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Abstract

In addition to purely practical values, cognitive values also figure into scientific
deliberations. One way of introducing cognitive values is to consider the cognitive
value that accrues to the act of accepting a hypothesis. Although such values
may have a role to play, such a role does not exhaust the significance of cognitive
values in scientific decision-making. This paper makes a plea for consideration
of epistemic value—that is, value attaching to a state of belief—and defends the
notion of cognitive epistemic value against some criticisms that have been raised.
A stability requirement for epistemic value functions is argued for on the basis
of considerations of diachronic coherence. This stability requirement is sufficient
to obtain the Value of Learning Theorem, which says that the expected utility of
cost-free learning cannot be negative. This holds also for cognitive epistemic values,
provided that the stability requirement is met.

1 Varieties of Theory Choice

Discussions of theory choice in science frequently cite theoretical, or cognitive virtues as
relevant to theory assessment. Kuhn’s well-known list, which is not intended to be ex-
haustive, includes accuracy, consistency, scope, simplicity, and fruitfulness (Kuhn, 1977).
Explanatory capacity is also commonly cited as a theoretical virtue.

Virtues such as these are desirable features; we would like our theories to have them.
Having said that, the question arises as to what, if any, legitimate roles these virtues may
play in scientific deliberations. The phrase “theory choice,” which often occurs in such
discussions, blurs the commonplace fact that there are a number of distinct choices that
we can make with regards to theories. Compare, for instance, choosing which theory one
regards as most credible (or most likely to be true, or approximately true), with the choice
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of which theory to devote research effort to. These are distinct choices, with different
considerations applying. Credibility of a theory is not the only consideration relevant
to the question of choice of research programme; one might even decide to devote one’s
efforts to what one regards as a ‘long shot,’ if the possible benefits, cognitive or tangible,
that would accrue should the work pan out are high enough. Discussions of theory choice
vary in explicitness about what sorts of decisions are involved, and, as a consequence,
lists of criteria for theory choice sometimes include criteria relevant to different sorts
of choice. This definitely seems to be the case for Kuhn’s list.1 This can result in it
not being clear whether a given author is making a claim that cognitive values play a
legitimate role in assessing the credibility of a theory—a claim that smacks of wishful
thinking, and would be regarded as controversial—or the much less controversial claim
that they may play a legitimate role in other decisions, such as the decision of what line
of research to pursue.

One decision a scientist may make is the decision whether to accept a hypothesis. This,
it seems, is a decision that ineliminably involves values, as was famously argued long ago
by Rudner (1953). One way to make explicit the role of values in acceptance-decisions is
to model the decision as one of maximizing expected utility. In addition to considerations
of practical gain or cost, cognitive utility may be weighed in the balance. The idea is
that knowledge can be regarded as an end in itself, and that acceptance of a true theory
has value that extends beyond instrumental value. This opens up the possibility that
acceptance of a theory that has some virtue—say, one that affords understanding—might
be more valuable than acceptance of one that lacks that virtue. That is, if h1 is a theory
that, if true, affords greater understanding than h2 would, if true, then one might regard
acceptance of h1, if it is true, as having higher cognitive utility than acceptance of h2 if
it is true. This, in turn, will be relevant to choice of research programme; it may make
sense to investigate theories of high explanatory value, not because one regards them as
inherently more credible, but because of the greater cognitive value that would accrue
should the investigation lead to acceptance of the theory.

Denote by Ah the act of accepting a hypothesis h, and let u(X|h) be the utility of
doing X if h is true, and u(X| ∼ h), the utility of doing X if h is false. Then the expected
utility of accepting h, as judged by an agent whose utilities are represented by u and
whose credences are represented by a credence-function cr, is

U(Ah) = cr(h) u(Ah|h) + cr(∼ h) u(Ah| ∼ h).

1This is also the case for Longino’s proposed supplementation to that list (Longino,
1995). Longino is explicit that her list combines criteria relevant to at least three distinct
choices: theory construction, theory acceptance or rejection, and (borrowing a term from
Alan Franklin), theory pursuit, the choice of which theories or theoretical frameworks to
work on.
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The expected utility of not accepting h is

U(∼ Ah) = cr(h) u(∼ Ah|h) + cr(∼ h) u(∼ Ah| ∼ h).

An agent who maximizes utility will accept h if U(Ah) > U(∼ Ah).
An acceptance-based approach to cognitive utility has been developed by a number

of authors, notably Hempel (1981), Levi (1967), and Maher (1993). There is much to be
said for such an approach. It makes room for the relevance of cognitive values to questions
of theory pursuit. Note that, on this approach, the role of values in acceptance-decision
does not lie in the agent’s appraisal of the credibility of the theory, which may be based
on the evidence, without any taint of wishful thinking. Cognitive values function as
values, not as surrogates for evidence.

2 Should Acceptance be Rejected?

There is a difficulty, however, with understanding, within a framework that represents
belief states as probability assignments, what role there is for a notion of acceptance
or rejection of hypotheses to play. This was the thrust of Jeffrey’s response to Rudner
(Jeffrey, 1956). He agrees with Rudner that, if it is the job of the scientist to accept or
reject hypotheses, then the scientist qua scientist must make value judgments. He then
argues that the sensitivity of criteria for acceptance or rejection to what is at stake makes
an epistemic model that consists of modelling the epistemic state of a scientist merely
in terms of propositions accepted or rejected too crude; one ought instead to treat of
reasonable degrees of belief. On Jeffrey’s approach, acceptance falls by the wayside.

