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Abstract

The paper puts forward a theory of historical modalities that is
framed in terms of possible continuations rather than possible worlds
or histories. The proposal is tested as a semantical theory for a lan-
guage with historical modalities, tenses, and indexicals.

1 Motivations

Possible histories/worlds are philosophically demanding. They are posited
to analyze either our modal discourse or indeterminism, or both. To qualify
for this task they must be in some sense real, but in which sense exactly?
Theoreticians of possible worlds/histories face a further problem of individu-
als: does an individual have counterparts in other possible worlds/histories,
or does an individual have parts contained in those worlds/histories? Still
further, if our world is indeterministic, the notion of ‘actual history’ does
not seem to be legitimate. A related complaint is that we do not have epis-
temic access to histories, as these are differentiated by the minutest details,
which might be located in a remote future. In contrast, possible continua-
tions of events, or of stages of objects, appear to be innocuous as they are
local and (can be thought of as arbitrarily) small. And our talk of possi-
ble continuations seems to be a natural translation of claims like: “I can sit
but I can stand up as well”. That is translated as: “There are two possible
continuations of my present stage, in one I sit and in the other I stand”.

∗The paper owes very much to Nuel Belnap’s hints, corrections, suggestions and com-
ments. It was written during my visit to the Department of Philosophy at the University
of Pittsburgh in February 2009. The visit was made possible by the Jagiellonian University
WRBW grant and the MNiSW grant nr. 3165/32. For comments and useful suggestions I
am also very grateful to Jacek Wawer and the audience of the Trends in Logic conference,
Brussels, December 2008.
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There is also a theoretical concern motivating a search for a notion al-
ternative to that of history. In the branching space-times of Belnap (1992)
(henceforth BST 1992), two events do not belong to one history, if they do
not have a common upper bound, where the ordering is defined in terms of
light cones. In general relativity, even simple solutions (like Schwarzschild’s
solution) contravene this postulate as they allow for two events to be lo-
cated in one space-time with no event above both of them. As a result, from
the BST’s (1992) perspective, a general relativistic (individual) space-time
of this kind is viewed as a collection of possible histories. Finally, small
and local objects like continuations fit the spirit of branching theories better
than structures as large as histories. I take these motivations as sufficiently
serious to attempt a refurbishment of BST theories.1 The paper aims at
two goals: to construct a theory of possible branching continuations (BCont)
and to show that it can serve as a semantics for a language with indexicals,
historical modalities, and tenses. The further task of investigating whether
the proposed theory can accommodate insights of general relativity is left for
some later project.

2 Mini-histories rather than histories

In this section we assume rudiments of any branching theory: non-empty set
W partially ordered by 6, with the usual interpretation. That is, W is the set
of possible point events, and e 6 e′ means that e′ lies in a possible future of
e. Possible continuations of events should generalize elementary possibilities
open at events of BST 1992.2 In an intended model of BST 1992 histories
are copies of Minkowski space-time. Two histories splitting at a single choice
event e have separate future light-cones of e. The events that are space-like
related to e or are in the past light-cone of e belong to the overlap of the
two histories – see Figure (1). Notably, with the exception of e itself, events

1By BST theories I mean, in the first place, N. Belnap’s (1992) theory, but also some
of its close kin, like Kowalski and Placek (1999) or Placek (2002).

2In BST 1992 an elementary possibility open at event e is some particular subset
P of the set H(e) of histories passing through e; since possible continuations of e are
naturally thought as occurring above e, it is better to identify continuations with sets
of particularly located events than to identify them with sets of histories. In this vein,
a continuation C corresponding to elementary possibility P open at e can be defined as
C = {x ∈

⋃
P | e < x}. Somewhat simpler, in Kowalski and Placek’s (1999) framework

continuations of e can be identified with the so-called atomic outcomes of e. In both
frameworks, however, continuations are history-dependent, and hence will not do for the
present purpose.
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Figure 1: A BST 92 model with two histories h1 and h2, splitting at a single
point e. The green area indicates where h2 diverges from h1. Note that no
events on the future light-cone of e belong to the overlap but e is in the
overlap.

on the future light-cone of e do not belong to the overlap. This consequence
of axioms of BST 92 permits a fruitful distinction between chanciness and
indeterminism without choice. That is, an interval (i.e., a dense chain) joining
an event in the overlap and some event above a choice event has different
topological features, depending on whether or not it contains the choice event
in question. In generalizing BST 92 we aim to retain this feature, and hence
the above distinction.

A glimpse at a BST 92 model might suggest that x and y belong to a
continuation of e provided there is a V-like link above e, joining x and y. In
symbols, ∃z ∈ W : e < z ∧ z 6 x ∧ z 6 y. Yet, some events lying on the
same future light-cone of e cannot be joined by a V-link above e. We thus
need to generalize V-links to (what we call): snake-links.

Definition 1 (snake-link)
〈e1, e2, . . . , en〉 ⊆ W (1 6 n) is a snake-link iff

∀i : 0 < i < n→ (ei 6 ei+1 ∨ ei+1 6 ei).

A snake-link is above (below) e ∈ W if every element of it is strictly above
(below) e.

Note that a single x above e as well as a chain above e constitute snake-links
above e.

Definition 2 (snake-linked)
For x, y ∈ W , x and y are snake-linked above e, x ≈e y, iff there is a snake-
link 〈e1, e2, . . . , en〉 above e such that x = e1 and y = en.
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Analogously one may define the relations of being snake-linked below e,
being snake-linked not-above e, being snake-linked not-below e, being snake-
linked in a region, etc. For the record, we put down the definition of being
snake-linked in a subset of W :

Definition 3 (snake-linked in a subset of W )
Let W ′ ⊂ W and x, y ∈ W ′. x and y are snake-linked in W ′ iff there is a
snake-link 〈e1, e2, . . . , en〉 such that x = e1 and y = en and ei ∈ W ′ for every
0 < i 6 n.

