real-valued smooth functions on a given M with
the sheaf R∞Asymp ≅ C∞(M') of real-valued smooth functions on the corresponding
manifold with boundary M' = M  ∂M.  We then replace the Einstein algebra (R∞, g)
defined on M with the sheaf of Einstein algebras (R∞Asymp, g) defined on M', where for
each open region U of M', (C∞(U), g) is an Einstein algebra.  One can think of such a
sheaf of Einstein algebras as the collection of Einstein algebras defined on all open
regions of M'.  It turns out that, as algebraic objects, (R∞, g) and (R∞Asymp, g) belong to
the same category , what Heller and Sasin (1995, pg. 3647) have dubbed the category of
structured spaces.  In particular, one can define morphisms that preserve the structure
of both (R∞, g) and (R∞Asymp, g).

2

This suggests that the kinematical structure of Einstein algebra models of GR (both
with and without asymptotic boundary conditions) can be identified as "global"

                                      
2 A structured space is a pair (M, C), where M is a topological space and C is the sheaf of real continuous
functions on M satisfying the following condition (closure with respect to composition with smooth
Euclidean functions):  For any open set U in the topology τ on M and any functions f1, ..., fn in C(U), and
any smooth function ω on Rn, the composite ω  (f1, ..., fn) is in C(U) (Heller & Sasin 1995, pg. 3645).

Now let (M, C) and (N, D) be structured spaces.  A continuous mapping f : M → N is said to be smooth
if, for any cross section g in D(U), the composite g  (f|f−1(U)) is in C(f−1(U)) (Heller & Sasin 1995, pg.
3647)  Claim:  The set of structured spaces as objects and smooth mappings as morphisms forms a
category.
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differentiable structure associated with a single type of morphism.  In contrast, the
kinematical structure of tensor models of GR (both with and without asymptotic
boundary conditions) can be identified with "local" differentiable structure, in so far as,
in general, the differentiable structure at a given point p of a tensor model will depend
on whether p is in the interior space M or the boundary space ∂M.

2.2.  Twistor Models of GR
Now suppose we require that the metric field in tensor models of GR be anti-self-dual
and satisfy the vacuum Einstein equations.  Such models are schematically of the form
(M, gab

ASD), where gab
ASD satisfies the vacuum Einstein equations with the anti-self-dual

constraint *gab
ASD = −igab

ASD.  One can now establish a 1-1 correspondence between such
tensor models and models of GR in the twistor formalism of the schematic form (P, τ,
ρ).  Such twistor models consist of a curved twistor space P and two differential forms
τ, ρ defined on it and satisfying certain requirements (this construction was dubbed the
non-linear graviton by Penrose 1976).  Briefly, the idea is to modify the correspondence
that exists between Minkowski spacetime and flat twistor space in an infinitesimal way
for particular curved general relativistic spacetimes.  (For the correspondence between
Minkowski spacetime and flat twistor space, and a brief explanation of the Penrose non-
linear graviton, see the discussion in Bain 2006, pg. xx, and references therein).

One might again argue that tensor models and twistor models disagree at the level of
"individuals-based" ontology:  Points in the case of tensor models, as opposed to twistors
in the latter case.  And, again, the fact that these models are isomorphic indicates they
share common structure.  In this case, the relevant structure is the conformal structure
associated with Ricci-flat Lorentzian metrics.

2.3.  Geometric Algebra Models of GR
Finally suppose we restrict the tensor models of GR to those in which the metric field is
everywhere decomposable into a tetrad field.  A tetrad field (eµ)

a consists of a set of
orthonormal vector fields that serves to define an orthonormal frame in the tangent
space at each point of a manifold M (where the index µ = 0, 1, 2, 3 labels the vector
fields of the tetrad).  At each point p of M, the Lorentzian metric of a tensor model of
GR can always be decomposed as gab = (eµ)a(eν)bηµν, where ηµν is the Minkowski metric
on the tangent space at p.  For gab to be everywhere so-decomposable requires the
existence of a global tetrad field on M.  In general, tensor models of GR need not admit
such global tetrad fields.  Those that do may be schematically represented by (M, gab,
(eµ

a)).
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One can now establish a 1-1 correspondence between such tensor models, and a subclass
of models of GR formulated in the geometric algebra (GA, hereafter) formalism.  This
subclass of GA models of GR takes the schematic form (D, h, Ω), where D is the Dirac
algebra, and h and Ω are linear functions defined on D interpreted as displacement and
rotation gauge fields.  The Dirac algebra is the real Clifford algebra C(1,3) of Minkowski
vector space.3  Intuitively, it encodes the metrical structure of Minkowski vector space,
in so far as the bilinear form that defines C(1,3) is induced by the Minkowski metric.  The
correspondence between tensor models (M, gab, (eµ

a)) and GA models can be justified by
appeal to Lansby, et al. (1998), who construct what they refer to as a Gauge Theory of
Gravity (GTG) in the geometric algebra formalism.  GTG is obtained by imposing
displacement and rotation gauge invariance on a matter Lagrangian defined on D,
following the same procedure used in Poincaré gauge theory.4  The resulting local gauge
fields then define a metric field that satisfies the Einstein equations and a connection
with non-vanishing torsion.  Restricting such solutions to those in which the torsion
vanishes then reproduces tensor models of GR of the above form (M, gab, (eµ

a)).