If we accept acceptance, should it be modelled as a change in belief state, say, a shift
to a belief state that assigns credence 1 to the accepted propositions? If so, then this is
a shift, in the absence of new evidence, away from the credence arrived at by considering
all evidence. This is, as Earman puts it in his discussion of the issue, “nothing short
of madness” (Earman, 1992, 194). If, however, acceptance is not a belief shift, this
limits the role it will play in the practice of science. Consider two agents, Peter and
Richard. Peter labels some hypotheses as accepted, whereas Richard employs no notion
of acceptance. They have the same credences and the same utilities, except for any purely
cognitive utility that Peter attaches to the act of acceptance. Since Peter and Richard
have the same credences and utilities, they make the same decisions, insofar as practical
utlities are concerned. Any impact that acceptance will have on decisions will stem from
consideration of cognitive utility associated with the act of acceptance itself. But if a
belief state is represented by a credence-function, then it is hard to see how Peter might
be in an epistemically more valuable state than Richard. Acceptance appears to be a
wheel turning idly.
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At the level of abstraction on which the discussion between Jeffrey and Rudner took
place, in which agents are idealized and cognitive limitations of agents are ignored, Jef-
frey is entirely correct. There is, however, a role, albeit a limited one, for a notion of
acceptance in a probabilistic account, when the picture is refined so as to take cogni-
tive limitations into account. It is too much to ask of an agent of limited cognitive
resources to carry around a full probability assignment in her head, for any really rich
set of propositions, and such a thing could not be readily communicated. There will be
cases, however, in which, though an agent’s credence in a proposition is less than unity,
this difference will have negligible effect on decisions, and the agent, in any foreseeable
situation, will act as if she accepts the proposition as definitely true. In such a case, it
makes sense to say that she accepts the proposition, and to report her attitude as one of
acceptance. This proposal is similar in spirit to that of Sargent (2009), who, developing
a suggestion of Frankish (2004), introduces a notion of acceptance to relieve an agent of
finite cognitive resources from the burden of doing expected utility calculations in cases
when the cost of doing the calculation would exceed the benefit.

On any such approach to introducing acceptance into a context in which belief-states
are represented by probability functions, acceptance will play a fairly limited role, and
will be incapable of bearing the full burden that acceptance-based approaches to cognitive
utility require of it. Instead of looking only to cognitive utility that attaches to the act
of acceptance of a hypothesis, we should consider also epistemic utlities—utilities that
attach to a state of belief. This is an approach that has been advocated by, among
others, Oddie (1997), Joyce (1998), and Greaves and Wallace (2006). See Fallis (2007)
for a superb overview.

A note on terminology. We will use the term cognitive utility for value associated with
cognitive goals such as knowledge or understanding, not stemming from the consequences
of practical decisions. Cognitive utilities may attach to an act of acceptance, or to a belief
state. Following Greaves and Wallace (2006), we will use the term epistemic utility for
a value attached to a belief state. A belief state may be evaluated in terms of its effect
on decisions, in which case we are concerned with practical epistemic utilities; it is one
goal of this paper to convince the reader that it is both permissible and worthwhile to
consider also cognitive epistemic utilities. Levi (1967) and Hempel (1981) use the phrase
“epistemic utility” for what we will call the cognitive utility attached to acceptance.
Sympathy is extended to any reader who finds the terminological variance in the literature
confusing.

3 Epistemic Utility

Though utility, cognitive or otherwise, has a role to play in any decision of whether to
accept a hypothesis, this does not exhaust the role of cognitive utility in a scientific

4



context.We might regard an investigation that leads to better-informed credences about
a class of hypotheses as having epistemic value even if it does not lead to acceptance of
any of them. We must, therefore, be prepared to talk about the value of a belief state.

In this paper, an agent’s state of belief will be represented by an assignment of
numerical degrees of belief, or credences, to a set of propositions. It will be assumed
that these credence-functions satisfy the axioms of probability. This is the basic starting
point of probabilist approaches to issues of theory confirmation. No claim is made as to
psychological accuracy of this picture. It should be noncontroversial that human beings
do not possess precise numerical degrees of belief. Moreover, our qualitative rankings
of propositions as more or less credible are often incompatible with the existence of
numerical degrees of belief that represent these qualitative rankings and satisfy the axioms
of probability. Nevertheless, it is possible to regard these facts about human beings as
being attributable to our cognitive limitations. We may regard the model of an agent
that has numerical credences as a regulative ideal : insofar as we depart from this model,
this is to be regarded as a departure from ideal rationality. If one becomes aware that
one’s qualitative rankings of propositions as more or less credible are incompatible with
the existence of quantitative degrees of belief satisfying the probability calculus, then one
ought to regard such judgments as flawed and (if it matters) attempt to mend them.

Example 1. To motivate the idea of the value of a state of belief, consider first the
following simple example. On Tuesday Bob is offered the option of purchasing tickets
from a deck of 100 tickets, labeled 1 through 100. The ticket numbered n costs n dollars,
and each ticket Bob purchases can be redeemed for a prize of 100 dollars on Wednesday,
if it rains that day. We assume that Bob has the funds to purchase as many tickets as
he deems fit, and that we can treat Bob’s utilities as being linear in money.

Suppose, now, that Bob has degree of belief p that it will rain tomorrow. Then he will
regard any ticket with price less than $100 p as a good deal. (It matters little whether
he chooses to buy a ticket with price exactly equal to $p, should there be one; we will
assume that he does.) Let np be the least integer less than or equal to 100p. Bob expends
a total of

np∑
n=1

n =
1

2
np(np + 1).

In the event of rain Wednesday, Bob wins $100 np, and so his net gain is

Vr(p) = 100 np −
1

2
np(np + 1).

If it doesn’t rain, Bob has a net loss:

V∼r(p) = −1

2
np(np + 1).
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Vr(p) is the value to Bob of having credence p in r, if r is true, and V∼r(p) is the value
of having that credence, if r is false.