Clearly, being snake-linked above a point event is a special case of being
snaked-linked in a subset, yet for expository reasons, we present both the
definitions.

Observe now that for any x, y, z > e, the following is true about being
snake-linked above e:

1. x ≈e x;

2. if x ≈e y, then y ≈e x;

3. if x ≈e y and y ≈e z, then x ≈e z.

Perhaps the third property requires an argument. Thus, let x ≈e y and y ≈e z
be true due to the respective snake-links above e, 〈e1, . . . , en〉 and 〈f1 . . . , fm〉.
Since en = f1 = y, the sequence 〈g1, . . . , gm+n〉, such that gk = ek if k 6 n
and gk = fk−n if n < k 6 m + n, is a snake-link above e. Also, g1 = x and
gn+m = z. Hence x ≈e z.

The above properties mean that ≈e is an equivalence relation on set
We = {e′ ∈ W | e < e′}. Accordingly, ≈e induces a partition of set We. We
will write this partition as Πe and call it the set of possible continuations of
e. By Πe〈x〉 (e < x) we will mean the (unique) continuation of e to which
x belongs. Events that have more than one possible continuation are called:
choice events.

Definition 4 (set CE of choice events)
For e ∈ W , e ∈ CE iff card(Πe) > 1.

There is no limitation on the number of possible continuations of events.
Consider now two pairs 〈a,Ha〉 and 〈b,Hb〉, where a, b ∈ W and Ha ∈ Πa,

Hb ∈ Πb. There is a sense in which the two pairs can be consistent. This
occurs if Ha ∩Hb 6= ∅. To generalize the notion of consistency to arbitrarily
large sets of pairs of this sort, we first recall the notion of pointer function.

Definition 5 (set P of pointer functions)
f : W →

⋃
e∈W Πe is a pointer function (f ∈ P) iff ∀e∈W f(e) ∈ Πe.
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We will now say that 〈A, f〉, where A ⊂ W and f ∈ P is consistent iff⋂
e∈A f(e) 6= ∅. A consistent pair of this sort will be called mini-history, or

m-history for short:

Definition 6 (m-histories)
Pair 〈A, f〉 is an m-history iff f is a pointer function with the domain re-
stricted to A ⊂ W and

⋂
e∈A f(e) 6= ∅.

Note that in some cases a pointer function is redundant in specifying a
mini-history, that is, to this end a subset of W is enough. This occurs if
A ⊂ W is upper bounded and no maximal elements of A are choice events.
In this case there is a unique pointer function f|A with the domain restricted
to A that yields a mini-history 〈A, f〉 and which is defined as f|A(e) := Πe〈x〉
for every e ∈ A, where x is an upper bound of A. To see this, assume to
the contrary that for some e′ ∈ A: f(e′) 6= Πe′〈x〉. Since Πe′〈x〉 is a possible
continuation of e′, e′ has at least two possible continuations, i.e., it is a choice
event. Hence it cannot be a maximal element of A. There is thus e′′ ∈ A
such that e′ < e′′. For 〈A, f〉 to be consistent, there must be y such that
y ∈ f(e′) and y ∈ f(e′′). Since y 6∈ Πe′〈x〉, y and x are not snake-linked
above e′. However, since y ∈ f(e′′), e′′ < y and e′′ 6 x, and e′ < e′′, so x and
y are snake-lined above e′. Contradiction.

Do not be beguiled into thinking that m-history is an analog of BT/BST
history. It might be that 〈{a, b}, f〉 is not an m-history for the simple reason
that there is nothing above both a and b, and not because a and b belong to
different continuations of some choice event.

Histories are defined in BT/BST as maximal upward directed subsets of
the base set W . Could these be identified with maximal (in some sense) m-
histories? But do the latter exist? To tackle these queries, let us introduce
an ordering of m-histories:

Definition 7 (ordering of m-histories)
For m-histories 〈A, f〉 and 〈B, g〉, 〈A, f〉 4 〈B, g〉 iff A ⊆ B and g|A = f .

Clearly,

1. 〈A, f〉 4 〈A, f〉;

2. if 〈A, f〉 4 〈B, g〉 and 〈A, f〉 < 〈B, g〉, then A = B and f|A = g|A, and
hence 〈A, f〉 = 〈B, g〉;

3. if 〈A, f〉 4 〈B, g〉 and 〈B, g〉 4 〈C, d〉, then 〈A, f〉 4 〈C, d〉.

To argue for the third clause, by the premises we have A ⊆ B ⊆ C. The
right conjunct in the antecedent further entails d|B = g, from which d|A = g|A
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follows, given the inclusions above. From the left conjunct we have g|A = f .
These results together imply d|A = f , as required.

It follows that 4 defined as above is a partial ordering on the set of m-
histories; further, the set is non-empty as long as the base set W contains
at least two comparable events. This condition, however, follows from the
postulate that there are no maximal elements in W— see the next section.

Having introduced the ordering, we state our claims. (1) In a non-empty
partially ordered set 〈W,6〉, every chain can be extended to a maximal chain
in W , and every upward directed subset of W can be extended to a maximal
upward directed subset of W . The first claim follows from the axiom of
choice, the second is proved via the Zorn-Kuratowski lemma—for the proof,
see Belnap (1992). Accordingly, since a model of the theory of branching
continuations (BCont) is a non-empty partially ordered set subject to some
postulates, it has maximal chains and maximal upward directed subsets of
the base set, i.e., BT/BST histories. (2) Since we postulate that a base
set W has no maximal elements, every model of the theory of branching
continuations has m-histories as well. (3) In some models there will be no
maximal m-histories, and hence the notions of maximal m-history and of
maximal upward directed subset of W (or maximal chain in W ) diverge.