One might again argue that tensor models and GA models disagree at the level of
"individuals-based" ontology:  Points in the case of tensor models, as opposed to
multivectors  in the case of GA models (multivectors being the objects of predication of
the Dirac algebra).  And, again, the fact that these models are isomorphic indicates they
share common structure.  As indicated above, in this case this structure is metrical.  In
particular, it is encoded in the Poincaré group, which is the isometry group of
Minkowski spacetime.

2.4.  Dynamical vs. Kinematical Structure
The above examples suggest that models of GR in different formalisms can agree
dynamically; provided they represent appropriate solutions to the Einstein equations.
This is the case for the following models:

                                      
3 Let V be a real vector space equipped with a bilinear form g : V × V → R with signature (p, q).  The

real Clifford algebra C(p, q) is the linear algebra over R generated by the elements of V via “Clifford

multiplication” defined by xy + yx = g(x, y)1, x, y ∈ V, where 1 is the unit element.
4 See Blagojevic (2002) for a comprehensive review of the latter.  Briefly, in Poincaré gauge theory, local
Poincaré gauge invariance is imposed on a matter Lagrangian with matter fields defined on a manifold M,
and this requires the introduction of gauge potential fields.  These are then identified as the connection on
a Poincaré frame (i.e., tetrad) bundle over M encoding rotational gauge degrees of freedoms, and sections
of this bundle (i.e., global tetrad fields) encoding translational gauge degrees of freedom.  The Einstein
equations are then obtained by extremizing the Lagrangian with respect to the gauge potentials.  This
procedure also produces a non-vanishing torsion, thus, strictly speaking, Poincaré gauge theory is both a
restriction and an extension of GR, in so far as models of GR need not admit global tetrad fields and
require a vanishing torsion.
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(1) Tensor models, with and without asymptotic boundary conditions, and Einstein
algebra models.

(2) Anti-self-dual vacuum tensor models and twistor models.

(3) Tensor models with global tetrad fields and Geometric algebra models.

These examples also suggest that models of GR in different formalisms can disagree
kinematically; in so far as they can disagree over what they take to be the structure
they attribute to spacetime.  Thus tensor models, arguably, take the point set as the
basic structure of spacetime, which might be identified with local differentiable
structure.  In contrast, spacetime structure in Einstein algebra models may be identified
as global differentiable structure, and in twistor models as conformal structure, and
finally in geometric algebra models as metrical structure.

One can thus make a distinction between a structural realist interpretation of a theory;
namely, an ontological commitment to the dynamical structure associated with the
theory, and a structural realist interpretation of spacetime as described by a particular
formulation of a given theory; namely, an interpretation of spacetime as given by the
kinematical structure associated with that formulation of the theory.  Section 4.3 will
attempt to make the distinction between dynamical and kinematical structure a bit
more precise, but before doing so, I'd like to look at an example of how such a
distinction can be made to do work for the structural realist.

3.  Is Structure Jones-Underdetermined?
Section 2 attempted to motivate structural realist interpretations of theory and
spacetime by means of Jones Underdetermination.  However some authors claim that
Jones Underdetermination cannot motivate structural realism.  This is because
alternative formalisms disagree at the level of individuals, and at the level of structure.
Thus not only are individuals-based interpretations of a single theory underdetermined;
so are structural realist interpretations.  For instance, Pooley (2006) argues in the
following way:

Consider a model of a theory of Newtonian gravitation formulated using an action-at-
a-distance force and an empirically equivalent model of the Newton-Cartan formulation
of the theory.  There is no (primitive) element of the second model which is
structurally isomorphic to the flat inertial connection of the first model, and there are
no (primitive) elements of the first model which are structurally isomorphic to the
gravitational potential field, or the non-flat inertial structure of the second.  Clearly a
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more sophisticated notion of structure is needed if it is to be something common to
models of both formulations of the theory.  (Pooley 2006, pp. 87-88; my italics.)

In response, I would first point out that this example is not really an example of Jones
Underdetermination, as I understand it.  The empirically equivalent flat-space and
curved-space formulations of Newtonian gravity that Pooley refers to are better thought
of as two ways of formulating the same theory in the same (viz., tensor) formalism, at
least as they're typically presented.  But Pooley's example does raise the following
question:  Can a single theory admit distinct formulations in a single formalism that
differ at the level of structure?  This might indeed prove difficult for a structural realist
to explain.