Suppose, now, that Alice has degree of belief q in r. Then her assessment of the value
to Bob of having credence p in r is her expectation value of the reward to Bob; that is,
a weighted mean of Vr(p) and V∼r(p), where the weighting is her own credence:

U(p; q) = q Vr(p) + (1− q)V∼r(p).

This is equal to U(q; q) when np = nq (that is, when Bob makes exactly the same decisions
as Alice), and is less than U(q; q) if there are any tickets that Bob would buy and Alice
would not, or vice versa. Therefore, we have, for any p, q,

U(q; q) ≥ U(p; q).

Example 2. Suppose that we want to rate weather forecasters on their forecasting
ability. We devise the following scheme. Each forecaster is to state a probability p of
rain the next day, and be awarded p points if it rains, 1 − p points if it doesn’t. This
rewards high values of p in the case of rain, low values in the case of no rain.

This scheme is problematic, because it gives forecasters incentive to “work the system”
by reporting probabilities other than their genuine degrees of belief. If Alice has degree
of belief q that it will rain, then she judges the expected points awarded, if she reports
p, as

q p + (1− q) (1− p).

If q = 1/2, all choices of p have the same expected reward. But if q > 1/2, Alice
maximizes her expected reward by choosing p = 1, and if q < 1/2, by choosing p = 0.

Example 3. A scoring rule that does not have this defect is the Brier rule (Brier,
1950). We reward (1 − p)2 points if it rains, p2 points if it doesn’t rain, and count a
low score as better than a high one. The reader can readily verify that forecasters will
minimize their expected score by reporting their actual degrees of belief. Scoring rules
that have this feature are called proper scoring rules.2

Let S be a set of mutually exclusive and jointly exhaustive hypotheses {hi|i = 1, ..., n},
and let ΩS be the set of probability functions on S. An epistemic utility function is an
assignment, to each hi ∈ S, of a function Vi : ΩS → R, where Vi(p) gives the value of
having credences p = (p1, p2, ..., pn) if the hypothesis hi is true. These might include, as in

2For some of the seminal work on proper scoring rules, see Good (1952), McCarthy
(1956), Savage (1971).
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Example 1, concrete payoffs as a result of decisions made on the basis of those credences,
or purely cognitive values. The expected utility to Bob of having credence-function p,
as judged by Alice, who has credence-function q, is

UV(p;q) =
n∑

i=1

qi Vi(p).

Following Greaves and Wallace (2006), let us say that a credence-function q is self-
recommending for V iff an agent with utilities V and credence-function q does not judge
any other credence-function to be more valuable than her own, that is, iff

UV(q;q) ≥ UV(p;q)

for all p ∈ ΩS . q is strictly self-recommending for V iff an agent with utilities V and
credence-function q judges every other credence-function to be strictly worse than her
own, that is, iff

UV(q;q) > UV(p;q)

for all p 6= q.
A utility function V is (strictly) stable at p iff p is (strictly) self-recommending for

V ; it is everywhere (strictly) stable iff it is (strictly) stable at every p ∈ ΩS . Everywhere
stable epistemic utility functions correspond to proper scoring rules.

We define the quantity ∆V(p;q), as the difference, as assessed by q, between the
value of q and the value of p.

∆V(p;q) = UV(q;q)− UV(p;q).

V is stable at q iff ∆V(p;q) ≥ 0 for all p, and strictly stable iff ∆V(p;q) > 0 for all
p 6= q.

Example 4. Generalized Brier rule. Let {ai} be positive numbers, and define

Vi(p) = −ai(1− pi)
2 −

∑
j 6=i

aj p2
j .

Epistemic utility functions of this form are everywhere strictly stable.

Example 5. One may want to consider epistemic utilities that depend only on the
agent’s degree of belief in the true hypothesis. It can be shown that, for n > 2, the only
smooth epistemic utility functions that have this feature are those of the form

Vi(p) = ai + logb(pi),
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where {ai} is an arbitrary set of numbers, and b is any number greater than 1.3 Note
that, though Vi is a continuous function on the interior of ΩS , it is unbounded as pi → 0,
and so cannot be extended to a continuous function defined at pi = 0. A demand for a
smooth epistemic utility function that is defined on the whole of ΩS and has Vi depend
only on pi cannot be satisfied.

For this choice of epistemic utility function, with b = 2, we have

∆V(p;q) =
∑

i

qi log2 (qi/pi) ,

which is the relative entropy of q with respect to p, also known as the Kullback-Leibler
discrepancy, a commonly used measure of the difference between two probability func-
tions.

It is easy to show that epistemic utility functions that evaluate credence only in
terms of the consequences of decisions that might be made on the basis of them must
be everywhere stable. Let A be a set of acts, and let Ui(A) be the utility of choosing
act A if hi. For a credence-function q, let Aq be an act that maximizes expected utility.
This gives us Vi(q) = Ui(Aq). To say that Aq maximizes expected utility as judged by q
means that ∑

i

qi Ui(Aq) ≥
∑

i

qi Ui(A)

for all A ∈ A. The value of having credences p, as judged by an agent whose credence-
function is q, is

U(p;q) =
∑

i

qiUi(Ap).

Because Aq maximizes expected utility, as judged by q,∑
i

qiUi(Aq) ≥
∑

i

qiUi(Ap)

for all p, and U(q;q) ≥ U(p;q). This is true whether the utility that attaches to acts is
cognitive or practical. Therefore, approaches to cognitive utility that locate all cognitive
utility in acts of acceptance and rejection necessarily yield epistemic utilities that are
everywhere stable.