Given the GR solutions for black holes, we recommend working with m-
histories, and not ascribing any ontological significance to maximal upward
directed subsets of base set W . This decline of the role of maximal upward
directed subsets is somewhat reminiscent of how the status of maximal chains
in a base set changes from BT to BST. In BT it is interpreted as a history,
and in BST it has no ontological significance, as histories are identified with
maximal upward directed subsets of W .

It remains to substantiate claim (3). To this end consider the real line <,
naturally ordered. It is a model of BT, with a single BT history, and a model
of BCont (check the axioms below!) with no choice point. Consequently, it
permits only a single pointer function f ∈ P defined as follows: for x in <
f(x) = {y ∈ < | x < y}. Consider now a chain of intervals: [0, 1], [0, 2],
. . . [0, n], . . .. While associated with function f , each such a finite interval
forms an m-history, since 〈[0, n], f〉 is consistent (because there is a real
number above that interval). Yet obviously none of the finite intervals is
maximal, whereas 〈<+f〉 is maximal, but not consistent, and hence not an
m-history.

A BST model exemplifying a similar feature has as the base set the real
plane <2, with Minkowskian ordering.3 This is a BST model with a sin-
gle BST history and a BCont model with no choice events. Hence it per-

3That is, 〈t1, x1〉 6 〈t2, x2〉 iff (t2 − t1)2 > (x2 − x1)2 and t1 6 t2.
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mits only a single pointer function f . Consider now the chain of horizontal
intervals: [e0, e1], [e0, e2], . . . [e0, en], . . ., where e0 = 〈0, 0〉, e1 = 〈0, 1〉, . . .
en = 〈0, n〉, etc., and the first coordinate is temporal and the second–spatial.
Each 〈[e0, en], f〉 is an m-history, and each interval [e0, en], with its common
future added,4 is an upward directed subset of <2. Yet, 〈

⋃
n∈N [e0, en], f〉 is

not an m-history, though
⋃

n∈N [e0, en] with its common future added is an
upward directed subset of <2.

2.1 Axioms

We proceeded heedlessly without paying any attention to postulates of our
BCont theory. Our policy is to refurbish any BST axiom that is violated in
our construction. Here is a result of this policy, a tentative list of postulates.

Definition 8 (model of BCont)
A model of the theory of branching continuations (BCont) is a pair W =
〈W,6〉 that satisfies the following postulates:

1. 〈W,6〉 is a non-empty partially ordered set;

2. the ordering 6 is dense on W ;

3. W has no maximal elements;

4. for every x, y, e ∈ W , if e 6< x and e 6< y , then x and y are snake-linked
in the subset W 6>e := {e′ ∈ W | e′ 6> e} of W (though there might be
many possible continuations, there can be at most one possible anti-
nuation);

5. if x, y ∈ W and W6xy := {e ∈ W | e 6 x∧ 6 y} 6= ∅, then W6xy has a
maximal element,

6. For every x1, x2 ∈ W , if ∀c : c ∈ CE → c 6< xi, then x1 and x2 are
snake-linked in the subset W 6>CE := {e ∈ W | ∀c ∈ CE e 6> c} of W .

Postulates (1)—(3) are like in BST. Clause (4) requires that any two events
that are not above some third event, are snake-linked in the region not-above
e. This intends to enforce a condition analogous to downward closedness of
BT/BST histories which says that if e belongs to history h, then anything
below e belongs to h as well. To see this, observe that we may define possible
anti-nuations of events exactly as we defined possible continuations of events.

4This is the triangle defined by 0 6 t 6 n
2 and | n

2 − x |6| n
2 − t |.
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Clause (4) then guarantees that any event has at most one possible anti-
nuation.5

Condition (5) is to exclude branching without a choice event; it produces
maximal elements of common pasts, which in appropriate cases serve as
choice events. Clause (6) is similar to the BT/BST postulate that all histories
intersect.

Note further that continuations are stable as we have the following simple
consequence of transitivity of ≈e:

Fact 9
For every x, y, x′, y′, e ∈ W , if x ≈e y, x ≈e x

′ and y ≈e y
′, then x′ ≈e y

′.

Thus, if x and y belong to the same continuation of e, any events above e
that are comparable to either x or y, belong to this continuation.

The postulates above enforce a pattern of branching that is similar to the
branching of BST 1992. In this theory, branching histories always require a
choice point which is identified with a maximal element in the overlap of the
histories in question. Also, if c is a choice point of two BST histories, then
the events on the future light cone of c do not belong to the overlap of the
two histories.

Our tactic is to consider two structures, similar to models of BST 1992,
yet violating some of this theory’s axioms as these structures incorporate a
pattern of branching not permitted by BST 1992. Our aim is to show that
they violate the postulates of BCont as well.

