
Gauge-Invariant Localization of Infinitely Many

Gravitational Energies from All Possible

Auxiliary Structures

J. Brian Pitts

100 Malloy Hall

University of Notre Dame

Notre Dame, Indiana 46556, USA

jpitts@nd.edu

July 22, 2009

Abstract

The problem of finding a covariant expression for the distribution and
conservation of gravitational energy-momentum dates to the 1910s. A
suitably covariant infinite-component localization is displayed, reflecting
Bergmann’s realization that there are infinitely many conserved gravita-
tional energy-momenta. Initially use is made of a flat background metric
(or rather, all of them) or connection, because the desired gauge invari-
ance properties are obvious. Partial gauge-fixing then yields an appro-
priate covariant quantity without any background metric or connection;
one version is the collection of pseudotensors of a given type, such as
the Einstein pseudotensor, in every coordinate system. This solution to
the gauge covariance problem is easily adapted to any pseudotensorial
expression (Landau-Lifshitz, Goldberg, Papapetrou or the like) or to any
tensorial expression built with a background metric or connection. Thus
the specific functional form can be chosen on technical grounds such as
relating to Noether’s theorem and yielding expected values of conserved
quantities in certain contexts and then rendered covariant using the proce-
dure described here. The application to angular momentum localization is
straightforward. Traditional objections to pseudotensors are based largely
on the false assumption that there is only one gravitational energy rather
than infinitely many.

Short title “Gauge-Invariant Localization of Infinitely Many Gravita-
tional Energies”

PACS numbers 04.20.Cv Fundamental problems and general formal-
ism, 04.20.Fy Canonical formalism, Lagrangians, and variational princi-
ples, 11.30.-j Symmetry and conservation laws

Keywords: conservation laws, localization, gauge invariance, infinite-
component, gravitational energy

1



1 Introduction

The problem of finding a covariant expression for the distribution and con-
servation of gravitational energy-momentum for General Relativity dates
to the 1910s. Einstein took the requirement that the gravitational field
equations alone entail energy-momentum conservation as a criterion for
finding his field equations in his process of discovery [1–4]; ironically, it
was widely concluded that the final theory lacked any local conservation
law for energy-momentum. The equation

∇µT
µν = 0, (1)

though a consequence of Einstein’s equations, is a balance equation, not
a conservation equation, because the covariant divergence of a rank 2
tensor (with any index placement and density weight) cannot be written
using a coordinate divergence, as is required for integral conservation laws.
Gravitational energy-momentum has been reviewed on several occasions
[5–8]. While there is no difficulty in writing down quantities satisfying
local conservation laws (in the sense of a coordinate divergence), there
seem to be too many expressions without the anticipated interconnections
[9]. More specifically, it has been expected that there ought to be a (10-
or 16-component) tensor, geometric object, or other suitably covariant
expression that describes the local distribution of gravitational energy-
momentum, and yet evidently there is not one. Pseudotensorial answers
go back to the Einstein’s work in 1916 [10], while objections to them from
Schrödinger and from Bauer appeared in 1918 [11–14]. Later develop-
ments included the introduction of additional background structures, such
as a flat background metric [15–17], an orthonormal tetrad [18, 19], or a
flat connection [20, 21]. While the introduction of such further structures
has achieved tensorial form with respect to coordinate transformations,
this result has always come at the cost of introducing a new sort of gauge
dependence, because the choice of specific background metric, tetrad, or
connection lacks physical meaning and yet affects the results. The intro-
duction of additional structures appears simply to move the lump in the
carpet, not to flatten it out. Though new background structures continue
to be introduced, the inductive lesson only gets stronger that the gauge
dependence problem is not resolvable in such a fashion [8]. In this respect
it is unclear that much has been gained beyond the original dependence
of pseudotensors on coordinates found in the 1910s.

The solution to the problem of gauge dependence, briefly, is to take all
possible auxiliary structures of a given type together. Thus, for example,
the collection of all flat background metrics does not depend on the choice
of any particular background metric. Changing the flat background metric
from one specific example to another merely leads to another member of
the same collection. Looking for some finite-component expression that
is covariant under a change of the background metric, though traditional,
is a mistake. Similar remarks hold for tetrads, connections, and even
coordinate systems. Indeed the cases of background metrics, background
connections, and coordinate systems seem closely related, while the tetrad
case differs and so will not be discussed much here. Its introduction of a
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gratuitous local Lorentz group is a major disadvantage, and it is in fact
not required for spinors, as will appear below.

Some authors, especially those who emphasize how different General
Relativity is from other field theories rather than how similar it is, have
tried to make the best out of the apparent non-existence of gauge-invariant
gravitational energy localization. Thus the question has been rejected as
inappropriate, as shown by the equivalence principle [22]: “[a]nybody who
looks for a magic formula for ‘local gravitational energy-momentum’ is
looking for the right answer to the wrong question.” [22, p. 467] However,
this is an ad hoc move. Noether’s theorems do not care about the equiv-
alence principle; they simply give results in any coordinate system [23].
Rather than criticizing the results of Noether’s theorem in terms of pre-
conceived notions of invariance and then mysteriously invoking a principle
irrelevant to Noether’s theorem to reduce the puzzlement over the lack of
an invariant energy complex, it is preferable to learn from the results of
Noether’s theorem that there is a broader notion of invariance suited to
the existence of infinitely many distinct conserved energies. There is no
reason to expect the components of a pseudotensor to transform into each
other once the vast multitude of gravitational energy-momenta is recog-
nized. The importance of considering messy mathematical details rather
than relying on geometrical shortcuts and picture-thinking is increasingly
being recognized both in technical General Relativity literature [24, 25]
and the foundations of physics [26].

2 Infinite-Component Geometric Ob-

jects

At this stage it will be helpful to introduce the notion of an infinite-
component geometric object. An old standard definition of a geometric
object (slightly streamlined for physicists’ use in local field theories) by
Trautman assumes a finite number N of ordered components:

Let X be an n-dimensional differentiable manifold.. . .

