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Abstract. This paper introduces a little-known episode in the history of physics, in
which a mathematical proof by Pierre Fermat vindicated Galileo’s characterization
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to Fermat’s proof. The second part illustrates how a physical and a mathematical
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1. Introduction

The modern textbook concept of uniform acceleration is given as a
definition: it is a constant change in velocity over time. This definition
is in accord with experience; for example, it correctly describes objects
falling freely near the surface of the earth. However, the nature of uni-
form acceleration was once a mammoth foundational problem. At the
birth of modern mechanics, there was neither an obvious definition nor
a body of experimental data to characterize the concept. Nevertheless,
the problem turned out have a theoretical solution, through a proof
that one side of the debate was in contradiction with a well-known
empirical fact. That proof is the subject this paper.

One part was easy. Namely, it was clear that uniform acceleration
is characterized by a constant change in velocity. The challenge was
in answering the question, change with respect to what: distance, or
time? The correct answer is time. But why isn’t it distance? And can a
convincing argument be established in the absence of empirical data?

The seeds of an argument were suggested in a notoriously terse pas-
sage of Galileo’s Two New Sciences. However, as modern scholars have
pointed out1, the first convincing argument was actually given by Pierre
Fermat, of ‘Fermat’s last theorem’ fame. Scholars have announced scat-
tered conclusions about Fermat’s analysis. Galluzzi calls Fermat’s proof
“rigorously geometrical,” and a “deduction of the Galilean proportion
of the acceleration of natural motion” (Galluzzi, 2001, 258). Drake has
said that there is “no getting around Fermat’s argument” (Drake, 1989,
75). However, these conclusions have not only been superficial; they
have often been incorrect. Fermat’s proof is not geometrical; it does
not deduce any Galilean proportion; and there do seem to be clear
ways to get around Fermat’s argument.

I would like to correct the story of the Galileo-Fermat analysis of
acceleration. This story reveals several surprising results about how a
concept of empirical significance, which lies at the heart of a physi-

1 See especially (Mahoney, 1973, 384-387), but also (Drake, 1975a, 360),
(Drake, 1975b, 45), and (Drake, 1989, 75).
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cal theory, can be settled through theoretical analysis alone. The four
central results that I will argue for are the following:

1 The physical insight behind the analysis of acceleration was that
the well-known law of constant velocity actually places restrictions
on motion that is not constant.

2 The mathematical insight behind the analysis was that if velocity
increases in discrete jumps, then as we scale those jumps down,
the result becomes more and more like a continually increasing
quantity.

3 There is an objectionable part to the Galileo-Fermat analysis, from
the point of view of a critic that would reject any argument involv-
ing infinite sequences.

4 Nevertheless, a slight modification of the argument appears capa-
ble of satisfying any such critic.

The result was a theoretical argument, showing that the traditional
empirical characterization of freefall was in contradiction with the law
of uniform velocity.

The paper has two main sections. The first section sketches the
background of the analysis, by recounting some key events leading up
to Fermat’s proof. Here I briefly sketch the debate between two schools
of freefall, as well as Galileo’s argument in response to this debate. In
the second section, I’ll describe the analysis that Fermat presents. In
particular, I’ll draw out a physical and a mathematical insight, and
show how they enabled Fermat’s argument. Finally, I’ll point out some
possible objections that Fermat’s contemporaries might have given, and
illustrate a simple modification that addresses these concerns.

2. How Galileo Dropped the Ball

Let’s begin with a little narrative. There were two competing schools
of freefall in the years leading up to Fermat’s analysis: a Galilean
school and a Jesuit school. The views of these schools were logically
incompatible, and a curious dispute arose between them. This dispute
was exacerbated by a cryptic argument of Galileo, which suggested that
the controversy could be settled by purely theoretical considerations.
However, Galileo’s argument was generally thought to be incomplete
and unconvincing.

The following four subsections fill in the details of this story. The
goal is to understand how this foundational issue arose, as a debate over
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two empirical characterizations of freefall. We will then be prepared to
see Fermat’s proof, which shows how one of these characterizations
contradicts a well-known fact.

2.1. Two Schools of Freefall

The death of Galileo in 1642 marked the birth of a vigorous debate over
the nature of freefall. The traditional position was upheld most loudly
by French Jesuits. They stated that the velocity of an object in freefall
is proportional to the distance fallen. More precisely, their claim was
that:

v2

v1

=
d2

d1

, (1)

where d1, d2 are any two distances below the point from which an
object is released, and v1, v2 are the velocities of the object at those
positions2. For ease of reference, let’s call Equation (1) the Jesuit law
of freefall.

In contrast, the Galilean law of freefall maintained that velocity in
freefall is proportional to time fallen:

v2

v1

=
t2
t1

, (2)

where t1, t2 are any two times after the object is released, and v1, v2

are the respective velocities at those times.
The Galilean claim is equivalent to the time-squared law3. So, Galileo’s

commitment to Equation (2) was already implicit in the Dialogue of
1632, where he famously wrote that in freefall, “the spaces passed over
are to each other as the squares of the times” (Galilei, 1967, 222). But
the time-squared law apparently did not generate much controversy
until 1638, when it made an explicit appearance as a logical consequence
of the Galilean law (2)4. A lively debate then ensued, and lasted for
nearly a decade.