To begin, consider two copies of <2, with a selected (cartesian) coordinate
system x, t, and with the Minkowskian ordering – see Figure (2). Let the
two planes be pasted in the overlap of the areas strictly below line t = x and
strictly below line t = −x. This means that the half-lines t = x, t = −x, with
t > 0 are not in the pasted region. In particular, point 〈0, 0〉 is not in the
pasted region. We thus obtain two separate triangular planes, each having
“its” separate zero point at the vertex. To provide a handy name, I will call
them (separate) possible futures, yet a question emerges: of what are these
the futures? There are no choice events in this structure as, for every event
z in the overlap, there is an event strictly above z in the overlap that can be
used to snake-link above z any two events belonging to the separate possible
futures—see Figure (2). Accordingly, z has one possible continuation and
hence is not a choice event. Note, however, that any two events, each from

5The relation of being snake-linked in the subset W 6>e of W is an equivalence relation
on W 6>e. Possible anti-nuations of e are then defined as elements of the partition of W 6>e

by the relation of being snake-linked not-above e.
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Figure 2: A diagram to represent three structures: (1) the vertex 〈0, 0〉 and
events on its future light-cone do not belong to the overlap, (2) as in (1),
with the exception of c that belongs to the overlap, and (3) as in (1), with
the exception of vertex 〈0, 0〉.

a different possible future, are not snake-linked within the union of these
futures.

This structure violates axiom 5. Take two events, e and e′, each from a
different possible future. The common past of e and e′, i.e., the set W6xy,
is non-empty. Yet, since the half-lines do not belong to the pasted region,
there is no maximal element in the common past. This is a contradiction
with axiom 5.

To improve on the first construction, let us consider a seemingly better
structure in which some single event, call it c, is located on one of the half-
lines above the vertex and belongs to the pasted region. Following an analogy
with BST, it seems reasonable to require that no two events, each from a
different possible future, be snake-linked within these futures. We cannot
have this, however.

Pick arbitrary y and z, each from a different possible future. Take then
s1 := sup(c, y) and s2 := sup(c, z). Since we are in <2 with Minkowskian
ordering, the suprema exists. Clearly, y < s1, c < s1, c < s2, z < s2 and each
of these events is within one of the possible futures. This is odd: the futures
are separate, but they are linked by a snake-link. Yet, this construction con-
tradicts axiom 5, the argument being analogous to that given one paragraph
above.

It remains to check on a structure like the initial one, yet in which point
〈0, 0〉 belongs to the overlap, but with no half-lines strictly above it. 〈0, 0〉 is
a choice point as events from separate possible futures are not snake-linked
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above it; accordingly, these separate futures are the possible futures of 〈0, 0〉.
This point is also a maximal element of the common past of any two events
from different futures of 〈0, 0〉, i.e., it satisfies axiom 5. Note finally that any
attempt to add to the overlap a point on a half-line above 〈0, 0〉 will destroy
〈0, 0〉 as a choice event, as we argued one paragraph above.

The moral is that if one tries to implement branching on structures result-
ing from pasting Minkowski’s space-times, the axioms of the present theory
will enforce a pattern of branching assumed in BST 1992.

We finish this section with an argument that BCont postulates enforce
an analogue of “no backward branching”. The “no backward branching”
condition has a clear sense in the presence of histories: for every events
x, y, z, if y < x and z < x, then there is a history h to which both y and
z belong. In BST 92 this immediately follows from the definition of history
which identifies histories with maximal upward directed sets. Given that we
have continuations and m-histories rather than histories, backward branching
may mean two things:

1. for some x, y, z such that y < x and z < x, y and z belong to separate
continuations of some event e;

2. some y, z, such that neither is above any choice event, are not snake-
linked in region W 6>CE := {e ∈ W | ∀c ∈ CE c 66 e}.

Note that the second case is explicitly forbidden by axiom (6). But the first
case cannot occur, either. For reductio, suppose x, y, z are like in the premise,
that is, for some e: y ∈ H1 and z ∈ H2, where H1, H2 ∈ Πe and H1 6= H2.
It follows that there is no snake-link above e joining y and z. But obviously
there is a snake-link of this sort as y < x, z < x, and each x, y, z is above e.
Contradiction. Hence, there is no backward branching in the BCont theory.

To signal how the BCont theory can be further develop to analyze EPR
phenomena and Bell’s theorems, let us consider how to define the relations of
compatibility and of being space-like related (SLR). As for compatibility, a
first reflection is to say that two events are compatible if they do not belong
to different continuations of any choice event. This will not do, however,
unless we exclude the so-called modal funny business—cf. Belnap (2003). A
typical case of this phenomenon is provided by a BST description of the
EPR experiment, in which each of two incomparable choice events has two
continuations, containing respectively results + and −, with only mixed joint
results (i.e., +− and −+) being possible. Provided that in our model there
are no other choice events, event e immediately above the left choice event in
its +− continuation and event e′ immediately above the right choice event in
its −+ continuation, do not belong to different continuations of any choice
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event, yet such events are paradigmatically incompatible. A remedy is to
consider the set of choice events that are below e or below e′, which leads to
the following definition:

Definition 10 (compatibility, SLR)
e, e′ ∈ W are compatible iff they are snake-linked in the region lying above
every choice event in the past of e or e′. In symbols: e, e′ ∈ W are compatible
iff they are snake-linked in R := {x ∈ W | ∀c (c ∈ CE ∧ (c < e ∨ c < e′))→
c < x}.
e, e′ ∈ W are SLR iff they are compatible but incomparable.

2.2 Instants

In BT Instants is a partition of the base set W . A linear ordering of Instants
is derived there, by appealing to histories, from the partial ordering 6 of base
set W—cf. Belnap et al. (2001). In similar fashion, in some BST models
we can derive spatiotemporal locations (aka space-time points)—cf. Müller
(2005). Following BT/BST, in the theory of BCont we define Instants to
be a partition of W . Yet, as we have m-histories rather than histories, we
cannot derive an ordering of Instants in this manner. Instead we postulate
Instants to be linearly ordered by 6 · and require that ordering 6 on W
and 6· on Instants be properly related. We write I(e) for that element of
Instants to which e belongs.

Postulate 11
∀e, e′ ∈ W : e 6 e′ → I(e) 6·I(e′).