Let p ∈ X be an arbitrary point of X and let {xa}, {xa′} be two
systems of local coordinates around p. A geometric object field
y is a correspondence

y : (p, {xa}) → (y1, y2, · · · yN ) ∈ RN

which associates with every point p ∈ X and every system
of local coordinates {xa} around p, a set of N real numbers,
together with a rule which determines (y1′ , · · · yN ′), given by

y : (p, {xa′

}) → (y1′ , · · · yN ′) ∈ RN

in terms of the (y1, y2, · · · yN ) and the values of [sic] p of the
functions and their partial derivatives which relate the coordi-
nate systems {xa} and {xa′}.. . . The N numbers (y1, · · ·yN) are
called the components of y at p with respect to the coordinates
{xa}. [27, pp. 84, 85]
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(In more modern-style literature, geometric objects have turned into nat-
ural bundles [21, 28].) The infinite-component entity needed for present
purposes has the same cardinality as the set of all flat metric tensors, the
set of all vector fields, or the set of all coordinate systems (with some con-
tinuity assumptions), so imposing an order is an unattractive prospect.
No ordering is required to gather the components into a set, however. One
may therefore take an infinite-component geometric object to be analo-
gous to a geometric object of the familiar sort, but with an infinity of
components collected into a set. An example of an infinite-component
geometric object is the set of all flat metric tensors. Using the universal
quantifier ∀ (“for all”), one can write this object as

{(∀ηρσ) ηρσ}. (2)

(Here one can read the Greek indices as abstract indices.) In this case
each element is a coordinate tensor and hence a geometric object in the
usual sense, but that feature is not guaranteed in general.

3 Infinite-Component Covariant Density

in Terms of All Flat Backgrounds

It might seem that achieving covariance of the gravitational energy-
momentum distribution by letting it depend on all possible flat back-
ground metrics (or other auxiliary structures) would give a baroque con-
struction without physical meaning. That, however, is wrong, primarily
because it reflects the almost universal but usually tacit assumption that
there ought to be just one gravitational energy-momentum (with 10 or per-
haps 16 components). This assumption of uniqueness is especially clear in
treatments by Goldberg [7], Faddeev [29] and Szabados [8, section 3.1.3].
Faddeev writes, “The energy of the gravitational field is not localized, i.e.,
a uniquely defined energy density does not exist.” [29] While stated with
special clarity in some cases, the assumption of uniqueness is implicit al-
most everywhere in the literature in the expectation that a pseudotensorial
expression (perhaps Einstein’s) in one coordinate system ought ideally to
be related by a transformation law to that pseudotensor in another coordi-
nate system in order to have the intended physical meaning of representing
gravitational energy-momentum density. This expectation of uniqueness
makes sense if, as in other theories, there is only one energy in General
Relativity. It has been known at least since 1958 due to Bergmann and
Komar, however, that there are infinitely many gravitational energies,
and that any vector field generates one [30, 31]. Some of them might be
zero; for example, a vector field derived by index-raising from an exact
covector has vanishing Komar energy density. (The resulting Komar en-
ergies are unsatisfactory [32], so there is reason to expect the energies to
depend on more than just a single vector field and the metric.) Some of
the energies might plausibly regarded as faces of a single energy, such as
if a Lorentz or affine transformation relates them. But the point remains
that there are a great many different gravitational energy-momenta, un-
countably infinitely many, far more than one naively expected, and any
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vector field (subject to some restrictions on differentiability, etc.) yields
one. Why can’t they all be real? (The assumption of uniqueness has been
so widespread, however, that even Komar went on to look for restrictions
on the vector field that his formalism required with the goal of achieving
or approaching uniqueness [31, 33, 34].) Thus there is no reason whatso-
ever to expect distinct conserved quantities to behave mathematically as
though they were just faces of one (finite-component) conserved quantity;
the paradox dissolves. If a transformation law relating the components
of the Einstein pseudotensor existed, then its components in one coordi-
nate system would determine its components in all coordinate systems,
thus implying that there was only one energy, a known falsehood. An
arbitrary vector field also generates a coordinate transformation, whether
of the familiar infinitesimal form (e.g., [35]) or the finite form [36–38].
An arbitrary coordinate transformation will convert one flat metric into
any other, so using all flat background metrics (or all flat connections or
all coordinate systems) plausibly gives the right number of gravitational
energy-momentum densities.

Let tµν be one’s favorite gravitational energy-momentum tensor, or re-
lated to it by index lowering and perhaps density-reweighting with the
flat metric ηµν . This expression presumably is chosen based on technical
considerations involving getting the expected values for integrated con-
served quantities in suitable contexts, relation to Noether’s theorem, and
the like. A good candidate is due to Joseph Katz, Jǐŕı Bičák and Donald
Lynden-Bell [38–40]. Or perhaps the appropriate form depends on the
boundary conditions [41, 42].1 Whatever the specific form, this gravita-
tional energy-momentum tensor tµν [gαβ , ηρσ] for a given curved metric gαβ

is some functional of the curved metric gαβ and a flat metric tensor ηρσ,
depending on their values and maybe one or two partial derivatives. (Al-
ternatively, a mere flat connection can be used.) Instead of taking partial
derivatives, one can take covariant derivatives using the flat connection
built out of ηµν , yielding a manifestly tensorial but still gauge-dependent
expression. When General Relativity is formulated with a background
metric, the action has two invariances, one under changes of coordinates
and one under gauge transformations. The latter transformations alter the
mathematical relationship between gµν and ηµν . For this reason tµν is ten-
sorial with respect to coordinate transformations, but gauge-variant under
gauge transformations [37, 38, 43–45]. For finite one-parameter transfor-
mations, one can write coordinate transformations as

gσρ → e£ξgσρ, u → e£ξu, ηµν → e£ξηµν , (3)

where u stands for any bosonic matter fields. (Spinors will be discussed in
the next section.) This transformation induces the same Lie-Taylor series
for the connection, using the commutativity of Lie and partial derivatives
and the Leibniz rule for the Lie derivative [36, 46, 47].By contrast gauge
transformations are written as

gσρ → e£ξgσρ, u→ e£ξu, ηµν → ηµν , (4)

1As a referee notes, the work of Nester and collaborators and the proposal here have in

common a tendency to find meaning in infinite ambiguity rather than to reject it.
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which leave the flat metric (and connection) alone. If one wishes, one can
combine a gauge transformation with a coordinate transformation in the
‘opposite direction’ to yield a modified gauge transformation that alters
the background metric ηµν while leaving gµν and any matter fields u alone
[48]. Clearly the set of all flat metrics {(∀ηρσ) ηρσ} is gauge-invariant: a
gauge transformation changes one flat metric into another, but the set as
a whole is unchanged.