To consider this question, I'd like to look more closely at Pooley's example, which is a
bit more complex than he presents it.  It turns out that there are many potential
candidates for theories of Newtonian gravity in both flat and curved spacetimes, and
only some of these may be considered empirically equivalent to each other.  Consider
first theories of Newtonian Gravity that make use of a gravitational potential field Φ.
Tensor models of such theories are given by a 6-tuple (M, hab, tab, ∇a, Φ, ρ) that consists
of a manifold M, spatial and temporal metric fields hab, tab, a derivative operator ∇a, and
scalar fields on M that represent a Newtonian gravitational potential Φ and a mass
density ρ.  These objects are required to satisfy orthogonality and compatibility
conditions, the Poisson equation, and an equation of motion:

habtab = 0 = ∇ch
ab = ∇ctab (orthogonality and compatibility) (1)

hab∇a∇bΦ = 4πGρ (Poisson equation) (2)

ξa∇aξ
b = −hab∇aΦ (equation of motion) (3)

where ξa is a tangent vector field for a timelike particle trajectory worldline that encodes
the particle's four-velocity.  At least three formally distinct theories of Newtonian
Gravity can now be identified (for details see Bain 2004, pp. 353-355).

(i) Neo-Newtonian Newtonian Gravity.  This theory describes Newtonian gravity in
terms of a potential field and a mass density defined in spatiotemporally flat Neo-
Newtonian spacetime.  It does this by placing an additional constraint on the
curvature tensor, requiring it to vanish, Ra

bcd = 0, which encodes the fact that Neo-
Newtonian spacetime is spatiotemporally flat.  One can then identify the spacetime
symmetries of this theory as the symmetries of Neo-Newtonian spacetime, which are
generated by the Galilei Lie algebra gal.  If we now identify a theory's dynamical
symmetries with the transformations that leave invariant its dynamical equations,
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then one can show that the dynamical symmetries of Neo-Newt NG are generated

by elements of an extension 
  max  of the Maxwell Lie algebra.

(ii) Island Universe Neo-Newtonian Newtonian Gravity.  A second example can be had
by imposing a boundary condition on Example (i) that forces the gravitational
potential to vanish at spatial infinity (we require φ → 0 as xi → ∞).  The result is a
concentration of mass in the center of the universe in what has been referred to as
an "island universe effect".  One can show that this reduces the dynamical
symmetries to those generated by the Galilei Lie algebra, plus a gauge
transformation on the potential; namely, Φ  Φ + ϕ(t), where ϕ(t) is an arbitrary
function of time.

(iii) Maxwellian Newtonian Gravity.  Finally, one can impose a weaker constraint on the
curvature tensor, Rab

cd = 0, and end up with Newtonian Gravity in Maxwellian
spacetime.  This weaker constraint effectively relativizes acceleration, but not
rotation.  The spacetime symmetries are now generated by the Maxwell Lie algebra
max, while the dynamical symmetries are the same as for Neo-Newt NG.

One can also formulate theories of Newtonian gravity by incorporating the gravitational
potential field into the spacetime connection.  These may be called theories of Newton-
Cartan gravity (NCG).  Tensor models of such theories eliminate the Newtonian
gravitational potential, and are given by (M, hab, tab, ∇a, ρ).  These objects are required
to satisfy the same orthogonality and compatibility constraints (1) as the theories
above, but they replace the Poisson equation (2) with a generalized Poisson equation,
and replace the equation of motion (3) with the geodesic equation:

Rab = 4πGρtab (generalized Poisson equation) (4)

ξa∇aξ
b = 0 (equation of motion) (5)

These changes enforce the principle of equivalence on theories of Newtonian gravity.
Again, at least three distinct theories of NCG can be identified (for details see Bain
2004, pp. 356-372).

(iv) Weak Newton-Cartan Gravity.  This theory imposes a "curl-free" condition on the
curvature tensor, R[a

[b
c]

d] = 0 that is necessary in recovering weak NCG as the non-
relativistic limit of GR.  It also is necessary, but not sufficient, in recovering the
Poisson equation.  One can show that both its spacetime symmetries and its

dynamical symmetries are generated by an extension of the Leibniz Lie algebra   leib
 .
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(v) Asymptotically spatially flat weak Newton-Cartan Gravity.  To recover the Poisson
equation, one may impose a boundary condition on weak NCG in the form of
asymptotic spatial flatness.  This has the result of reducing the spacetime
symmetries of Weak NCG to those generated by the Galilei algebra, and the
dynamical symmetries reduce to those generated by the Galilei algebra plus a
particular gauge transformation Φ  Φ + ϕ(t) on a scalar field Φ that can be
identified as a Newtonian gravitational potential.

(vi) Strong Newton-Cartan Gravity.  This theory imposes both "curl-freeness", R[a
[b

c]
d] =

0, and the Maxwell condition, Rab
cd = 0, on the curvature tensor.  This is also

sufficient to recover the Poisson equation.  Both its spacetime and dynamical

symmetries are generated by an extension of the Maxwell Lie algebra 
  max .