In BT every element of Instants and every history intersect in a single event,
but the analogous postulate on m-histories is unreasonable as m-histories
can be as small as one likes. To consider a substitute, observe that the
BT rationale for this requirement is that history is modally thin: no two
incompatible events can belong to a history. Accordingly, two events from
the same instant cannot belong to one history. Yet, m-histories are modally
thin as well in the following precise sense: no two incompatible events can
belong to set A, if 〈A, f〉 is an m-history for some pointer function f . We
are thus lead to this postulate:

Postulate 12
For every m-history 〈A, f〉 and every e1, e2 ∈ A:
if I(e1) 6· I(e2), then e1 6 e2.
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These two postulates entail that if e1, e2 ∈ A and 〈A, f〉 is an m-history for
some f ∈ P , then

I(e1) 6· I(e2) and I(e2) 6· I(e1) iff I(e1) = I(e2).

It follows that 6· restricted to set A ⊂ W such that 〈A, f〉 is an m-history
for some f ∈ P , is a partial ordering. A further consequence is that no two
elements of any such A that 〈A, f〉 is an m-history, can belong to one and
the same instant.

3 Semantics without histories

In this section we will test the theory, asking if it yields a reasonable seman-
tics for a language with indexicals, tenses, and historical modalities, where
reasonable means that it yields the same valid formulas as the BT semantics.
We take BT for our reference theory, since it is simple and we have some in-
tuitions concerning tenses. We do not have comparable intuitions concerning
relativistic space-like relations, and for this reason an appeal to BST would
be preposterous.

Now a BT theory supplemented by postulates—ordering is dense, there
are no maximal elements, and the prior choice principle—satisfies the axioms
of the last section. The BT theory so augmented has m-histories as well as
histories (maximal chains). Yet, while using BT as a testing ground for our
semantical theory, we will pretend it has no concept of history; we will thus
recast BT semantical concepts accordingly. We further assume that the BT
models here considered have Instants defined.

A novelty of Prior/Thomason BT semantics is that formulas are evaluated
at event-history pairs where an event is assumed to belong to the history in
question. Such pairs are written as e/h; accordingly e/h |= ϕ is read as
‘formula ϕ is evaluated as true at evaluation point e/h’. What should we use
for evaluation points in the present theory? In particular, what should be
used in place of history?

The obvious answer is: mini-histories but this calls for some caveats. His-
tories bring in a certain definiteness. Since they are global, the claim ‘if ϕ is
true at m/h, then ϕ is true at m/h no matter how the course of events devel-
ops’ sounds vacuously true. In our theory, a notion of how a course of events
develops is rendered by a chain of m-histories, with later ones extending the
earlier ones. Thus, to have a similar definiteness we might require that if ϕ
is true at 〈e, m-history〉, then it is true at any pair 〈e, m-history′〉, where
m-history′ extends m-history. Note that for this requirement one needs first
a notion of truth at a point of evaluation, and, in particular, the truth of
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future-tensed sentences. In fact, we assume a simpler requirement, namely
that a point of evaluation is a pair 〈e, 〈A, f〉〉, where e is an event, 〈A, f〉 is
an m-history, and e 6∃ A, where e 6∃ A abbreviates ∃e′ ∈ A : e 6 e′. We
will write such points of evaluations as e/Af . One might impose what seems
a more natural requirement, i.e., e 6∀ A, with 6∀ explained analogously as
above. But, while evaluating formulas with a future tense operator, we move
to some event e′ lying higher in the model. To produce an evaluation point
e′/A′f , and in particular A′, the alternative requirement forces us to toss out
the past of e from A. This we find too burdensome, and decide to sacrifice
naturalness for simplicity. Accordingly, we assume this concept of evaluation
points:

Definition 13 (evaluation points)
〈e, 〈A, f〉〉 is an evaluation point, written as e/Af , iff (1) e ∈ W , (2) 〈A, f〉
is an m-history, and (3) e 6∃ A.

What does it mean however that a sentence is true at such an evaluation
point, as the latter involves a mini-history? We recommend an unabashedly
ontological reading (in contrast to an epistemic interpretation which many
would take as more natural). That is, we say: at event e, if mini-history
〈A, f〉 realizes, the sentence is true. Of course, we might be mistaken as to
whether the mini-history in question will realize, or not. In a similar vein,
we might be mistaken as to whether or not a sentence is true at e, if a given
mini-history realizes. Still, as a mini-history is typically small and may have
plenty of holes, we may have a premonition, a hunch, a forecast, or a scientific
prediction that a given mini-history will realize.

This is strongly contrasted with our epistemic access to histories. Since
histories are maximally large (and there are no holes in them, really), it is
not in our power to form even an intuition of which history will realize. On
a related issue, we believe that a context of use does not determine which
mini-history will realize. There is no (future) mini-history of use, for quite
similar reasons as there is no history of use in the BT semantics – cf. Belnap
et al. (2001).

Since m-histories can be small, it is preferable to work with metric tenses,
like Fn and Pm,6 rather than open-ended tenses F and P . (The latter can
be re-introduced by quantifying over temporal periods.) For our testing pur-
pose, consider then a mini language that has the familiar truth-conditional
connectives: ¬, ∧, ∨, and →, metric tense operators Fn and Pn, and modal
operators Sett : and Poss :. With these operators, a single relevant aspect

6They are read as ‘in n units, it will be the case that . . . ’ and ‘m units ago, it was the
case that . . . ’, respectively.
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of the context of use is the moment of use of a sentence, symbolized by eC .
Thus we take it that a formula is evaluated in a model, at the moment of its
use, and at the point of evaluation. For a sentence considered as stand-alone,
the e of evaluation point e/Af is identified with moment eC of use, whereas
embedded sentences e of e/Af and eC may diverge.7

For structure S we take a BT model with Instants; an interpretation
function is J : Atoms→ P(W ) (where Atoms is the set of atomic formulas).8

The pair 〈S, J〉 is a model M. We will first define a technical notion of
formula ψ being fulfilled in model M at the moment eC of use, and at point
of evaluation e/Af . In symbols: M, eC , e/Af |≈ ψ. Later we will define the
notion of a formula being definitely true.