One can now write down the infinite-component covariant expression
for the distribution of gravitational energy-momentum. It is obtained
by simply collecting all the energy-momentum tensors together for the
various background metrics:

{(∀ηρσ) tµν [gαβ, ηρσ]}. (5)

This expression does not depend on the choice of any particular flat back-
ground metric, so it is gauge-invariant. Each element is a coordinate
tensor; the whole collection is gauge-invariant although no part of it is.
Feeding the gauge-invariant set {(∀ηρσ) ηρσ} of all flat background metrics
into the stress energy tensor formula gives a gauge-invariant set of energy-
momentum tensors. A gauge transformation turns a specific element
tµν [g, η1] into another element tµν [g, η2], but the set is unchanged. Each
element of the set is covariantly conserved with respect to the torsion-free
connection induced by its own flat metric, due to Einstein’s field equa-
tions:

∂1µt
µ
ν [g, η1] = 0, ∂1µη1αβ ≡ 0,

∂2µt
µ
ν [g, η2] = 0, ∂2µη2αβ ≡ 0,

etc. The generalization to the use of a mere flat background connection
is immediate. Note that if (per impossible) there were a nonzero tensorial
and gauge-invariant expression with only 10 (or 16) components, as many
have wished, then it could represent only a single energy, rather than the
infinitely many that Bergmann and Komar taught us to expect. When
Bergmann and Anderson said that gravitational energy-momentum did
not form a geometric object [30, 35], it was assumed that the geometric
object would have finitely many components. Instead there is an infinite-
component geometric object. The expression given here has infinitely
many components in two senses: a somewhat trivial sense due to its avail-
ability in any coordinate system and the nontrivial sense due to the use
of every flat background metric (so it describes infinitely many energies).
A similar gauge-invariant collection could be obtained, for example, by
raising an index and reweighting with the relevant flat metrics to get

{(∀ηρσ)
√
−ηtµν[gαβ , ηρσ]}. (6)

Obtaining a gauge-invariant quantity by collecting together the result for
every gauge bears some resemblance to the technique of group averaging
[49], but in this case one merely collects the pieces together into a set
rather than adding them up.

Constructing a gauge-invariant set by collecting together an expression
in every gauge works even if one quantifies only over all elements satisfying
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some suitable condition, perhaps some inequalities restricting the allowed
coordinates [50, 51] or allowed bimetric gauges [47]: the gauge-invariant
collection is found by collecting the complexes for all the allowed gauges
or coordinates. One then has only a (Brandt) groupoid, not a group, of
gauge transformations [47]: the allowed transformations depend on the
configuration, so not every pair of elements can be multiplied.

The problem of treating integral conservation laws is not addressed
here. However, it seems evident that having both coordinate freedom and
gauge freedom available via the use of a background metric or connec-
tion would be helpful in permitting the coordinates to be adapted to the
integration hypersurface while retaining gauge freedom.

Given that the Hilbert action gives the wrong (Komar) conserved
quantities [32], an alternative dependent on a coordinate system or back-
ground metric or connection is required [21, 29, 52]. While any such action
is gauge-dependent, one can obtain a gauge-invariant multi-action prin-
ciple by feeding all possible background structures into the Lagrangian
density, thereby obtaining an infinite-component Lagrangian density. The
equivalence of the field equations from the many Lagrangians should ren-
der this procedure innocuous at least at the classical level.

4 Spinors as Almost Geometric Objects

Given the most common ways of treating spinor fields, it is not obvious
how gravitational energy localization in the form proposed here would
work. Introducing an orthonormal basis and treating spinors as coordi-
nate scalars is a standard move (when an orthonormal basis exists [53]).
Møller’s orthonormal tetrad formalism was motivated in part by its sup-
posed necessity to accommodate spinor fields [18]. The local Lorentz
group introduced in the tetrad formalism [19] seems quite unhelpful for
localizing gravitational energy, however, even if one accepts all the tetrads
at once. Whereas the background metrics or background connections are
closely related to the coordinate transformation freedom that is already
present and ineliminable from the manifold, the local O(3, 1) group appar-
ently bears no such relation. Thus the gauge invariant energy localization
scheme presented here seems potentially inapplicable or at best purely
formal in the presence of spinors.

Fortunately it is not the case that a tetrad is necessary for spinors,
contrary to widely held opinion. Thus the local Lorentz group is gratu-
itous not only in relation to gravitational energy localization, but also
in relation to coupling spinors to a curved metric. The tetrad formal-
ism and local Lorentz group follow only if one insists on a linear coordi-
nate transformation law for spinors as opposed to a nonlinear one [54, p.
234] [55]. It is possible to include spinor fields almost like tensors in the
Ogievetsky-Polubarinov-Bilyalov formalism [55–57]. The spinor and the
metric together form a nonlinear geometric object 〈gµν , ψ〉 [55–57] (up to
a sign for the spinor part), with mild restrictions on the admissible coor-
dinates to distinguish the time coordinate from the spatial coordinates.
(The inequalities restricting the coordinates serve the same purpose as
Bilyalov’s matrix T that interchanges two coordinates [58] to get time
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listed first.) The nonlinearity is due to the fact that the new components
of the spinor depend not only (linearly) on the old spinor components, but
also on the metric in a nonlinear fashion [55]. Nonlinear geometric objects
in classical differential geometry, which were studied briefly in the 1950s-
60s [46, 59, 60], turn out to be basically a special case of the nonlinear
group representations that particle physicists started studying in the 1960s
[61, 62]. 〈gµν , ψ〉 is a nonlinear representation (up to a sign for the spinor)
of the general coordinate transformation group, or a sufficiently large sub-
groupoid thereof, which is linear for the Poincaré subgroup, and indeed for
the 15-parameter conformal group, the stability group. Roughly and lo-
cally speaking, the Ogievetsky-Polubarinov-Bilyalov formalism resembles
the tetrad-spinor formalism with the tetrad in the symmetric gauge. How-
ever, the symmetric square root of the metric makes sense on any manifold
with a metric (with mild coordinate restrictions), unlike an orthonormal
basis. Thus spinors, as treated in ([55–57]), require some technical modifi-
cations, but do not require treatment fundamentally different from tensors
and more general geometric objects in classical differential geometry. In
particular, Lie and covariant differentiation are well defined for 〈gµν , ψ〉
[56, 57], though not for the spinor separately, just as one expects for non-
linear geometric objects [46, 59, 60]; such invariant derivatives need only
the coordinate transformation behavior near the identity. This excursus
on spinors shows that the gravitational energy localization proposed here
also applies to spinors, which is not at all obvious for some well known
spinor formalisms.