Theory Spacetime symmetries Dynamical symmetries
Neo-Newtonian NG
Ra

bcd = 0
gal

  max

Island Universe Neo-Newt NG
Ra

bcd = 0
Φ → 0 as xi → ∞

gal gal

Φ  Φ + ϕ(t)

Maxwellian NG
Rab

cd = 0
max

  max

Weak NCG
R[a

[b
c]

d] = 0
  leib


  leib


Asymp. spatially flat weak NCG
R[a

[b
c]

d] = 0
Rabcd = 0 at spatial infinity

gal gal

Φ  Φ + ϕ(t)

Strong NCG
R[a

[b
c]

d] = 0
Rab

cd = 0

  max
  max

Table 1.  Theories of Newtonian Gravity in Flat and Curved Spacetimes

In all, there are at least six distinct theories of Newtonian gravity in flat and curved
spacetime (see Table 1).  Pooley's example is based on empirically equivalent theories
that exhibit different structure.  Suppose two theories are empirically indistinguishable
just when they share the same solution space of a set of dynamical equations.  This
entails that they make the same predictions, in so far as any set of admissible
observables is evolved in time in exactly the same way by both theories.  Now this
shared solution space is reflected in the examples above in terms of shared dynamical
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symmetries.  Again, these are the symmetries of a theory's dynamical equations, and in
some of the above examples, the dynamical equations of a given theory effectively
reduce to those of another.  Whether this entails that such theories are really different
formulations of the same theory will depend, in this context, on whether or not they
share the same spacetime symmetries.

If this is right, then there are at least two cases of empirically indistinguishable theories
of Newtonian gravity:

(a) Island Universe Neo-Newtonian NG,  and asymptotically spatially flat weak NCG.

(b) Neo-Newtonian NG, Maxwellian NG, and Strong NCG.

Do these cases exhibit different structures?  Case (a) does not.  Both Island Universe
Neo-Newtonian NG and asymptotically spatially flat weak NCG possess the same
spacetime symmetries; hence, arguably, they make the same ontological commitments
with respect to spacetime structure.  They constitute an example of different
formulations of the same theory.

Now consider Case (b).  Here the theories do disagree on their spacetime symmetries,
and hence, arguably, on what they take to be the structure of spacetime.  So it might be
an example of this type that drives Pooley's argument against structural realism.  But
on the other hand, all these theories do agree on one aspect of structure; namely, they
all agree on dynamical structure.  This suggests that a structural realist interpretation
of such theories is still viable.

I would thus claim that structural realist interpretations of different formulations of a
single theory do not suffer from underdetermination of dynamical structure,
appropriately construed.  And, granted, structural realist interpretations of spacetime as
represented by a particular formulation of a given theory are underdetermined, both in
cases of Jones Underdetermination that involve different formalisms, as well as in cases
in which a theory can be formulated in different ways in a single formalism.  But such
underdetermination of spacetime structure does not affect the current empirical
adequacy of the given theory, as determined by its dynamical structure.  And moreover,
arguably, spacetime structure is susceptible to future empirical tests.  In the GR
examples in Section 2, for instance, which formalism one adopts may depend on how
one thinks GR can be extended to a quantum theory of gravity.  Each of the formalisms
in these examples is associated with a particular approach to constructing a quantum
theory of gravity.5

                                      
5 See Heller and Sasin (1999) for an approach to quantum gravity motivated by the Einstein algebra
formalism.  The twistor program initiated by Penrose is also viewed as an approach to quantum gravity.
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4.  What is Structure?
The type of structural realism that is motivated by Jones Underdetermination takes
structure to be more fundamental than the individuals that instantiate it.  Thus it's
similar to the radical ontic structural realism (ROSR, hereafter) associated with French
and Ladyman (2003) that takes structure to consist of relations devoid of relata.  This
view has been criticized by many authors.  Here is just a sample:  Esfeld and Lam
(2008, pg. 31) acknowledge that one might posit the existence of abstract relations-as-
universals without reference to relata, but "...when it comes to the physical world, the
point at issue are concrete relations that are instantiated in the physical world and that
hence are particulars in contrast to universals.  For the relations to be instantiated,
there has to be something that instantiates them... ."  With respect to the view that
there are only relations without relata, Stachel (2006, pg. 54) states:  "As applied to a
particular relation, this assertion seems incoherent.  It only makes sense if it is
interpreted as the metaphysical claim that ultimately there are only relations; that is, in
any given relation, all of its relata can in turn be interpreted as relations."  Wüthrich
(2008, pg. 3) agrees with Stachel's assessment:  "Taken at face value... [radical ontic
structural realism] is clearly incoherent...".  Finally, Dorato (2008, pg. 21) states "I
daresay that no ontic structural realist should be falling into the trap of accepting the
view that 'relations can exist without relata'."