We need, however, a few auxiliary notions for finally stating what it means
that a formula is (definitely) true at an evaluation point. In order to warm
up the reader for technical paragraphs to come, let us try to explain the
underlying idea.

Whether a formula is (definitely) true at evaluation point e/Af , depends
on how things stand appropriately high above e. The idea is that for a
formula to be definitely true at e/Af , it should be fulfilled in every sufficiently
long extension of e/Af . We thus need the notion of an extension of evaluation
points and a semi-technical notion of fulfillment.We will define the following
notions:

• An evaluation point e/Af goes n-units-above e;

• One evaluation point is an n-units-above-e extension of some other
evaluation point;

• A set of evaluation points is a fan (of evaluation points) defined by a
given evaluation point;

• An evaluation point fulfills a formula;

• A formula is definitely true at an evaluation point.

Let us then get to work.

7For more on this issue, see Belnap et al. (2001) and Belnap (2007).
8Another option is to postulate that the interpretation function assigns a set of eval-

uation points to an atomic formula. Each option has its disadvantage. The situation
exactly mimics a BT choice between an interpretation function sending atomic formulas
into subsets of W , or into subsets of W ×Hist, where Hist is the set of BT histories – cf.
Thomason (1984).
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Definition 14 (extensions of an evaluation point)
e/A′f ′ extends e/Af iff 〈A, f〉 4 〈A′, f ′〉.

e/Af goes at least n-units-above e (0 6 n) iff ∃e′ ∈ W : e′ 6∃ A ∧ I(e′) −
I(e) = n;

e/A′f ′ is an n-units-above-e extension of e/Af (0 6 n) iff (1) e/A′f ′ extends
e/Af and (2) e/A′f ′ goes at least n-units-above e.

Observe that if an evaluation point is an n-units-above-e extension of e/Af ,
it is also an m-units-above-e extension of e/Af for any 0 < m 6 n. The
phrase “at least” implies that an n-units-above-e extension of e/Af can also
be an (n + m)-units-above-e extension of e/Af for some m > 0. Also an
evaluation point can be an n-units-above-e extension of itself. Note finally
that starting with an arbitrary e and an arbitrary m-history one might fail
to produce an n-units-above-e extension of an initial evaluation point.

With postulates (11) - (12) we are able to say what it means that m-
histories are isomorphic instant-wise, and then define an auxiliary concept of
a fan of evaluation points, which considerably simplifies the evaluation clause
for the sentence with Sett : as a principal operator.

Definition 15 (fan of evaluation points)
m-histories 〈A1, f1〉 and 〈A2, f2〉 are isomorphic instant-wise iff ∀e1 ∈ A1∃e2 ∈
A2 : I(e1) = I(e2) and ∀e2 ∈ A2∃e1 ∈ A1 : I(e1) = I(e2).

The fan Fe,Af of evaluation points produced by evaluation point e/Af is a
set of evaluation points:
Fe,Af := {e/A′f ′ | 〈A, f〉 and 〈A′, f ′〉 are isomorphic instant-wise}.

Note that while producing the fan out of a given evaluation point e/Af ,
we keep e fixed and vary A and f subject to the condition of instant-wise
isomorphism. And, since the elements of the fan are points of evaluation,
〈A′, f ′〉 must be consistent and e must be located below some element of
A′. Thus, many evaluation points permit only trivial fans, i.e., singletons of
themselves.

Definition 16 (point fulfills formula)
1. if ψ ∈ Atoms: M, eC , e/Af |≈ ψ iff e ∈ J (ψ);

2. if ψ is ¬ϕ: M, eC , e/Af |≈ ψ iff it is not the case that M, eC , e/Af |≈ ϕ;

3. if ψ is β∨ϕ: M, eC , e/Af |≈ ψ iff M, eC , e/Af |≈ β or M, eC , e/Af |≈ ϕ;

4. and similarly for ∧ and →;
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5. if ψ is Fnϕ: M, eC , e/Af |≈ ψ iff there is e′ ∈ W such that e′ 6∃ A and
I(e′) = I(e) + n, and M, eC , e

′/Af |≈ ϕ;9

6. if ψ is Pnϕ: M, eC , e/Af |≈ ψ iff there is e′ ∈ W such that e′ 6∃ A and
I(e′) = I(e)− n, and M, eC , e

′/Af |≈ ϕ;

7. if ψ is Sett : ϕ: M, eC , e/Af |≈ ψ iff for every evaluation point e/A′f ′

from fan Fe,Af produced by e/Af : M, eC , e/A
′f ′ |≈ ϕ.

The historical possibility operator (Poss :) is defined as usual as:

Poss : ψ := ¬Sett : ¬ψ.

Finally, we have come to the definite truth: here is the notion of a formula
being definitely true in a model, at a moment of use, and at an evaluation
point, i.e., M, eC , e/Af |= ψ.

Definition 17 (definite truth)
ψ is definitely true at M, eC , e/Af , in symbols M, eC , e/Af |= ψ, iff there
is an n > 0 such that for every n units-above e extension e/A′f ′ of e/Af :
M, eC , e/A

′f ′ |≈ ψ;

ψ is indefinite at M, eC , e/Af , in symbols M, eC , e/Af ?= ψ, iff there is
no n > 0 such that for every n-units-above-e extension e/A′f ′ of e/Af :
M, eC , e/A

′f ′ |≈ ψ or for every n-units-above-e extension e/A′f ′ of e/Af :
M, eC , e/A

′f ′ |≈ ¬ψ.