5 Infinite-Component Covariant Energy

Density in Terms of All Coordinates and

One Metric

The use of a background metric or connection, or rather, of the whole col-
lection thereof, is actually not essential to the technique of getting a gauge-
invariant infinite component localization of gravitational energies. The use
of a background metric or connection has the virtue that it manifestly has
every sort of invariance that one would expect—both tensoriality under
coordinate transformations and covariance under gauge transformations.
It is initially somewhat less clear what one should expect in a formalism
with no background metric. Fortunately one can gauge-fix the formalism
above with a flat background metric or connection to find out. I will
ignore global issues by pretending that all coordinate charts are defined
everywhere. One ought to globalize the results using bundles, but the ba-
sic idea will be clear without such techniques. Globalizing the results for
topologically nontrivial space-times might be nontrivial [63, 64], but recal-
citrant difficulties might be features of gravitational energy rather than
limitations of the formalism at hand. (The use of a background metric or
connection provides a more globally robust formalism [21].)

One convenient gauge fixing takes the bimetric formalism above and
dispenses with the flat background metric tensors by choosing (for exam-
ple) Cartesian coordinates for each flat metric separately. Thus each flat
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metric tensor ηµν in the set {(∀ηρσ) ηρσ} is downgraded to a matrix

ηMN = diag(−1, 1, 1, 1) (7)

and its resulting connection is downgraded to a three-index entity with
only vanishing components, which can be ignored. Now the former coordi-
nate freedom (3) is destroyed, but the former gauge freedom (4) is formally
converted into coordinate freedom (which has no effect on the numerical
matrix ηMN ). The new coordinate freedom is still gauge freedom in the
sense of Dirac-Bergmann constrained dynamics [65]). In a chart one has
one’s favorite pseudotensor tµν [gµν , ηMN ], where the expression gµν now
means the coordinate components of the curved metric. Using Einstein’s
field equations, the pseudotensor tµν [gµν , ηMN ] (or tµν [gµν ]) is conserved in
the sense of having vanishing coordinate divergence

∂

∂xµ
tµν [gµν , ηMN ] = 0 (8)

in every coordinate system. A vanishing coordinate divergence is just
what one needs to obtain an integral conservation law [35]. The gauge-
invariant infinite-component gravitational energy-momentum distribution
is just a certain pseudotensor in every coordinate system U :

{∀U tµν [gµν , ηMN ]}. (9)

The curved metric thus appears in all possible coordinate systems. This
expression for the localization of gravitational energies has infinitely many
components in a nontrivial sense: each coordinate system picks out a dis-
tinct conserved energy. The distinctness depends on the fact that the
expression tµν is not a tensor (or other geometric object [30, 35]). The
components of a tensor or any geometric object with respect to all coor-
dinate systems give infinitely many faces of the same entity, but here we
have infinitely many distinct entities, each appearing in its own adapted
coordinate system.

If one previously used a flat background connection only, rather than
a flat background metric, then the auxiliary matrix ηMN is not present.
Some pseudotensors depend on the matrix ηMN , such as Papapetrou’s
[66, 67], while others do not, such as Einstein’s. Some time ago Goldberg
found a family of energy-momentum pseudotensors and a family of an-
gular momentum complexes, but the preferred versions lacked the simple
relationship for which one might have hoped [68]. If one admits a back-
ground metric as a reference configuration, then many more options are
available and this problem disappears [69].

One might think that, in a mature subject such as differential geome-
try, every mathematical entity worth using would have a name and that
its name would reflect its usefulness. As it turns out, there is a useful
mathematical entity that does not have a name based on the reason that
it is useful, and pseudotensors are an example of it. In older literature on
geometric objects, one encounters at a preliminary stage the concept of
“object,” used as a technical term (for example, [36, 70]). Thus Nijenhuis
writes [36, p. 28]:
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[t]he definition of the geometric object goes via the object:
an object at a point P of Xn is a correspondence between
all coordinate systems defined for P and sets of N numbers,
such that with each coordinate system there is associated one
such set of numbers, called the components of the object with
respect to the coordinate system. An object field in a region
R of Xn is a correspondence between all coordinate systems
defined in subregions of R, and sets of N functions, such that
with each coordinate system there is associated one such set
of functions, defined and analytic in the region in which the
coordinate system is defined. The values taken by the functions
at a point are the components of the object at that point with
respect to the coordinate system to which the functions belong.

An object (field) counts as a geometric object (field) if and only if a there is
a transformation law relating the components in the various (overlapping)
coordinate systems. It is evident that the collection of components of
one’s favorite pseudotensor in every coordinate system forms an object in
Nijenhuis’s sense, but not a geometric object.

The usual attachment to geometric objects (including tensors) is due in
part to the unity imposed by the transformation law. Without a transfor-
mation law, the components of an object in different coordinate systems
might have nothing to do with each other, apart from the stipulation
that they are components of the object in question. The different sets of
components pick out distinct entities, rather than representing the same
entity relative to different conventional choices of coordinates. Not all
geometric objects are physically interesting, however. Some of them rep-
resent things in physical theories, while others are merely mathematical
collections of numbers bearing an interesting formal relation of equiva-
lence. It is clear, then, that having a transformation law in itself is not
what makes a geometric object of interest. What the transformation law
does is ensure that the seemingly disparate components of an object are
in fact equivalent, so if one set of components has physical meaning, then
the other sets of components have that same physical meaning. The com-
ponents of an object can have a physical meaning or not, and they can
be interrelated by a transformation law (yielding a geometric object) or
not. It is important to realize that these questions are independent, so
that one could potentially have a physically meaningful geometric ob-
ject, a physically meaningless geometric object, a physically meaningless
non-geometric object, and, most importantly for present purposes, even
a physically meaningful non-geometric object. Pseudotensors are an ex-
ample of the latter. If the idea of a physically meaningful non-geometric
object is difficult, a formal move below will show it to be numerically
equal to an infinite-component geometric object built by taking all the
natural coordinate bases as auxiliary objects.