2 Throughout this paper, I use equality of fractions as shorthand for the language
of compound ratios. In particular, a sentence like ‘A is to B as C is to D’ will
be simply written A/B = C/D. If there is any question, the reader can always
substitute the original language.

3 There is an easy proof of this in modern language: let s be the distance traveled,
t the time passed, and v the velocity of a body dropped from rest at t = 0. If s ∝ t2,
then v = ds/dt ∝ 2t ∝ t. Conversely, if v ∝ t, then s =

∫ t

0
tdt = t2/2 ∝ t2.

4 See (Drake, 1989, chapter 7) for a discussion.



5

2.2. Incompatibility of the Two Schools

Marin Mersenne, a heavy-weight of French intelligentsia, applauded
Galileo’s time-squared law in his 1639 notes on the Two New Sciences.
He also picked up on a now-notorious suggestion of Galileo: that if
the Jesuit law were true, then motion would be instantaneous. Quite a
damning conclusion. But Mersenne didn’t buy it, suggesting that the
Jesuit law “can nevertheless be understood in a correct way; for can
we not say that the speed is greater in proportion to the greater spaces
traversed?”5.

Mersenne had nailed precisely the part Galileo’s remark that seems
to lack justification (more on this in Section 2.4). However, Mersenne’s
comment also betrays some confusion. Once one has accepted the Galilean
law of freefall, there is no ‘correct way’ to understand the Jesuit law,
because these two laws are incompatible. One proof of this is the fol-
lowing. Suppose, for reductio, that both (1) v2/v1 = d2/d1, and (2)
v2/v1 = t2/t1. Then:

t2
t1

=
d2

d1

by substituting (1) into (2)

=
(t2)2

(t1)2
by substituting the time-squared law.

Simplifying this equation, we get the strange result that

t2 = t1.

In other words, not rejecting either (1) or (2) would entail that any two
distances traveled in freefall are traversed in the same amount of time.
But that’s obviously false: drop any object, and observe that it reaches
your knees before it reaches your ankles. So, by reductio, a view that
supports (1) is incompatible with a view that supports (2).

This argument is just one of innumerable other ways of illustrating
this incompatibility. Of course, Mersenne was not a mathematician, and
so his apparent failure to deduce this result is perhaps not surprising.
But a more adept theoretician could have easily reached this conclusion.
And that might explain some of the vigor with which the participants in
this debate went after each other. We will now discuss one particularly
vigorous such exchange, which directly inspired Fermat’s work.

5 “neantmoins cecy se peut entendre d’une veritable façon; car pourquoy ne peut-
on pas dire que la vitesse est plus grande à proportion des plus grands espaces
parcourus?” (Mersenne, 1973a, 184).
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2.3. Une Bataille de Pierres

By the 1640’s, the disagreement between the Galilean and the Jesuit
schools had developed into a lengthy published debate. Among the
most hard-headed debaters were Pierre Gassendi (who supported the
Galilean school of freefall), and Pierre Cazré (who upheld the Jesuit
school). From 1642 to 1646, these two Pierres kept a long written
correspondence of courteous defamation. It unfolded roughly as follows.

Gassendi (1642) set out to show, among many other things, that
the Galilean law of freefall was a consequence of the impellent force
of air, combined with the attractive force of the earth. Cazré (1645a)
responded to Gassendi with a scathing criticism of the Galilean school.
In this letter, Cazré described a balance experiment with which he
claimed to have verified the Jesuit law. Gassendi (1646) shot back with
a meticulous response to Cazré’s critique, and Cazré (1645b) replied
with a counter-argument6. And the exchange could have continued,
had Gassendi not withdrawn.

Part of the curiosity of the episode is that, although one might have
expected a simple experiment to provide quick resolution of the contro-
versy, such an experiment was not soon to arrive. Both Gassendi and
Cazré described experiments that they claimed would allow anyone to
verify their respective views. Each decried that the other’s experiments
as fallacious. So, little progress was made by either Gassendi or Cazré
on the empirical front.

On the other hand, the problem was an excellent candidate for
pure theoretical resolution. Both Gassendi and Cazré agreed about one
substantive physical fact: if the velocity of a body is uniform, then

v2

v1

=
d2

d1

t1
t2

. (3)

This law is easy to verify experimentally. Perhaps that’s why Gassendi
and Cazré managed to agree. Perhaps it was simply because this law
was as old as the Physics of Aristotle, or because it enjoyed the ir-
refutable status of what Lakatos called the ‘hard core’ of a research
program. Either way: the uniform velocity law provided a hopeful
starting point for the theoretician. Any argument that assumed noth-
ing more controversial than Equation (3) would be sure to convince
members of both schools of freefall. In what follows, we will see that
this is exactly the rhetorical strategy that Fermat pursued.

6 This debate has been discussed in detail by numerous authors; see (Clark, 1963),
(Drake, 1975b), (Galluzzi, 2001), (Palmerino, 2002), (Palmerino, 2004).
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2.4. Galileo’s ‘Very Clear Proof’

Could the Jesuit law be disproven, without assuming the Galilean law?
Could it be disproven without assuming anything more controversial
than the uniform velocity law? (Take a moment to try this before you
read on – it’s easier said than done!) Galileo seemed to think so, and
provided a notorious sketch of a proof in the Two New Sciences:

Sagredo: That the falling heavy body acquires force in going, the
speed increasing in the ratio of the space... appear to me as propo-
sitions to be granted without repugnance or controversy.