As Chakravartty (2003, pg. 871) notes, criticism of this type assumes that there is a
conceptual dependence between the notions of relation and relata, and to the extent
that ROSR recommends a revision of such concepts, it cannot be faulted simply for
denying this dependence.  On the other hand, as Greaves (2009, pp. 17-18) suggests, the
onus is still on ROSR to make good on just how such a dependence can be denied.
Here's a suggestion for how ROSR might proceed to do this.  One might claim that the
conceptual dependence between relations and relata that critics of ROSR assume is a
consequence of formulating the notion of structure in a particular formalism; namely, set
theory.  In the spirit of this essay, one might consider alternative formalisms in which
the notion of structure might be presented and in which such a conceptual dependence
between relations and relata is not implied.  To see how this might proceed, I'd like to
look first at the typical set-theoretic formulation of the notion of a structure, and then
compare it with a category-theoretic formulation.

4.1.  Set Theory vs. Category Theory

                                                                                                                          
The geometric algebra formalism isn't associated with a particular approach, but arguably is in the same
family as background dependent approaches that prioritize Minkowski spacetime structure.
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If one adopts a set-theoretic formalism, then radical ontic structural realism may indeed
seem incoherent.  Suppose, for example, that by "structure" we mean "isomorphism class
of structured sets", [{X, Ri}], where a structured set {X, Ri} consists of a domain X of
individuals together with a collection of n-ary relations Ri defined on it.  The ontic
structural realist's claim then is that the specification of the domain X of individuals is
arbitrary to the concept of structure:  what matters is the structure of the relations
these arbitrary individuals enter into.  Now suppose, to take the simplest example, by
"binary relation R on X", we mean "subset of the Cartesian product X × X ".  In so far
as the latter consists of all ordered pairs (x1, x2), where x1, x2 ∈ X, this definition makes
ineliminable reference to the elements of X (let the ordered pair (x1, x2) be the set {x1,
{x1, x2}}).  Hence if the relata of a relation in a structure are identified with the
elements of its domain, the set-theoretic definition of structure as an isomorphism class
of structured sets makes ineliminable reference to relata.  In general, one might argue
that any set-theoretic definition of structure does likewise, in so far as membership "∈"
is a primitive concept in set theory.

However, consider adopting a category-theoretic formalism to represent structure.  In
brief, a category C consists of objects A, B, ... and morphisms between objects f : A →
B, ... .  In addition, we require that for each object A, there be an identity morphism 1A

: A → A, which satisfies the Identity Laws 1A  f = f, and f  1A = f, for any morphism
f with A as domain; and we require that there be composite morphisms f  g : A → C
for each pair of morphisms of the form f : A → B, g : B → C, which satisfy the
Associative Law f  (g  h) = (f  g)  h, for h : C → D.  It turns out that set theory
can be formulated as a category, Set, in which the objects are sets and the morphisms
are functions defined on sets.  Moreover, for any given structured set, there is a category
in which the objects are that type of structured set and the morphisms are functions
that preserve the structure of the set (see Lawvere and Shanuel 1997 for elementary
examples).  This suggests that the intuitions of the ontic structural realist may be
preserved by defining "structure" in this context to be "object in a category".

To what extent does such a category theoretic definition of structure eliminate reference
to relata?  As Bell (1988, pg. 5) observes, "[i]n category theory many concepts
formulated in terms of elements are instead formulated in terms of arrows [viz.,
morphisms]".  In particular, the notion of an element of an object only makes sense in
those categories with certain types of objects; namely, terminal objects.  An object 1 in
a category C is a terminal object of C if for each object X of C, there is exactly one C-
morphism X → 1.  In categories with terminal objects, an element of an object A is then
defined as a morphism 1 → A from the terminal object to A.  (In the category Set, the
terminal object is the isormorphism class of singleton sets.)  Thus, instead of saying "x ∈
X", one says "x : 1 → X".
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As another example, consider the concept of Cartesian product which underlies the set-
theoretic concept of relation.  In category theory, the Cartesian product of an object X
with itself is an object P together with a pair of morphisms p1 : P → X and p2 : P → X,
such that, for any object T with morphisms f1 : T → X, f2 : T → X, there is exactly one
morphism f : T → P for which f1 = p1  f and f2 = p2  f.  Explicitly in this definition
there is no reference to the "internal" members of X.  One might say that category
theory prohibits direct reference to "internal" elements of an object.  Thus in forming
the definition of Cartesian product we need to construct the right external "probe" T, f1,
f2, f, that directly encodes what in set theory is the "internal" pair structure of P.  This
suggests that the definition of structure as an object in a category does not make
ineliminable reference to relata in the set-theoretic sense.  And this suggests that in
category theory, the concept of structure devoid of relata may be placed on a firmer
foundation than in set theory.

Now one might object in the following way.  Category theory eliminates reference to
relata only in name.  Instead of calling the relata associated with a structure "elements
of the structure's domain", as in set theory, category theory calls them "morphisms from
the terminal object".  Assumedly, or so the objection goes, any given set theoretic
structure will have a category theoretic analog, and however many relata the former is
associated with, so the latter will be associated with the same number of morphisms
from the terminal object.  The argument against the radical ontic structural realist
might then be modified from the slogan "no relations without relata" to the slogan "no
objects without morphisms"!