It will be useful to compare and contrast the set of pseudotensor com-
ponents with respect to every coordinate system with the set of Einstein
tensor components with respect to every coordinate system and the set of
metric tensor components with respect to every coordinate system. For
a geometric object, one has a set of components at every point (where
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defined) in every chart, and also a transformation rule to infer one set
of components from another, as appeared above [27, 36]. Thus the com-
ponents of a geometric object form a natural kind mathematically: they
constitute faces of one and the same entity by virtue of being interrelated
by a coordinate transformation law.

For the Einstein tensor Gµν or the metric tensor gµν , one has a further
sort of unity in terms of physical meaning. For the Einstein tensor, the
physical meaning is displayed in a recipe for constructing the components
of the Einstein tensor in a coordinate system from the components of the
metric and its partial derivatives in that same coordinate system. Because
of the tensor transformation law, the various sets of components of gµν and
of Gµν are physically and mathematically equivalent; they are just faces
of the same entity, the metric tensor or the Einstein tensor, respectively.
The components of the Einstein tensor form a natural kind in two senses,
mathematically by virtue of the tensor transformation law and physically
by virtue of being constructed from the metric by the same recipe in every
coordinate system. Likewise the components of the metric tensor form a
natural kind not only mathematically by the tensor transformation law,
but also physically by virtue of being related to measurements in the same
way.

A pseudotensor tµν shares with the Einstein tensor Gµν the physically
interesting property of having a single recipe for inferring its components
in a coordinate system from the metric components and their partial
derivatives in that coordinate system. Thus the components do form a
natural kind in that physical sense. However, there is no transformation
rule that allows one to infer the components with respect to one coordi-
nate system from the components in another, so there is no mathematical
unity. While this is generally taken to be a serious problem, it is in fact
an essential virtue for representing infinitely many distinct energies. The
components of a pseudotensor with respect to different coordinate sys-
tems, being components of an object but not a geometric object, are just
different entities, just as is required to describe the localization of different
energy-momenta. While the possibility of writing down a pseudotensor
in every coordinate system is occasionally discussed [10, 38], the fact that
the resulting collection is coordinate-invariant in a non-standard way and
hence appropriate for representing the infinity of gravitational energies
seems never to have been noticed explicitly.

It is sometimes held that modern differential geometry is or ought to be
“coordinate-free,” and while one might need to “introduce” a coordinate
system on certain occasions, such occasions ought to evoke regret. The
excellent text by Robert Wald [71] is representative. Thus Wald describes
any “additional structure on spacetime, such as a preferred coordinate
system or a decomposition of the spacetime metric into a ‘background
part’ and a ‘dynamical part’,” which one would need to get a “mean-
ingful expression quadratic in first derivatives of the metric” (as some
famous pseudotensors are), as “completely counter to the spirit of gen-
eral relativity, which views the spacetime metric as fully describing all
aspects of spacetime structure and the gravitational field.” [71, p. 286]
In a moment of practical application, Wald manages to employ a pseu-
dotensor anyway (pp. 84, 85), though presumably without relish. It is
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worth pointing out, however, that if there is any such thing as coordinate-
free differential geometry, it isn’t displayed in the bulk of Wald’s book
or most other literature where one might have thought to find it. One
ought to recall that all possible coordinate systems are already introduced
in the definition of a manifold [71, p. 12]. Because the coordinate systems
are already introduced in the greatest imaginable profusion at the start,
there can be no objection to using them in the localization of gravitational
energy-momentum. The only possible objection (apart from possible dif-
ficulties in globalizing the results with bundle technology [63, 64]) can
be to preferring some over others. The tacit assumption of the unique-
ness of gravitational energy-momentum appears in the singular nouns:
“a preferred coordinate system or a decomposition” [71, p. 286]. Ob-
viously the infinite-component entity constructed from a pseudotensorial
expression in all coordinate systems avoids preferring any particular coor-
dinate system or class thereof over others. Apparently there just isn’t any
“coordinate-free” way to express gravitational energy-momentum local-
ization without auxiliary objects besides the metric. Coordinate systems
are one option, and they are already present anyway. The natural con-
clusion is that certain aspirations to mathematical elegance and economy
are chimerical, but relaxing excessively strict standards lets a solution
appear. If one is committed to avoiding the use of any coordinate basis
components (and hence avoiding using all of them) in favor of a formally
“coordinate (basis) free” presentation, one can take all possible bases of
commuting tangent vector fields as the relevant auxiliary structures. A
basis of commuting tangent vector fields is just the natural basis for a
chart [71, p. 27] [72, p. 471] by another name, so all possible bases
of commuting tangent vectors are just the natural bases for all possible
charts.