Salviati: And yet they are as false and impossible as that motion
should be made instantaneously, and here is a very clear proof of it.
When the speeds have the same ratio as the spaces passed or to be
passed, those spaces come to be passed in equal times; if therefore
the speeds with which the falling body passed the space of four
braccia were the doubles of the speeds with which it passed the
first two braccia, as one space is double the other space, then the
times of those passages are equal; but for the same movable body
to pass the four braccia and the two in the same time cannot take
place except in instantaneous motion. (Galilei, 1974, 160.)

Salviati’s response to Sagredo would appear to stretch the meaning
of ‘very clear proof.’ The second part is not so bad: if all spaces really
were passed in equal times during freefall, then one might be able to
conclude that freefall would be instantaneous (more on this in Section
3). But why should we believe that, if the Jesuit law of freefall is true,
then all spaces are passed in equal times in freefall? Galileo leaves this
problem to his readers.

Galileo’s readers did not generally find an answer forthcoming. Marin
Mersenne raised early doubts, as we have discussed above. But many
modern commentators have also found themselves at a loss. Indeed,
some have suggested that Salviati’s terseness is simply a “trait de
plume,” or even that Galileo was committing the novice error of “ap-
plying the law of uniform motion to a motion which is not so”7.

The most compelling of all such speculations was given around 1646,
with the entrance of a third Pierre into the debate. Pierre Fermat agreed
that Galileo’s conclusion remained “undemonstrated,” but suggested
that Galileo might actually have had a correct proof in mind8. Fer-
mat wrote down what he thought Galileo meant in a lengthy letter to

7 “Précisons que l’erreur de Galilée consiste à appliquer la règle des mouvements
uniformes à un mouvement qui ne l’est pas” (Mersenne, 1973b, 250).

8 Sed concedatur, si placet, viro perspicaci et Lyncaeo indemonstrata conclusio,
dummodo sit vera (Fermat, 1894, 268).
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Gassendi. At the end of the letter, Fermat implored Gassendi: “dismiss
any troubles from Cazré or any other adversary of Galileo, as well
as the innumerable volumes that might crop up, which by a single
demonstration will be either refuted or proven useless and superfluous,
by the confessions of the authors themselves”9. It was a bold suggestion.
In the next section, we’ll get to the bottom of Fermat’s argument.

3. How Fermat Picked The Ball Up

Let’s begin with a wide-angle overview of the proof. I’ll then follow
through on my promise, to show how Fermat’s result hinges on a
physical insight and a mathematical insight. Next, I’ll run through
a step-by-step review of Fermat’s proof, in order to understand the
machinery of how it works. Finally, we’ll turn to some of the objections
that Fermat’s contemporaries might have given.

3.1. Fermat’s Proof: A Wide Angle View

In a debate between two incompatible empirical laws, Fermat proposed
a theoretical resolution. How can such an argument be carried out? One
way to do it is to show that one of the two empirical laws contradicts
something that everybody accepts. This was the core of Fermat’s ar-
gument: although it’s not obvious, the Jesuit law of freefall actually
contradicts the law of constant velocity10. Here’s a wide-angle view of
how the argument runs.

Fermat’s proof has a two-step structure, which superficially follows
Galileo’s ‘very clear proof.’ The first step shows that the Jesuits are
committed to the claim that a falling body travels different distances in
the same amount of time. The second step argues that as a consequence,
motion in freefall occurs instantaneously. Like Galileo, Fermat takes
this result to be absurd. So, he concludes by reductio that the Jesuit
law of freefall is false.

Both of Fermat’s two main insights went into the first part of the
proof, and it’s the trickiest part of the argument. Fermat began with
an arbitrary geometric sequence of segments11, drawn along the path
traveled by a falling body (Figure 1a below). He then considered time
required for a freely falling body to traverse any two consecutive lengths

9 “ne tibi in posterum facessat negotiuim aut Cazraeus aut quivis alius Galilei
adversarius, et in immensum excrescant volumina, quae unica demonstratione, vel
fatentibus ipsis auctoribus, aut destruentur aut inutilia et superflua efficientur”
(Fermat, 1894, 276).

10 That is, that velocity is proportional to distance/time.
11 A geometric sequence is one in which the ratio of successive terms is constant.
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in the sequence, say AB and BC. Fermat was then able to prove the
following: “The time for the accelerated motion through AB is therefore
not less than the time for the accelerated motion through BC; but
neither is it greater...; therefore it is equal”12. In short: a freely falling
body traverses each segment in the sequence in the same amount of
time.

The second part of the proof was comparatively easy. There, Fermat
showed that the first step implies instantaneous motion. To see why, he
simply noted that a finite interval can contain as many segments of a
(converging) geometric sequence as you want. So, if the time required
to traverse each of these segments is finite and non-zero, then a freely
falling object will require an arbitrarily long amount of time to traverse
the entire finite interval. Fermat thus concluded that the interval is
traversed in no time at all.

In sum: Fermat showed that the Jesuit law of fall implies an absurd
conclusion, that motion in freefall can occur instantaneously.