4 The Value of Learning Theorem

There is a theorem, first published by I. J. Good (1967), and generalized by Graves
(1989), Skyrms (1990) (Ch. 4), and Oddie (1997), according to which learning can never

3See Savage (1971), §9.4; McCarthy (1956) attributes this result to unpublished work
of Andrew Gleason.
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have negative expected value. This is true even when there is a possibility of being
misled, that is, when among the possible results of the learning experience is a move in
the wrong direction, a move away from belief in the true hypothesis, perhaps resulting in
worse decisions than those that would have been made on the basis of the pre-learning
credences. The theorem says that, even when this is possible, the expected value of the
learning will not be negative; the possible negative consequences will be outweighed by
the positive ones.

Good, Graves, and Skyrms evaluate learning in terms of its potential consequences
for subsequent decisions. But the value of doing an experiment, or of pursuing some line
of research, can be due, in part, to the expected increase in the value of one’s belief state.
For example, although some practical benefit might emerge from research performed at
the Large Hadron Collider (LHC), the primary reason for building it is the value of the
increased insight into the laws of nature to be gained from experimentation with the
Collider. We don’t know in advance what the outcome of experimentation with the LHC
will be, of course. It may be that the Standard Model of particle physics is confirmed;
it may be that wholly unexpected results are found, provoking a radical revision in
fundamental theory. An estimate of the value of building the LHC should be based on
some assessment (perhaps vague) of the expected cognitive utility of experimentation to
be conducted with it.

Oddie (1997) showed that, for updating via conditionalization, the theorem holds
if cognitive epistemic values are included, with the condition that the epistemic utility
functions be everywhere strictly stable, a condition that Oddie calls cogency. The version
we give here applies, as in Skyrms, to any learning experience, not just conditionalization,
and will be phrased to highlight the minimal stability condition that is required. This will
be important in the next section, in which this condition will be justified as a reasonable
requirement on epistemic utility functions.

Suppose that Alice has an epistemic utility function V , and that she is about to
undergo an experience that may change her credences. Suppose that she will make a
transition from her current credence-function cr to one of a set {crj}. This might be
through Bayesian conditionalization on new information (as in the treatments of Good
and Oddie), or through Jeffrey conditionalization (as in Graves), or some other process;
we assume only, following Skyrms, that her current credence-function cr satisfies what
Graves calls condition M (for Miller’s Principle) and van Fraassen (1984) calls Reflection:4

cr(hi&ej) = cr(ej) crj(hi),

where ej is the proposition that the transition will be a transition to crj. Note: we are
not taking it as a condition of rationality that all changes in credence satisfy condition
M ; rather, following Skyrms, we take condition M to be a necessary condition for the

4In Skyrms’ presentation, M is for Martingale (Skyrms, 1990, 105).
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transition to count as a pure learning experience. Credence changes that don’t satisfy
condition M don’t count as learning.

If hi&ej, then the value of Alice’s post-learning credence is Vi(crj), and the epistemic
value of having had the learning experience is

Vi(crj)− Vi(cr).

Alice therefore judges the expected value of undergoing the learning experience as∑
i,j

cr(hi&ej) (Vi(crj)− Vi(cr)) .

Applying condition M this becomes∑
j

cr(ej)
∑

i

crj(hi) (Vi(crj)− Vi(cr))

=
∑
j

cr(ej)
(
UV(crj; crj)− UV(cr; crj)

)
=

∑
j

cr(ej) ∆V(cr; crj).

This is Alice’s judgment, using her current credences, of the expected change in value
of her credences due to the learning experience. However, because of condition M, it is
also her expectation value of ∆V(cr; crj), which is the change in value of her credence, as
judged by the new credence.

If V is stable at crj, then ∆V(cr; crj) ≥ 0. Therefore, if, for every j such that
cr(ej) 6= 0, V is stable at crj, each term of the sum is non-negative, and Alice’s evaluation
of the expected value of undergoing the learning experience is non-negative. It is strictly
positive if, in addition, ∆V(cr; crj) > 0 for some j such that Alice has non-zero credence
that she will end up with credence crj. Since we have shown in the previous section that
practical epistemic utility functions are everywhere stable, we get Skyrms’ version of the
theorem as a special case.

Of course, in real-life learning situations there will typically be costs associated with
undergoing the learning experience, if only an opportunity cost due to the time spent
learning. The Value of Learning Theorem does not show that learning will always have
non-negative utility, all things considered. It concerns only the contribution to the ex-
pected utility calculation due to the expected change in epistemic utility.

Note that it is condition M that turns Alice’s current expectation of the change in
value of her belief state into an expectation of the change in value, as judged by the
possible new belief states. This is why a parallel argument would not establish that it
would be rational for an agent, using her current credences to make the assessment, to
take a drug to change her belief state, even though the new belief state would be judged
an improvement by the new belief state. Thus, Fallis misses the mark when he says,
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In order to decide whether it is ratonal to take this drug, we have to use
rd [the drug-induced credence function] to calculate the expected epistemic
utility of her doxastic state if she takes this drug.... In order to conclude that
it is not rational to take this drug, we have to explicitly require that “absent
any new information you should not change your cognitive state.” EUFs
[epistemic utility functions] by themselves cannot distinguish between (a) the
(scientifically acceptable) changes to one’s doxastic state that result from
performing an experiment and (b) the (scientifically objectionable) changes
to one’s doxastic state that result, for example, from taking a drug (Fallis,
2007, 231).

The requirement that belief states not be changed absent any new information is not
needed as an extra requirement, if stability is already required. This is because the
decision of whether to take the drug is evaluated on the basis of the agent’s credences
at the time the decision is made. In situations like the drug-taking decision, in which
condition M will not be satisfied, the expected utility of making the credence-shift will
be negative.