One way to address this objection might be to suggest an analogy between set theory
and category theory on the one hand, and the tensor and Einstein algebra (EA)
formulations of GR on the other.  In particular, the question of the extent to which
category theory does away with relata might be mapped onto the similar question of the
extent to which the EA formalism does away with manifold points.  Recall that
manifold points in the tensor formalism have correlates in the EA formalism; namely,
maximal ideals of smooth functions.  But recall, too, that maximal ideals in the EA
formalism don't do the work that points do in the tensor formalism.  In particular,
maximal ideals in the EA formalism are not the objects of predication of the global
differentiable structure associated with EA models.  This global differentiable structure
is encoded directly in a sheaf of Einstein algebras.  In contrast, the local differentiable
structure of tensor models is predicated directly on the points of the manifold.  Thus we
might say that the point correlates in EA models of GR are surplus structure.  They can
be defined, but they do not play leading roles in articulating the structure associated
with EA models.  And, importantly, the global differentiable structure associated with
EA models is more unifying than the local differentiable structure associated with tensor
models:  In the EA formalism, models of GR with and without asymptotic boundary
conditions fall under the same structure, whereas in the tensor formalism they do not.
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One might attempt to tell a similar story about set-theoretic relata in the context of
category theory.  Such relata are the elements of sets, and while they have correlates in
category theory, they don't play the essential role there that they play in set theory.
They amount to surplus structure in category theory.  To make good on this claim, one
would have to demonstrate that, just as EA models of GR are more general than tensor
models, and this generality does actual work in providing a unifying description of the
theory, so objects in a category are more general than structured sets, and this
generality does actual work in providing a more comprehensive notion of structure.
Two examples of categories described by Baez (2006, pp. 246-247) might be seen in this
light.  The first is the category nCob whose objects are (n-1)-dimensional (compact
oriented) topological manifolds and whose morphisms are n-dimensional topological
manifolds that "go between" them (what are called cobordisms).  The second example is
the category Hilb with (finite-dimensional) Hilbert spaces as objects and bounded linear
operators as morphisms.  These differ from the category Set of sets (with functions as
morphisms) in the following three respects.

(i) First, the objects of nCob and Hilb cannot be considered structured sets, in so far
as their morphisms are not simply functions that preserve the relevant set-theoretic
notion of structure associated with them.  Set-theoretically, the functions that
preserve the structure of an (n-1)-dim topological manifold are homeomorphisms
(i.e., maps that preserve the topological properties of points).  But the morphisms
in nCob are not even functions.  Set-theoretically, the functions that preserve the
structure of a Hilbert space are unitary operators that preserve the inner-product.
The morphisms in Hilb in contrast are general bounded linear operators that do
not necessarily have to be unitary.  (Baez 2006, pg. 251, defines an inner-product
on the objects in Hilb in terms of an adjoint operation, thus turning Hilb into a *-
category:  see (3) below.)

(ii) Second, unlike Set, the categories nCob and Hilb are monoidal categories.  This
means they admit a tensor product but not a Cartesian product.  In particular, in
both of these categories, for any pair of objects H, K, there is an object H ⊗ K
called the tensor product of H and K, but there are no morphisms p1 : H ⊗ K → H
and p2 : H ⊗ K → K  with the properties of a Cartesian product (Baez 2006, pg.
257).

(iii) Third, unlike Set, the categories nCob and Hilb are *-categories.  This means they
admit a morphism * that sends each morphism f : X → Y to a morphism f* : Y →
X called the "adjoint" of f and satisfying 1*X = 1X, (f  g)* = g*  f*, and f** = f
(Baez 2006, pg. 251).
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Now both nCob and Hilb admit terminal objects, and hence a well-defined notion of an
element of an object.  (For nCob elements are points of (n-1)-dim manifolds, for Hilb,
elements are vectors.)  But, in so far as the objects of these categories are not structured
sets, this notion of element does not do work in articulating the relevant notion of
structure associated with these categories.  Again, because the objects of these
categories are not structured sets, the "properties" of such elements are not what gets
preserved under the morphisms.  Thus the structure associated with the objects in nCob
and Hilb is arguably more general than that associated with their set-theoretic
counterparts.  In other words, the category-theoretic definitions of (n-1)-dim topological
manifold and Hilbert space, as provided by the categories nCob and Hilb, are more
general than the set-theoretic definitions.  Baez (2006) further argues that this
generality is more than cosmetic:  Baez sees the similarities between nCob and Hilb --
in particular, those features above that distinguish them from Set -- as suggestive of
how GR and quantum theory might be reconciled.  Briefly, nCob has an essential role
to play in a category-theoretic  formulation of topological quantum field theories, which
have been viewed by some authors as attempts to reconcile the background independent
nature of GR with quantum field theory.  One might view this as one way that the
generality associated with the notion of structure in nCob and Hilb has the potential to
do actual work in articulating a notion of structure that addresses a key issue in
physics.

Thus a definition of structure as an object in a category is more general than a
definition of structure as an isomorphism class of structured sets.  And for categories
with objects that cannot be identified as structured sets, correlates of set-theoretic relata
(i.e., morphisms from the terminal object) arguably have diminished roles in
articulating the nature of the structures under consideration.