Mahoney has given a lovely overview of Fermat’s steps, pointing
out that the proof “rests on the clever use of continued proportion”
(Mahoney, 1973, 387). But one would like to dig more deeply into the
machinery of Fermat’s proof. What was Fermat’s physical insight? And,
if ‘continued proportions’ were his main mathematical tool, then how
did he use them?

Fermat’s physical insight was to use facts about uniform velocity to
place upper and lower bounds on the velocity of a falling body. I call this
insight physical, because it’s the only step in the argument that makes
use of an empirical assumption: the law of uniform velocity. Fermat’s
mathematical insight was, as Mahoney suggests, to make use of con-
tinued proportions, known today as geometric sequences. In particular,
Fermat used facts about these sequences to ‘tighten’ his upper and
lower bounds on the velocity of a falling body. Indeed, the tighter these
bounds were made, the closer they got to approximating the continuous
acceleration of a falling body. The details of these techniques are the
subject of the next two subsections.

3.2. Physical Insight

Fermat’s central physical insight is easy to overlook, buried deep in
lengthy mathematical prose. Even worse, Fermat introduces the upper
and lower bounds at different points in the proof, and does so with very

12 Non ergo tempus motus accelerati per AB est minus tempore motus accelerati
per BC; sed nec majus, ut supra demonstratum est : ergo est aequale (Fermat, 1894,
274).
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Figure 1. (a) A geometric sequence FA, FB, FC, . . . , set out along the path of a
falling body. (b) Three bodies in motion: B is in freefall, while B+ and B− move
with constant velocity v+ and v−, respectively.

little discussion. So, let’s begin with a clearer illustration of the basic
idea.

Fermat considers a vertically standing segment AR of length d, with
R toward the top. Suppose that a body B is dropped somewhere above
AR, accelerates downward in freefall, and traverses AR in a certain
time t. Let’s say that B has initial velocity v− when it gets to R. We’ll
say it has final velocity v+ by the time it gets down to A.

Next, Fermat asks us to consider the “imaginary motions”13 of two
more bodies, B− and B+. Neither of these two bodies are in freefall.
Instead, Fermat takes that initial velocity v−, and imagines the body
B− moving with constant velocity v− across AR. Let’s say that B−

traverses AR in time t−. Similarly, Fermat takes the final velocity v+,
and imagines the body B+ moving with uniform velocity v+. Let’s say
it traverses AR in time t+. The situation is illustrated in Figure 1b
above.

The interesting fact about this construction, Fermat says, is that
“the time [t] for the accelerated motion through AR is less than the
time [t−] for the uniform motion through AR with the velocity at R

13 motus fictitii (Fermat, 1894, 272).
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[v−]”14. This provides him with an upper bound on the time t for the
accelerated body B to cross the segment. Similarly, he concludes that
the time for the accelerated motion “is greater than”15 the time t+.
This provides him with a lower bound. In summary:

t+ ≤ t ≤ t−. (4)

This simple insight is the key to Fermat’s result. He has in effect taken
a quantity that people disagreed about (time elapsed in accelerated
freefall), and bounded it using quantities that everyone agreed about
(time elapsed in uniform motion). Notably, this strategy is much in
the spirit of the Archimedean double-reductio, which often sought to
calculate controversial quantities like areas under curves, by bounding
them with more tractable shapes like rectangles (Archimedes, 1912,
e.g., 251-252).

Let’s now take this a step further. The bounds stated in Equation
(4) certainly make intuitive sense. But suppose an objector were to
challenge these inequalities. Could any further justification be given?
Curiously, Fermat suggests the further justification is that “by the
hypothesis, the velocity would continually increase from R to A”16.
What does Fermat mean here?

I suggest we adopt two interpretive views of Fermat’s claim. First,
let’s assume Fermat is using “the hypothesis” in the same way that he
uses it throughout proof: to refer to the reductio hypothesis, the Jesuit
account of freefall. Second, let’s take the phrase “continually increase”
[crescat] to mean increase whenever distance and time increase. (This
is similar to what we now call a monotonic increase). These two in-
terpretations are certainly plausible. But they are also fruitful, in that
they allow us take Fermat’s suggestion seriously, and deduce Equation
(4) from the Jesuit law of freefall. This derivation can be carried out
in two steps.

First, let’s see how Fermat can get ‘continually increase’ from the
Jesuit law. We can take the ‘increasing’ part for granted, since no one
believed that an object slows down once released into freefall. More
interestingly, observe that the Jesuit law of freefall

v2

v1

=
d2

d1

,

14 Sed tempus motus accelerati per AR est minus tempore motus per AR uniformis
juxta velocitatem in R (Fermat, 1894, 271).

15 est majus (Fermat, 1894, 274).
16 cum enim a puncto R usque ad punctum A perpetuo, ex hypothesi, velocitas

crescat (Fermat, 1894, 271).
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implies immediately that if d1 < d2, then v1 < v2. So the Jesuit law
does indeed come with an assumption of monotonicity or ‘continual
increase’ built in.

Figure 2. If the velocity of B increases monotonically, then the requirement that
the areas under these three curves be equal guarantees that t+ < t < t−.

Next, consider what a ‘continual increase’ means in the example of
three bodies in motion (B, B+ and B−). All three of these bodies are
imagined to traverse a particular, vertically oriented segment of length
d. They arrive at the top of the segment at the same time (let’s say
t0 = 0), and proceed to move down it. In particular, B, B+ and B−

traverse the segment in times t, t+ and t−, respectively. Their motions
are illustrated in Figure 2.