The condition that V be stable at the credences that could result from the learning
process is not a necessary condition for a learning process to have positive expected
value. Horwich (1982) (127–28) utilized, for a two-element partition, the utility function
of Example 2, above. Using this function, he proved that learning has positive expected
utility when the evidence to be acquired is not irrelevant to the hypothesis in question.

5 Are all reasonable epistemic utilities stable?

As we have seen, practical epistemic utility functions—that is, epistemic utility functions
that evaluate a belief-state in terms of its effects on subsequent decisions—are necessarily
everywhere stable. We have not thus far required this of cognitive epistemic utility
functions.

Patrick Maher has pointed out that the Value of Learning Theorem does not hold for
arbitrary epistemic utility functions, or even for arbitrary truth-valuing functions, where,
for a two-element partition, {h,∼ h}, an epistemic utility function V is truth-valuing5

iff Vh increases, and V∼h decreases, as degree of belief in h increases (this concept is
generalized in §6, below).

That an epistemic utility function be truth-valuing is not a sufficient condition for
the Value of Learning Theorem to hold for it—or, as Maher calls it, the Scientific Value
of Evidence thesis (SVET). This fact, which Maher illustrates with a simple example
(Maher, 1993, 176–77), he uses to argue for the inferiority of probabilist explanations of

5Maher’s term is “truth-seeking.”
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SVET—that is, explanations in terms of value that accrues to belief-states, represented as
proability assignments—to acceptance-based explanations. He considers the possibility
of placing restrictions on epistemic utility functions, but rejects such a move as ad hoc.

Another possible response is to say that a utility function simply does not
count as representing the cognitive goals of science unless it makes SVET true.
... The proposed restriction on what counts as a scientific utility function is
not motivated by any reflection on the goals of science that the utility function
is supposed to capture, but merely by the fact that the probabilist explanation
fails without this restriction; thus the probabilist restriction on what counts
as a scientific utility function is quite ad hoc (Maher, 1993, 177–78).

Maher also points out the instability, already noted in our discussion of Example 2, of
the epistemic utility function considered by Horwich. He notes that a possible response is
“to say that a utility function does not count as representing the cognitive goals of science
unless it is a proper scoring rule. ... like the similar move used to make SVET necessary,
success is here bought at the price of invoking a completely ad hoc assumption” (Maher,
1993, 179).

Maher is correct that there is something problematic about epistemic utility functions
that are not everywhere stable, and that simply stipulating stability is unsatisfying. We
should ask whether we can do better than that.

Suppose that our agent has an epistemic utility function V , and is about to learn which
element of an evidence-partition {ej} is true. She adopts some strategy for updating her
credences: upon learning ej, she will make the move to a new credence function crj. We
suppose that she chooses a strategy that maximizes expected epistemic utility. Greaves
and Wallace (2006) have shown that conditionalization maximizes expected utility if and
only if, for every ej such that cr(ej) > 0, V is stable at the conditional credence-function
cr( · |ej).

De Finetti and Ramsey showed that c(h|e) = cr(h&e)/cr(e) is the fair price of a bet
on h, conditional on e, where a bet conditional on e is one that is called off, and all
monies returned, if ∼ e. The diachronic dutch book argument (reported in Teller (1973),
and attributed therein to David Lewis) uses this to show that an agent who updates via
some strategy other than conditionalization is vulnerable to a diachronic dutch book.
This means that there is a set of bets, some offered prior to updating, some after, that
the agent will regard as all favourable, whose net effect is a sure loss.

Suppose our partition {hi} consists of propositions that are wagerable—that is, propo-
sitions whose truth-value can be ascertained, with sufficient reliability, in a short enough
time, that it makes sense to place bets on them. An agent whose belief-shift maximizes
expected epistemic utility will leave herself open to a diachronic dutch book, unless her
epistemic utility function is stable at each credence-function obtainable from her cre-
dence by conditionalizing on some {ej} with cr(ej) > 0. Avoidance of a diachronic dutch
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book is a reasonable constraint to place on a rational agent undergoing learning. Thus,
for cases like this, in which the hypotheses under question are wagerable, an epistemic
utility function that can represent the considered value judgments of a reasonable agent
must be stable at every point in probability-space that could be reached from her current
credences by conditionalization on evidence that she deems it possible to acquire. This
condition is sufficient for the Value of Learning Theorem of the previous section to apply,
when updating is by conditionalization.

Not all cases of interest will be of this sort, however. Scientific theories, if they
involve putative laws of nature, make claims with spatiotemporally unbounded import,
and hence cannot be conclusively verified by spatiotemporally bounded observation. For
this reason, there may be no satisfactory way to set payoff conditions, and no sensible
way way of making bets on the hypotheses.

Even if the hypotheses in question are not wagerable, precluding a diachronic dutch
book, there is still an issue of diachronic consistency raised by unstable epistemic utilities.
Suppose that an agent has an epistemic utility function that is not stable at cr( · |ej).
Then a strategy that maximizes expected epistemic utility will recommend some other
credence function crj, not identical to cr(·|ej), upon learning ej. This means that, though
her credence that she will make a transition to crj is cr(ej), there is some proposition h
such that

crj(h) 6= cr(h&ej)/cr(h).