As the first consequence of this definition, observe that for any formula ψ
and any evaluation point e/Af , exactly one of the following three options
must hold:

e/Af |= ψ or e/Af |= ¬ψ or e/Af ?= ψ.

For, as for fulfillment of a formula at extensions of e/Af , these three cases
exhaust all possibilities:

1. there is an n > 0 such that for every n units-above e extension e/A′f ′

of e/Af : e/A′f ′ |≈ ψ, or

2. there is an n > 0 such that for every n units-above e extension e/A′f ′

of e/Af : e/A′f ′ |6≈ ψ, or

3. there is no n > 0 satisfying (1) or (2) above.

9Note that the first condition after “such that” ensures that e′/Af is a legitimate point
of evaluation.
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The first case means that e/Af |= ψ. Given the definition of fulfillment
(clause on negation) and the first clause of definition (17), the second case is
equivalent to e/Af |= ¬ψ. And given the definition of fulfillment (clause on
negation) the third case is equivalent to e/Af ?= ψ.

We need to check on the stability of the notion of truth. We have the
following lemma.

Lemma 18 If M, eC , e/Af |= ψ, then for every extension e/A∗f ∗ of evalu-
ation point e/Af : M, eC , e/A

∗f ∗ |= ψ.

Proof: It follows from the premise that there is an n > 0 such that for
every n-units-above-e extension e/A′f ′ of e/Af : M, eC , e/A

′f ′ |≈ ψ. Pick
now an arbitrary extension e/A”f” of e/A∗f ∗. Let it be an m-units-above-e
extension of e/A∗f ∗. There are now two cases: (i) m < n and (ii) n 6 m.
Case (i). Consider all (n − m)-units-above-e extensions e/A”f” of e/A∗f ∗.
By this construction, every e/A”f” is an n-units-above-e extension of e/Af ,
so by the premise M, eC , e/A”f” |≈ ψ. Hence M, eC , e/A

∗f ∗ |= ψ.
Case (ii) For a given k > 0, consider all k-units-above-e extensions e/A”f”
of e/A∗f ∗. Every e/A”f” is an (n + k)-units-above-e extensions e/Af , and
hence an n-units-above-e. By the premise, for every e/A”f” of this sort, we
have M, eC , e/A”f” |≈ ψ. Hence M, eC , e/A

∗f ∗ |= ψ. �

Thus, a sentence definitely true at an evaluation point stays definitely
true as we progress in time, whereas sentences indefinite at some evaluation
points turn into definitely true or definitely false, whereby we call a sentence
definitely false iff its negation is definitely true. In contrast, a sentence
fulfilled at an evaluation point can cease to be fulfilled at an extension of this
evaluation point, or vice versa. As for the dynamics of definite truth, the
belief that every sentence sooner or later turns definitely true or definitely
false is too optimistic, as the Instants may be exhausted.

Let us now state some simple observations on how definite truth, definite
falsity and indefiniteness mesh together.

1. If ψ is indefinite at a point, so is its negation.

2. if ψ is indefinite at a point, ψ ∨ ϕ is either definitely true or indefinite
at this point;

3. if ψ is indefinite at a point, ψ ∧ ϕ is either indefinite or definitely false
at this point;

4. if ψ is indefinite at a point, ψ → ϕ is either definitely true or indefinite
at this point (same for ϕ→ ψ).
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5. settled cannot be indefinite: Sett : ψ is definitely true or ¬Sett : ψ is
definitely true.

A Pearcean future? No. In essence, for a sentence in the future tense,
the Pearcean approach equates its being true at e with this sentence be-
ing true at a later moment in every possible history to which e belongs. A
problem in this approach is that it fails to accommodate a distinction be-
tween what will happen and what will necessarily happen. In the present
framework, we define definite truth by quantifying over possible extensions,
which is similar to a Pearcean quantifying over possible future histories. One
might thus suspect that we fail to draw a distinction which would indicate
that our account is a version of the Pearcean approach. This is not correct,
however: there is a difference between Fnφ and Sett : Fnφ. To see this,
consider BT + Instants model M of Figure 3, with horizontal lines indi-

e

Af

φ ¬φ
1

C

0

Figure 3: Difference between Sett : F1φ and F1φ.

cating Instants, and the shadowed rectangle symbolizing the mini-history
〈A, f〉. F1φ is fulfilled by every 1-units-above-eC extension of eC/Af , and
hence: M, eC , eC/Af |= F1φ. On the other hand, no matter how large n > 0
is, every fan produced by each n-units-above-eC extension of eC/Af has an
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element lying on the right branch of the model, where ¬φ is true at instant
1. Accordingly, we have: M, eC , eC/Af |= ¬Sett : F1φ.

Is the past always settled? One premise of Diodor’s Master Argument
is that whatever is past or present, is settled, with a natural semantical
reading: (†) from Pnϕ, it follows that Sett : Pnϕ. What appears to be
a convincing way of blocking Diodor’s argument is von Kutschera’s (1986)
distinction between a sentence being about the past and the sentence being
in the past tense. Diodor’s premise is upheld if it concerns sentences about
the past, but rejected if it concerns sentences in the past tense. Since a
formula in the past tense is a formula with Pk as the principal operator, we
reject the implication (†). It can be easily seen that this rejection is also a
consequence of the Prior/Thomason BT semantics. But is it a consequence
of the present framework as well? Consider the model of Figure 4, with the
symbol conventions explained as above. Let φ be an atomic formula and eC

belong to Instant 1. P1F2φ is fulfilled by every 1-units-above-eC extension
of eC/Af , and hence: M, eC , eC/Af |= P1F2φ. On the other hand, for any
n > 0, every fan produced by each n-units-above-eC extension of eC/Af
has an element lying on the right branch of the model, where ¬φ is true at
instant 2. Accordingly, we have: M, eC , eC/Af |= ¬Sett : P1F2φ. On the
other hand, if P1ϕ is definitely true, so is Sett : P1ϕ, for ϕ atomic. Thus, not
every sentence in the past tense has a settled truth-value.