Now, the path of the falling body B can be drawn almost arbitrarily,
since we know little about how its velocity is changing. However, we
do know that its velocity will ‘continually increase’ over distance and
time. However, each of the three bodies travel the same distance d.
So, no matter how much time each one requires to make the trip, they
will all have the same area under the curve (as illustrated). Given this
constraint, it’s easy to deduce the bounds given by Equation 4 from
Figure 2. If t+ were any greater than t, then the area under B+ would be
greater than the area under B. That’s impossible, so t+ ≤ t. Similarly,
t− < t is only possible if the area under B is greater than the area
under B−. So it must be that t− > t.

These graphs offer a convenient way to illustrate how the bounds
in Equation (4) follow from the Jesuit law, as Fermat suggested. How-
ever, one must remember that this is almost certainly not the way
that Fermat made the argument. (For example, it is unlikely that he
thought of distance as area under a curve.) On the other hand, one
can check that an isomorphic argument is available using only simple
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algebra17. So although Fermat left us sparingly little to work with, this
reconstruction may offer a glimpse into the kind of argument he had in
mind.

Fermat’s physical insight, in summary, is that bodies moving with
constant velocity can provide upper and lower bounds on the time that
elapses during accelerated freefall. These bounds make intuitive sense,
but they also follow directly from the Jesuit law (and, incidentally, from
the Galilean law as well). So the force of this insight would have been
felt by both schools of freefall.

Of course, to get a more precise fix on the time t of the freely falling
body, one would like to squeeze these upper and lower bounds as close
together as possible. Fermat chose to do this using a mathematical
construction of which he was a master: the method of constant pro-
portions. Fermat’s use of this construction is the subject of the next
section.

3.3. Mathematical Insight

Recall again the Jesuit law of freefall: for a falling body that begins at
rest,

v2

v1

=
d2

d1

. (5)

This claim is formulated in terms of ratios. So, in order to apply
Fermat’s upper and lower bounds on time in freefall, the bounds con-
structed in the discussion above must also be formulated as ratios. This
is achieved by simple division. If t1 and t2 are the times a falling body
takes to travel two respective distances d1 and d2, then it follows from
Equation (4) that

t+2
t−1

≤
t2
t1

≤
t−2
t+1

.

By the uniform velocity law, this in turn implies that

d2

d1

v−1
v+
2

≤
t2
t1

≤
d2

d1

v+
1

v−2
. (6)

But there is a problem. Equation (5) is supposed to hold for a
falling body that begins at rest, v− = 0 (remember, v− is the minimum
velocity of the falling body on a given interval). In this case, (6) implies
the trivial result that

0 ≤
t2
t1

≤ ∞. (7)

17 Define v̄ := d/t, the average velocity of the falling body on the interval. Since v
is continually increasing, v− ≤ v̄ ≤ v+. Therefore, d/t− ≤ d/t ≤ d/t+, which implies
that t+ ≤ t ≤ t−.
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These bounds are not very informative; they are in a sense ‘infinitely
wide.’ Fermat’s strategy is thus to ‘tighten’ them as much as possible,
through the clever manipulation of geometric sequences. Here is the
mathematical trick that is the basis for this strategy.

Consider a body that falls from rest at a point F , down to a point
A. Divide this interval FA up into segments by marking off the points
B through E, such that the sequence

FA, FB, FC, . . . (8)

is set out in constant proportion. Following (Euclid, 1956)[books XIII-
IX], a sequence is in constant proportion if the ratio of any two con-
secutive terms in the sequence is fixed (i.e., the sequence is geometric).
Fermat draws particular attention to one property that the elements of
such a sequence share: “their differences will be in the same ratio”18.
What he means is that for any two terms in the sequence, say FA and
FB,

FA

FB
=

FA − FB

FB − FC
=

BA

CB
(9)

Fermat states this claim without argument, but it has a simple
proof19. This property is evidently important to Fermat, as it is the
only mathematical fact that he sets apart as a separate proposition in
his letter. Indeed, it’s really the mathematical heart of Fermat’s proof.
The fact allows Fermat to construct a new, finer geometric sequence,

BA, CB, DC, . . . ,

which by Equation (9) is in the same constant proportion as the original
sequence. The construction is illustrated in Figure 3. Here are the two
reasons it’s so important in Fermat’s argument.

First, a falling body that begins at F has non-zero velocity on every
segment of this construction. So, since v− $= 0 on the segments, we’ll
get finite (instead of ‘infinitely wide’) bounds on the time it takes a
body to fall across them. Indeed, as we’ll see in the next subsection,
if we imagine a body with constant velocity that increases in discrete
‘jumps,’ then we can get bounds on this time that are as tight as we
want.

18 earum intervalla erunt in eadem ratione (Fermat, 1894, 268).
19 Suppose a1/b1 = a2/b2 = · · · = an/bn. Then for any i, anbi = bnai. Summing

over i, it follows that

nbn(a1 + a2 + · · · + an) = nan(b1 + b2 + · · · + bn).