That is, her credences violate condition M.
Condition M cannot be plausibly be taken as a constraint on all rational belief-

changes. But it can be taken as a condition for a belief-change to count as a learning
experience, one in which the post-shift agent endorses her prior judgments as reasonable
for someone in her prior epistemic condition. An agent who maximizes expected epistemic
utility in her belief-shifts cannot satisfy condition M—that is, cannot undergo a pure
learning experience—unless her epistemic utility function is suitably stable. An epistemic
utility function that can represent the considered value-judgments of a reasonable agent
ought not to foreclose the possibility of learning. This means that the epistemic utility
function ought to be stable at every credence that can be reached from the agent’s current
credence-function by conditionalization on evidence regarded by the agent as possible for
her to acquire. If this set of credence functions reaches the whole of probability space,
then we have an argument for stability everywhere.6 If not, we have argued for a condition
that is weaker than stability everywhere. But it is still sufficient for the Value of Learning

6There is a minor wrinkle, in that the set of experiences that can be distinguished by
the agent may only be countable. In such a case, if the set of credence-functions reachable
by conditionalization on possible evidence is dense in ΩS , we can get everywhere stability
by imposing a continuity condition on the utility function—provided that it extends to
a continuous function on ΩS .
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Theorem. Imposing this stability requirement, a reasonable one, and not at all ad hoc,
we get the result that obtaining evidence has non-negative utility, and has positive utility
if V is strictly stable at some credence-function that is different from the agent’s current
one and might be reached by conditionalizing on the evidence. We obtain the Scientific
Value of Evidence Thesis for epistemic utilities that include cognitive utilities, without
any objectionable moves.

Someone might object that it is nonsensical to place constraints on values: an agent
values whatever she values, and considerations of rationality or reasonableness cannot
be applied in a critique of values, but enter only when consideration is made of how the
agent is to best reach the goals prescribed by her values. To this, it should be pointed
out that decision theory begins with constraints on preferences between acts, motivated
by rationality concerns, and this does not seem nonsensical.

Moreover, advocates of an acceptance-based notion of cognitive utility also place
constraints on these utilities. Maher proposes four necessary conditions for a cognitive
utility function to be counted as reflecting scientific values (Maher, 1993, Ch. 9). The
first of these is respect for truth, the condition that the cognitive utility of accepting
a hypothesis when it is false not be higher than the utility of accepting it when it is
true. This does, indeed, seem to be a reasonable condition to place on a cognitive
utility function. The analogue, in the present context, would be to require that an
epistemic utility function be truth-valuing. This, interestingly enough, turns out to be a
consequence of stability.

6 Externalism and Truth-Valuing

Oddie (1997) distinguishes between internalist and externalist epistemic value functions.
An internalist epistemic value function evaluates a belief state in terms of that state’s
structure, independently of how the world may be. It might, for example, value certainty
over uncertainty, and rank credence-functions according to some measure of how con-
centrated they are. In our notation, internalism is the condition that Vi(p) be the same
function for each i. It is easy to see that, if this is the case, every credence function q
will assign the same value UV(p;q) to p, and, except for the trivial function that assigns
the same value to every p, no internalist value function can be everywhere stable, and
no internalist value function whatsoever can be everywhere strictly stable (Oddie, 1997,
537).

This shows that an everywhere strictly stable epistemic value function must be an
externalist one; it must be sensitive to the way the world is. Sensitive, but in what way?
We would expect that an epistemic value function would value having high credence in
true propositions; must this be imposed as an extra condition?

Fallis (2007) has shown that an everywhere stable epistemic utility function must
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satisfy a condition that he calls weak monotonicity, which is a form of truth-valuing. To
understand what has been proven, we first need to discuss what is to be meant by a
truth-valuing epistemic utility function.

For a partition consisting of only two hypotheses {h1, h2}, there’s no difficulty in
saying when an epistemic utility function is truth-valuing. In such a case ΩS is one-
dimensional, so any change in credence is a change away from one vertex of ΩS and
towards the other. We say that Vi is truth-valuing if Vi(p) does not decrease as pi is
increased, and strictly truth-valuing if it increases as pi is increased.

For n > 2, things are a bit more complicated. Let {ei} be the vertices of the simplex
ΩS , with ei being the probability function that assigns probability 1 to hi and 0 to
all other members of S. We will want to say that Vi is strictly truth-valuing if Vi(p)
increases as p moves towards the vertex ei. And that means that we’ll have to be a
bit more precise about what it means to move towards the vertex, since, in a space of
more than one dimension, there are different paths that can be taken from one point to
another.

There are a number of distance metrics that can be defined on ΩS . One is the norm
distance:

d(p,q) =
1

2

n∑
i=1

|pi − qi|.

This is the maximum difference in probabilities assigned by p and q to any of the 2n

propositions that can be formed from disjunctions of the elements of S, and hence a nat-
ural measure of the difference between two probability assignments. The norm distance
of any probability function p from the vertex ei is 1− pi.

Another metric on ΩS is, of course, the familiar Euclidean metric,

r(p,q) =
√∑

i

(pi − qi)2.

Generalizing, we define, for any set W = {ai} of positive numbers, a weighted Euclidean
metric,

rW(p,q) =
√∑

i

ai(pi − qi)2.

To any distance metric on ΩS , there corresponds a notion of truth-valuing: Vi is truth-
valuing at a point p iff there is a neighbourhood of p in which Vi does not decrease as
the distance to ei decreases, and it is strictly truth-valuing if it increases with decreasing
distance to ei. Vi is everywhere (strictly) truth-valuing iff it is (strictly) truth-valuing at
each point in ΩS , and the epistemic utility function V is (strictly) truth-valuing iff every
Vi is.

The notions of truth-valuing generated by different distance metrics need not coincide.
The generalized Brier rule evaluates a credence function according to the square of a
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weighted Euclidean distance from the truth, and hence is strictly truth-valuing in that
metric. It is not, however, truth-valuing in the norm distance (see (Fallis, 2007, 234)).

We can also define a notion of truth-valuing that is independent of any consideration
of a distance-metric on ΩS . This makes use of the fact that there is a natural affine
structure on any probability space, independent of any notion of distance. For distinct
points p, q, we define the line containing p and q as the set of probability-functions

(1− t) p + t q,

where t ranges over all values compatible with remaining in ΩS . Call this line λ(p,q).
We will require of any metric on ΩS that it be compatible with the affine structure; that
is, for any admissible metric, it must be the case that the path along λ(p,q) is a path of
minimal length among paths that join p and q.