“Einstein was born a Nobel Prize winner” This conundrum sen-
tence is ascribed to Arthur Prior. Let us suppose it is asserted now (in
2009) and that the assertor grants that Einstein might have failed to re-
ceive the Nobel Prize. Despite this indeterminism, the sentence appears to
be settled true now. That is, it is settled (now) that it was true one hun-
dred years ago that Einstein would receive the Nobel Prize (in 1921). In
symbols, Sett : P100F12ϕ. This is compatible with the sentence that one
hundred years ago it was not settled that Einstein would receive the Nobel
Prize in 1921. We thus want to show that Sett : P100F12ϕ does not imply
P100Sett : F12ϕ. Consider Figure (5). Every element of every fan produced by
any extension of eC/Af lies on the left branch of the model, where φ holds.
Hence, M, eC , eC/Af |= Sett : P100F12φ. On the other hand, no matter how
large n is, every extension eC/A

′f ′ of eC/Af fails to fulfill P100 Sett : F12φ.
Namely, for every e′ such that e′ < eC and e′ belongs to Instant 1909,
some element of the fan produced by e′/A′f ′ is on the right branch, where
¬φ holds. Accordingly, Sett : F12φ is not fulfilled at M, eC , e

′/A′f ′, and
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Figure 4: M, eC , eC/Af |= P1F2φ but M, eC , eC/Af |= ¬Sett : P1F2φ.

hence P100 Sett : F12φ is not fulfilled at M, eC , eC/A
′f ′. As eC/A

′f ′ is an
arbitrary n-units-above e extension of eC/Af (for any arbitrarily large n),
M, eC , eC/Af |= ¬P100 Sett : F12φ.

Double time reference. The double time reference is a BT/BST tool,
put forward by Belnap (2001) to explain how something that was not settled
true at one event, becomes settled true at an appropriately later event. I
phrase this intentionally vague since a part of the problem is what is that
object which turns into settled truth?

In the BT framework, with metric rather than open tenses (to make it
more similar to BCont theory), the following variation of Belnap’s (2001)
story illustrates this problem. (Note that in the next paragraph |= stands
for the BT truth at an event/history pair!)

At e1 Themistocles makes the promise—“Tomorrow Themistocles will
fight a sea battle”— in symbols: F1ϕ. It is reasonable to assume that the
core of the promise, “F1ϕ”, is not a settled truth at the event the promise
was made, and also that the promise is not vitiated from the start. So:

e1/h |6= Sett : F1ϕ and e1/h
′ |= F1ϕ for some h′ ∈ Hist. (∗)
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Figure 5: From Sett : P100F12φ it does not follow that P100 Sett : F12φ.

The event at which the promise is satisfied is one e2 at which it is settled
true that Themistocles fights the battle, e2/h |= Sett : ϕ. But what does it
mean, generally speaking, that the promise made at e1 is satisfied at e2? The
double-time reference yields this verdict:

The promise “F1ϕ” made by Themistocles at e1 is satisfied at a later event
e2 iff ∀h : (e2 ∈ h→ e1/h |= F1ϕ).

It follows that at event e2 (at which the promise made at e1 is satisfied) we
have e2/h |= Sett : PkF1ϕ, where k = I(e2)− I(e1) > 0.

We may introduce a similar device in the present framework. (Warning:
from now on, we are again using |= and |≈ of the BCont theory.)

The promise “ψ” made by Themistocles at e1 is satisfied at a later event e2,
i.e., e1 < e2, iff

∀〈Af〉 : 〈Af〉 ∈ mHist ∧ e2 6∃ A→ e1/Af |= ψ. (∗)

We check if (†) e2/Af |= Sett : Pkψ, where k = I(e2)− I(e1). It follows from
(∗) that for some n > 0 for every n-units-up extension e1/A

′f ′ of e1/Af :
e1/A

′f ′ |≈ ψ and (since e2 <∃ A): e2 6∃ A′. Let B := {〈B, g〉 ∈ mHist |
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e2 <∃ B}. It follows that for every 〈B, g〉 ∈ B: e1/Bg |≈ ψ. Further, for every
〈B, g〉 ∈ B: e2/Bg |≈ Pkψ. Note also that every element of the fan produced
by e2/Bg is in B. This entails e2/Bg |≈ PkSett : ψ. Since this holds for every
extension e2/B

′g′ of e2/Bg, as it belongs to B, we get e2/Bg |= PkSett : ψ.

4 Conclusions

This paper puts forward a possible-worlds theory, of a branching variety,
that works in terms of possible continuations and mini-histories rather than
in terms of possible worlds or histories. The theory has a rigor comparable
to, and similar explanatory virtues as Belnap’s (1992) BST. The theory can
also be used as a semantical theory for languages with indexicals, tenses, and
historical modalities. The account allows that some sentences are undecided.
It thus seems that we have here a philosophical paradise on the cheap: an
ontological theory for indeterminism (in the sense of an open future) that is
shy about possible histories. The open problem (and a large project) is to
produce an ensemble of branching manifolds, i.e., a kind of generalization of
an individual manifold of general relativity.
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