Therefore, for any i,
a1 + a2 + · · · + an

b1 + b2 + · · · + bn
=

an

bn
=

ai

bi
. (10)
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Second, this new construction is nothing more than a scaled-down
copy of the original20. It is the combination of this fact with with the
Jesuit law of freefall that is the central step in Fermat’s reductio. Fermat
calls his construction as a “sub-proportion”21. But for our purposes, it
is more appropriate to call it the scaled-down sequence with respect to
the original. The significance of this is that we can substitute the ratio
of two segments of a geometric series interchangeably with the segments
of a scaled-down sequence, since scaled-down sequences preserve ratios
of terms.

Figure 3. A geometric sequence FA, FB, FC, . . . , has a corresponding ‘scaled-down
sequence’ AB, BC, CD, . . . .

To recap: in the last subsection, I claimed that Fermat’s physical
insight was to set particular bounds on the time it takes a freely falling
body to traverse an interval. I’ve now suggested that his mathematical
insight was to construct a scaled-down sequence along that interval, in
order to tighten the bounds. It’s now time to see precisely how these
insights work together in Fermat’s proof.

3.4. The First Step: Equal Times

Fermat begins by asking us to imagine a body released at a point F ,
which accelerates in freefall down to a point A. As described above,
Fermat constructs a sequence FA, FB, FC, . . . in constant proportion

20 Just take any geometric sequence 〈aki〉; Fermat’s new sequence 〈aki − aki−1〉
= (1 − 1/k)〈aki〉 is just the original sequence scaled by a factor of (1 − 1/k).

21 proportio sub (Fermat, 1894, 270).
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along the path of this falling body. He states his goal: “We will demon-
strate first that the spaces CB, BA are traversed in the same time,
given the supposition [i.e., the Jesuit law] about their motion”22. In
other words, Fermat will deduce in this first step that the Jesuit law
implies that

tBA

tCB

= 1.

Figure 4. A body falls from F to A. The segments AR, RM , MN , . . . form a
geometric sequence, of which AB, BC, CD, . . . is a subsequence.

This step makes use of an Archimedean double-reductio. Fermat first
shows that tBA/tCB $> 1, and then shows that tAB/tBC $< 1. Since both
halves of the reductio follow exactly the same steps, let’s just review
the first half.

Suppose, for the purposes of reductio, that tBA/tCB > 1. Fermat
begins by embedding the original sequence FA, FB, FC . . . , in a new
sequence FA, FR, FM, . . . , as shown in Figure 4. Call the ratio of
consecutive terms in the new sequence ρ (= FA/FR). Then since ρ can
be made arbitrarily close to 1, the sequence can always be constructed
so as to have the property that

1 < ρ <
tBA

tCB

. (11)

Fermat remarks, “Who doesn’t see that this will indeed occur out of
necessity, even from a single term, this operation having been iterated
as often as need be?”23 – but he does not prove the claim24.

That’s the basic construction. Now, here’s the trick. We’ve con-
structed a new sequence of segments, with the ratio of consecutive
segments ρ < tBA/tCB. But as we discussed above, Fermat had the

22 Demonstrabimus primo spatia CB, BA eodem tempore in supposito motu
percurri (Fermat, 1894, 269).

23 quod quidem necessario eventurum, vel ex sola mediae inventione ejusque
iterata, quoties opus fuerit, operatione, quis non videt? (Fermat, 1894, 270).

24 However, Fermat’s remark does suggest a simple proof. We must show that any
geometric sequence 〈aki〉 can be embedded in a finer sequence 〈ahi〉, with the ratio
of consecutive terms ρ = ahn+1/ahn = |h| as close to 1 as we like. But 〈aki〉 can
be embedded in any sequence 〈ahi〉, as long as h = k1/n. So we can just check, for
a given n, if |h| is small enough. If it’s not, then we can increase n, which has the
effect make h closer to 1. Therefore, by iterating this procedure ‘as often as need
be,’ we can make |h| be as close to 1 as we like, and thus less than tBA/tCB .
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physical insight to see that the law of uniform velocity restricts the
fraction on the right. In particular, we know that

tBA

tCB

<
t−
BA

t+
CB

. (12)

Fermat’s trick is to show that, if the Jesuit law is true, then the right
side of the inequality is less than ρ. This would imply the left side of
the inequality is also less than ρ. And that contradicts Equation (11),
completing the reductio.

So, how does Fermat get this result out of the Jesuit law? Recall our
notation from the previous sections: v−

I
and v+

I
are the minimum and

maximum velocities of a falling body on an interval I. And t−
I

and t+
I

are the times that would be required for bodies traveling with uniform
velocity v−

I
and v+

I
to traverse the interval. Then Fermat’s argument

can be summarized:

t−
RA

t+
OB

=
RA

OB

v+
OB

v−
RA

(by the uniform velocity law)

=
RA

OB

vB

vR

(by definition of v+ and v−)

=
FA

FB

vB

vR

(substituting the ‘scaled-down’ sequence)

=
FA

FB

FB

FR
(by the Jesuit law of freefall)

=
FA

FR
= ρ (by the definition of ρ).