6 Energy-Momentum Localization as

Infinite-Component Geometric Object in

One Metric

If one does not wish to express the metric gµν in terms of every coordinate
system, but rather to express it in just one coordinate system, then that
goal can be achieved in a certain sense. The bimetric formalism gives an
easy path to the result. Whereas above the coordinates were fixed so that
the flat metrics all took the form diag(−1, 1, 1, 1) while the components of
the curved metric took various forms, one can instead fix the coordinates
so that the curved metric takes a single form while the flat metrics take

various forms. These various forms will all look like ∂xM

∂yα ηMN
∂xN

∂yβ for all

possible coordinate transformations ∂xM

∂yα , with the analogous result for a
flat background connection. The resulting infinite-component collection
singles out some specific coordinate system as primary for expressing the
metric gµν , while also making reference to all other coordinate systems.
The result is the set of components of an infinite-component geometric
object in the chosen coordinate system.
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7 Objections to Pseudotensors Wrongly

Assume Uniqueness of Energy

Having developed the covariant construction of localized energy-momenta,
one can now easily resolve some standard objections to pseudotensors,
which already appeared in Pauli’s review [13] and have reappeared in
countless places since then. For example, it is noted with disappoint-
ment that a given pseudotensor (at least one without second derivatives)
can be made to vanish at any point or along any worldline by a suit-
able choice of coordinates. With the tacit assumption that gravitational
energy-momentum is unique, one then concludes that there is no real fact
of the matter pertaining to the density of gravitational energy-momentum
at that point or along that worldline. But the point or worldline was
arbitrary, so there is no fact of the matter about gravitational energy-
momentum localization in general. (Sometimes it is held that the situa-
tion improves somewhat when symmetries yield Killing vectors, as in the
case of spherical symmetry [22, p. 603].) It is now clear how this objection
goes astray: the components of a given pseudotensor with respect to dif-
ferent coordinate systems in fact pick out different energies, some but not
all of which vanish at the arbitrarily chosen point or along the arbitrarily
chosen worldline. The fact that some energies vanish there but others
don’t is a bit unfamiliar, but it is in no way paradoxical on reflection.

Given long disappointment with gravitational energy localization,
many authors have turned to seeking quasilocalization, in which the en-
ergy in some volume is specified, rather than the energy density at a point.
Quasilocal energy is generally expected to be unique. The injustice of that
expectation, however, follows from the multitude of local energy densities
pointed out by Bergmann [30]. Pseudotensors are related to quasilocal
methods [41, 42]. It is sometimes expected that a good quasilocal mass
(energy) should vanish in flat spacetime, though that criterion does not
hold for every proposed definition [73]. Likewise positive definiteness is
sometimes expected, though not always achieved [8, 73]. Local gravita-
tional energy-momentum expressions do not reliably vanish in Minkowski
space-time for all gauges either; instead they vanish in some coordinate
systems (or some gauges [38]) but not others. If this result seems prob-
lematic, the resolution, again, is to notice that different coordinate sys-
tems/gauges pick out different energies. It is a bit surprising that some
of them fail to vanish even in Minkowski space-time, but it is not absurd.
Minkowski space-time is perhaps unusual in that there exists an energy-
momentum density that vanishes everywhere. In Minkowski spacetime
some energy densities will not vanish, but will integrate to vanishing total
mass-energy; if the curved metric differs from the flat metric (or matrix
diag(−1, 1, 1, 1) solely due to some localized gauge transformation, then
such a situation should arise [37]. If the total energy can vanish for an
energy density that does not vanish everywhere, then positivity must also
fail. It appears, then, that both vanishing for Minkowski spacetime and
positive definiteness are excessively strong conditions to impose on all
of the infinitely many energies in a gauge-invariant localization, whether
local or quasilocal. The existence of one such energy (out of the infinite-
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component complex) with such properties is not ruled out, of course. If
one could find some way to restrict the auxiliary structures to take no-
tice of any Killing vectors (or commuting ones at least) of the metric gµν

and adapt the coordinates accordingly, then a gauge-covariant energy-
momentum expression that vanishes in flat spacetime might perhaps be
devised; it would no longer be necessary to admit all coordinate systems in
order to achieve gauge invariance. The proposal that energy localization
makes sense in General Relativity just in case there is spherical symmetry
[22, p. 603] is a variant, albeit too restrictive, of this idea.

Concerning Bauer’s objection that flat spacetime in unimodular spher-
ical coordinates has nonzero Einstein pseudotensor energy density [12, 13],
the fact that the same pseudotensorial expression in different coordinate
systems picks out different energies removes the paradox. The fact that
the total energy in these spherical coordinates diverges [13, p. 176] is
not terribly surprising, given that spherical coordinates have marvelously
strong coordinate effects. Due to the unimodular condition

√−g = 1, the
components of the metric tensor gµν tend to vanish or diverge at the origin
and also at infinity; the inverse metric and their derivatives inherit com-
parable bad behavior. (The unimodular condition is not too important
apart from the details of this sort of misbehavior.) Furthermore, spherical
coordinates are not well-defined everywhere that a corresponding set of
Cartesian coordinates is defined, such as at the origin, so it is not clearly
meaningful (especially without introducing bundle techniques) to calcu-
late the energy of all space in spherical coordinates. The problem here
seems to lie more with a poorly formulated question than with an absurd
answer.

Another traditional objection, this one due to Schrödinger, calls
attention to the vanishing of an Einstein pseudotensor (outside the
Schwarzschild radius) for the Schwarzschild space-time in nearly Carte-
sian coordinates with the unimodular condition

√−g = 1 [11, 13]. Once
again the existence of many distinct energy densities is helpful to rec-
ognize. Possibly one would expect the total mass-energy to come out
“right” in this context, but various localizations are known to exist, in
some cases with the energy all in some small region, in others not [38, 74].
If Schrödinger had shown that all the gravitational energies vanished out-
side the Schwarzschild radius, such a result might be worrisome, but no
such thing was shown. That his particular energy vanishes is an interesting
feature of gravitational energy as defined by the Einstein pseudotensor,
but it is no real objection. In short, traditional objections to pseudoten-
sors are unpersuasive once faulty assumptions, especially the assumption
of uniqueness, are cleared away.