4.2.  What the Category-Theoretic Radical Ontic Structural Realist Must Do
Of course if the types of structures that ROSR is (or should be) concerned with are all
of the structured set type (and hence depend definitionally on the notion of relata), then
adopting a category-theoretic definition of structure would not be all that helpful.  More
perniciously, one might also argue that the generality afforded by category-theoretic
definitions of structure is a moot point if it turns out that category theory presupposes
set theoretic concepts.  If this is the case, then categories are really just sets in disguise,
even those categories that do not have structured sets as objects; thus there would be
no greater expressiveness to be associated with category theory.  In particular, the claim
would be that membership really is a primitive in category theory, examples like Baez's
none withstanding; hence a category-theoretic definition of structure will not,
ultimately, break free of relata.  Thus there is still work to be done by the category-
theoretic radical ontic structural realist:
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(1)  She will have to provide a rationale for the fundamentality of category theory over
set theory.  For instance, Kraus (2005, pg. 114) claims the following:

The reason [ontic structural realists] don't use category theory is still not clear to
me, but perhaps this is due to the fact that from an intuitive point of view a
category is nothing more than an ordered pair (hence a set) whose elements are a
collection of objects (the structures) and a collection whose elements are called
morphisms (both concepts of course are subjected to adequate postulates).  That is,
even in category theory we are not completely free from the intuitive notion of sets.

If category theory can be shown to be more fundamental than set theory, this argument
is blunted.  The fact that a category can be presented as an ordered pair would reduce
to the fact that a category can be presented as a category.  This on-going debate in the
philosophy of mathematics deserves more space than can be provided here.  I will suffice
to refer to a recent article by Pedroso (2008) which addresses some of the major charges
against category-theoretic fundamentalism.

(2)  She will have to provide category-theoretic reformulations of theories in physics
that explicitly do not depend on sets.  The fundamentality of category theory would be
moot if it turned out that structures in the physical world are better represented by set-
theoretic constructions.  Döring and Isham (2008) are engaged in this project in the
context of theories in quantum physics (see also Isham and Butterfield 2000), and Baez
(2006) has argued against set-theoretic intuitions in formulating approaches to quantum
gravity.

(3)  Finally, the category-theoretic ontic radical ontic structural realist will have to
identify the relevant notion of structure in category-theoretic terms.  In particular, in
the context of this essay, one would have to distinguish between kinematical structure
and dynamical structure in category-theoretic terms.  I'd now like to consider one way
this last task might be approached.

4.3.  How to Do Category-Theoretic Physics
Consider, first, how one might attempt to do physics in category theory.  Baez (2006,
pp. 256-257) suggests the following.  Given a theory T, we identify its "kinematics" with
objects in a particular category C.  And we identify its "dynamics" with morphisms in C.
Take, for example, classical physics.  The relevant category here is the category Symp of
symplectic manifolds.  Objects in this category are symplectic manifolds, which encode
the structure of classical phase spaces.  The morphisms in Symp are symplectic
transformations.  These are intended to represent maps that take dynamically possible
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states to dynamically possible states.  As another example, consider quantum physics.
The relevant category here is Hilb, whose objects are Hilbert spaces and whose
morphisms are bounded linear operators.  The latter, again, are meant to represent
maps that take dynamically possible states of a quantum system into dynamically
possible states.

Now while this scheme does a good job in encoding the notion of the dynamical
structure of a theory T, one might balk at employing it to encode the notion of
kinematical structure.  In particular, the "kinematics" that Baez describes is really the
space of dynamically possible states of a physical system.  One would like a framework
underwhich a distinction can be made between kinematically possible states and
dynamically possible states.  Consider, then, the following framework for doing field-
theoretic physics in the tensor formalism (as described by Belot 2007, pp. 155-157).
Under this scheme, a field theory consists of a pair (K, Δ), where K is the space of
kinematically possible fields φ : M → W.  Such fields are represented by maps from a
differentiable manifold M to an appropriate space in which the fields take their values
(this space W depends on the type of field under consideration).  Δ is a set of
differential equations consisting of independent variables that parameterized M, and
dependent variables that parameterize W.  Given such a pair, one can define the space
S of dynamically possible fields as the subspace of K consisting of all kinematically
possible fields that are solutions to Δ; i.e.,  S = {φ0 ∈ K : φ0 is a solution of Δ}.

This framework is specifically for field theories in the tensor formalism, but the
distinction between K and S is more general.  Arguably, it is an essential aspect of any
formulation of a theory that depends on specifying a set of differential equations.  And
in fact, all the examples of alternative formulations of GR considered in this talk assume
such a distinction.  This suggests identifying the dynamical structure associated with a
field theory with the structure of the solution space S.  This structure is in part encoded
in the theory's equations, which place constraints on the kinematically possible
variables.  The kinematical structure might then be identified with the basis of support
for the space K of kinematically possible variables.  This is the structure of the
independent variables in the theory's equations.  This is the structure overwhich the
fields of the theory predicate, and is presupposed by the dynamics of the theory.  In the
tensor formalism, this structure is encoded in a differentiable manifold, but it may take
other forms when field theories are formulated in alternative formalisms.