But then, as Fermat observes, “the time for the accelerated motion
through AR is less than the time [t−

RA
] for the uniform motion through

AR with the velocity at R [v−
RA

]”25. A similar upper bound can be
placed on the time for the accelerated motion through each of the other
intervals. Therefore, Fermat concludes,

tBA

tCB

<
t−
RA

+ · · · + t−
BN

t+
OB

+ · · · + t+
CX

. (13)

In effect, Fermat has shown how uniform acceleration across an interval
is bounded from above, by uniform motion that increases in discrete
‘jumps’ across each of the intervals RA, MR.... It follows immediately
that since each t−/t+ is equal to ρ,

t−
RA

+ · · · + t−
BN

t+
OB

+ · · · + t+
CX

= ρ.

25 Sed tempus motus accelerati per AR est minus tempore motus per AR uniformis
juxta velocitatem in R (Fermat, 1894, 271).
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But, combining this result with Equation (13), we have now shown that

tBA

tCB

≤ ρ.

That contradicts Equation (11). So by reductio, tBA/tCB $> 1.
Exactly the same kind of argument can be used to complete the

other horn of the reductio, and show that tBA/tCB $< 1. Thus, we have
by double-reductio that tBA = tCB. Indeed, this argument can be made
for any pair of consecutive intervals in the sequence, BA, CB, DC, . . . .
So, Fermat concludes, as a body falls freely from F to A, the Jesuit
law implies that “each and every one of the spaces is traversed in the
same time”26.

3.5. The Second Step: Instantaneous Motion

Figure 5. A body at rest at A falls down to a point K. The sequence KH, HG, GF
is a geometric sequence that converges before getting to A.

Fermat’s second step is comparatively easy. Here, one simply shows
that the above conclusion leads to an absurdity: that motion in freefall
is instantaneous. Fermat begins by imagining a body falling from rest
at a point A down to a point H, and then continuing further down to
a point K (Figure 5). We are instructed to assume, for the purposes
of reductio, that this motion “does not in fact occur instantaneously,”
but that it “will require a certain definite time”27. Then there is some
integer n such that

(n)tHK > tAH . (14)

As before, Fermat now constructs a geometric sequence in which the
first term is KH, the second term is HG, and so on. But this time,
he must suppose in addition that the first n + 1 segments of the series
HG+GF +FE+ · · · sum to less than the length of HA (where Fermat
has assumed the fact discovered by Archimedes that a geometric series
can converge). Now, by the first step of Fermat’s proof, the falling body
takes the same amount of time to traverse these n+1 of these segments.
So if HB is the union of the n + 1 segments, then the time it takes the
falling body to traverse all of them is

tHB = (n + 1)tHK . (15)

26 omnia omnino spatia eodem tempore percurri (Fermat, 1894, 275).
27 Si enim motus per HK non fiat in instanti, fiet in tempore aliquo determinato

(Fermat, 1894, 275).
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Substituting equation (15) into (14), we now get that

n

n + 1
tHB > tHA ⇒ tHB > tHA.

Fermat thus writes that, “a fortiori, the time of the motion through
HB is greater than the time of the motion through all of HA, which
is absurd”28. Having produced an absurdity, Fermat now finally rejects
the reductio hypothesis, and infers that the Jesuit law implies that
freefall occurs instantaneously. He concludes: “Thus, the assertion of
Galileo is true, even though he did not himself demonstrate it”29.

3.6. Objections

Drake wrote that “There is no getting around Fermat’s argument in
support of Galileo’s position” (Drake, 1989, 75). That is certainly cor-
rect from a modern perspective, since we now know that Galileo was
right and the Jesuits were wrong. But from a more historically sensitive
perspective, Drake’s conclusion here is a bit too hasty.

Fermat deduced an absurdity, as Galileo indicated was possible, by
assuming (i) the Jesuit law of freefall; (ii) the law of uniform velocity;
and (iii) the validity of a set of mathematical techniques. By reductio,
one of these assumptions must be rejected. Fermat chose to reject the
Jesuit law. But an objector might just as well reject one of his other
assumptions, and thus ‘get around’ Fermat’s purported vindication of
the Galilean school. But would any of Galileo’s contemporaries have
been willing to reject one of these assumptions? I will argue in defense
of Drake, that although there are ways to get around Fermat’s result,
none of them are reasonable options for any of Fermat’s contemporaries.

The law of uniform velocity was simply too well established in
Fermat’s time to have been objectionable to anyone. So the only real
target available to an objector was option (iii), Fermat’s mathematical
techniques. Of course, most of these techniques were Euclidean and
uncontroversial. But Fermat might have heard some complaints about
what appears to be ‘infinitary reasoning’ in his argument. In the 17th
century, the many methods of ‘indivisibles’ and of ‘infinitesimals’ were
only just beginning to be understood. They were often viewed with
distrust, as these methods appeared to be wrought with paradoxes.
Galileo himself, even in his later work, urged caution in considerations
of the infinite, when “paradoxes are at hand” (Galilei, 1974, 28). These

28 ergo a fortiori tempus motus per HB tempore motus per totam HA est majus.
Quod est absurdum (Fermat, 1894, 275).

29 Ergo vera remanet Galilei illatio quamvis eam ipse non demonstrarit
(Fermat, 1894, 276).
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were matters of serious concern to potential objectors, and so there are
at least two parts of Fermat’s proof that might have been deemed worri-
some. The first worry, I think, is a clear red herring; it only superficially
appears to deal with the infinite. The second worry is less superficial;
however, I argue that an easy modification of Fermat’s argument would
have been accepted even by mathematical conservatives.