For any point p ∈ ΩS , and any vertex ei, the direct path towards ei is along the line
λ(p, ei). We will say that Vi is affinely truth-valuing at p iff there is a neighbourhood of
p in which Vi does not decrease as we move towards the vertex ei along λ(p, ei), strictly
affinely truth-valuing if it increases along this line. This is the condition that Fallis
calls the weak monoticity constraint (the condition that an epistemic utility function be
everywhere truth-valuing in norm distance he calls the monotonicity constraint).

Since, on any admissable metric, the distance between p and ei will decrease as we
move towards ei along λ(p, ei), affine truth-valuing is weaker than any of the notions
obtained from distance metrics. To be affinely truth-valuing is the weakest possible sense
of truth-valuing; if an epistemic utility function is not affinely truth-valuing, it is clear
that we should say that is not truth-valuing. The condition that an epistemic utility
function be affinely truth-valuing captures the idea that the utility function be truth-
valuing in some sense. The various metric-induced conditions impose further restrictions
on what is to count on truth-valuing. In particular, truth-valuing in norm-distance entails
that, if Vi is a continuous function, it depends only on pi. The value of a belief state
depends only on its degree of belief in the true hypothesis, and is independent of the way
in which credences are distributed among false hypotheses.

There can be epistemic utility functions that are stable at isolated points, without
being truth-valuing. Take, for example,

Vi(p) = −p2
i .

This is nowhere truth-valuing, in any sense, as Vi(p) decreases with increasing pi. It is,
however, strictly stable at the probability-function that assigns equal probability 1/n to
each element of S.

Fallis (2007) proves the lovely result that any epistemic utility function that is every-
where stable is affinely truth-valuing (this is his Proposition 1). Though Fallis does not

16



express it this way, his result stems from the way ∆V behaves under mixtures. Take two
probability functions p, q, and, for some α ∈ [0, 1], let

r = α p + (1− α)q.

Then, for any epistemic value function V ,

∆V(p; r) + α ∆V(r;p) = (1− α)
(
∆V(p;q)−∆V(r;q)

)
. (∗)

This relation can be readily verified by the reader.
Now take two points p, r, on a line that includes a vertex ei, with pi < ri < 1. Then

r is a mixture of p and ei, and so

r = α p + (1− α)ei

for some α ∈ (0, 1). This gives us (1 − ri) = α(1 − pi) and (ri − pi) = (1 − α)(1 − pi).
Putting ei for q in (∗), we get

∆V(p; r) + α ∆V(r;p) = (1− α)
(
∆V(p; ei)−∆V(r; ei)

)
.

But

∆V(p, ei)−∆V(r, ei) = Vi(ei)− Vi(p)− (Vi(ei)− Vi(r))

= Vi(r)− Vi(p),

and so we have
∆V(p; r) + α ∆V(r;p) = (1− α) (Vi(r)− Vi(p)) .

Using (1− ri) = α(1− pi) and (ri − pi) = (1− α)(1− pi), we get

(1− pi) ∆V(p; r) + (1− ri) ∆V(r;p) = (ri − pi) (Vi(r)− Vi(p)) . (†)

Note that this is unchanged when the roles of p and r are switched; therefore, the relation
(†) holds for any p, r lying on a line that extends to the vertex ei.

From (†) the connection between stability and being affinely truth-valuing is imme-
diate. If V is stable at both r and p, both ∆V(p; r) and ∆V(r;p) are non-negative, and
so it follows that

(ri − pi) (Vi(r)− Vi(p)) ≥ 0.

If ri > pi, therefore, we must have Vi(r) ≥ Vi(p). If V is strictly stable at p or r, then
∆V(p; r) or ∆V(r;p) is strictly positive, and

(ri − pi) (Vi(r)− Vi(p)) > 0.

Therefore, if ri > pi, Vi(r) > Vi(p). We conclude that an epistemic utility function
is everywhere affinely truth-valuing if it is everywhere stable, and that it is everywhere
strictly affinely truth-valuing if it is everywhere strictly stable. So, not only does stability
(Oddie’s ‘cogency’) entail sensitivity to the external word, it entails sensitivity to the
truth.
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7 Are there further restrictions on Epistemic Utility

Functions?

Oddie (1997) imposes the condition that an epistemic utility function be everywhere
strictly stable, on the grounds that it is always irrational to change one’s credence in the
absence of new evidence. This is a stipulation that Maher (1990; 1993) rejected as ad
hoc.

In some discussions of theory choice, there seems to be a suggestion that considera-
tions of cognitive value have a legitimate role to play in setting credences.7 This is only
possible for epistemic utility functions that are not everywhere stable. An agent with a
stable epistemic utility function will not be moved to adjust her credences by consider-
ations of cognitive value.8 Rather than ruling out by fiat the possibility of permitting
considerations of cognitive value to affect our credences, we should ask whether an ar-
gument can be given for excluding this possibility. The considerations of §5 show that
unstable epistemic value functions can run into problems of diachronic coherence, but
they fall short of an argument that an epistemic value function must be everywhere sta-
ble. The argument only extends to stability at every point in probability space that can
be reached by conditionalization on possible evidence. One could imagine, for example,
that among the hypotheses in S are two hypotheses {h1, h2} such that the likelihoods
cr(e|h1) and cr(e|h2) are the same for all evidence e that the agent expects to obtain.