Consider the examples of kinematically distinct models of GR in Section 2.  Each of
these models is associated with a different kinematical structure, now identified as the
structure into which the independent variables of the relevant set of differential
equations enter.  For tensor models this set consists of the Einstein equations defined in
terms of tensor fields on a manifold.  For EA models, this set consists of the correlates
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of the Einstein equations defined in terms of algebraic objects in an Einstein algebra or
its generalization.  For twistor models, the set of differential equations consists of the
constraints on the differential forms defined on curved twistor space; and for GA
models, the set of differential equations can be identified with the Euler-Lagrange
equations of the Lagrangian that describes the GA gauge theory of gravity.  These
equations govern functions defined on the Dirac algebra.

These kinematical structures can be tentatively identified with the following categories.
The local differentiable structure of tensor models can be represented by the category
Man of smooth manifolds (for GR without asymptotic boundary conditions), or by the
category of smooth manifolds with boundary, call it Manb, for GR with asymptotic
boundary conditions.  The global differentiable structure of EA models can be
represented by Heller and Sasin's (1995) category of structured spaces, call it Struc.
The conformal structure of twistor models (i.e., the conformal structure of Ricci-flat
Lorentzian metrics) might be represented by the category of curved twistor spaces, call
it Twist.  And the metrical structure of GA models might be represented by the
category of Dirac algebras, which can be identified with the category of real Clifford
algebras of signature (1,3), call it Cliff(1,3).

Sector Models Spacetime Structure Dynamical Structure
tensor local differentiable ManGR sans

b.c.'s EA global differentiable Struc
(M, gab)
≅ (R∞, g) Symp1

tensor local differentiable ManbGR with
b.c.'s EA global differentiable Struc

(M  ∂M, gab)
≅ (R∞Asymp, g)

Symp2

tensor local differentiable Man
ASD-GR

twistor conformal Twist
(M, gab

ADS)
≅ (P, τ, ρ)

Symp3

tensor local differentiable Mantetrad-
GR GA metrical Cliff(1,3)

(M, gab, (eµ
a))

≅ (D, h, Ω)
Symp4

Table 2.  Structural Relations Among Sectors of General Relativity.

Thus, to recap, consider again the examples of sectors of GR in Section 2 and their
associated kinematical and dynamical structure (see Table 2).  GR without boundary
conditions can be formulated either using tensors or Einstein algebras.  These
formulations differ on what kinematical structure they attribute to this sector:  the
tensor formalism suggests the structure represented by the category Man, whereas the
EA formalism suggests the category Struc.  But both formulations agree on what
dynamical structure they attribute to this sector; namely, the dynamical structure
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represented by a subcategory of the category of symplectic manifolds, call it Symp1.
This subcategory consists of objects that are particular symplectic manifolds; namely,
those that encode the structure of the space of solutions to the particular differential
equations of this sector.  It is this structure that tensor models and EA models of this
sector have in common.  Similar stories can be told for the remaining GR examples,
where, in general Symp ⊃ Sympi ≅ S for a given sector's (K, Δ).

5.  Conclusion
Structural realism with respect to spacetime can be motivated by a distinction between
the kinematical structure associated with a theory in physics and its dynamical
structure.  The former encodes the structure of spacetime, and can be identified with
the structure of the independent variables in the theory's differential equations.  This
structure forms the background for the space K of kinematically possible states of the
theory.  The dynamical structure of a theory in physics encodes the dynamics associated
with the theory's differential equations.  It is given by the space S of solutions to these
equations (the dynamically possible states of the theory).  This distinction is possible
both for sectors of general relativity, our current best-confirmed theory about the nature
of spacetime, as well as for Newtonian theories of gravitation that preceded it.  These
examples suggested that models of a theory in different formalisms will agree on
dynamical structure, but may disagree on kinematical structure.  This motivated a
version of structural realism that commits to the dynamical structure of a theory, and
remains agnostic about the kinematical structure, allowing that the latter may depend
on future extensions of the theory.

This paper also suggested that a promising approach to articulating the nature of
structure is given by category theory.  In particular, the dynamical structure of a theory
in physics as encoded in the space S of solutions to its dynamical equations, can be
identified with objects in a relevant category.  For theories in classical physics like
general relativity, the dynamical structure encoded in S finds its home in a subcategory
of the category Symp of symplectic manifolds.  The kinematical structure of a theory in
physics, as encoded in the background structure for the space K of kinematically
possible variables, likewise can also be identified with objects in a relevant category.
And, again, this latter depends on the formalism in which the theory is presented.  To
the extent that category theory allows us to speak of structures (as objects in a
category) without reference to their internal constituents, the intuitions of the radical
ontic structural realist are preserved, and arguments against such intuitions based on
the slogan "no relations without relata" are blunted.
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