In the last decade or two there has been in some circles a renewed inter-
est in pseudotensors as yielding physically meaningful energy-momentum
localizations (e.g., [75, 76]). While the calculation of energy-momentum
distributions using a finite collection of pseudotensors for a finite collection
of metrics in a finite collection of coordinate systems might give suggestive
results, no answer to the gauge dependence problem could be achieved.
Gauge invariance requires using all admissible coordinate systems.
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8 Comparison to Komar Energies and

Schutz-Sorkin Noether Operator

It is a somewhat familiar point that there are infinitely many gravitational
energies [21, 30, 31, 35, 77], though this fact has not had the influence that
it ought to have, even on some of these authors. As noted above, some of
the energies might vanish, while others might in some contexts be regarded
as faces of the same entity. Every vector field yields a Komar ‘energy’ flux
(using the term broadly enough to ignore whether the vector is timelike),
so one has a gravitational energy-momentum operator that is differential,
not algebraic as with simpler field theories, in its operation on the vector
field. If the Komar expressions were satisfactory, then a family of tensorial
energies based on a family of vector fields would be a suitably covariant
result depending in a fairly minimal way on auxiliary structures. However,
it is known that the Komar expression gives the wrong values for global
conserved quantities in key cases, such as the “factor of 2” mismatch
between mass and angular momentum for the Kerr solution [8, 21, 32, 78,
79]. One of the most basic tasks of an energy-momentum localization
is surely the derivation of correct global conserved quantities. Thus the
Komar expression cannot be correct. Given the uniqueness of the Komar
result [80, 81], the right answer must be non-covariant or, alternatively,
depend on additional auxiliary structures. An obvious choice is to use the
natural basis from a coordinate system. A coordinate system xµ yields
a natural cobasis of exact covectors dxµ and its reciprocal natural basis
~∂

∂xµ of commuting tangent vectors. One can feed a natural basis into the
(typically non-tensorial) Noether operator [64, 82–84] to get components
of a pseudotensor. Thus the components of the Noether operator relative
to all natural bases yield the same sort of infinite-component covariant
object as was obtained above.

9 Logical Equivalence of All Conserva-

tion Laws to Einstein’s Equations

In a typical field theory, one achieves energy-momentum conservation by
noting that every field present in the equations of motion either has Euler-
Lagrange equations or has generalized Killing vector fields in the sense of
vanishing Lie derivative [85]. (The generic notion of Lie differentiation
for geometric objects is known, but not very widely [59, 86, 87].) In Gen-
eral Relativity as typically formulated (without a background metric or
connection), every field present has Euler-Lagrange equations; there are
no non-variational fields (to borrow a useful term [88]). One might then
expect that the energy-momentum of matter and gravity together to be
conserved using both the gravitational field equations and the matter field
equations. A distinctive feature of General Relativity is that, because of
gravitational gauge invariance (see, e.g., [48]), conservation follows using
the gravitational field equations alone, without using the matter equations
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[35, 71]. One can take the gravitational stress-energy tµν
√−g to be

tµν
√−g =def −Gµ

ν

√−g −F [µα]
ν ,α , (10)

where F [µα]
ν ,α is an arbitrary expression apart from having identically van-

ishing divergence and being built from the metric components and their
derivatives and perhaps some constant matrices such as ηMN . (Newton’s
constant has been suppressed for convenience.) Combining the gravi-
tational and material stress-energies gives the total energy-momentum
complex T

µ
ν

√−g =def T
µ
ν

√−g+ tµν
√−g. This total stress-energy complex

satisfies a conservation law with a coordinate divergence:

∂

∂xµ
(Tµ

ν

√−g) =
∂

∂xµ
(Tµ

ν

√−g + tµν
√−g) =

∂

∂xµ
(Tµ

ν

√−g − Gµ
ν

√−g −F [µα]
ν ,α )

=
∂

∂xµ
(Tµ

ν

√−g −Gµ
ν

√−g) − F [µα]
ν ,αµ =

∂

∂xµ
(Tµ

ν

√−g −Gµ
ν

√−g) = 0, (11)

where Einstein’s field equations have been used in the last line. One now
sees that the total energy-momentum density vanishes (when Einstein’s
equations hold) except for a curl, for which reason one can calculate con-
served quantities with a surface integral. Einstein’s equations entail a
pseudotensorial conservation law in every coordinate system. As has been
observed above, the collection of pseudotensorial laws of a given form in
all coordinate systems is invariant in an appropriate, although unfamiliar,
sense.

The collection of all of the pseudotensorial conservation laws is in fact
equivalent to Einstein’s equations [35], so the reverse entailment also holds,
as will now appear. In any coordinate system, from the conservation law
∂/∂xµ(Tµ

ν

√−g+tµν
√−g) = 0 (with tµν

√−g defined as above), one obtains

Tµ
ν

√−g −Gµ
ν

√−g = F [µα]
ν ,α (12)

for some F [µα]
ν ,α (which might, for all that has appeared so far, vary from

one coordinate system to another, because of the arbitrary curl that one
can include in F [µα]

ν ,α , like a constant of integration). But the left side is
a tensor density, so the right side must be one also. There is no nonzero
tensor density that is built out of the allowed ingredients and that has the
right number of indices, so the right side must be zero. Thus the totality of
the pseudotensorial conservation laws indeed entails Einstein’s equations
Tµ

ν

√−g−Gµ
ν

√−g = 0. The fact that the conservation laws entail the field
equations sheds light on those approaches to General Relativity that aim
to derive the field equations using the conservation laws as premises or
lemmas [1, 48, 89].

Pseudotensor conservation laws routinely have been accused of being
physically meaningless on account of vicious dependence on a choice of
coordinates. While some authors emphasize the physical reality of gravi-
tational radiation that can heat or move objects, notwithstanding math-
ematical difficulties [90, pp. xxvi, 219] [91], or choose to accentuate the
positive features of pseudotensors [92], others emphasize mathematical pu-
rity and belittle the conservation laws [22, 93]. It is now clear that there
is no vicious coordinate dependence. Even apart from recognizing that
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fact, it is highly doubtful that anything physically meaningless is logically
equivalent to Einstein’s equations. This logical equivalence is another way
of recognizing that the set of all pseudotensor conservation laws is indeed
gauge invariant and hence physically meaningful. This section could be
repeated with insignificant changes to show the logical equivalence of the
collection of all bimetric conservation laws (each of which is gauge depen-
dent) to Einstein’s equations, thus showing the physical significance and
gauge invariance of the whole collection. One might stop short of say-
ing that General Relativity just is local energy-momentum conservation,
but it is difficult to imagine a greater disagreement than that between
the usual claim that General Relativity does not support a law of local
energy-momentum conservation and the mathematical fact that Einstein’s
equations are logically equivalent to a gauge-invariant infinite-component
local energy-momentum conservation law. From this point of view it is ob-
vious that there is a connection between the first law of thermodynamics
and Einstein’s equations.