The first worry comes in Fermat’s conclusion to his first step. Here,
Fermat writes,

the time for the accelerated motion through CD is equal to the
time for the accelerated motion through AB, and to the time for
the accelerated motion through BC, and continuing the reasoning,
if desired, to the infinite, each and every [omnia omino] one of the
spaces is traversed in the same time30.

While the language ‘omnia omnino’ might have sent up warning flags
for some critics of ‘infinite quantities,’ Fermat never actually uses this
claim about the infinite in any quantitative way. Recall that this claim
only gets used in the second step, when Fermat picks out n+1 segments
in a geometric sequence (where n is finite), and concludes that they
are all traversed in the same amount of time. Thus, although Fermat’s
language here is suggestive of infinity, his reasoning is not.

The second worry is somewhat more interesting. This is about the
assumption that a geometric series can converge. Fermat assumes here
that, given any finite interval AK, a geometric sequence exists that
begins with a particular segment HK, and can be continued through
arbitrarily many terms without every reaching A (as in Figure 5 above).
Fermat does not explain why this assumption should be true. So it
appears that an objector is free to complain that Fermat is making
illegitimate use of infinitary reasoning: he has claimed that a particular,
infinite geometric sequence can occupy a finite length.

However, there are two responses available to Fermat. First, infinite
geometric sequences would hardly have constituted ‘fringe’ calculations
using infinity. Indeed, the notion of a convergent geometric series played
a central role in Archimedes’s well-known letter on the quadrature
of the parabola (Archimedes, 1912, Proposition 23-24). So this objec-
tion would perhaps only have held sway among extreme mathematical
conservatives.

But in fact, Fermat’s position was even stronger. Even if Fermat
grants this worry, there appears to be an easy modification of Fermat’s
proof that avoids this ‘infinitary assumption’ altogether. Go back to

30 Eadem ratione patet tempus motus accelerati per CD aequari tempori motus
accelerati per AB, et tempori motus accelerati per BC, et, continuatis, si placet, in
infinitum rationibus, omnia omnino spatia eodem tempore percurri (Fermat, 1894,
275).
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end of the first step, in which Fermat showed that a falling body takes
the same amount of time to traverse any two lengths in a geometric
sequence. One immediate consequence is that any two lengths at all
are traversed in the same amount of time in freefall.

To see why, let a1 be an arbitrary length, which is the first element
in some geometric sequence. Any two segments in this sequence are
traversed in the same amount of time, according to Fermat’s first step.
Moreover, all the elements are determined as soon as we choose a2.
But a2 can be any arbitrary length. Therefore, any arbitrary length
is traversed in the same amount of time as a1. So, since a1 was also
chosen arbitrarily, any two lengths are traversed by a falling body in
the same amount of time.

Now, in particular, we can conclude that any two halves of a unit
segment are traversed in the same amount of time as the segment
itself. Therefore, 2t = t, a contradiction. This argument is obviously
much easier than the one that Fermat actually gives in his second step.
Furthermore, it seems to avoid any possible worries about infinitary
reasoning. I can only speculate that Fermat took a more complicated
route because he wanted to do more than disprove the Jesuit law: he
wanted to prove Galileo’s suggestion down to the very letter.

Thus, it seems that Drake was almost correct. There appears to be
just one serious objection that could have been leveled against Fermat’s
construction of a convergent geometric series. But as it turns out, that
part of the argument could have been avoided altogether. So the would-
be objector to Fermat’s result would not have gotten very far.

4. Conclusion

The debate between the Jesuit and the Galilean schools of freefall was
eventually settled empirically, as Newtonian mechanics began to amass
evidence at the end of the 17th century31. But remarkably, Fermat
managed to produce solid evidence in favor of the Galileans, indepen-
dently of any empirical discovery, by proving that the Jesuit account
was inconsistent. We have now seen that this unlikely result required
only a very simple insight into the physics of falling bodies, together
with some very clever mathematical techniques. It is only unfortunate
that the density of Fermat’s argument seems to have prevented it

31 It’s not clear precisely when the Galilean law of freefall definitively gained
widespread acceptance. While still controversial in the 1640’s, it was treated as an
established fact in the (1673) Horologium of Huygens. Understanding the evapo-
ration of the conflict over this 30-year period appears to be an open project for
investigation.
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from drawing much commentary. Gassendi, the original recipient of
Fermat’s letter, never responded to Fermat’s argument in print. Fer-
mat apparently made no efforts to further publicize his work. And
so Fermat’s contemporaries, as well as modern scholars, seem to have
largely ignored this curious little argument.

This kind of historical episode suggests some care be taken in our
philosophical accounts of confirmation and theory change. Certainly,
a picture in which empirical claims are measured only by their ability
problem-solve or determine research agendas would be too blunt32. As
we have seen, Fermat’s refutation of the Jesuit law followed a different
strategy. Fermat’s proof made a connection that wasn’t obvious: that
the Jesuit characterization of freefall contradicts the law of uniform
velocity. This theoretical solution was enough to settle an empirical
debate – a result that I hope both historians and philosophers of science
might find of interest.

5. Acknowledgements

I would like to thank Paolo Palmieri for many stimulating discussions
during the development of this work.

References

Archimedes: 1912, The Works of Archimedes. New York: Dover.
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