7This statement is hedged because, though this is often suggested by such discussions
(including Kuhn’s), one rarely finds a clear statement, for the simple reason that it
is often not clear what choices are under consideration. Putnam, for example, writes
that “a great number of theories must be rejected on non-observational grounds, for the
rule ‘Test every theory that occurs to anyone’ is impossible to follow” (Putnam, 2002,
140). Judgments of theoretical virtues such as coherence and simplicity are, according
to Putnam, the grounds on which some theories are rejected out of hand. “In short,
judgments of coherence, simplicity, and so on are presupposed by physical science. Yet
coherence, simplicity, and the like are values” (Putnam, 2002, 142). It is not clear from
this whether rejection entails low credence, or whether we are to choose not to bother
with theories that lack the requisite virtues, whatever our credence in them might be.

8It might be suggested that there is a role for epistemic utilities in setting priors, even
if the epistemic utlity functions are everywhere stable. Instead of imagining an agent who
already has credences and is considering whether it is in her interest to change them,
we might consider the problem of endowing a tabula rasa with credences in the first
place. On this sort of proposal, prior credences might be ranked according to U(q;q).
Unfortunately, for everywhere strictly stable epistemic utility functions, picking a prior
q that maximizes U(q;q) leads to dogmatism. Since every Vi achieves its maximum at
ei, the maximum value of U(q;q) is achieved at the vertex that maximizes Vi(ei).
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This means that conditionalizing on evidence will not change the ratio of cr(h1) to cr(h2)
(this is the probabilistic version of underdetermination). This is the sort of case in which
epistemic utility might be called upon to set this ratio. One could imagine an epistemic
utility function that is stable only for credence functions that assigned a certain value
α to cr(h1)/cr(h2).

9 An agent whose credences did not have cr(h1)/cr(h2) = α would
be moved to change them to one that did. But, once achieved, this condition would be
preserved under conditionalization on possible evidence, and so the agent would not run
afoul of the considerations of §5. It is worthwhile to ask whether some other argument
could be given for everywhere stability, that did not simply presume that it is always
wrong to let considerations of epistemic utility affect one’s credences. An open question:
is there a No Wishful Thinking theorem?

Besides stability, another constraint that might be considered is that epistemic utlity
functions be truth-valuing according to one’s favourite distance metric. Fallis considers
imposing the condition that epistemic utility functions be truth-valuing in norm distance,
on the grounds that this captures the requirement that scientist should “seek the truth
and nothing but the truth” (Fallis, 2007, §7). This is a strong constraint. In particular, it
entails that Vi(p), if it is a continuous function, depends only on pi. The only nontrivial
smooth epistemic utility functions that satisfy this condition and are stable are of the
form,

Vi(p) = ai + logb pi,

where b > 1. This, according to Fallis, is an unreasonably tight restriction.

The logarithmic rule is almost certainly a scientifically acceptable EUF. In
fact, as I discuss below, it has several very attractive properties. However, it
is not clear why a scientist who seeks the “truth and nothing but the truth”
should be required to have this particular attitude toward epistemic risk. In
other words, Bayesian models of epistemic utilities seem to place unreasonably
tight restrictions on a scientist’s attitude toward epistemic risk in this context
(Fallis, 2007, 237).

Fallis concludes from this that “Bayesian models of epistemic utilities fail as normative
accounts of scientific inquiry” (240).

9Are there any such functions? It is easy to show, via an artificial example, that
such functions exist; whether there are any that are plausible is another matter. Let VS

be any everywhere strictly stable epistemic utility function, and let T be an invertible
transformation of ΩS that leaves only probability functions with the desired condition
invariant. Define V by

Vi(p) = V S
i (T −1p).

Then UV(p;q) =
∑

i qiV
S
i (T −1p) is uniquely maximized by p = T q, and so V is stable

only on the subset of ΩS of invariant points of T .
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This is a strong conclusion. Is it warranted? It is certainly true that the requirement
that Vi(p) depend only on pi is more constraining than might at first appear. One possible
reaction to this would be to conclude that a seemingly reasonable requirement that leads
to such consequences is not as innocent as it appeared, and that it is in fact too restrictive
a condition. This seems to be the right reaction; there are no compelling arguments for
the requirement, and respect for the truth does not require one to be indifferent as to
how one’s credences are distributed among false hypotheses. Another reaction might be
to “bite the bullet,” as Fallis says (237), and accept that the logarithmic rule is the only
scientifically acceptable epistemic utility function. If need be, the Bayesian’s teeth could
be strengthened by arguments for the logarithmic rule that rest on considerations other
than stability (see, e.g., (Good, 1973, 116–118)). This would be the appropriate reaction
if there were strong reasons to require that Vi(p) depend only on pi.

Imagine someone who found it prima facie plausible to suppose that there are every-
where strictly stable epistemic utility functions that are not truth-valuing, on the grounds
that it is not clear why a scientist who is content with her own epistemic state should be
required to value belief in the truth. This person is then confronted with Fallis’ theorem,
and is surprised to learn that no such utility functions exist. The reasonable response, it
would seem, would be to abandon the thought that there should be such utility functions,
and that a requirement that there be such functions, despite its prima facie plausibility,
is in fact impossibly strong. It would be unreasonable to throw out the framework.

8 Conclusion

In §5, it was argued that epistemic utility functions that can represent the considered
judgments of a reasonable agent ought to be stable at each point in probability-space that
could be reached from the agent’s current credences by conditionalization on possible
evidence. It would be good to have an argument for a stronger claim, that there is
something unreasonable about having epistemic values that are not everywhere stable,
but such an argument, it seems, would have to proceed along entirely different lines.
Nevertheless, the stability condition argued for is strong enough to establish the Value
of Learning Theorem, opening the way for consideration of cognitive epistemic values,
in addition to values associated with acceptance and rejection of hypotheses, to play a
motivating factor in science.
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