10 Angular Momentum Localization

A suitably covariant localization of gravitational energy-momentum was
obtained above by collecting together the pseudotensors of a given type
(such as that of Einstein or of Landau and Lifshitz or one of Goldberg’s
[68]) in every coordinate system. The resulting pseudotensors can de-
pend on the auxiliary matrix diag(−1, 1, 1, 1), though some choices do
not. Those that do not [68] tend to behave worse regarding angular mo-
mentum than those that do [69]. For angular momentum, one introduces
the coordinates xµ and a symmetric choice of total energy-momentum
complex

√−gTµν so that

M
µνα =def

√−gTµνxα −√−gTµαxν (13)

satisfies the conservation law

∂

∂xµ
M

µνα = 0 (14)

because of ∂
∂xµ (

√−gTµν) = 0. By parity of reasoning with the above, the
collection of these angular momentum densities in every coordinate sys-
tem is an appropriate covariant infinite-component object. Thus angular-
momentum achieves a gauge-invariant localization in the same way as
energy-momentum. If flat background metrics are used instead of coor-
dinate systems, then position 4-vectors take the place of the coordinates.
Of course any non-uniqueness of the gravitational energy-momentum
(pseudo-)tensor due to relocalization by adding a curl will have conse-
quences for angular momentum localization.

11 Conceptual Benefits of Energy Local-

ization and Conservation

One reason for seeking a conservation law for gravitational energy-
momentum is to characterize the properties of various gravitational fields
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or space-times. Komar wrote some time ago of part of his own work that

all of the above attempts to generalize energy and momentum
to arbitrarily curved manifolds are formal in character, and the
“correct” choice, if indeed there is one, must be determined by
the use to which we wish to put the resulting conservation laws.
One is not particular interested in a formal definition of energy
if it teaches us nothing about the properties of the spaces under
consideration. [33, p. 1413]

If one is aware of the uses to which the supposed lack of an energy conser-
vation law in General Relativity has been put by now, however, then the
benefits of even a formal local energy conservation law become evident.
The received view that there is no gauge-invariant and hence physically
meaningful local conservation law for energy-momentum in General Rela-
tivity tends to inspire (though not strictly entail) a variety of unwarranted
conclusions. Some have criticized or rejected General Relativity (or Big
Bang cosmology in particular) as having mystical tendencies on account
of its supposed lack of conservation laws, while others have appealed to
General Relativity for certain purposes for the same reason. It has been
claimed, to be specific, that the lack of a local conservation implies:

1. that General Relativity is false (by A. A. Logunov and collaborators
[94, 95], addressed in [29, 43, 44, 96]);

2. that Big Bang cosmology violates energy conservation and so is false
(by Robert Gentry, addressed in [97, 98]);

3. that Big Bang cosmology is plausibly true and yet violates energy
conservation, which is so fundamental as to transcend physics into
metaphysics (by Mario Bunge [99]); the tension seems not to be
noticed;

4. that Big Bang cosmology violates energy conservation and so is a
useful heat sink for anomalous terrestrial heat production (by D.
Russell Humphreys, addressed in [100]);

5. that General Relativity makes it easier than do other field theories
for immaterial souls to affect bodies (by Robin Collins [101]);

6. and that universes with zero total energy can come into being with-
out violating energy conservation (by Edward Tryon [102] and Wal-
ter Thirring [103]).

Concerning the last claim, once the gauge-invariant local conservation of
energies is recognized, it is clear that only universes for which all the
uncountably many energies vanish could pop into existence without vio-
lating energy conservation, a condition that is difficult or impossible to
satisfy. While these six conclusions are seen not to follow when the effort
to produce a sufficiently detailed and subtle analysis is made, unwarranted
conclusions continue to arise because the knock-out blow to forestall them,
namely, a satisfactory local conservation law including gravitational en-
ergy, is incompatible with the received view of that subject. Larry Laudan
has argued that scientific progress can occur not only by solving empiri-
cal problems, but also by solving conceptual problems [104]. Identifying
gauge-invariant and hence physically meaningful local conservation laws
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therefore contributes to scientific rationality by resolving a conceptual
problem in General Relativity.

12 Conclusion

It is ironic that though Einstein used energy conservation as a criterion
for finding his field equations, it was widely concluded that the result-
ing theory lacked any local conservation law for energy-momentum. That
irony is resolved by recognition of an infinite-component gauge-invariant
local energy-momentum conservation law, which is shown to follow from
Einstein’s equations. Local energy-momentum conservation, as Anderson
noted, is even logically equivalent to Einstein’s equations. The principle
that the real is the invariant, characteristic of 20th century mathematical
physics [105], has appeared to be an obstacle to the reality of gravitational
energy localizations until now. The principle does not say with respect
to what invariance is desired or how it should manifest itself, but gener-
ally accepted background assumptions provided an answer, albeit a flawed
one. Pseudotensors are not invariant in the sense traditionally expected,
so the corresponding local conservation laws have been widely viewed as
mere mathematical artifices. Now that the appropriate sense of invari-
ance has been noticed and the connection to the existence of infinitely
many gravitational energies has been recognized, there is no difficulty in
regarding the whole infinite family of gravitational energy localizations
(as picked out by some specific pseudotensorial functional form or the
like) as gauge-invariant and hence real. Thus the conceptual problem of
gauge-dependence of gravitational energy-momentum is solved.

The question of gauge-dependence of gravitational energy-momentum
localization is largely orthogonal to the question of getting the ‘right an-
swers’ for the conserved quantities (except for disqualifying the Komar
expression), a matter of the technical details of the specific choice of pseu-
dotensor. For that project, one needs to choose an appropriate functional
dependence on the metric and auxiliary structures. One would expect
gravitational energy-momentum to have (besides the now-resolved grav-
itational gauge dependence problem) all the usual non-uniqueness (even
on-shell in some cases) of symmetrizing, improving [106], relocalizing by
curls in general [35, 107], making field redefinitions [108], and the like,
presented by other field theories. There might be ways to tame that
non-uniqueness either for every solution in the same fashion [39] or on a
case-by-case basis [41, 42]. A satisfactory treatment of gravitational en-
ergy ought to be achievable by taking the best functional form on technical
grounds and rendering it covariant it in the way outlined here.
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